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Summary. Concerned with a generalization of concepts intro-
duced in [17], i.e. there are introduced the sum and the product of ma-
trices of any dimension of elements of any field. '

MMUL Identifier: MATRIX.3.

The articles [15], 28], [10], [11], [5], [7], [6], [12], [16], [20], [27], [19], [23], [13],
[9], (8], [21], [26], [1], [17], [25], [18], [4], [3], [24], [29], [2], [22], and [14] provide
the notation and terminology for this paper. :

For simplicity we follow a convention: 4, j, k, [, n, m denote natural numbers,
I, J, D denote non empty sets, K denotes a field, a denotes an element of D,
and p, g denote finite sequences of elements of D.

We now state two propositions:

(1) Ifn=n+k, thenk =0.
(2) For every natural number n holds n =0orn=1orn=2o0rn> 2.

In the sequel A, B will denote matrices over K of dimension n X m.

0 ... 0\™"
Let us consider K, n, m. The functor | : ~-. yields a matrix
0 ... 0/ 4
over K of dimension n X m and is defined as follows:
0 ... 0\™"
(Def.1) Do, =n+— (m— Og).
0 ... 0/,

Let us consider K and let A be a matrix over K. The functor —A yieids a’
matrix over K and is defined by:
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(Def.2) len(—A) = len A and width(—A) = width A and for all 4, j such that
(3, 7) € the indices of A holds (—A);; = —A4i ;.
Let us consider K and let A, B be matrices over K. Let us assume that

" len A = len B and width A = width B. The functor A+ B yielding a matrix over
K is defined as follows:

(Def.3) len(A+ B) = len A and width(A + B) = width A and for all ¢, j such
S that (7, j) € the indices of A holds (A+ B);; = A;; + Bi;. -

.. =~ The following proposition is true

0 ... 0\™"
(3) For all ¢, j such that (i, j) € the indices of | @ . holds
0 ... 0\™" o M
(f & )ii = O
0 ... 0/,

' In the sequel A, B denote matrices over K.
The following propositions are true:
(4) For all matrices A, B over K such that len A = len B and width A =
width B holds A+ B = B + A.

(5) For all matrices A, B, C over K such that len A = len B and len A =
len C and width A = width B and width A = width C holds (A+B)+C =

A+ (B +C).
(6) For every matrix A over K of dimension » X m holds A +
0 ... 0\™7"
Do, = A.
0 ... 0/4
(7) TFor every matrix A over K of dimension n x m holds A 4+ —A =
0 ... 0/,

Let us consider K and let A, B be matrices over K. Let us assume that
width A = len B. The functor A - B yields a matrix over K and is defined as
follows:

(Def.4) len(A-B) =len A and width(A - B) = width B and for all ¢, § such that
(%, 7) € the indices of A- B holds (A - B);; = Line(A, 1) - Bn ;.

Let us consider n, k, m, let us consider K, let A be a matrix over K of
dimension n X k, and let B be a matrix over K of dimension width A x -m.
Then A - B is a matrix over. K. of dimension'len A x width B.

Let us consider K, let M be a matrix over K, and let a be an element of the
carrier of K. The functor a - M yields a matrix over K and is defined by:
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(Def.5) len(a-M) = len M and width(a - M) = width M and for all 4, j such
that (7, j) € the indices of M holds (a- M);; = a- M; ;.
Let us consider K, let M be a matrix over K, and let @ be an element of the
carrier of K. The functor M - a yields a matrix over K and is defined by:
(Def6) M-a=a-M.
One can prove the following propositions:

(8) For all finite sequences p, ¢ of elements of the carrier of K such that
len p =len ¢ holds len(p e ¢) = lenp and len(p e q) =leng.

(9) For all ¢, such that {i,1) € the indices of and [ =1
0 1 K
holds Line( v (D) = 1k.
0o 1/,
1 0 nXxn
(10)  For all ¢, ! such that (7, [} € the indices of and [ #1
0 1 K
holds Line( ,)(1) = 0k
o 1/,
11) For all I, 7 such that (I, 7) € the indices of and = j
( j
0 1/ g
holds ( )o,; (D) = 1k.
0 1/
(12) Foralll, j such that (I, 7} € the indices of and ! # j
0 1/ x
1 . O nxn
.holds ( )o,;(1) = 0k.
0 1 *

(13) Y (n+— 0g)=0k.

{14)  Let pbe a finite sequence of elements-of -the carrier-of K .and given 1.
Suppose ¢ € Seglenp and for every k such that k € Seglenp and-k # 1
holds p(k) = 0. Then Y p = p(3).

(15)  For all finite sequences p, ¢ of elements of the carrier of K holds len(pe
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¢) = min(len p,len g).
~ (16) Let p, g be finite sequences of elements of the carrier of K and given 4.
Suppose ¢ € Seglen p and p(7) = 1x and for every k such that k € Seglenp
and k£ # 7 holds p(k) = Ox. Given j. Suppose j € Seglen(p e ¢). Then if
> i =7, then (pe ¢)(j) = ¢(¢) and if 7 # 7, then (pe ¢)(5) = Ok. '

‘ (17)  For all ¢, j such that (¢, j) € the indices of holds
L . 0 1/,
G 1 0\"™"
if ¢ = j, then Line( ,0)(7) = 1k and if ¢ # j, then
o 1/,
1 0 nXn
Line( ,1)(j) = 0k
0 1/ .
1 0 nxn
(18) For all ¢, j such that (7, j) € the indices of holds
| 0o 1/,
1 0\ ™"
if i = j, then ( )D,j(i) = 1k and if ¢ # j, then
0 1 K
1 0 nXn
( )a,;(?) = 0k
0 1/,

' (19) Let p, ¢ be finite sequences of elements of the carrier of K and given
" 4. Suppose 7 € Seglenp and 7 € Seglen ¢ and p(i) = 1x and for every k
such that k € Seglen p and k # ¢ holds p(k) = Ox. Then S (p e ¢) = ¢(¢).

(20)  For every matrix A over K of dimension n holds - A=

X
A.

1 O nXn

Il

(21) For every matrix A over K of dimension n holds A-
' 0 1/ %
A. : : .
(22) For all elements a, b of the carrier of K holds {(a)) - ((b)) = ({a - b)):"

(23) For all elements ay, ag, by, bz,’.cl, ¢y, dy, do-of the carrier of K holds

( a; by ) . ( az by ) _ ( ay - dy + by ey ay - byibyids ) :
c; dy ¢y dg c1-ag+dycy cy-bydiditidy )7
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(24) For all matrices A B over K such that width A = len B and width B # 0
holds (A- B)T = AT, ‘

Let I, J be non empty sets, let X be an element of Fin I, and let Y be an
element of Fin J. Then [ X, Y ] is an element of Fin| I, J J.

Let I, J, D be non empty sets, let G be a binary operation on D, let f be a
function from I into D, and let g be a function from J into D. Then G o (f,g)
is a function from [ 7, J ] into D.

The following propositions are true:

(25) Let I, J, D be non empty sets, and let F', G be binary operations on
D, and let f be a function from [ into D, and let g be a function from
J into D, and let X be an element of Fin I, and let ¥ be an element
of Fin J. Suppose F is commutative and associative but [Y, X ] # 0 or
F has a unity but G is commutative. Then F-}7; x v (G o(f,9) =
F-3ey, x3(G o (g, 1))

(26) Let I, J be non empty sets, and let F', G be binary operations on D, and
let f be a function from [ into D, and let g be a function from J into D.
Suppose F is commutative and associative and has a unity. Let = be an
element of I and let y be an element of J. Then F- 37 1.3 143 i(Go(f, 9))=
F- Z{m} Go(f? F- E{y} g)'

(27) Let I, J be non empty sets, and let F, G be binary operations on D,
and let f be a function from I into D, and let ¢ be a function from J into
D, and let X be an element of Fin 7/, and let Y be an element of Fin J.
Suppose F'is commutative and associative and has a unity and an inverse
operation and & is distributive w.r.t. F. Let z be an element of I. Then
F- 3y, vi(Go(f,9) = F- Xy G°(f, - Ty 9)-

(28) Let I, J be non empty sets, and let F', G be binary operations on D,
and let f be a function from I into D, and let g be a function from J into
D, and let X be an element of Fin 7, and let Y be an element of Fin J.
Suppose F is commutative and associative and has a unity and an inverse
operation and G is distributive w.r.t. F. Then F-3t x y3(G o (f,9)) =
F-3x G(f, F- Ty 9)-

(29) Let I, J be non empty sets, and let F, G be binary operations on D,
and let f be a function from I into D, and let ¢ be a function from J
into D. Suppose F is commutative and associative and has a unity and
G is commutative. Let z be an element of I and let y be an element of
J. Then F- Z[{x},{y}i(G ° (f’g)) = F- Z{y} GO(F' Z{.’v} f)g)

(30) Let I, J be non empty sets, and let F, G be binary operations on D,
and let f be a function from I into D, and let g be a function from J into
D, and let X be an element of FmI and let Y be an element of Fin J.
Suppose that

(i) F is commutative and associative and has a unity and an inverse

operation, and o

(il) G is distributive. w.r.t. F and commutative.

