
FORMALIZED MATHEMATICS

Volume 3, Number 2, 1992
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Summary. This article presents the basic place/transition net
structure definition for building various types of Petri nets. The basic
net structure fields include places, transitions, and arcs (place-transition,
transition-place) which may be supplemented with other fields (e.g., ca-
pacity, weight, marking, etc.) as needed. The theorems included in this
article are divided into the following categories: deadlocks, traps, and
dual net theorems. Here, a dual net is taken as the result of inverting all
arcs (place-transition arcs to transition-place arcs and vice-versa) in the
original net.

MML Identifier: PETRI.

The papers [3], [5], [6], [7], [1], [4], and [2] provide the terminology and notation
for this paper.

1. Basic Place/Transition Net Structure Definition

Let A, B be non-empty sets. Observe that there exists a non-empty relation
between A and B.

Let A, B be non-empty sets, and let r be a non-empty relation between A

and B. We see that the element of r is an element of [: A, B :].

We consider place/transitions net structures which are systems
〈places, transitions, S-T arcs, T-S arcs〉,

where the places, the transitions constitute non-empty sets, the S-T arcs consti-
tute a non-empty relation between the places and the transitions, and the T-S
arcs constitute a non-empty relation between the transitions and the places.

In the sequel P1 will denote a place/transitions net structure. We now define
several new modes. Let us consider P1. A place of P1 is an element of the places
of P1.
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A transition of P1 is an element of the transitions of P1.
An S-T arc of P1 is an element of the S-T arcs of P1.
A T-S arc of P1 is an element of the T-S arcs of P1.
Let us consider P1, and let x be an S-T arc of P1. Then x1 is a place of P1.

Then x2 is a transition of P1. Let us consider P1, and let x be a T-S arc of P1.
Then x1 is a transition of P1. Then x2 is a place of P1.

The scheme Set of Elements deals with a non-empty set A, and a unary
predicate P, and states that:

{x : P[x]}, where x ranges over elements of A, is a subset of A
for all values of the parameters.

In the sequel S0 will denote a set of places of P1. We now define two new
functors. Let us consider P1, S0. The functor ∗S0 yielding a set of transitions
of P1 is defined as follows:

(Def.1) ∗S0 = {t :
∨

f

∨
s[s ∈ S0 ∧ f = 〈〈t, s〉〉]}, where t ranges over transitions

of P1, and f ranges over T-S arcs of P1, and s ranges over places of P1.

The functor S0
∗ yielding a set of transitions of P1 is defined as follows:

(Def.2) S0
∗ = {t :

∨
f

∨
s[s ∈ S0 ∧ f = 〈〈s, t〉〉]}, where t ranges over transitions

of P1, and f ranges over S-T arcs of P1, and s ranges over places of P1.

Next we state four propositions:

(1) ∗S0 = {f1 : f2 ∈ S0}, where f ranges over T-S arcs of P1.

(2) For an arbitrary x holds x ∈ ∗S0 if and only if there exists a T-S arc f

of P1 and there exists a place s of P1 such that s ∈ S0 and f = 〈〈x, s〉〉.

(3) S0
∗ = {f2 : f1 ∈ S0}, where f ranges over S-T arcs of P1.

(4) For an arbitrary x holds x ∈ S0
∗ if and only if there exists an S-T arc

f of P1 and there exists a place s of P1 such that s ∈ S0 and f = 〈〈s, x〉〉.

In the sequel T0 is a set of transitions of P1. We now define two new functors.
Let us consider P1, T0. The functor ∗T0 yields a set of places of P1 and is defined
by:

(Def.3) ∗T0 = {s :
∨

f

∨
t[t ∈ T0 ∧ f = 〈〈s, t〉〉]}, where s ranges over places of P1,

and f ranges over S-T arcs of P1, and t ranges over transitions of P1.

The functor T0
∗ yielding a set of places of P1 is defined by:

(Def.4) T0
∗ = {s :

∨
f

∨
t[t ∈ T0 ∧ f = 〈〈t, s〉〉]}, where s ranges over places of P1,

and f ranges over T-S arcs of P1, and t ranges over transitions of P1.

Next we state several propositions:

(5) ∗T0 = {f1 : f2 ∈ T0}, where f ranges over S-T arcs of P1.

