
FORMALIZED MATHEMATICS

Volume 3, Number 2, 1992

Université Catholique de Louvain

A Mathematical Model of CPU

Yatsuka Nakamura

Shinshu University

Nagano

Andrzej Trybulec1

Warsaw University

Bia lystok

Summary. This paper is based on a previous work of the first
author [12] in which a mathematical model of the computer has been
presented. The model deals with random access memory, such as RASP
of C. C. Elgot and A. Robinson [11], however, it allows for a more re-
alistic modeling of real computers. This new model of computers has
been named by the author (Y. Nakamura, [12]) Architecture Model for
Instructions (AMI). It is more developed than previous models, both in
the description of hardware (e.g., the concept of the program counter, the
structure of memory) as well as in the description of instructions (instruc-
tion codes, addresses). The structure of AMI over an arbitrary collection
of mathematical domains N consists of:

- a non-empty set of objects,

- the instruction counter,

- a non-empty set of objects called instruction locations,

- a non-empty set of instruction codes,

- an instruction code for halting,

- a set of instructions that are ordered pairs with the first element
being an instruction code and the second a finite sequence in which
members are either objects of the AMI or elements of one of the
domains included in N,

- a function that assigns to every object of AMI its kind that is either
an instruction or an instruction location or an element of N,

- a function that assigns to every instruction its execution that is again
a function mapping states of AMI into the set of states.

By a state of AMI we mean a function that assigns to every object of
AMI an element of the same kind. In this paper we develop the theory
of AMI. Some properties of AMI are introduced ensuring it to have some
properties of real computers:

- a von Neumann AMI, in which only addresses to instruction locations
are stored in the program counter,

- data oriented, those in which instructions cannot be stored in data
locations,

- halting, in which the execution of the halt instruction is the identity
mapping of the states of an AMI,

- steady programmed, the condition in which the contents of the in-
struction locations do not change during execution,

1The work has been done while the second author was visiting Nagano in autumn 1992.

151
c© 1992 Fondation Philippe le Hodey

ISSN 0777–4028



152 yatsuka nakamura and andrzej trybulec

- definite, a property in which only instructions may be stored in in-
struction locations.

We present an example of AMI called a Small Concrete Model which has
been constructed in [12]. The Small Concrete Model has only one kind of
data: integers and a set of instructions, small but sufficient to cope with
integers.

MML Identifier: AMI 1.

The terminology and notation used here have been introduced in the following
articles: [19], [5], [6], [15], [2], [20], [14], [3], [17], [16], [10], [1], [4], [18], [13], [7],
[9], [21], and [8].

1. Preliminaries

In the sequel x is arbitrary. Next we state several propositions:

(1) � 6= � .

(2) For arbitrary a, b holds 1 6= 〈〈a, b〉〉.

(3) For arbitrary a, b holds 2 6= 〈〈a, b〉〉.

(4) For arbitrary a, b, c, d and for every function g such that dom g = {a, b}
and g(a) = c and g(b) = d holds g = [a 7−→ c, b 7−→ d].

(5) For arbitrary a, b, c, d such that a 6= b holds
∏

[a 7−→ {c}, b 7−→ {d}] =
{[a 7−→ c, b 7−→ d]}.

Let A be a set, and let B be a non-empty set. Then A ∪ B is a non-empty
set. Let A be a non-empty set, and let B be a set. Then A ∪ B is a non-empty
set. A set has non-empty elements if:

(Def.1) ∅ /∈ it.

One can verify that there exists a set which is non-empty with and non-empty
elements.

Let A be a non-empty set. Then {A} is a non-empty set with non-empty
elements. Let B be a non-empty set. Then {A,B} is a non-empty set with
non-empty elements. Let A, B be non-empty sets with non-empty elements.
Then A ∪ B is a non-empty set with non-empty elements.