Then F- Yy x,y3(Go (f,9)) = F- Yy G°(F-Tx f,9).
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(31) Let I, J be non empty sets, and let F' be a binary operation on D,
and let f be a function from [ I, J ] into D, and let g be a function from
' I into D, and let Y be an element of Fin J. Suppose F' is commutative
and associative and has a unity and an inverse operation. Let 2 be an
element of . If for every element 7 of I holds g(i) = F- Y y(curry f)(4),
" then F‘E[:{z},Y}f:F'Z{x}g'
ho (32)  Let I, J be non empty sets, and let F' be a binary operation on D, and
e let f be a function from [ I, J ] into D, and let g be a function from I into
D, and let X be an element of Fin /I, and let ¥ be an element of Fin J.
~ Suppose for every element 7 of I holds g(i) = F- Y y(curry f)(¢) and F
is commutative and associative and has a unity and an inverse operation.
: Then F-3x vy f=F-Xxg.
.. (33) Let I, J be non empty sets, and let I’ be a binary operation on D, and
let f be a function from [ I, Jj into D, and let g be a function from J
into D, and let X be an element of Fin I. Suppose F is commutative and
associative and has a unity and an inverse operation. Let y be an element
of J. If for every element j of J holds g(j) = F- 35 x(curry’ f)(4), then
F-Yx, 1 = F- 2w 9
(34) Let I, J be non empty sets, and let F' be a binary operation on D, and
let f be a function from [ I, J ] into D, and let g be a function from J into
D, and let X be an element of FinI, and let Y be an element of Fin J.
Suppose for every element j of J holds g(j) = F- 3 x(curry’ f)(j) and F
is commutative and associative and has a unity and an inverse operation.
Then F-3px vy f=F-2Cy g
(35) For all matrices A, B, C over K such that widthA = len B and
width B =lenC holds (A-B)-C=A-(B-C).
~ In the sequel p will be an element of the permutations of n-element set.
Let us consider n, K, let M be a matrix over K of dimension n, and let p be
an element of the permutations of n-element set. The functor p-Path M yields
a finite sequence of elements of the carrier of K and is defined as follows:

(Def.7)  len(p-PathM) = n and for all 4, j such that i € dom(p-Path M) and
7 = p(%) holds (p -Path M)(¢) = M; ;.
Let us consider 7{, K and let M be a matrix over K of dimension n. The

product on paths of M yields a function from the permutations of n-element set
into the carrier of K and is defined by the condition (Def.8).

(Def.8) Let p be an element of the permutations of n-element set. Then
(the product on paths of M)(p) = (—1)*¢"*)(the multiplication of
Ke(p —P‘ath»M)). :

Let us consider n, let us consider K, and let M be a matrix over K of
dimension n. The functor Det M yields an element of the carrier of K and is
defined as follows:

(Def.9) Det M = (the addition of K)-) qr

the permutations of 7T-element set
on paths of M).

(the product
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In the sequel a will be an element of the carrier of K.
The following proposition is true
(36) Det((a)) = a.
Let us comsider n, let us consider K, and let M be a matrix over K of

dimension n. The diagonal of M yields a finite sequence of elements of the
carrier of K and is defined as follows:

(Def.10) len (the diagonal of M) = n and for every ¢ such that ¢ € Segn holds
(the diagonal of M)(3) = M, ;.
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Introduction to Theory of Rearrangement !

Yuji Sakai Jaroslaw Kotowicz
Shinshu University Warsaw University
Nagano . Biatystok

Summary. An introduction to the rearrangement theory for finite
functions (e.g. with the finite domain and codomain). The notion of
generators and cogenerators of finite sets (equivalent to the order in the
language of finite sequences) has been defined. The notion of rearrange-
ment for a function into finite set is presented. Some basic properties of
these notions have been proved.

MML Identifier: REARRAN1.

The terminology and notation used here are introduced in the following articles:

[15], [5], (3], [1], [8], [10}, [2], [16], [6], [4], [7], [12], [13], [9], [11], and [14].

Let D be a non empty set, let F be a partial function from D to R, and let
7 be a real number. Then r F is an element of D5R.
A finite sequence has cardinality by index if:

(Def.1)  For every n such that 1 < n and n <lenit holds cardit(n) = n.
A finite sequence is ascending if:
(Def.2)  For every n such that 1 < n and n < lenit — 1 holds it(n) C it(n + 1).
Let X be a set. A finite sequence of elements of X has length by cardinality

if:
(Def.3) lenit = card|J X.

Let D be a non empty finite set. Note that there exists a finite sequence of
elements of 2 which is ascendmg and has cardinality by index and length by
cardinality. '

Let D be a non empty finite set. A rearrangement generator of D is an
ascending finite sequence of elements of 2P with cardinality by index and length
by cardinality. e

One can prove the following propositions:

!Dedicated to Professor Tsuyoshi Ando on his sixtieth birthday.
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(1) For every finite sequence a of elements of 2D holds a has length by
cardinality iff len a = card D.
(2) Let a be a finite sequence. Then a is ascending if and only if for all n,
m such that n < m and n € doma and m € doma holds a(n) C a(m).
(3) For every finite sequence a of elements of 2D with cardinality by index
and length by cardinality holds a(lena) =
i+ (4) For every finite sequence a of elements of 2D with length by cardinality
e holds lena # 0.
e (5) Let a be an ascending finite sequence of elements of 2P with cardinality
by index and given n, m. If n € doma and m € doma and n # m, then
a(n) # a(m).
(6) Let a be an ascending finite sequence of elements of 2D with cardinality
by index and given n. If 1 < n and n <lena — 1, then a(n) # a(n + 1).
(7)  For every finite sequence a of elements of 2P with cardinality by index
such that n € dom a holds a(n) # 0.
(8) Let a be a finite sequence of elements of 2D with cardinality by index.
If1<nandn<lena— 1, then a(n+ 1)\ a(n) # 0.
(9) Let a be a finite sequence of elements of 2” with cardinality by index
and length by cardinality. Then there exists an element d of D such that
a(1) = {d}.
- (10) Let a be an ascending finite sequence of elements of 2D with cardinality
by index. Suppose 1 < n and n <lena — 1. Then there exists an element
d of D such that a(n + 1)\ a(n) = {d} and a(n + 1) = a(n) U {d} and
a(n + 1)\ {d} = a(n).
. Let D be a non empty finite set and let A be a rearrangement generator of
D. The functor co-Gen(A) yielding a rearrangement generator of D is defined
by:
(Def.4) For every m such that 1 < m and m < lenco-Gen(A) — 1 holds
~ (co-Gen(A))(m) =D \ A(len A — m).
Omne can prove the following two propositions:
(11)  For every rearrangement generator A of D holds co-Gen(co-Gen(A)) = .
A

(12) Let F' be a partial function from D to R and let A be a rear-
rangement generator of C. If F is total and cardC = card D, then
len MIM(FinS(F, D)) = len CHI(A, C).

Let D, C be non empty finite set, let A be a rearrangement generator of C,
and let F be a partial function from D to R. The functor F4 yields a partial
function from C to R and is defined by:

(Def.5)  F} = SS(MIM(FinS(F, D)) CHI(4, C)).
The functor FY yields a partial function from € to R'andis defined as follows
(Def.6) FY = S(MIM(FinS(F, D)) CHI(co- Gen(A),C)).

Next we state a number of propositions:
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(13) Let F be a partial function from D to R and let A be a rearrangement
generator of C. If F is total and card C' = card D, then dom F4 = C.
(14) Let c be an element of C, and let F' be a partial function from D to
R, and let A be a rearrangement generator of C. Suppose F is total and
card C' = card D. Then
(i) ifece A(1), then (MIM(FinS(F, D)) CHI(A, C))#c = MIM(FinS(F, D)),
and
(if) for every m such that 1 < n and n < lenA and ¢ € A(n + 1) \ A(n)
holds (MIM(FinS(F, D)) CHI(A,C))#c = (n + (0 qua real number))
~“MIMi((FinS(F, D));n).
(15) Let ¢ be an element of C, and let F be a partial function from D to
" R, and let A be a rearrangement generator of C. Suppose F is total and
cardC' = card D. Then if ¢ € A(1), then (F})(¢) = (FinS(F, D))(1) and
for every n such that 1 < n and n <len A and ¢ € A(n + 1)\ A(n) holds
(F4)(c) = (FinS(F, D))(n + 1).
(16) Let F be a partial function from D to R and let A be a rearrange-
ment generator of C. If F is total and card C' = card D, then rng F'} =
rng FinS(F, D).
(17)  Let F be a partial function from D to R and let A be a rearrangement
generator of C'. Suppose F is total and card C' = card D. Then F} and
FinS(F, D) are fiberwise equipotent. '

(18) Let F be a partial function from D to R and let A be a rearrangement
generator of C. If F is total and card C = card D, then FinS(F%,C) =
FinS(F, D).

(19) Let F be a partial function from D to R and let A be a Iearrangement
generator of C. If F is total and card C = card D, then Y.¢_; FA(k) =

o F(£). |

(20) Let F be a partial function from D to R and let A be a rearrangement
generator of C. If F is total and cardC' = card D, then FinS((F7%) —
r,C) = FmS(F — r, D) and Y-2_o((F2) ~ r)(x) = LLo(F — 7)(k).

