Basic Petri Net Concepts

Pauline N. Kawamoto Shinshu University Nagano Yasushi Fuwa Shinshu University Nagano Yatsuka Nakamura Shinshu University Nagano

Summary. This article presents the basic place/transition net structure definition for building various types of Petri nets. The basic net structure fields include places, transitions, and arcs (place-transition, transition-place) which may be supplemented with other fields (e.g., capacity, weight, marking, etc.) as needed. The theorems included in this article are divided into the following categories: deadlocks, traps, and dual net theorems. Here, a dual net is taken as the result of inverting all arcs (place-transition arcs to transition-place arcs and vice-versa) in the original net.

MML Identifier: PETRI.

The papers [3], [5], [6], [7], [1], [4], and [2] provide the terminology and notation for this paper.

1. BASIC PLACE/TRANSITION NET STRUCTURE DEFINITION

Let A, B be non-empty sets. Observe that there exists a non-empty relation between A and B.

Let A, B be non-empty sets, and let r be a non-empty relation between A and B. We see that the element of r is an element of [A, B].

We consider place/transitions net structures which are systems

 $\langle \text{places, transitions, S-T arcs, T-S arcs} \rangle$,

where the places, the transitions constitute non-empty sets, the S-T arcs constitute a non-empty relation between the places and the transitions, and the T-S arcs constitute a non-empty relation between the transitions and the places.

In the sequel P_1 will denote a place/transitions net structure. We now define several new modes. Let us consider P_1 . A place of P_1 is an element of the places of P_1 .

183

C 1992 Fondation Philippe le Hodey ISSN 0777-4028 A transition of P_1 is an element of the transitions of P_1 .

An S-T arc of P_1 is an element of the S-T arcs of P_1 .

A T-S arc of P_1 is an element of the T-S arcs of P_1 .

Let us consider P_1 , and let x be an S-T arc of P_1 . Then x_1 is a place of P_1 . Then x_2 is a transition of P_1 . Let us consider P_1 , and let x be a T-S arc of P_1 . Then x_1 is a transition of P_1 . Then x_2 is a place of P_1 .

The scheme *Set_of_Elements* deals with a non-empty set \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

 $\{x : \mathcal{P}[x]\}$, where x ranges over elements of \mathcal{A} , is a subset of \mathcal{A} for all values of the parameters.

In the sequel S_0 will denote a set of places of P_1 . We now define two new functors. Let us consider P_1 , S_0 . The functor $*S_0$ yielding a set of transitions of P_1 is defined as follows:

(Def.1) ${}^*S_0 = \{t : \bigvee_f \bigvee_s [s \in S_0 \land f = \langle t, s \rangle]\}$, where t ranges over transitions of P_1 , and f ranges over T-S arcs of P_1 , and s ranges over places of P_1 .

The functor S_0^* yielding a set of transitions of P_1 is defined as follows:

(Def.2) $S_0^* = \{t : \bigvee_f \bigvee_s [s \in S_0 \land f = \langle s, t \rangle]\}$, where t ranges over transitions of P_1 , and f ranges over S-T arcs of P_1 , and s ranges over places of P_1 .

Next we state four propositions:

- (1) $*S_0 = \{f_1 : f_2 \in S_0\}$, where f ranges over T-S arcs of P_1 .
- (2) For an arbitrary x holds $x \in {}^*S_0$ if and only if there exists a T-S arc f of P_1 and there exists a place s of P_1 such that $s \in S_0$ and $f = \langle x, s \rangle$.
- (3) $S_0^* = \{f_2 : f_1 \in S_0\}$, where f ranges over S-T arcs of P_1 .
- (4) For an arbitrary x holds $x \in S_0^*$ if and only if there exists an S-T arc f of P_1 and there exists a place s of P_1 such that $s \in S_0$ and $f = \langle s, x \rangle$.

In the sequel T_0 is a set of transitions of P_1 . We now define two new functors. Let us consider P_1 , T_0 . The functor $*T_0$ yields a set of places of P_1 and is defined by:

(Def.3) $^*T_0 = \{s : \bigvee_f \bigvee_t [t \in T_0 \land f = \langle s, t \rangle]\}$, where s ranges over places of P_1 , and f ranges over S-T arcs of P_1 , and t ranges over transitions of P_1 .

The functor T_0^* yielding a set of places of P_1 is defined by:

(Def.4) $T_0^* = \{s : \bigvee_f \bigvee_t [t \in T_0 \land f = \langle t, s \rangle]\}$, where s ranges over places of P_1 , and f ranges over T-S arcs of P_1 , and t ranges over transitions of P_1 .