2. General concepts

In the sequel N will be a non-empty set with non-empty elements.
We now define several new constructions. Let us consider N . We consider

AMI’s over N which are systems



a mathematical model of cpu 153

〈objects, a instruction counter, instruction locations, instruction codes, a halt
instruction, instructions, a object kind, a execution〉,
where the objects constitute a non-empty set, the instruction counter is an el-
ement of the objects, the instruction locations constitute a non-empty subset
of the objects, the instruction codes constitute a non-empty set, the halt in-
struction is an element of the instruction codes, the instructions constitute a
non-empty subset of [: the instruction codes, (

⋃

N ∪ the objects)∗ :], the object
kind is a function from the objects into N ∪ {the instructions,the instruction
locations}, and the execution is a function from the instructions into (

∏

(the

object kind))
∏

(the object kind). Let us consider N , and let S be an AMI over N .
An object of S is an element of the objects of S.

An instruction of S is an element of the instructions of S.
An instruction-location of S is an element of the instruction locations of S.
Let us consider N , and let S be an AMI over N . The functor ICS yields an

object of S and is defined by:

(Def.2) ICS = the instruction counter of S.

Let us consider N , and let S be an AMI over N , and let o be an object of S.
The functor ObjectKind(o) yielding an element of N∪{the instructions of S, the
instruction locations of S} is defined by:

(Def.3) ObjectKind(o) = (the object kind of S)(o).

Let A be a set, and let B be a non-empty set with non-empty elements, and let
f be a function from A into B. Then

∏

f is a non-empty set of functions. Let
P be a non-empty set of functions. We see that the element of P is a function.
Let us consider N , and let S be an AMI over N . A state of S is an element of
∏

(the object kind of S).
Let us consider N , and let S be an AMI over N , and let I be an instruction

of S, and let s be a state of S. The functor Exec(I, s) yielding a state of S is
defined by:

(Def.4) Exec(I, s) = (the execution of S qua a function from the instructions

of S into (
∏

(the object kind of S))
∏

(the object kind of S))(I)(s).

Let us consider N , and let S be an AMI over N satisfying the condition: 〈〈the
halt instruction of S, ε〉〉 ∈ the instructions of S. The functor haltS yields an
instruction of S and is defined as follows:

(Def.5) haltS = 〈〈the halt instruction of S, ε〉〉.

Let us consider N . An AMI over N is von Neumann if:

(Def.6) ObjectKind(ICit) = the instruction locations of it.

An AMI over N is data-oriented if:

(Def.7) (the object kind of it) −1 {the instructions of it} ⊆ the instruction
locations of it.

An AMI over N is halting if:

(Def.8) for every state s of it holds Exec(haltit, s) = s.

An AMI over N is steady-programmed if:



154 yatsuka nakamura and andrzej trybulec

(Def.9) for every state s of it and for every instruction i of it and for every
instruction-location l of it holds (Exec(i, s))(l) = s(l).

An AMI over N is definite if:

(Def.10) for every instruction-location l of it holds ObjectKind(l) = the instruc-
tions of it.

Let us consider N . Note that there exists a von Neumann data-oriented halting
steady-programmed definite strict AMI over N .

Let us consider N , and let S be a von Neumann AMI over N , and let s be
a state of S. The functor ICs yields an instruction-location of S and is defined
as follows:

(Def.11) ICs = s(ICS).

3. A small concrete model

In the sequel i, k will be natural numbers. We now define four new functors.
The non-empty subset LocSCM of � is defined by:

(Def.12) LocSCM = � \ {0}.

The element HaltSCM of � 9 is defined as follows:

(Def.13) HaltSCM = 0.

The non-empty subset Data-LocSCM of LocSCM is defined as follows:

(Def.14) Data-LocSCM = {2 · k + 1}.

The non-empty subset Instr-LocSCM of � is defined by:

(Def.15) Instr-LocSCM = {2 · k : k > 0}.

We adopt the following convention: I, J , K are elements of � 9, a, a1, a2 are
elements of Instr-LocSCM, and b, b1, b2, c, c1 are elements of Data-LocSCM. The
non-empty subset InstrSCM of [: � 9,

⋃

{ � }∪ � ∗ :] is defined as follows:

(Def.16) InstrSCM = {〈〈HaltSCM, ε〉〉} ∪ {〈〈J, 〈a〉〉〉 : J = 6} ∪ {〈〈K, 〈a1, b1〉〉〉 : K ∈
{7, 8}} ∪ {〈〈I, 〈b, c〉〉〉 : I ∈ {1, 2, 3, 4, 5}}.