(21) Let F be a partial function from D to R and let A be a rearrangement
generator of C. If F is total and card C' = card D, then dom FY = C.

(22) Let ¢ be an element of C, and let F be a partial function from
D to R, and let A be a rearrangement generator of C. Suppose
F is total and cardC = cardD. Then if ¢ € (co-Gen(A))(1), then
(FY)(e) = (FinS(F,D))(1) and for every n such that 1 < n and
n < lenco-Gen(A) and ¢ € (co-Gen(A))(n + 1) \ (co- Gen(A))('n) holds
(FY)(c) = (FinS(F, D))(n+ 1).

(23) Let F be a partial function from D to R and let A be ‘a rearrange-
naent generator of C. If F is total and card C = card Dy then Ing . FY =
g FinS(F, D). . : i

(24)  Let F be a partial function from D to IR and let A be a rearrangement
generator of C. Suppose F is total and card C' = card D. Then F) and
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FinS(F, D) are fiberwise equipotent.

(25) Let F be a partial function from D to R and let A be a rearrangement
generator of C'. If F is total and card C' = card D, then FinS(FY,C) =
FinS(F, D).

(26) Let F be a partial function from D to R and let A be a rearrangement
generator of C. If F is total and card C = card D, then 0 o FY(x) =

D .
F(k).

k=0

e ‘?.“(”27) Let F be a partial function from D to R and let A be a rearrangement

generator of C. If F is total and card C = card D, then FinS((FY) —
r,C) = FinS(F — r, D) and Y=L_o((FY) ~ r)(k) = L2o(F — r)(K)-

"~ (28) Let F be a partial function from D to R and let A be a rearrange-

ment generator of C'. Suppose F is total and card C = card D. Then
FY and F} are fiberwise equipotent and FinS(FY,C) = FinS(F7},C) and
Zg=0 FX(K’) = ES:O FA\(K’)

(29) Let F be a partial function from D to R and let A be a re-
arrangement generator of C. Suppose F is total and cardC =
card D. Then maxy((F4) — r) and max;(F — r) are fiberwise equipo-
tent and FinS(max((F4) — 7),C) = FinS(maxy(F — r),D) and
Sezomaxy ((FR) — r)(k) = Tiio maxy(F = r)(k).

(30). Let F be a partial function from D to R and let A be a re-
arrangement generator of C. Suppose F is total and cardC =

- card D. Then max_((F}) — r) and max_(F — r) are fiberwise equipo-
tent and FinS(max_((F}) — r),C) = FinS(max_(F — r),D) and
S0 max—((F4) = r)(k) = Yo max_(F — 7)(k)-

(31) Let F be a partial function from D to R and let A be a rearrangement

 generator of C. If F'is total and card D = card C, then len FinS(F%4,C) =
card C and 1 < len FinS(F4, C).

(32)  Let F be a partial function from D to R and let A be a rearrangement
generator of C. If F is total and card D = cardC' and n € dom A, then
FinS(F4,C) I n = FinS(F4, A(n)).

(33)  Let F be a partial function from D to R and let A be a rearrangement
generator of C. If F'is total and card D = card C, then (F—r)} = (F4)—r.

(34) Let F be a partial function from D to R and let A be a re-
arrangement generator of C. Suppose F is total and cardC =
card D. Then max((FY) — r) and max,(F — r) are fiberwise equipo-
tent and FinS(maxy((FY) — 7),C) = FinS(max,(F — r),D) and

| Comaxy ((FY) — r)(k) = T maxy (F — r)(x).

(35) Let F be a partial function from D to R and let A be a re-
arrangement generator of C. Suppose F is total and cardC =
card D. Then max_((FY) — r) and max_(F — r) are fiberwise equipo-
tent and FinS(max_((FY) — r),C) = FinS(max_(F — r),D) and
S oo max—((FY) — r)(k) = £ max_(F — r)(k).
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(36) Let F be a partial function from D to R and let A be a rearrangement
generator of C. If F'is total and card D = card C, then len FmS(FX, C)=
card C. and 1 < len FinS(FY,C).

(37) Let F be a partial functlon from D to R and let A be a rearrangement
generator of C. If F is total and card D = card C' and n € dom A, then
FinS(FY,C) I n = FinS(FY, (co-Gen(A4))(n)).

(38) Let F be a partial function from D to R and let A be a rearrangement
generator of C. If F'is total and card D = card C, then (F—r)Y% = (FY)-r.

(39), Let F be a partial function from D to R and let A be a rearrangement
generator of C. Suppose F is total and card D = card C. Then F} and
F are fiberwise equipotent and FY and F are fiberwise equipotent and
rng F4 = rng F and g FY = rag F.
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Summary. The article deals with parameterized families of sets.
When treated in a similar way as sets (due to systematic overloading
notation used for sets) they are called many sorted sets. For instance, if
z and X are two many-sorted sets (with the same set of indices I) then
relation £ € X is defined as Vierz: € Xi.

I was prompted by a remark in a paper by Tarlecki and Wirsing:
?Throughout the paper we deal with many-sorted sets, functions, rela-
tions etc. ... We feel free to use any standard set-theoretic notation
without explicit use of indices” [3, p.97]. The aim of this work was to
check the feasibility of such approach in Mizar. It works.

Let us observe some peculiarities:

- empty set (i.e. the many sorted set with empty set of indices) be-
longs to itself (theorem 133),

- we get two different inclusions X CY iffi Vig; Xi CY; and X C Y
iff V.2 € X = = € Y equivalent only for sets that yield non empty
values.

Therefore the care is advised.

MML Identifier: PBOOLE.

The articles [5], [1], [4], and [2] provide the terminology and notation for this
paper.

1. PRELIMINARIES

In the sequel ¢, e will be arbitrary.
A function is empty yielding if:
(Def.1)  For every ¢ such that ¢ € dom it holds it(¢) is empty.
A function is non empty set yielding if:
(Def.2)  For every ¢ such that ¢ € dom it holds it(¢) is non empty.

(© 1993 Fondation Philippe le Hodey
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Next we state two propositions:
’ . (1) For every function f such that f is non empty yielding holds rng f has
k . non empty elements.
‘ (2)  For every function f holds f is empty yielding iff f = 0 or rng f = {0}.
In the sequel I denotes a set.
( Let us consider I. A function is said to be a many sorted set of I if:
k\’}' ‘Def.3) domit = I.
= In the sequel z, y, z, X, Y, Z, V are many sorted sets of I.
% The scheme Kuratowski Function deals with a set A and a unary functor F
* yielding arbitrary, and states that:
' There exists a many sorted set f of A such that for every e such
that e € A holds f(e) € F(e)
- provided the following requirement is met:
o For every e such that e € A holds F(e) # 0.
, Let us consider I, X, Y. The predicate X € Y is defined by:
- (Def4)  For every i such that ¢ € I holds X (7) € Y (4).
@ The predicate X CY is defined by:
(Def.5) For every ¢ such that ¢ € I holds X (z) C Y (3).
J The scheme PSeparation deals with a set A, a many sorted set. B of A, and
‘i " a binary predicate P, and states that:
There exists a many sorted set X of A such that for every set ¢
holds if # € A, then for every e holds e € X(¢) iff e € B(4) and
Pli,e]
for all values of the parameters.
One can prove the following proposition
(3) If for every ¢ such that ¢ € I holds X (i) = Y (4), then X =Y.
Let us consider I. The functor §; yields a many sorted set of I and is defined
by:
| (Def6) Q=1+ 0.
; Let us consider X, Y. The functor X UY yielding a many sorted set of I is
defined by:
(Def.7)  For every ¢ such that ¢ € I holds (X UY)(7) = X (i) U Y (4).
The functor X NY yielding a many sorted set of I is defined by:
(Def.8)  For every ¢ such that ¢ € I holds (X NY)(i) = X ()N Y (¢).
The functor X \ Y yields a many sorted set of I aznd is defined as follows:
(Def.9)  For every 1 such that 7 € I holds (X \Y)(4) = X (4) \ Y (v).
We say that X overlaps Y if and only if:
(Def.10)  For every i such that ¢ € ] holds*X(3) meets Y (z).
We say that X misses Y if and only if:
(Def.11)  For every ¢ such that ¢ € I holds X (4) misses Y (¢).
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Let us consider I, X, Y. The functor X Y yielding a many sorted set of I
is defined as follows: ‘

(Def.12) XY =(X\Y)U(Y\X).
Next we state several propositions:
(4)  For every 7 such that 7 € I holds (X ~Y)(¢) = X (3)=Y (i).
(5) For every i such that ¢ € I holds 07(3) = 0
(6) If for every ¢ such that ¢ € I holds X (i) = §, then X = {;.
() HzeXorzeY,thenze XUY.
(8) zeXnYifze X andzeY.
(9) HzeX and X CY,thenz €Y.
(10) Ifz € X and z €Y, then X overlaps Y.
(11) If X overlaps Y, then there exists # such that z € X and z € Y.
(12) IfzeX\Y, thenzeX.

