FORMALIZED MATHEMATICS
Volume 3, Number 2, 1992
Université Catholique de Louvain

A Mathematical Model of CPU

Yatsuka Nakamura Andrzej Trybulec!
Shinshu University Warsaw University
Nagano Bialystok

Summary. This paper is based on a previous work of the first
author [12] in which a mathematical model of the computer has been
presented. The model deals with random access memory, such as RASP
of C. C. Elgot and A. Robinson [11], however, it allows for a more re-
alistic modeling of real computers. This new model of computers has
been named by the author (Y. Nakamura, [12]) Architecture Model for
Instructions (AMI). It is more developed than previous models, both in
the description of hardware (e.g., the concept of the program counter, the
structure of memory) as well as in the description of instructions (instruc-
tion codes, addresses). The structure of AMI over an arbitrary collection
of mathematical domains N consists of:

- a non-empty set of objects,

- the instruction counter,

- a non-empty set of objects called instruction locations,
- a non-empty set of instruction codes,

- an instruction code for halting,

- a set of instructions that are ordered pairs with the first element
being an instruction code and the second a finite sequence in which
members are either objects of the AMI or elements of one of the
domains included in N,

- a function that assigns to every object of AMI its kind that is either
an instruction or an instruction location or an element of N,

- a function that assigns to every instruction its execution that is again
a function mapping states of AMI into the set of states.
By a state of AMI we mean a function that assigns to every object of
AMI an element of the same kind. In this paper we develop the theory
of AMI. Some properties of AMI are introduced ensuring it to have some
properties of real computers:
- a von Neumann AMI, in which only addresses to instruction locations
are stored in the program counter,
- data oriented, those in which instructions cannot be stored in data
locations,
- halting, in which the execution of the halt instruction is the identity
mapping of the states of an AMI,
- steady programmed, the condition in which the contents of the in-
struction locations do not change during execution,

!The work has been done while the second author was visiting Nagano in autumn 1992.

© 1992 Fondation Philippe le Hodey
151 ISSN 0777-4028

152 YATSUKA NAKAMURA AND ANDRZEJ TRYBULEC

- definite, a property in which only instructions may be stored in in-
struction locations.

We present an example of AMI called a Small Concrete Model which has
been constructed in [12]. The Small Concrete Model has only one kind of
data: integers and a set of instructions, small but sufficient to cope with
integers.

MML Identifier: AMI_1.

The terminology and notation used here have been introduced in the following
articles: [19], [5], [6], [15], [2], [20], [14], [3], [17], [16], [10], [1], [4], [18], [13], [7],
[9], [21], and [8].

1. PRELIMINARIES

In the sequel x is arbitrary. Next we state several propositions:

(1) N#TZ.
(2) For arbitrary a, b holds 1 # (a, b).
(3) For arbitrary a, b holds 2 # (a, b).
(4) For arbitrary a, b, ¢, d and for every function g such that dom g = {a, b}
and g(a) = c and g(b) = d holds g = [a —— ¢, b — d].
(5) For arbitrary a, b, ¢, d such that a # b holds [[[a — {c},b — {d}] =
{[a — ¢,b+— d]}.

Let A be a set, and let B be a non-empty set. Then AU B is a non-empty
set. Let A be a non-empty set, and let B be a set. Then AU B is a non-empty
set. A set has non-empty elements if:

(Def.1) 0 ¢ it.
One can verify that there exists a set which is non-empty with and non-empty
elements.

Let A be a non-empty set. Then {A} is a non-empty set with non-empty
elements. Let B be a non-empty set. Then {A, B} is a non-empty set with
non-empty elements. Let A, B be non-empty sets with non-empty elements.
Then AU B is a non-empty set with non-empty elements.