The following propositions are true:

(6) InstrSCM = {〈〈HaltSCM, ε〉〉} ∪ {〈〈J, 〈a〉〉〉 : J = 6} ∪ {〈〈K, 〈a1, b1〉〉〉 : K ∈
{7, 8}} ∪ {〈〈I, 〈b, c〉〉〉 : I ∈ {1, 2, 3, 4, 5}}.

(7) 〈〈0, ε〉〉 ∈ InstrSCM.

(8) 〈〈6, 〈a2〉〉〉 ∈ InstrSCM.

(9) If x ∈ {7, 8}, then 〈〈x, 〈a2, b2〉〉〉 ∈ InstrSCM.

(10) If x ∈ {1, 2, 3, 4, 5}, then 〈〈x, 〈b1, c1〉〉〉 ∈ InstrSCM.

The function OKSCM from � into { � }∪ {InstrSCM, Instr-LocSCM} is defined
by:

(Def.17) OKSCM(0) = Instr-LocSCM and for every natural number k holds
OKSCM(2 · k + 1) = � and OKSCM(2 · k + 2) = InstrSCM.



a mathematical model of cpu 155

The following four propositions are true:

(11) Instr-LocSCM 6= � and InstrSCM 6= � and Instr-LocSCM 6= InstrSCM.

(12) For every i holds OKSCM(i) = Instr-LocSCM if and only if i = 0.

(13) For every i holds OKSCM(i) = � if and only if there exists k such that
i = 2 · k + 1.

(14) For every i holds OKSCM(i) = InstrSCM if and only if there exists k
such that i = 2 · k + 2.

A stateSCM is an element of
∏

(OKSCM).

In the sequel s is a stateSCM. We now state several propositions:

(15) For every element a of Data-LocSCM holds OKSCM(a) = � .

(16) For every element a of Instr-LocSCM holds OKSCM(a) = InstrSCM.

(17) For every element a of Instr-LocSCM

and for every element t of Data-LocSCM holds a 6= t.

(18) π0
∏

(OKSCM) = Instr-LocSCM.

(19) For every element a of Data-LocSCM holds πa

∏

(OKSCM) = � .

(20) For every element a of Instr-LocSCM holds πa

∏

(OKSCM) = InstrSCM.

We now define two new functors. Let s be a stateSCM. The functor ICs

yielding an element of Instr-LocSCM is defined by:

(Def.18) ICs = s(0).

Let s be a stateSCM, and let u be an element of Instr-LocSCM. The functor
ChgSCM(s, u) yields a stateSCM and is defined as follows:

(Def.19) ChgSCM(s, u) = s +· (07−→. u).

The following three propositions are true:

(21) For every stateSCM s and for every element u of Instr-LocSCM holds
(ChgSCM(s, u))(0) = u.

(22) For every stateSCM s and for every element u of Instr-LocSCM and for
every element m1 of Data-LocSCM holds (ChgSCM(s, u))(m1) = s(m1).

(23) For every stateSCM s and for all elements u, v of Instr-LocSCM holds
(ChgSCM(s, u))(v) = s(v).

Let s be a stateSCM, and let t be an element of Data-LocSCM, and let u be
an integer. The functor ChgSCM(s, t, u) yielding a stateSCM is defined by:

(Def.20) ChgSCM(s, t, u) = s +· (t 7−→. u).

The following four propositions are true:

(24) For every stateSCM s and for every element t of Data-LocSCM and for
every integer u holds (ChgSCM(s, t, u))(0) = s(0).

(25) For every stateSCM s and for every element t of Data-LocSCM and for
every integer u holds (ChgSCM(s, t, u))(t) = u.

(26) For every stateSCM s and for every element t of Data-LocSCM and for
every integer u and for every element m1 of Data-LocSCM such that m1 6= t
holds (ChgSCM(s, t, u))(m1) = s(m1).



156 yatsuka nakamura and andrzej trybulec

(27) For every stateSCM s and for every element t of Data-LocSCM and for
every integer u and for every element v of Instr-LocSCM holds
(ChgSCM(s, t, u))(v) = s(v).