2. LATTICE PROPERTIES OF MANY SORTED SETS

One can prove the following proposition
(13) X C X.
Let us consider I, X, Y. Let us observe that X Y if and only if:
(Def13) X CYandY C X.
Next we state a number of propositions:
(14) X CYandY C X, then X =Y.
(15) TXCYandY C Z, then X C Z.
(1I6) XCXUYandY CXUY.
(17) XnYCXand XNY CY.
(18) TXCZandY C Z,then XUY C Z.
(19) HZCXand ZCY,then ZC XNY.
(200 EXCY,then XUZCYUZand ZUX C ZUY.
(21) EXCY,then XNnZCYNZand ZNXC ZNY.
(22) HXCYand ZCV,then XUZCYUYV.
(23) IfXCYand ZCV,then XNZCYNV.
(24) FXCY,then XUY=YandYUX =Y.
(25) HXCY,then XNY=XandYNX=2X.
(26) XNYCXUuUZ
(27) KX CZ,then XUYNZ=(XUY)NZ.
(28) X=YUZiff Y C X and Z C X and for every V such that YCV
and Z CV holds X C V.
(29) X=YNnZiff X CY and X C Z and for every V such that V C Y
and V C Z holds V C X.
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(30)
(31)
(32)
(33)
(34)
L (35)

0 (36)
' (YuXx)nX =X.

ANDRZEJ TRYBULEC

XUuX=2X.

XnX=X.

XUY=YUX.

XnYy=YnX.

(XUY)uZ=XU((YUZ).

(XNY)nZ=Xn(Yn2).
XNXUuY)=Xand (XUY)NX =Xand XN(YUX)=X and

(37T XUXAY =X and XNYUX = X and XUY N X = X and

. (38)
L (39)
(40)
(41)
7 (a2)
C(43)
(44)
(45)
(46)
(47)
(48)

YNXuX=2X.

Xn(YuzZ)=XnYuXnZad (YUZ)NX=YNXUZNX.
XuynzZ=(XuY)n(XuzZ)andYNZUX=(YUX)N(ZUX).
FXNYUuXNZ=X,then XCYUZ.
FXuY)n(XuzZ)=X,thenYNZCX.
XNYUuYnzZuzZnX=(XuyY)nxuz)n(ZuX).
HXUYCZ,then X CZand Y C Z.
EXCYNZ,then X CY and X C Z.
(XUY)UZ=XUZUu(YUZ)and XU(YUZ)=(XUY)U(XUZ).
(XNY)NZ=XnZn(¥YNZ)and XN(¥Y NZ)=(XNY)N(XnNZ).
XU(XUuY)=XuYand XUYUY =X UY.
Xn(XnY)=XnYadXNYNY=XnNY.

3. THE EMPTY MANY SORTED SET

Next we state several propositions:

(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)

fr € X.

If X C @7, then X = 0.
IfXQYandX_QZandYﬂZ:(bI,thenX:@I.
FXCYandYNZ=0then XNZ =0
XUPr=XandbjuX=X.

FXUY =07, then X =0;and Y = (7.
XN@r=0;and §;n X = 07.
FXCYUZand XNZ =05, théh X CY.
FYCXand XNY =0, then Y = 0.
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4. THE DIFFERENCE AND THE SYMMETRIC DIFFERENCE

We now state a number of propositions:

(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)
(69)
(70)
(71)
(72)
(73)
(74)
(75)
(76)
(77)
(78)
(79)
(80)
(81)
(82)
(83)
(84)
(85)
(86)
(87)
(88)
(89)
(90)
(91)
(92)

X\Y=0;iff X CY.
FXCY, then X\ZCY\Z
IfXCY,then Z\Y C Z\ X.

X CYand ZCV,then X\VCY\Z
X\YCX.

If X CY\X, then X = §;.

X\ X =0;.

X\p;=X

0r\ X =0;.

X\(XUY)=0rand X\(YUX) =
XN¥\Z2)=XnY\Z

(X\Y)NY =0rand Y N(X\Y) =
X\(Y\Z2)=(X\Y)uXnZ
(X\Y)uXNnNY=Xand XNYU(X\Y)=
FEXCY,thenY=XU({¥ \X)and Y = (Y \ X)UX.
XU\X)=XuYand (Y\X)UX =Y UX.
X\(X\Y)=XnY.
X\YnZ=(X\Y)u(X\2Z2).
X\XNY=X\Yand X\YNX=X\Y.
XNY =0, iff X\¥ = X.

(XUY)\ Z=(X\Z)U(Y\2).
X\Y\Z=X\(YUu2).
XNY\Z=(X\Z)n(Y\ 2).
(XUY)\Y =X \Y.
FXCYUZ then X\YCZand X\ZCY.
(XUY)\XnY =(X\Y)U(Y \X).
X\Y\¥=X\Y.
X\(Yuz)=(X\Y)n(X\2).
FX\Y=Y\X,then X =Y.

XN(Y\Z)=XnY\XNZand (Y\2Z)NX = YﬂX\ZnX

FX\YCZ then X CYUZ.
X\Y CXx-Y.

XY =(X\Y)u(Y\X).
X-d=Xand f;-X=X. -
X—:-XZQI.

19
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(93)
(94)
(95)
(96)
(97)
(98)

- (99)

| :100)

'i'v; (101).

~(102)
~ (103)

- :’, (104)
=+(105)
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Xty =Y-=X.

XUY =(X=Y)uXnY.

XY = (XuY)\XnY.
(X=Y)\Z=(X\(YUZ)u(Y\(XU2).
X\(¥=2)=(X\(YUZ)uXnYnZ
(X2Y)+Z = X=(Y=2).

If X\Y CZand Y\ X C Z, then XY C Z.
XUY = X=(Y \ X).

XnY =X=(X\Y).

X\Y=X=XnY.

Y\X = X+(XUY).

XUY =X=Y=XnY.

XNY =X2Y=(XUY).

5. MEETING AND OVERLAPPING

The following propositions are true:
(106)

(107)
(108)
(109)
(110)

(111)
©(112)

(113)
(114)

(115)
(116)

(117)

(118)
(119)
(120)
(121)
(122)
(123)
(124)

If X overlaps Y or X overlaps Z, then X overlaps Y U Z.

If X overlaps Y, then Y overlaps X.

If X overlaps Y and Y C Z, then X overlaps Z.

If X overlaps Y and X C Z, then Z overlaps Y.

If X CY and Z C V and X overlaps Z, then Y overlaps V.
If X overlaps Y N Z, then X overlaps Y and X overlaps Z.
If X overlaps Z and X C V, then X overlaps ZNV.

If X overlaps Y \ Z, then X overlaps Y.

If Y does not overlap Z, then X NY does not overlap X NZ and ¥ N X
does not overlap Z N X.

If X overlaps Y \ Z, then Y overlaps X \ Z.

If X meetsY and Y C Z, then X meets Z.

If X meets Y, then Y meets X.

Y misses X \ Y.

X NY misses X \Y.

X NY misses X =Y.

If X misses Y, then X NY = 0;.

If X # (07, then X meets X.

IfX CY and X C Z and Y misses Z, then X = 0;.

fZUV =X UY and X misses Z and Y misses V, thén X =V and
Y =2
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(125) T ZUV =XUY and Y misses Z and X misses V,then X = Z and
Y=V ‘

(126) If X misses Y, then X\Y =X and Y\ X =Y.

(127) If X misses Y, then (XUY)\Y =X and (X UY)\ X =Y.

(128) If X \Y = X, then X misses ¥ and Y misses X.

(129) X \Y misses ¥ \ X.

6. THE SECOND INCLUSION

Let us consider I, X, Y. The predicate X C Y is defined as follows:
(Def.14)  For every z such that z € X holds z € Y.
The following three propositions are true:
(130) X CY,then XLCVY.
(131) XLCX.
(132) FXCYandY L Z,then X C Z.

7. NoN EMPTY AND NON-EMPTY MANY SORTED SETS

The following propositions are true:
(133) 0y € Oy.
(134)  For every many sorted set X of § holds X = §.

We follow a convention: I will be a non empty set and z, X, Y, Z will be
many sorted sets of 1.
The following propositions are true:

(135) If X overlaps Y, then X meets Y.

(136) It is not true that there exists z such that z € 0.

(187) Ifze X andz €Y, then X NY # 07

(138) X does not overlap §; and ;7 does not overlap X.

(139) If XNY = {0, then X does not overlap Y.

(140) If X overlaps X, then X # 0;.

Let I be a set. A many sorted set of I is empty yielding if:

(Def.15)  For every i such that ¢ € I holds it(4) is empty.

A many sorted set of I is non empty set yielding if:
(Def.16)  For every 4 such that ¢ € I holds it(¢) is non empty.

Let I be a non empty set. Observe that every many sorted set of I which is
non-empty is also non empty and every many sorted set of I which is empty is
also non non-empty.

One can prove the following propositions:
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(141) X is empty iff X = 0.

(142) HY is empty and X CY, then X is empty.

(143) If X is non-empty and X C Y, then Y is non-empty.
(144) If X is non-empty and X C Y, then X C Y.

(145) If X is non-empty and X C Y, then Y is non-empty.