2. GENERAL CONCEPTS

In the sequel N will be a non-empty set with non-empty elements.
We now define several new constructions. Let us consider N. We consider
AMTI’s over N which are systems

A MATHEMATICAL MODEL OF CPU

(objects, a instruction counter, instruction locations, instruction codes, a halt
instruction, instructions, a object kind, a execution),
where the objects constitute a non-empty set, the instruction counter is an el-
ement of the objects, the instruction locations constitute a non-empty subset
of the objects, the instruction codes constitute a non-empty set, the halt in-
struction is an element of the instruction codes, the instructions constitute a
non-empty subset of [the instruction codes, (|J N U the objects)*], the object
kind is a function from the objects into N U {the instructions,the instruction
locations}, and the execution is a function from the instructions into (I](the
object kind))H (the object kind) T ot y5 consider N, and let S be an AMI over N.
An object of S is an element of the objects of S.

An instruction of S is an element of the instructions of S.

An instruction-location of S is an element of the instruction locations of S.

Let us consider N, and let S be an AMI over N. The functor ICg yields an
object of S and is defined by:

(Def.2) ICg = the instruction counter of S.
Let us consider N, and let S be an AMI over N, and let o be an object of S.
The functor ObjectKind(o) yielding an element of N U{the instructions of S, the
instruction locations of S} is defined by:

(Def.3) ObjectKind(o) = (the object kind of S)(0).
Let A be a set, and let B be a non-empty set with non-empty elements, and let
f be a function from A into B. Then [] f is a non-empty set of functions. Let
P be a non-empty set of functions. We see that the element of P is a function.
Let us consider N, and let S be an AMI over N. A state of S is an element of
[1 (the object kind of).

Let us consider N, and let S be an AMI over IV, and let I be an instruction
of S, and let s be a state of S. The functor Exec(I, s) yielding a state of S is
defined by:

(Def.4) Exec(I,s) = (the execution of S quaa function from the instructions
of S into ([] (the object kind of S’))H(the object kind of 8)y(r)(y).
Let us consider N, and let S be an AMI over N satisfying the condition: (the
halt instruction of S, €) € the instructions of S. The functor haltg yields an
instruction of S and is defined as follows:
(Def.5) haltg = (the halt instruction of S,).
Let us consider N. An AMI over N is von Neumann if:
(Def.6) ObjectKind(ICj;) = the instruction locations of it.
An AMI over N is data-oriented if:
(Def.7) (the object kind of it) ~! {the instructions of it} C the instruction
locations of it.
An AMI over N is halting if:
(Def.8) for every state s of it holds Exec(halt;, s) = s.
An AMI over N is steady-programmed if:

153

154 YATSUKA NAKAMURA AND ANDRZEJ TRYBULEC

(Def.9) for every state s of it and for every instruction i of it and for every
instruction-location [of it holds (Exec(i, s))(l) = s(I).

An AMI over N is definite if:
(Def.10) for every instruction-location [of it holds ObjectKind(l) = the instruc-
tions of it.

Let us consider N. Note that there exists a von Neumann data-oriented halting
steady-programmed definite strict AMI over N.

Let us consider NV, and let S be a von Neumann AMI over IV, and let s be
a state of S. The functor IC; yields an instruction-location of S and is defined
as follows:

(Def.11) IC, = s(ICg).

3. A SMALL CONCRETE MODEL

In the sequel 7, & will be natural numbers. We now define four new functors.
The non-empty subset Locgcn of N is defined by:

(Def.12) Locgscm = N\ {0}.

The element Haltgcn of Zg is defined as follows:
(Def.lS) Haltgon = 0.

The non-empty subset Data-Locgconm of Locscon is defined as follows:
(Def.14) Data-Locgem = {2 -k + 1}.

The non-empty subset Instr-Locgen of N is defined by:
(Def.15) Instr-Locgcm = {2 - k : k > 0}.

We adopt the following convention: I, J, K are elements of Zg, a, a1, as are

elements of Instr-Locgcm, and b, by, ba, ¢, ¢1 are elements of Data-Locgay. The
non-empty subset Instrgcn of [Zo, U{Z } UN* | is defined as follows:

(Def.16) Instrsem = {(Haltsom, €)} U {{J, (a)) : J = 6} U{(K, (a1,b1)) : K €
{7,8}} U{{I, (b,c)) : I € {1,2,3,4,5}}.
The following propositions are true:
(6) Instrsom = {(Haltscm,)} U{{(J, (a)) : J =6} U{(K, (a1,b1)) : K €
{7, 8}y U{{I, (b,c)) : T € {1,2,3,4,5}}.