We now define two new functors. Let x be an element of InstrSCM. Let us
assume that there exist m1, m2 of the type elements of Data-LocSCM; I such that
x = 〈〈I, 〈m1,m2〉〉〉. The functor xaddress1 yields an element of Data-LocSCM and
is defined by:

(Def.21) there exists a finite sequence f of elements of Data-LocSCM such that
f = x2 and xaddress1 = π1f .

The functor xaddress2 yields an element of Data-LocSCM and is defined by:

(Def.22) there exists a finite sequence f of elements of Data-LocSCM such that
f = x2 and xaddress2 = π2f .

One can prove the following proposition

(28) For every element x of InstrSCM and for all elements m1, m2 of Data-
LocSCM and for every I such that x = 〈〈I, 〈m1,m2〉〉〉
holds xaddress1 = m1 and xaddress2 = m2.

Let x be an element of InstrSCM. Let us assume that there exist m1 of
the type an element of Instr-LocSCM; I such that x = 〈〈I, 〈m1〉〉〉. The functor
xaddressj yielding an element of Instr-LocSCM is defined as follows:

(Def.23) there exists a finite sequence f of elements of Instr-LocSCM such that
f = x2 and xaddressj = π1f .

We now state the proposition

(29) For every element x of InstrSCM and for every element m1 of Instr-LocSCM

and for every I such that x = 〈〈I, 〈m1〉〉〉 holds xaddressj = m1.

We now define two new functors. Let x be an element of InstrSCM. Let us
assume that there exist m1 of the type an element of Instr-LocSCM; m2 of the
type an element of Data-LocSCM; I such that x = 〈〈I, 〈m1,m2〉〉〉. The functor
xaddressj yields an element of Instr-LocSCM and is defined as follows:

(Def.24) there exists an element m1 of Instr-LocSCM and there exists an element
m2 of Data-LocSCM such that 〈m1,m2〉 = x2 and xaddressj = π1〈m1,
m2〉.

The functor xaddressc yielding an element of Data-LocSCM is defined by:

(Def.25) there exists an element m1 of Instr-LocSCM and there exists an element
m2 of Data-LocSCM such that 〈m1,m2〉 = x2 and xaddressc = π2〈m1,
m2〉.

The following proposition is true

(30) For every element x of InstrSCM and for every element m1 of Instr-LocSCM

and for every element m2 of Data-LocSCM and for every I such that
x = 〈〈I, 〈m1,m2〉〉〉 holds xaddressj = m1 and xaddressc = m2.

We now define five new functors. Let s be a stateSCM, and let a be an element
of Data-LocSCM. Then s(a) is an integer. Let D be a non-empty set, and let x,
y be arbitrary, and let a, b be elements of D. Then (x = y → a, b) is an element



a mathematical model of cpu 157

of D. Let D be a non-empty set, and let x, y be real numbers, and let a, b be
elements of D. The functor (x > y → a, b) yields an element of D and is defined
as follows:

(Def.26)

(x > y → a, b) =







a, if x > y,

b, otherwise.

Let d be an element of Instr-LocSCM. The functor Next(d) yields an element of
Instr-LocSCM and is defined as follows:

(Def.27) Next(d) = d + 2.

Let x be an element of InstrSCM, and let s be a stateSCM. The functor
Exec-ResSCM(x, s) yielding a stateSCM is defined as follows:

(Def.28) (i) Exec-ResSCM(x, s) = ChgSCM(ChgSCM(s, xaddress1, s(xaddress2)),
Next(ICs)) if there exist elements m1, m2 of Data-LocSCM such that
x = 〈〈1, 〈m1,m2〉〉〉,

(ii) Exec-ResSCM(x, s) = ChgSCM(ChgSCM(s, xaddress1, s(xaddress1)+
s(xaddress2)),Next(ICs)) if there exist elements m1, m2 of Data-LocSCM

such that x = 〈〈2, 〈m1,m2〉〉〉,
(iii) Exec-ResSCM(x, s) = ChgSCM(ChgSCM(s, xaddress1, s(xaddress1)−

s(xaddress2)),Next(ICs)) if there exist elements m1, m2 of Data-LocSCM

such that x = 〈〈3, 〈m1,m2〉〉〉,
(iv) Exec-ResSCM(x, s) = ChgSCM(ChgSCM(s, xaddress1, s(xaddress1)·

s(xaddress2)),Next(ICs)) if there exist elements m1, m2 of Data-LocSCM

such that x = 〈〈4, 〈m1,m2〉〉〉,
(v) Exec-ResSCM(x, s) = ChgSCM(ChgSCM(ChgSCM(s, xaddress1, s(xaddress1)