In the sequel X denotes a non-empty many sorted set of I.
The following propositions are true:

i «(146)  There exists z such that z € X.
%' (147) Ifforevery z holdsz € X iff z €Y, then X =Y.
7 (148) Ifforeveryz holdlsz e Xiffz €Y andz € Z, then X =Y N Z. '
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Summary. Introduces a definition of a subalgebra of a universal
algebra. A notion of similar algebras and basic operations on subalgebras
such as a subalgebra generated by a set, the intersection and the sum of
two subalgebras were introduced. Some basic facts concerning the above
notions have been proved. The article also contains the definition of a
lattice of subalgebras of a universal algebra.

MML Identifier: UNIALG_2.

The papers [7], [8], [4], [1], [5], [3], [9], [2], and [6] provide the terminology and
notation for this paper. ' ‘

One can prove the following propositions:

(1) For every natural number n and for every non empty set D and for

every non empty subset Dy of D holds D™ N D" = D"

(2) For every non empty set D and for every homogeneous quasi total non

empty partial function h from D* to D holds dom k = Dity%,

We follow a convention: Uy, Uy, Us, Us denote universal algebras, n, ¢ denote
natural numbers, and a denotes an element of the carrier of Uy.

Let D be a non empty set. A non empty set is called a set of universal
functions on D if:

(Def.1) Every element of it is a homogeneous quasi total non empty partial
function from D* to D.

Let D be a non empty set and let P be a set of universal functions on D.
We see that the element of P is a homogeneous quasi total non empty partial
function from D* to D.

Let us consider U;. A set of universal functions on Uy is a set of universal
functions on the carrier of Uj.

(© 1993 Fondation Philippe le Hodey
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Let Uy be a universal algebra structure. A partial function on Uy is a partlal'
function from (the carrier of Uy )* to the carrier of U;.
Let us consider Uy, Us. We say that Uy and U, are similar if and only if:

 (Def.2)  signature Uy = signature Us.

Let us observe that the predicate introduced above is reflexive symmetric.
The following propositions are true:

(3) If U; and U; are similar, then len Opers U; = len Opers U,.

«~ (4) If Uy and U, are similar and U; and Us are similar, then U; and U are

similar.
(5) rngOpers Uy is a non empty subset of (the carrier of Up)*—>the carrier
of Uo.

Let us consider Up. The functor Operations(Up) yielding a set of universal
functions on Uy is defined as follows:

- (Def.3)  Operations(Uy) = rng Opers Uy.

Let us consider U;. A operation of Uy is an element of Operations(Uy).

Let us consider Ug. A subset of Up is a subset of the carrier of Uy.

In the sequel z1, y; will denote finite sequences of elements of A.

One can prove the following proposition

(6) If n € dom Opers Uy, then (Opers Up)(n) is a operation of Up.

Let Uy be a universal algebra, let A be a subset of Uy, and let o be a operation

of Uy. We say that A is closed on o if and only if:
(Def.4) For every finite sequence s of elements of A such that lens = arityo
holds o(s) € A.

: Let Uy be a universal algebra and let A be a subset of Uy. We say that A is
.operations closed if and only if:

. (Def.5)  For every operation o of Up holds A is closed on o.

Let us consider Uy, A, 0. Let us assume that A is closed on 0. The functor
04 yielding a homogeneous quasi-total non empty partial function from A* to
A is defined as follows:
(Def.6) 04 = o] A%ityo,
Let us consider Uy, A. The functor Opers(Us, A) yields a ﬁmte sequence of
elements of A*—>A and is defined as follows:
(Def.7)  dom Opers(Up, A) = dom OpersUp and for all n, o such that n €
dom Opers(Uy, A) and o = (Opers Up)(n) holds (Opers(Up, A))(n) = 04.
The following two propositions are true:
(7)  For every non empty subset B of Up such that B = the carrier of Uy
holds B is operations closed and for every o holds op = o.
(8) Let Uy be a universal algebra, and let A be a-nen empty subset of Uy,
and let o be a operation of Ui Tf A is closed on o, then arity(o4) = arity o.
Let us consider Uy. A universal algebra is said to be a subalgebra of Uj if it
satisfies the conditions (Def.8). :
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(Def.8) (i) The carrier of it is a subset of Up, and - :
(ii) for every non empty subset B of Uy such that B = the carrier of it
holds Opersit = Opers(Up, B) and B is operations closed. :

Let Uy be a universal algebra. One can verify that there exists a subalgebra

of Uy which is strict.

One can prove the following propositions:

(9) Let Up, Uy be universal algebras, and let op be a operation of Uy, and
let 01 be a operation of Uy, and let n be a natural number. Suppose Uy
is a subalgebra of U; and n € dom Opers Up and op = (Opers Up)(n) and

= (Opers Uy)(n). Then arity og = arity 0.
(10) If Uy is a subalgebra of Uy, then dom Opers Uy = dom Opers U;.
(11) Uy is a subalgebra of Up.

(12) If Up is a subalgebra of U; and Uj is a subalgebra of Uy, then Uy is a
subalgebra of Us.

(13) If U; is a strict subalgebra of Uz and U; is a strict subalgebra of Uy,
then Ul ‘Uz

(14)  For all subalgebras Uy, Uj of Uy such that the carrier of U; C the carrier
of Us holds Uj is a subalgebra of Us. \

(15)  For all strict subalgebra Uy, U, of Up such that the carrier of Uy = the
carrier of U, holds Uy = Us.

(16) If U is a subalgebra of Uy, then U; and U, are similar.

(17)  For every non empty subset A of Uy holds (A, Opers(Us, A)) is a strict
universal algebra.

Let Up be a universal algebra and let A be a non empty subset of Up. :Let
us assume that A is operations closed. The functor (A, Ops) yielding a strict
subalgebra of Uy is defined as follows:

(Def.9) (A, Ops) = (A, Opers(Up, A)).

Let us consider Uy and let Uy, Uy be subalgebras of Uy. Let us assume that
(the carrier of Uy)N(the carrier of Uz) # (. The functor Uy N U, yielding a strict
subalgebra of Uy is defined by the conditions (Def.10).

(Def.10) (i) The carrier of U3 N U, = (the carrier of Uy) N (the carrier of Us), and

(ii)) for every non empty subset B of Uy such that B = the carrier of U3 NU;

holds Opers(U; N Uy) = Opers(Up, B) and B is operations closed.

Let us consider Up. The functor Constants(Up) yielding a subset of Up is
defined by:

(Def.11)  Constants(Up) = {a : a ranges over elements of the carrier of Uy,
3, arityo=0 A a € rngo}.
A universal algebra has constants if:

(Def 12) There exists a operation o of it such that arity o = 0. i

Let us note that there exists a umversal algebra which is strict and has
‘constants. '
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Let Up be a universal algebra with constants. Then Constants(Up) is a non
empty subset of Up.
One can prove the following three propositions:
(18) For every universal algebra Uy and for every subalgebra U; of Up holds
Constants(Up) is a subset of Uj.
~(19) For every universal algebra Up with constants and for every subalgebra
o U; of Up holds Constants(Up) is a non empty subset of U;.
(20) Let Up be a universal algebra with constants and let U;, U, be subal-
: gebras of Ug. Then (the carrier of U;) N (the carrier of Us) # 0.

; Let Uy be a universal algebra and let A be a subset of Up. Let us assume that
Constants(Up) # 0 or A # §. The functor GenUA(A) yields a strict subalgebra
of Uy and is defined by the conditions (Def.13).

(Def.13) (i) A C the carrier of GenYA(A), and
(ii) for every subalgebra U; of Uy such that A C the carrier of U; holds
enYA(A) is a subalgebra of U.
Next we state two propositions:
“#a . (21) For every strict universal algebra Uy holds GenYA(Qune carsier of U) =
Uo.

(22) Let U be a universal algebra, and let U; be a strict subalgebra of Uy,
and let B be a non empty subset of Uy. If B = the carrier of Uy, then
Gen"A(B) = U

Let Uy be a universal algebra and let Uy, Uz be subalgebras of Up. The
functor Uy | | U; yields a strict subalgebra of Uy and is defined by:

(Def.14)  For every non empty subset A of Uy such that A = (the carrier of

U1) U (the carrier of Uy) holds Uy || U, = GenVA(A).

" Next we state four propositions:

(23) Let Up be a universal algebra, and let U; be a subalgebra of Up, and let
A, B be subsets of Ug. If A # 0 or Constants(Up) # § and if B = AU the
carrier of Uy, then GenYA(A)||U; = GenVA(B).

(24) For every universal algebra Up and for all subalgebras Uy, Uz of Up holds
U1UU2 = UZUUI

(25) For every universal algebra Up with constants and for all strict subal-
gebra Uy, Uz of Ug holds Uy N (U1 Us) = Us.

(26)  For every universal algebra Uy with constants and for all strict subal-
g'ebra Ul, U2 of Uo holds U1 N UQUUQ = U2.