(7) (0, €) € Instrgom.
(8) {6, {az)) € Instrscm.
(9) If x €{7,8}, then (z, (az,b2)) € Instrgcm.
(10) Ifxe{1,2,3,4,5}, then {(x, (b1,c1)) € Instrgom.

The function OKgcy from N into {Z } U {Instrgcn, Instr-Locgenm s defined
by:
(Def.17) OKgem(0) = Instr-Locscm and for every natural number & holds
OKSCM(2 -k + 1) =7 and OKSCM(2 -k 4+ 2) = Instrgcom.

A MATHEMATICAL MODEL OF CPU

The following four propositions are true:
(11) Instr-Locsom # 7 and Instrgonm # Z and Instr-Locgonm # Instrgon.
(12) For every i holds OKgcm(i) = Instr-Locgonm if and only if ¢ = 0.
(13) For every i holds OKgom(i) = Z if and only if there exists k such that
i1=2-k+1.
(14) For every i holds OKgcm(i) = Instrgen if and only if there exists k
such that i =2 -k + 2.
A stategom is an element of [[(OKscom).
In the sequel s is a stategcym. We now state several propositions:
(15) For every element a of Data-Locgenm holds OKgem(a) = 7.
(16) For every element a of Instr-Locgcy holds OKgen(a) = Instrge.

(17) For every element a of Instr-Locgcm
and for every element ¢ of Data-Locgcy holds a # t.

(18) 7o [I(OKscm) = Instr-Locgom.
(19) For every element a of Data-Locgcy holds 7, [[(OKsem) = Z.
(20) For every element a of Instr-Locgcy holds 7, [[(OKgonm) = Instrgen.

We now define two new functors. Let s be a statescy. The functor IC,
yielding an element of Instr-Locgcy is defined by:

(Def.18) IC; = s(0).
Let s be a statescy, and let u be an element of Instr-Locgcym. The functor
Chggonm (s, u) yields a stategem and is defined as follows:
(Def.19) Chggom(s,u) = s +- (0——u).
The following three propositions are true:
(21) For every statescm s and for every element w of Instr-Locgcn holds
(Chggcm(s, u))(0) = w.
(22) For every stategscm s and for every element u of Instr-Locgcy and for
every element my of Data-Locgonm holds (Chggon (s, w))(my) = s(myq).
(23) For every statescy s and for all elements u, v of Instr-Locgoy holds
(Chggom (s, u))(v) = s(v).
Let s be a statescm, and let ¢ be an element of Data-Locscy, and let u be
an integer. The functor Chggcy(s, ¢, u) yielding a stategcy is defined by:

(Def.20) Chggom(s, t,u) = s+ (t—u).
The following four propositions are true:
(24) For every statescm s and for every element ¢ of Data-Locgonm and for
every integer u holds (Chggc(s,t,u))(0) = s(0).
(25) For every statesom s and for every element ¢ of Data-Locgcnm and for
every integer u holds (Chggon (s, t,u))(t) = u.
(26) For every statescm s and for every element ¢ of Data-Locgonm and for

every integer u and for every element mi of Data-Locgcyt such that my # ¢
holds (Chggeyi(s,t,u))(my) = s(mq).

156 YATSUKA NAKAMURA AND ANDRZEJ TRYBULEC

(27) For every stategonm s and for every element t of Data-Locgcy and for
every integer u and for every element v of Instr-Locgcy holds
(Chgscm(s, t,u))(v) = s(v).

We now define two new functors. Let x be an element of Instrgcy. Let us
assume that there exist mq, msq of the type elements of Data-Locgcn; I such that
x = (I, (m1,ma)). The functor zaddress; yields an element of Data-Locgcy and
is defined by:
(Def.21) there exists a finite sequence f of elements of Data-Locgonm such that
f = x9 and xaddress; = 7 f.
The functor zaddressy yields an element of Data-Locscy and is defined by:

(Def.22) there exists a finite sequence f of elements of Data-Locgcnm such that
f = zo and raddresss = o f.