÷s(xaddress2)), xaddress2, s(xaddress1) mod s(xaddress2)),Next(ICs))
if there exist elements m1, m2 of Data-LocSCM such that x = 〈〈5, 〈m1,
m2〉〉〉,

(vi) Exec-ResSCM(x, s) = ChgSCM(s, xaddressj) if there exists an element m1

of Instr-LocSCM such that x = 〈〈6, 〈m1〉〉〉,
(vii) Exec-ResSCM(x, s) = ChgSCM(s, (s(xaddressc) = 0 → xaddressj,

Next(ICs))) if there exists an element m1 of Instr-LocSCM and there exists
an element m2 of Data-LocSCM such that x = 〈〈7, 〈m1,m2〉〉〉,

(viii) Exec-ResSCM(x, s) = ChgSCM(s, (s(xaddressc) > 0 → xaddressj,
Next(ICs))) if there exists an element m1 of Instr-LocSCM and there exists
an element m2 of Data-LocSCM such that x = 〈〈8, 〈m1,m2〉〉〉,

(ix) Exec-ResSCM(x, s) = s, otherwise.

The function ExecSCM from InstrSCM into
∏

OK

∏

OKSCM

SCM is defined by:

(Def.29) for every element x of InstrSCM and for every stateSCM y holds

(ExecSCM(x) qua an element of (
∏

(OKSCM))
∏

(OKSCM))(y) =
Exec-ResSCM(x, y).

The von Neumann strict AMI SCM is defined by:



158 yatsuka nakamura and andrzej trybulec

(Def.30) SCM = 〈 � , 0, Instr-LocSCM, � 9,HaltSCM, InstrSCM,OKSCM,ExecSCM〉.

Next we state three propositions:

(31) SCM is data-oriented.

(32) SCM is definite.

(33) The objects of SCM = � and the instruction counter of SCM = 0 and
the instruction locations of SCM = Instr-LocSCM and the instruction
codes of SCM = � 9 and the halt instruction of SCM = HaltSCM and the
instructions of SCM = InstrSCM and the object kind of SCM = OKSCM

and the execution of SCM = ExecSCM.

An object of SCM is said to be a data-location if:

(Def.31) it ∈ Data-LocSCM.

Let s be a state of SCM, and let d be a data-location. Then s(d) is an integer.

We adopt the following convention: a, b, c denote data-locations, l1 denotes
an instruction-location of SCM, and I denotes an instruction of SCM. We
now define several new functors. Let us consider a, b. The functor a:=b yielding
an instruction of SCM is defined by:

(Def.32) a:=b = 〈〈1, 〈a, b〉〉〉.

The functor AddTo(a, b) yielding an instruction of SCM is defined by:

(Def.33) AddTo(a, b) = 〈〈2, 〈a, b〉〉〉.

The functor SubFrom(a, b) yielding an instruction of SCM is defined by:

(Def.34) SubFrom(a, b) = 〈〈3, 〈a, b〉〉〉.

The functor MultBy(a, b) yields an instruction of SCM and is defined by:

(Def.35) MultBy(a, b) = 〈〈4, 〈a, b〉〉〉.

The functor Divide(a, b) yields an instruction of SCM and is defined as follows:

(Def.36) Divide(a, b) = 〈〈5, 〈a, b〉〉〉.

Let us consider l1. The functor goto l1 yields an instruction of SCM and is
defined by:

(Def.37) goto l1 = 〈〈6, 〈l1〉〉〉.

Let us consider a. The functor if a = 0 goto l1 yielding an instruction of SCM

is defined as follows:

(Def.38) if a = 0 goto l1 = 〈〈7, 〈l1, a〉〉〉.

The functor if a > 0 goto l1 yields an instruction of SCM and is defined as
follows:

(Def.39) if a > 0 goto l1 = 〈〈8, 〈l1, a〉〉〉.