Next we state several propositions:

- (5) $^*T_0 = \{f_1 : f_2 \in T_0\}$, where f ranges over S-T arcs of P_1 .
- (6) For an arbitrary x holds $x \in {}^*T_0$ if and only if there exists an S-T arc f of P_1 and there exists a transition t of P_1 such that $t \in T_0$ and $f = \langle x, t \rangle$.
- (7) $T_0^* = \{f_2 : f_1 \in T_0\}$, where f ranges over T-S arcs of P_1 .
- (8) For an arbitrary x holds $x \in T_0^*$ if and only if there exists a T-S arc f of P_1 and there exists a transition t of P_1 such that $t \in T_0$ and $f = \langle t, x \rangle$.

- (9) $^{*}(\emptyset_{\text{the places of }P_{1}}) = \emptyset.$
- (10) $(\emptyset_{\text{the places of } P_1})^* = \emptyset.$
- (11) $^{*}(\emptyset_{\text{the transitions of }P_{1}}) = \emptyset.$
- (12) $(\emptyset_{\text{the transitions of } P_1})^* = \emptyset.$

2. Deadlocks

We now define two new attributes. Let us consider P_1 . A set of places of P_1 is deadlock-like if:

(Def.5) *it is a subset of it*.

A place/transitions net structure has deadlocks if:

(Def.6) there exists a set of places of it which is deadlock-like.

3. Traps

We now define two new attributes. Let us consider P_1 . A set of places of P_1 is trap-like if:

(Def.7) it^{*} is a subset of *it.

A place/transitions net structure has traps if:

(Def.8) there exists a set of places of it which is trap-like.

Let A, B be non-empty sets, and let r be a non-empty relation between A and B. Then $r \\ightarrow$ is a non-empty relation between B and A.

4. DUALITY THEOREMS FOR PLACE/TRANSITION NETS

Let us consider P_1 . The functor P_1° yields a strict place/transitions net structure and is defined by:

(Def.9) $P_1^{\circ} = \langle \text{the places of } P_1, \text{the transitions of } P_1, (\text{the T-S arcs of } P_1)^{\smile}, (\text{the S-T arcs of } P_1)^{\smile} \rangle.$

One can prove the following propositions:

- (13) $(P_1^{\circ})^{\circ} = \text{the place/transitions net structure of } P_1.$
- (14) The places of P_1 = the places of P_1° and the transitions of P_1 = the transitions of P_1° and (the S-T arcs of P_1°) = the T-S arcs of P_1° and (the T-S arcs of P_1°) = the S-T arcs of P_1° .

We now define several new functors. Let us consider P_1 , and let S_0 be a set of places of P_1 . The functor S_0° yields a set of places of P_1° and is defined as follows:

 $(\text{Def.10}) \quad S_0^{\circ} = S_0.$

Let us consider P_1 , and let s be a place of P_1 . The functor s° yields a place of P_1° and is defined by:

 $(\text{Def.11}) \quad s^\circ = s.$

Let us consider P_1 , and let S_0 be a set of places of P_1° . The functor ${}^{\circ}S_0$ yields a set of places of P_1 and is defined by:

(Def.12) $^{\circ}S_0 = S_0.$

Let us consider P_1 , and let s be a place of P_1° . The functor $\circ s$ yields a place of P_1 and is defined by:

(Def.13) $\circ s = s.$

Let us consider P_1 , and let T_0 be a set of transitions of P_1 . The functor T_0° yielding a set of transitions of P_1° is defined by:

 $(\text{Def.14}) \quad T_0^{\circ} = T_0.$

Let us consider P_1 , and let t be a transition of P_1 . The functor t° yields a transition of P_1° and is defined as follows:

 $(\text{Def.15}) \quad t^{\circ} = t.$

Let us consider P_1 , and let T_0 be a set of transitions of P_1° . The functor ${}^{\circ}T_0$ yielding a set of transitions of P_1 is defined by:

(Def.16)
$$^{\circ}T_0 = T_0.$$

Let us consider P_1 , and let t be a transition of P_1° . The functor ${}^{\circ}t$ yielding a transition of P_1 is defined by:

$$(Def.17) \quad ^{\circ}t = t.$$

In the sequel S will denote a set of places of P_1 . Next we state several propositions:

- $(15) \quad (S^{\circ})^* = {}^*S.$
- (16) $^{*}(S^{\circ}) = S^{*}.$
- (17) S is deadlock-like if and only if S° is trap-like.
- (18) S is trap-like if and only if S° is deadlock-like.
- (19) For every P_1 being a place/transitions net structure and for every transition t of P_1 and for every S_0 being a set of places of P_1 holds $t \in S_0^*$ if and only if ${}^*{t} \cap S_0 \neq \emptyset$.
- (20) For every P_1 being a place/transitions net structure and for every transition t of P_1 and for every S_0 being a set of places of P_1 holds $t \in {}^*S_0$ if and only if $\{t\}^* \cap S_0 \neq \emptyset$.

References

- Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [2] Andrzej Trybulec. Domains and their Cartesian products. *Formalized Mathematics*, 1(1):115–122, 1990.
- [3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.

- [4] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [5] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [6] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(1):73–83, 1990.
- [7] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received November 27, 1992