One can prove the following proposition

(28) For every element x of Instrgonm and for all elements my, ms of Data-
Locgom and for every I such that x = (I, (mq,m2))
holds xaddress; = mq and xaddresss = mo.

Let x be an element of Instrgcy. Let us assume that there exist mj of
the type an element of Instr-Locgom; I such that x = (I, (m1)). The functor
raddress; yielding an element of Instr-Locgcn is defined as follows:

(Def.23) there exists a finite sequence f of elements of Instr-Locgom such that
f = x2 and zaddress; = m f.

We now state the proposition

(29) For every element x of Instrgcy and for every element my of Instr-Locgcm
and for every I such that = (I, (m;)) holds zaddress; = m;.

We now define two new functors. Let x be an element of Instrgcy. Let us
assume that there exist mq of the type an element of Instr-Locgcm; meo of the
type an element of Data-Locgon; I such that © = (I, (mq1,mg)). The functor
raddress; yields an element of Instr-Locscy and is defined as follows:

(Def.24) there exists an element m; of Instr-Locgcm and there exists an element
mgy of Data-Locgcm such that (my,me) = z2 and zaddress; = m(my,
m2>.

The functor xaddress. yielding an element of Data-Locgcn is defined by:

(Def.25) there exists an element m; of Instr-Locgcm and there exists an element
mq of Data-Locgonm such that (mq,mse) = z9 and zaddress, = ma(mq,
m2>.

The following proposition is true

(30) For every element x of Instrgcy and for every element my of Instr-Locgcm
and for every element ms of Data-Locgcy and for every I such that
x = (I, (m1,m2)) holds zaddress; = m; and zaddress, = ma.

We now define five new functors. Let s be a statesca, and let a be an element
of Data-Locgcy. Then s(a) is an integer. Let D be a non-empty set, and let z,
y be arbitrary, and let a, b be elements of D. Then (x = y — a,b) is an element

A MATHEMATICAL MODEL OF CPU 157

of D. Let D be a non-empty set, and let x, y be real numbers, and let a, b be
elements of D. The functor (x > y — a,b) yields an element of D and is defined

as follows:
(Def.26)

a, if x >y,

(m>y—>a,b):{

b, otherwise.

Let d be an element of Instr-Locgonm. The functor Next(d) yields an element of
Instr-Locgeonm and is defined as follows:

(Def.27) Next(d) =d +2.

Let z be an element of Instrgcym, and let s be a stategcyi. The functor
Exec-Ressom(z, s) yielding a stategcn is defined as follows:

(Def.28) (i) Exec-Ressom(z, s) = Chggonm(Chggom (s, raddressy, s(raddresss)),
Next(ICj)) if there exist elements my, mgy of Data-Locgcy such that
T = <17 <m17m2>>7

(ii) Exec-Resscom(z, s) = Chggonm (Chggom (s, raddressy, s(raddress;)+
s(raddresss)), Next(ICy)) if there exist elements mi, mo of Data-Locscnm
such that z = (2, (mq1,m2)),

(iii) Exec-Ressom(z, s) = Chggen(Chggon (8, xaddressy, s(xaddressy) —
s(zaddresss)), Next(ICy)) if there exist elements m1, ma of Data-Locgcm
such that z = (3, (mq1,m2)),

(iv) Exec-Ressom(z, s) = Chggon (Chggon (8, zaddressy, s(zaddressy)-
s(zaddresss)), Next(ICy)) if there exist elements m1, mo of Data-Locgcm
such that z = (4, (mq,m2)),

(v) Exec-Ressom(z, s) = Chggon(Chggon (Chggon (s, zaddressy, s(zaddress;)
+s(raddresss)), raddresss, s(raddress;) mod s(zaddresss)), Next (IC))
if there exist elements my, msy of Data-Locgom such that = (5, (mq,
m2>>7