Let U be a universal algebra. The functor Subalgebras(Up) yields a non
empty set and is defined as follows:
(Def.15)  For every = holds z € Subalgebras(Up) iff 2 is a strict subalgebra of Up.
Let Up be a universal algebra. The functor [_]U .yielding. a binary operation
on Subalgebras(Up) is defitied ‘by: -
(Def.16) For all elements z, y of Sub.algebras(Uo) and for all strict subalgebra
Uy, Uy of Up such that ¢ = Uy and y = U; holds LI(UO)(z, y)= U1 Us.
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Let U be a universal algebra. The functor [ |y, yields a binary operation on
Subalgebras(Up) and is defined by: ’

(Def.17)  For all elements z, y of Subalgebras(Us) and for all strict subalgebra
Uy, Uy of Uy such that z = Uy and y = U, holds H(UO)(w, y)=U1NU,.
One can prove the following four propositions:
(27)  Uws,) is commutative.
(28) U is associative.

(29) For every universal algebra Up with constants holds [y, is commuta-
tive.

(30) For every universal algebra Uy with constants holds [,) is associative.

Let Up be a universal algebra with constants. The lattice of subalgebras of
Uy yielding a strict lattice is defined as follows:

(Def.18)  The lattice of subalgebras of Up = (Subalgebras(Us), wy), [ lws))-
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The notation and terminology used here are introduced in the following papers:

[13], (5], [9), [2], (31, (17], [16], [15], [8], [4], [10], [6], [14], [12], [11], [1], and [7].

1. PRELIMINARIES

The following propositions are true: ‘
(1) For arbitrary z, y and for every function f such that (z, y) € f holds
y €rng f.
(2) TFor every set X and for all functions f, g such that X C dom f and
fCgholds fI X =g X.
(3) For every non empty set A and for arbitrary b such that A # {b} there
exists an element a of A such that a # b.
Let B be a non empty functional set. Observe that every element of B is
function-like. : ‘
The following propositions are true:
(4) Forall sets X, Y holds every non empty subset of X-5Y is a non empty
functional set.
(5). Let. B be a non empty functional set and let f be a function. Suppose
f = UB: Then dom f = [J{domg : g ranges over elements of B;.} and
g f = J{rngg : g ranges over elements of B, }.
The scheme NonUnigFEzD’ deals with. a non empty set A, a non empty set
B, and a binary predicate P, and states that:
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There exists a function f from A into B such that for every element
e of A holds Ple, f(e)]
provided the parameters satisfy the following condition:

o For every element e of A there exists an element u of B such that
Ple, u].

One can prove the following propositions:

(6) TFor every non empty subset A of R such that for every Real number T
such that r € A holds r < —o0 holds A = {—o0}.

such that » € A holds +oo < r holds A = {+c0}.
(8) Let A be a non empty subset of R and let r be a Real number. If
r < sup A, then there exists a Real number s such that s € A and r < s.
(9) Let A be a non empty subset of R and let 7 be a Real number. If
inf A < 7, then there exists a Real number s such that s € A and s < r.
(10) Let A, B be non empty subset of R. Suppose that for all Real numbers
r, s such that r € A and s € B holds r < s. Then sup 4 < inf B.
(12)' Let z, y be real numbers and let 2/, ¥’ be Real numbers. If z = 2’ and
y=1', then z < yiff 2/ < 9.

2. SETs LINEARLY ORDERED BY THE INCLUSION

A set is C -linear if:
(Def 1) For arbitrary z, y such that z € it and y € it holds ¢ Cy or y C =.
Let A be a non empty set. Note that there exists a subset of A which is C
-linear and non empty.
We now state the proposition
(13)  For all sets X, Y and for every C -linear non empty subset B of X >V
holds ¥ B € X =Y.

3. SUBSPACES OF A REAL LINEAR SPACE

In the sequel V' will be a real linear space.
One can prove the following propositions:
(14)  For all subspaces Wi, W, of V holds the carrier of Wy C the carrjer of
Wi+ Ws.
(15)  Let Wy, W, be subspaces of V. Suppose V' is the direct sum of W}
and Ws. Let v, v;, vy be vectors of V. If v; € Wj and v, € Wy and
v = v; + vq, then v Q@ (W1, W) = (v1, v2). '

'The proposition (11) has been removed.
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(16) Let Wy, W, be subspaces of V. Suppose V is the direct sum of W,
and W,. Let v, vy, vy be vectors of V. If v <1 (W1, Ws) = (vq, v2), then
v =11+ vo.

(17) Let Wy, W5 be subspaces of V. Suppose V is the direct sum of W}
and Ws. Let v, vy, v2 be vectors of V. If v 4 (Wq, W3) = (v1, v2), then
v, € Wi and vy € W3,

(18)  Let Wiy, W, be subspaces of V. Suppose V is the direct sum of W;
and Ws. Let v, v1, v2 be vectors of V. If v < (Wq, Ws) = (v, v2), then
v« (Wz,Wl) = (’02, ’Ul).

(19) Let Wy, W, be subspaces of V. Suppose V is the direct sum of W7 and
W,. Let v be a vector of V.. If v € Wy, then v < (W1, Wa) = (v, Oy).

(20) Let W;, W, be subspaces of V. Suppose V is the direct sum of W7 and
W,. Let v be a vector of V. If v € Wy, then v < (Wi, W) = (Ov, v).

(21) Let Vi be a subspace of V, and let W, be a subspace of Vi, and let v
be a vector of V. If v € W7, then v is a vector of V7.

(22)  For all subspaces Vi, Vo, W of V and for all subspaces Wy, Wy of W
such that W7 = V5 and W, = V; holds W; + Wy = Vi + Va.

(23) For every subspace W of V' and for every vector v of V' and for every
vector w of W such that v = w holds Lin({w}) = Lin({v}).

(24) Let v be a vector of V and let X be a subspace of V. Suppose v ¢ X. Let
y be a vector of X + Lin({v}) and let W be a subspace of X + Lin({v}).
If v =yand W = X, then X + Lin({v}) is the direct sum of W and
Lin({y}).

(25) Let v be a vector of V, and let X be a subspace of V, and let y be a
vector of X +Lin({v}), and let W be a subspace of X +Lin({v}). Ifv =1y
and X = W and v ¢ X, then y < (W,Lin({y})) = (Ow, v).

(26) Let v be a vector of V, and let X be a subspace of V, and let y be a
vector of X +Lin({v}), and let W be a subspace of X +Lin({v}). Suppose
v=yand X = W and v ¢ X. Let w be a vector of X +Lin({v}). f w € X,
then w < (W, Lin({y})) = (w, Ov).

(27)  For every vector v of V' and for all subspaces W1, W of V there exist
vectors vy, v of V such that v < (W1, W2) = (vy, v2).

(28) Let v be a vector of V, and let X be a subspace of V, and let y be a

_vector of X +Lin({v}), and let W be a subspace of X +Lin({v}). Suppose

" v=yand X =W and v ¢ X. Let w be a vector of X + Lin({v}). Then
there exists a vector 2 of X and there exists a real number r such that
w < (W, Lin({y})) = (=, r - v).

(29) Let v be a vector of V, and let X be a subspace of V, and let y be a
vector of X +Lin({v}), and let W be a subspace of X +Lin({v}). Suppose
v=yand X = W and v ¢ X. Let wy, wy be vectors of X + Lin({v}),
and let 21, z, be vectors of X, and let 71, 7o be real numbers. If-w; <
(W,Lin({y})) = (&1, r1 - v) and we < (W, Lin({y})) = (1132, g - v) then
(w1 +wg) A (W, Lin({y})) = (21 + @2, (1 +72) - 0). .
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(30) Let v be a vector of V, and let X be a subspace of V, and let y be a

 vector of X 4+ Lin({v}), and let W be a subspace of X +Lin({v}). Suppose
v=1yand X = W and v ¢ X. Let w be a vector of X +Lin({v}), and let =
be a vector of X, and let ¢, 7 be real numbers. If w <1 (W, Lin({y})) = {=,
r+v), then (¢-w) < (W,Lin({y})) = (t-z, 1 -7 -v).

4. FUNCTIONALS

5
*

: Let V be an RLS structure.
(Def.2) A function from the carrier of V' into R is called a functional in V.
3 Let us consider V. A functional in V is subadditive if:
..(Def.3) For all vectors z, y of V holds it(z + y) < it(z) + it(y).
A functional in V is additive if:
(Def.4)  For all vectors 2, y of V holds it(z +y) = it(z) + it(y).
“> A functional in V is homogeneous if:
(Def 5) For every vector z of V and for every real number r holds it(r - z) =
r-it(z).
A functional in V is positively homogeneous if:
(Def.6) For every vector z of V and for every real number r such that r > 0
holds it(r - z) = r - it(z).
A functional in V is semi-homogeneous if:
(Def.7)  For every vector z of V' and for every real number r such that r > 0
holds it(r - z) = 7 - it(x). ‘
" A functional in V is absolutely homogeneous if:
(Def.8) For every vector = of V and for every real number r holds it(r - x) =
- it(a):
A functional in V is 0-preserving if:
(Def.9) It(0v) = 0.
Let us consider V. One can verify the following observations:
% every functional in V' which is additive is also subadditive,
% every functional in V which is homogeneous is also positively homoge-
neous,
* every functional in V which is semi-homogeneous is also positively ho-
mogeneous,
% every functional in V' which is semi-homogeneous is also 0-preserving,
+ every functional in V which is absolutely hemogeneous is- also semi-
homogeneous, and
* every functional in V' which is 0-preserving and positively homogeneous
is also semi-homogeneous.
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Let us consider V. Observe that there exists a functional in V' which is
additive absolutely homogeneous and homogeneous.