In the sequel s will denote a state of SCM. Next we state two propositions:

(34) ICSCM = 0.

(35) For every stateSCM S such that S = s holds ICs = ICS .

Let l1 be an instruction-location of SCM. The functor Next(l1) yielding an
instruction-location of SCM is defined by:



a mathematical model of cpu 159

(Def.40) there exists an element m3 of Instr-LocSCM such that m3 = l1 and
Next(l1) = Next(m3).

Next we state two propositions:

(36) For every instruction-location l1 of SCM and for every element m3 of
Instr-LocSCM such that m3 = l1 holds Next(m3) = Next(l1).

(37) For every element i of InstrSCM such that i = I and for every stateSCM

S such that S = s holds Exec(I, s) = Exec-ResSCM(i, S).

4. Users guide

One can prove the following propositions:

(38) (Exec(a:=b, s))(ICSCM) = Next(ICs) and (Exec(a:=b, s))(a) = s(b)
and for every c such that c 6= a holds (Exec(a:=b, s))(c) = s(c).

(39) (Exec(AddTo(a, b), s))(ICSCM) = Next(ICs)

and (Exec(AddTo(a, b), s))(a) = s(a) + s(b) and for every c such that
c 6= a holds (Exec(AddTo(a, b), s))(c) = s(c).

(40) (Exec(SubFrom(a, b), s))(ICSCM) = Next(ICs)

and (Exec(SubFrom(a, b), s))(a) = s(a) − s(b) and for every c such that
c 6= a holds (Exec(SubFrom(a, b), s))(c) = s(c).

(41) (Exec(MultBy(a, b), s))(ICSCM) = Next(ICs)

and (Exec(MultBy(a, b), s))(a) = s(a)·s(b) and for every c such that c 6= a
holds (Exec(MultBy(a, b), s))(c) = s(c).

(42) Suppose a 6= b. Then

(i) (Exec(Divide(a, b), s))(ICSCM) = Next(ICs),

(ii) (Exec(Divide(a, b), s))(a) = s(a) ÷ s(b),

(iii) (Exec(Divide(a, b), s))(b) = s(a) mod s(b),

(iv) for every c such that c 6= a and c 6= b holds (Exec(Divide(a, b), s))(c) =
s(c).

(43) (Exec(goto l1, s))(ICSCM) = l1 and (Exec(goto l1, s))(c) = s(c).

(44) If s(a) = 0, then (Exec(if a = 0 goto l1, s))(ICSCM) = l1 and also
if s(a) 6= 0, then (Exec(if a = 0 goto l1, s))(ICSCM) = Next(ICs) and
(Exec(if a = 0 goto l1, s))(c) = s(c).

(45) If s(a) > 0, then (Exec(if a > 0 goto l1, s))(ICSCM) = l1 and also
if s(a) ≤ 0, then (Exec(if a > 0 goto l1, s))(ICSCM) = Next(ICs) and
(Exec(if a > 0 goto l1, s))(c) = s(c).

(46) Exec(haltSCM, s) = s.

(47) For every state s of SCM and for every instruction-location i of SCM

holds s(i) is an instruction of SCM.



160 yatsuka nakamura and andrzej trybulec

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-
ematics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[4] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–

676, 1990.
[5] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[6] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[7] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[8] Czes law Byliński. Products and coproducts in categories. Formalized Mathematics,

2(5):701–709, 1991.
[9] Czes law Byliński. Subcategories and products of categories. Formalized Mathematics,

1(4):725–732, 1990.
[10] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[11] C.C. Elgot and A. Robinson. Random access stored-program machines, an approach to

programming languages. J.A.C.M., 11(4):365–399, Oct 1964.
[12] Yatsuka Nakamura. On a Mathematical Model of CPU and Algorithm. Technical Report,

Shinshu University, Aug 1991.
[13] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized

Mathematics, 1(3):555–561, 1990.
[14] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Math-

ematics, 2(5):623–627, 1991.
[15] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[16] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.
[17] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[18] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics,

1(3):495–500, 1990.
[19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[20] Micha l J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[21] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.

Received October 14, 1992