(vi) Exec-Resscm(z, s) = Chggey(s, zaddress;) if there exists an element m;
of Instr-Locgom such that z = (6, (m1)),

(vii) Exec-Resscm(,s) = Chgge(s, (s(zaddress.) = 0 — zaddress;,
Next(ICy))) if there exists an element m; of Instr-Locgom and there exists
an element mqy of Data-Locgcn such that z = (7, (mq,ma)),

(viii) Exec-Resscm(®,s) = Chggen(s, (s(raddress.) > 0 — xaddress;,
Next(ICy))) if there exists an element m; of Instr-Locgon and there exists
an element my of Data-Locgcy such that x = (8, (my,ma)),

(ix) Exec-Resgcm(z,s) = s, otherwise.

. K .
The function Execgeonm from Instrgon into] OK%_[CI?/[SCM s defined by:

(Def.29) for every element x of Instrgcy and for every stategon y holds

(Execscm () qua an element of (H(OKSCM))H(OKSCM))(Q/) =
Exec-Resscm(, v).

The von Neumann strict AMI SCM is defined by:

158 YATSUKA NAKAMURA AND ANDRZEJ TRYBULEC

(Def.30) SCM = <N, 0, Instr-Locscom, Z 9, Haltsowm, Instrson, OKsow, EXGCSCM>.

Next we state three propositions:
(31) SCM is data-oriented.
(32) SCM is definite.

(33) The objects of SCM = N and the instruction counter of SCM = 0 and
the instruction locations of SCM = Instr-Locgcy and the instruction
codes of SCM = 7 g and the halt instruction of SCM = Haltgcy and the
instructions of SCM = Instrgoym and the object kind of SCM = OKgcom
and the execution of SCM = Execgcm.

An object of SCM is said to be a data-location if:
(Def.31) it € Data-Locgcm.
Let s be a state of SCM, and let d be a data-location. Then s(d) is an integer.

We adopt the following convention: a, b, ¢ denote data-locations, [; denotes
an instruction-location of SCM, and I denotes an instruction of SCM. We
now define several new functors. Let us consider a, b. The functor a:=b yielding
an instruction of SCM is defined by:

(Def.32) a:=b= (1, (a,b)).

The functor AddTo(a,b) yielding an instruction of SCM is defined by:
(Def.33) AddTo(a,b) = (2, (a,b)).

The functor SubFrom(a,b) yielding an instruction of SCM is defined by:
(Def.34) SubFrom(a,b) = (3, (a,b)).

The functor MultBy(a, b) yields an instruction of SCM and is defined by:
(Def.35) MultBy(a,b) = (4, (a,b)).

The functor Divide(a, b) yields an instruction of SCM and is defined as follows:
(Def.36) Divide(a,b) = (5, (a,b)).

Let us consider [;. The functor goto l; yields an instruction of SCM and is

defined by:
(Detf.37) goto 13 = (6, (I1)).

Let us consider a. The functor if a = 0 goto [; yielding an instruction of SCM
is defined as follows:

(Def.38) if a =0 goto 11 = (7, (l1,a)).
The functor if ¢ > 0 goto I; yields an instruction of SCM and is defined as
follows:
(Def.39) if a > 0 goto I = (8, (I1,a)).
In the sequel s will denote a state of SCM. Next we state two propositions:
(34) ICgcm =0.
(35) For every stategom S such that S = s holds IC; = ICg.

Let [be an instruction-location of SCM. The functor Next(l;) yielding an
instruction-location of SCM is defined by:

A MATHEMATICAL MODEL OF CPU 159

(Def.40) there exists an element ms of Instr-Locgoym such that mg = I3 and
Next(l;) = Next(ms).

Next we state two propositions:

(36) For every instruction-location [y of SCM and for every element mg of
Instr-Locgcy such that mg = I3 holds Next(mg) = Next(ly).

(37) For every element i of Instrgon such that ¢ = I and for every statescm
S such that S = s holds Exec(I, s) = Exec-Resscm (4, 5).