Let us consider V. A Banach functional in V is a subadditive positively ho-
mogeneous functional in V. A linear functional in V is an additive homogeneous
functional in V.

We now state four propositions:

(31) For every homogeneous functional L in V and for every vector v of V
holds L(—v) = —L(v).

(32) For every linear functional L in V and for all vectors vy, v2 of V" holds
L(’Ul — ’02) = L(’Dl) — L(?Jg).

(33) For every additive functional L in V holds L(0v) = 0.

(34) Let X be a subspace of V, and let f; be a linear functional in X, and
let v be a vector of V, and let y be a vector of X + Lin({v}). Suppose
v =y and v ¢ X. Let 7 be a real number. Then there exists a linear
functional p; in X 4 Lin({v}) such that p; I (the carrier of X) = f; and

n(y) =r.

5. HAEN-BANACH THEOREM

One can prove the following three propositions:

(35) Let V be a real linear space, and let X be a subspace of V, and let
g be a Banach functional in V, and let f; be a linear functional in X.
Suppose that for every vector 2 of X and for every vector v of V such
that z = v holds fi(2) < ¢(v). Then there exists a linear functional p; in
V such that p; | (the carrier of X') = f1 and for every vector z of V holds
pi(z) < g().

(36) For every real normed space V holds the norm of V is an absolutely
homogeneous subadditive functional in V.

(37) Let V be areal normed space, and let X be a subspace of V', and let f;
be a linear functional in X. Suppose that for every vector z of X and for
every vector v of V such that z = v holds fi(2) < ||v||. Then there exists
a linear functional p; in V such that p; | (the carrier of X) = f; and for
every vector z of V holds py(z) < ||z||-
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The articles [9], [4], [2], [3], [8], [10], [6], [1], [5], arid [7] provide the terminology
and notation for this paper. ‘ ”

1. PRELIMINARIES

We adopt the following convention: X, X1, X5, Y, Z will denote sets and =
will be arbitrary.

Next we state three propositions:

(1) YUY CZ and X €Y, then X C Z.

(2) UXaY)=UXnNnUY.

(3) Given X. Suppose that

(i) X #0,and

(i) for every Z such that Z # 0 and Z C X and for all X;, X, such that
X1 € Z and X, € Z holds X; C Xy or Xo C X; there exists Y such that
Y € X and for every X7 such that X; € Z holds X; CY.
Then there exists Y such that Y € X and for every Z such that Z e X
and Z#Y holds Y € Z. ST

2. LATTICE THEORY

We adopt the following convehfion L denotes-a 1attiee-, ¥, H denote filters
of L, and p, ¢, r denote elements of the carrier of L
One can prove the following propositions:
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(4) [L) is prime.
(5) FC[FUH)and # C[FU H). |
(6) 1If p€[lg)UF), then there exists 7 such that r € F and ¢M» C p. .

We adopt the following rules: L, Ly will be lattices, a1, by will be elements
of the carrier of Ly, and a5 will be an element of the carrier of Ls.
‘ Let us consider L{, L,. A function from the carrier of Ly into the carrier of
+ Ly is called a homomorphism from L, to Ly if:

ol s(“lgef.l) Tt(ag U by) = it(ay) U it(by) and it(ay Mby) = it(aq) M 1t(b1)
=™ TIn the sequel f is a homomorphism from L; to L.
Lk We now state the proposition
(7) If ay C by, then f(a1) T f(b1).
Let us consider Ly, Ly, f. We say that f is monomorphism if and only if:
: (Def 2)  f is one-to-one.
© We say that f is epimorphism if and only if:
| (Def.3) rng f = the carrier of Ls.
 Next we state two propositions:
(8) If f is monomorphism, then a; C by iff f(a1) T f(b1).
(9) If f is epimorphism, then for every a, there exists @; such that a; =
f(ar).
Let us consider Ly, Lo, f. We say that f is isomorphism if and only if:
(Def4)  f is monomorphism and epimorphism.
Let us consider Ly, L,. We say that Iy and Lo are isomorphic if and only if:
(Def.5)  There exists f which is isomorphism.
" Let us consider Ly, Ly, f. We say that f preserves implication if and only if:
(Def.6)  f(ay = b1) = f(a1) = f(b1).
We say that f preserves top if and only if:
(Def.?)  f(T(zy)) = T(z,)-
We say that f preserves bottom if and only if:
(Def.8)  f(Lzy) = L(za)-
We say that f preserves complement if and only if:
(Def.9) . f(a1°) = f(ar)°. '
Let us consider L. ‘A non empty subset of the carrier of L is said to be a
closed subset of L if:

(Def.10) If p €it and g €it, then pMg € it and pU g € it.
Next we state two propositions:
(10) The carrier of L is a closed subset of L.
(11)  Every filter of L is a closed subset of L.

Let L be a lattice. The functor idy, yields a function from the carrier of L
into the carrier of L and is defined as follows:

(Defll) ldL = id(the carrier of L)-
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Next we state two propositions:
(12)  For every element b of the carrier of L holds idz () = b.
(13)  For every function f from the carrier of L into the carrier of L holds
f-idp=fandidr-f=f.
In the sequel B denotes a finite subset of the carrier of L.

- Let us consider L, B. The functor L[5 yields an element of the carrier of L
and is defined by:

(Def.12) LU = Lip(idz).
The functor []5 yielding an element of the carrier of L is defined by:

(Def.13) [T = [T5(idr).

The following propositions are true:
(14) [T = (the meet operation of L)- Y pidy.
(15) LI = (the join operation of L)- 3" gidz.
(16) Ly =»-
a7 My =»

3. DISTRIBUTIVE LATTICES

In the sequel D, denotes a distributive lattice and f denotes a homomorphism
from D to L.
One can prove the following proposition

(18) If f is epimorphism, then Ly is distributive.

4. LOWER-BOUNDED LATTICES

We adopt the following rules: ¢; is a lower-bounded lattice, B, By, B, are
finite subsets of the carrier of {1, and b is an element of the carrier of ¢;.
Next we state the proposition

(19) Let f be a homomorphism from ¢; to Lo. If f is epimorphism, then L
is lower-bounded and f preserves bottom.

In the sequel f will be a unary operation on the carrier of £;.
We now state several propositions:

(20) Uy f =15 FU f(b).
) oo =Usub:

(22) Ulg,) ULs,) = Lib,us, -
(23) l—lathe carrier of £ = 'L(Zl)'
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(24)  For every closed subset A of £; such that 1,y € A and for every B
such that B C A holds [_|§3 € A.

5. UPPER-BOUNDED LATTICES

Vi We adopt the following rules: /5 will denote an upper-bounded lattice, B,
) i . By, By will denote finite subsets of the carrier of £5, and b will denote an element
- --0f the carrier of £5.
% Oune can prove the following two propositions:
(25)  For every homomorphism f from {2 to Lg such that f is epimorphism
holds L, is upper-bounded and f preserves top.

(26) I—If@che carrier of £ = T(£2).

. = In the sequel f, g will be unary operations on the carrier of £5.
The following propositions are true:

20) [Toum =TSN F(5).
(28)  [Tougy = Ms o
(29)  [Tepy = [Ts(g - ).
(30) gy M My = MMbyus,-
(31) For every closed subset F of £y such that T(,,) € F and for every B
such that B C F holds [ € F.

6. DISTRIBUTIVE UPPER-BOUNDED LATTICES

- In the sequel D7 will be a distributive upper-bounded lattice, B will be a
finite subset of the carrier of Dy, and p will be an element of the carrier of Dj.
Next we state the proposition

(32) I—FB Up= (the join operation of D1) (1d(D1),p))°B

7. IMPLICATIVE LATTICES

For simplicity we adopt the following rules: C; denotes a complemented
lattice, I; denotes an implicative lattice, f denotes a homomorphism from I; to
(1, and i, j, k denote elements of the carrier of Ii. -

The following propositions are true:

(33) f()Nf(=74)E f()
(34) X f is monomorphism, then if f(i)N f(k) C f(j), then FB)C f(i = j).
(35) If f is isomorphism, then C; is implicative and f preserves implication.
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8. BOOLEAN LATTICES

For simplicity we adopt the following rules: Bs will be a Boolean lattice, f
will be a homomorphism from Bz to Cq, A will be a non empty subset of the
carrier of Bz, a, b, ¢, p, ¢ will be elements of the carrier of B3, and B, By will
be finite subsets of the carrier of Bs.

One can prove the following propositions:

(36)  (T(ms))* = LBo)-
(37 (LBy))* = T(my):-
(38) If fis epimorphism, then C; is Boolean and f preserves complement.

Let us consider Bz. A non empty subset of the carrier of B3 is called a field
of subsets of Bs if:

(Def.14) If a € it and b € it, then aMb € it and a® € it.
In the sequel F will denote a field of subsets of Bs.
Next we state four propositions:
(39) IfaeFandbe F,thenallbe F.
(40) Ifa€e Fandbe F,thena= b€ F.
(41) The carrier of Bs is a field of subsets of Bs.
(42) Fis a closed subset of Bs.