(6) For an arbitrary x holds x ∈ ∗T0 if and only if there exists an S-T arc
f of P1 and there exists a transition t of P1 such that t ∈ T0 and f = 〈〈x,

t〉〉.

(7) T0
∗ = {f2 : f1 ∈ T0}, where f ranges over T-S arcs of P1.

(8) For an arbitrary x holds x ∈ T0
∗ if and only if there exists a T-S arc f

of P1 and there exists a transition t of P1 such that t ∈ T0 and f = 〈〈t, x〉〉.
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(9) ∗(∅the places of P1
) = ∅.

(10) (∅the places of P1
)∗ = ∅.

(11) ∗(∅the transitions of P1
) = ∅.

(12) (∅the transitions of P1
)∗ = ∅.

2. Deadlocks

We now define two new attributes. Let us consider P1. A set of places of P1 is
deadlock-like if:

(Def.5) ∗it is a subset of it∗.

A place/transitions net structure has deadlocks if:

(Def.6) there exists a set of places of it which is deadlock-like.

3. Traps

We now define two new attributes. Let us consider P1. A set of places of P1 is
trap-like if:

(Def.7) it∗ is a subset of ∗it.

A place/transitions net structure has traps if:

(Def.8) there exists a set of places of it which is trap-like.

Let A, B be non-empty sets, and let r be a non-empty relation between A and
B. Then r � is a non-empty relation between B and A.

4. Duality Theorems for Place/Transition Nets

Let us consider P1. The functor P1
◦ yields a strict place/transitions net structure

and is defined by:

(Def.9) P1
◦ = 〈the places of P1, the transitions of P1, (the T-S arcs of P1) � , (the

S-T arcs of P1) � 〉.
One can prove the following propositions:

(13) (P1
◦)◦ = the place/transitions net structure of P1.

(14) The places of P1 = the places of P1
◦ and the transitions of P1 = the

transitions of P1
◦ and (the S-T arcs of P1) � = the T-S arcs of P1

◦ and
(the T-S arcs of P1) � = the S-T arcs of P1

◦.

We now define several new functors. Let us consider P1, and let S0 be a set
of places of P1. The functor S0

◦ yields a set of places of P1
◦ and is defined as

follows:

(Def.10) S0
◦ = S0.
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Let us consider P1, and let s be a place of P1. The functor s◦ yields a place of
P1

◦ and is defined by:

(Def.11) s◦ = s.

Let us consider P1, and let S0 be a set of places of P1
◦. The functor ◦ S0 yields

a set of places of P1 and is defined by:

(Def.12) ◦ S0 = S0.

Let us consider P1, and let s be a place of P1
◦. The functor ◦ s yields a place of

P1 and is defined by:

(Def.13) ◦ s = s.

Let us consider P1, and let T0 be a set of transitions of P1. The functor T0
◦

yielding a set of transitions of P1
◦ is defined by:

(Def.14) T0
◦ = T0.

Let us consider P1, and let t be a transition of P1. The functor t◦ yields a
transition of P1

◦ and is defined as follows:

(Def.15) t◦ = t.

Let us consider P1, and let T0 be a set of transitions of P1
◦. The functor ◦ T0

yielding a set of transitions of P1 is defined by:

(Def.16) ◦ T0 = T0.

Let us consider P1, and let t be a transition of P1
◦. The functor ◦ t yielding a

transition of P1 is defined by:

(Def.17) ◦ t = t.

In the sequel S will denote a set of places of P1. Next we state several
propositions:

(15) (S◦)∗ = ∗S.

(16) ∗(S◦) = S∗.

(17) S is deadlock-like if and only if S◦ is trap-like.

(18) S is trap-like if and only if S◦ is deadlock-like.

(19) For every P1 being a place/transitions net structure and for every tran-
sition t of P1 and for every S0 being a set of places of P1 holds t ∈ S0

∗ if
and only if ∗{t} ∩ S0 6= ∅.

(20) For every P1 being a place/transitions net structure and for every tran-
sition t of P1 and for every S0 being a set of places of P1 holds t ∈ ∗S0 if
and only if {t}∗ ∩ S0 6= ∅.
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