4. USERS GUIDE

One can prove the following propositions:
(38) (Exec(a:=b,s))(ICscm) = Next(IC;) and (Exec(a:=b,s))(a) = s(b)
and for every ¢ such that ¢ # a holds (Exec(a:=b, s))(c) = s(c).
(39) (Exec(AddTo(a,b),s))(ICgcm) = Next(ICy)
and (Exec(AddTo(a,b),s))(a) = s(a) + s(b) and for every c¢ such that
¢ # a holds (Exec(AddTo(a,b), s))(c) = s(c).
(40) (Exec(SubFrom(a,b),s))(ICgcm) = Next(ICy)
and (Exec(SubFrom(a,b), s))(a) = s(a) — s(b) and for every ¢ such that
¢ # a holds (Exec(SubFrom(a,b), s))(c) = s(c).
(41) (Exec(MultBy(a,b), s))(ICscnm) = Next(ICy)
and (Exec(MultBy(a,b),s))(a) = s(a)-s(b) and for every c such that ¢ # a
holds (Exec(MultBy(a,b), s))(c) = s(c).
(42) Suppose a # b. Then
(i) (Exec(Divide(a,b), s))(ICscm) = Next(ICy),
(i) (Exec(Divide(a,b),s))(a) = s(a) + s(b),

(iii) (Exec(Divide(a,b), s))(b) = s(a) mod s(b),

(iv) for every ¢ such that ¢ # a and ¢ # b holds (Exec(Divide(a, b), s))(c) =
s(e).

(43) (Exec(goto l1,5))(ICgcm) = l1 and (Exec(goto I3, s))(c) = s(c).

(44) If s(a) = 0, then (Exec(if a = 0 goto [1,s))(ICgcm) = 1 and also
if s(a) # 0, then (Exec(if a = 0 goto [1,s))(ICscm) = Next(ICy) and
(Exec(if a = 0 goto 11, 5))(c) = s(c).

(45) If s(a) > 0, then (Exec(if a > 0 goto [1,s))(ICgcm) = U1 and also
if s(a) <0, then (Exec(if a > 0 goto 11, s))(ICscm) = Next(IC;) and
(Exec(if a > 0 goto 11, 5))(c) = s(c).

(46) Exec(haltgcn, s) = s.

(47) For every state s of SCM and for every instruction-location i of SCM
holds s() is an instruction of SCM.

160

1]

2]
8]

[4]
[5]
(6]
(7]
8]
[9]

[10]
[11]

[12]
[13]
[14]
[15]
[16]

[17]
18]

[19]

[20]
[21]

YATSUKA NAKAMURA AND ANDRZEJ TRYBULEC

REFERENCES

Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-
ematics, 1(1):41-46, 1990.

Grzegorz Bancerek. Konig’s theorem. Formalized Mathematics, 1(3):589-593, 1990.
Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

Czestaw Byliniski. A classical first order language. Formalized Mathematics, 1(4):669—
676, 1990.

Czeslaw Bylinski. Functions and their basic properties. Formalized Mathematics,
1(1):55-65, 1990.

Czeslaw Byliniski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,
1990.

Czestaw Byliriski. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521-527, 1990.

Czestaw Bylinski. Products and coproducts in categories. Formalized Mathematics,
2(5):701-709, 1991.

Czestaw Bylinski. Subcategories and products of categories. Formalized Mathematics,
1(4):725-732, 1990.

Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

C.C. Elgot and A. Robinson. Random access stored-program machines, an approach to
programming languages. J.A.C.M., 11(4):365-399, Oct 1964.

Yatsuka Nakamura. On a Mathematical Model of CPU and Algorithm. Technical Report,
Shinshu University, Aug 1991.

Henryk Oryszczyszyn and Krzysztof Prazmowski. Real functions spaces. Formalized
Mathematics, 1(3):555-561, 1990.

Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Math-
ematics, 2(5):623-627, 1991.

Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
1(2):329-334, 1990.

Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
1(1):115-122, 1990.

Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
Andrzej Trybulec. Function domains and Fraenkel operator. Formalized Mathematics,
1(3):495-500, 1990.

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
1990.

Michat J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579,
1990.

Received October 14, 1992