Let us consider Bs, A. The field by A yielding a field of subsets of B3 is
defined as follows:

(Def.15) A C the field by A and for every F such that A C F holds the field by
ACF.

Let us consider Bz, A. The functor SetImp(A) yielding a non empty subset
of the carrier of Bj is defined by:

(Def.16) SetImp(A)={a=b:a€ A A b€ A}.
The following two propositions are true:
(43) =z € SetImp(A) iff there exist p, q such that z = p => ¢ and p € A and
g€ A
(44) ¢ € SetImp(A) iff there exist p, ¢ such that ¢ = p°U ¢ and p € A and
g€ A.
Let us consider Bs. The functor comp B3 yielding a function from the carrier
of B3 into the carrier of Bs is defined by:

(Def.17)  (comp Bs)(a) = aC.
We now state several propositions:
(45) U%u{b} comp Bs = | [f; comp B3 LI be.
(46) (U%)° = [T comp Bs.
(47) ﬂ%u{b} comp Bs = [ comp B3 M b°.
(48)  ([T5)c = LU comp Bs.
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Let A; be a closed subset.of B3. Suppose L(p,) € A1 and T(p,) € As.
Given B. If B C SetImp(A;), then there exists By such that By C
SetImp(A4;) and | [} comp Bs = HfBo)'

(50)  For every closed subset A; of Bj such that 1(p,) € A; and T(g,) € 4;

vl

.
)

(3]

[4]
(5]

(6]
[
(8]
]

[10]

holds {[ T : B C SetImp(A;)} = the field by A;.
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The articles [11], [4], [5], [3], [9], [10], [7], [12], [13], [8], [1], [2], and [6] provide
the notation and terminology for this paper. :
One can check that every lower bound lattice which is Heyting is also im-
plicative and every lattice which is implicative is also upper-bounded.
In the sequel T will denote a topological space and A, B, C' will denote
subsets of the carrier of T'.
We now state two propositions:
(1) AnInt(A°UB)C B.
(2) If Cisopen and ANC C B, then C C Int(A° U B).
Let us consider T. The functor Topology(7T') yields a non empty family of
subsets of the carrier of T and is defined as follows:
(Def.1) Topology(T) = the topology of T
In the sequel P, @ denote elements of Topology(T').
The following proposition is true
(3) A is open iff A € Topology(T).
Let us consider 7', P, @. Then P U@ is an element of Topology(T).
Let us consider T, P, Q. Then P N Q is an element of Topology(T).
Let us consider T. The functor TopUnion(T') yields a binary operation on
Topology(T') and is defined by:
(Def.2)  (TopUnion(T))(P, Q)= PUQ.
Let us consider T. The functor TopMeet(T') yielding a binary operatlon on
Topology(T') is defined as follows:
(Def.3) (TopMeet(T))(P, Q)= PN Q.
The following proposition is true
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(4) For every topological space T holds (Topology(T), TopUnion(T),
TopMeet(T')) is a lattice.
Let us consider T'. The functor OpenSetLatt(T") yields a lattice and is defined
by:
(Def.4)  OpenSetLatt(T) = (Topology(T'), TopUnion(T"), TopMeet(T')).
Next we state the proposition
(5) The carrier of OpenSetLatt(T") = Topology(T).
In the sequel p, ¢ will denote elements of the carrier of OpenSetLatt(T).
Next we state several propositions:
(6) pUg=pUgandpfg=png.
() pCqiffpCaq.
(8) For all elements p/, ¢’ of Topology(T’) such that p = p’ and ¢ = ¢ holds
pEqiffp’ Cq'.
(9) OpenSetLatt(T) is implicative.
(10)  OpenSetLatt(T') is lower-bounded and LopensetLast() = ¥-
(11)  TopenSetLatt(T) = the carrier of T'.

Let us consider T'. Then OpenSetLatt(T) is a Heyting lattice.
For simplicity we adopt the following convention: L will denote a distributive
lattice, F' will denote a filter of L, a, b will denote elements of the carrier of L,
.z will be arbitrary, and X3, X2, Y, Z will denote sets.
Let us consider L. The functor PrimeFilters(L) yielding a set is defined as
follows:

(Def.5)  PrimeFilters(L) = {F : F # the carrier of L A F is prime}.
~ We now state the proposition
(12) F € PrimeFilters(L) iff F' # the carrier of L and F is prime.
. Let us consider L. The functor StoneH(L) yielding a function is defined by:
(Def.6) dom StoneH(L) = the carrier of L and (StoneH(L))(a) = {F : F €
' PrimeFilters(L) A a € F}.
Next we state two propositions:
(13) F € (StoneH(L))(a) iff F € PrimeFilters(L) and a € F.

(14) =z € (StoneH(L))(a) iff there exists F' such that F = z and F # the
carrier of L and F is prime and a € F.

Let us consider L. The functor StoneS(L) yielding a non empty set is defined
as follows:

(Def.7)  StoneS(L) = rng StoneH(L).
" The following propositions are true:
(15)  z € StoneS(L) iff there exists a such that z = (StoneH(L))(a).
(16)  (StoneH(L))(aUb) = (StoneH(L))(a) U (StoneH(L))(b).
(17)  (StoneH(L))(aTrb) = (StotieH(L))(a) N (StoneH(L))(b).

Let us consider L and let us consider a. The functor Fllters(a) yields a non
empty family of subsets of L and is defined by:
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(Def.8)  Filters(a) = {F :a € F}.
The following propositions are true:
(18) z € Filters(a) iff z is a filter of L and a € z.
(19) If z € Filters(b) \ Filters(a), then z is a filter of Land b€z and a ¢ z.

(20) Given Z. Suppose Z # @ and Z C Filters(b) \ Filters(a) and for all X7,
X, such that X; € Z and X3 € Z holds X; C X3 or Xy C Xj. Then
there exists Y such that Y € Filters(d) \ Filters(a) and for every X; such
that X1 € Z holds X; CY.

(21) If b a, then [b) € Filters(b) \ Filters(a).

(22) If bZ a, then there exists F' such that F' € PrimeFilters(L) and a ¢ F
and b € F.

(23) If a # b, then there exists F' such that F € PrimeFilters(L).

(24) 1If a # b, then (StoneH(L))(a) # (StoneH(L))(b).

(25) StoneH(L) is one-to-one.

Let us consider L and let A, B be elements of StoneS(L). Then AU B is an
element of StoneS(L).

Let us consider L and let A, B be elements of StoneS(L). Then AN B is an
element of StoneS(L).

Let us consider L. The functor SetUnion(L) yielding a binary operation on
StoneS(L) is defined as follows:

(Def.9)  For all elements A, B of StoneS(L) holds (SetUnion(L))(A4, B) = AUB.

Let us consider L. The functor SetMeet(L) yielding a binary operation on
StoneS(L) is defined by:

(Def.10)  For all elements A, B of StoneS(L) holds (SetMeet(L))(A, B) = AN B.
The following proposition is true
(26) (StoneS(L),SetUnion(L), SetMeet(L)) is a lattice.
Let us consider L. The functor StoneLatt(L) yields a lattice and is defined
by:
(Def.11)  StoneLatt(L) = (StoneS(L), SetUnion(L), SetMeet(L)).

In the sequel p, ¢ are elements of the carrier of StoneLatt(L)
We now state three propositions:

(27) For every L holds the carrier of StoneLatt(L) = StoneS(L)
(28) pUg=pUgandpNg=png.
(29) pCyqiffpCyq. o |
Let us consider L. Then StoneH(L) is a homomorphism from L to
StoneLatt(L). ‘
One can prove the following propositions: .

(30) StoneH(L) is isomorphism.
(31)  StoneLatt(L) is distributive. ‘
(32) L and StoneLatt(L) are 1somorph1c
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Let us note that there exists a Heyting lattice which is non trivial.

In the sequel H denotes a non trivial Heyting lattice and p’, ¢’ denote ele-
ments of the carrier of H.

The following three propositions are true:

(33) (StoneH(H))(Ty) = PrimeFilters(H).
(34) (StoneH(H))(Ly)=10
(35) StoneS(H) C 9PrimeFilters(H)
L - Let us consider H. Then PrimeFilters(H) is a non empty set.
Let us consider H. The functor HTopSpace( H ) yielding a strict topological
space is defined as follows:

‘(Def.12)  The carrier of HTopSpace(H) = PrimeFilters(H) and the topology of
HTopSpace(H) = {|J A : A ranges over subsets of StoneS(H), }.

One can prove the following propositions:

(36) The carrier of OpenSetLatt(HTopSpace(H)) = {{JA : A ranges over
subsets of StoneS(H), }.

(37) StoneS(H) C the carrier of OpenSetLatt(HTopSpace(H)).

Let us consider H. Then StoneH(H) is a homomorphism from H to
OpenSetLatt(HTopSpace( H)).
The following propositions are true:

(38) StoneH(H) is monomorphism.

(39) (StoneH(H))(p' = ¢') = (StoneH(H))(p') = (StoneH(H))(¢').
(40)  StoneH(H) preserves implication.

(41)  StoneH(H) preserves top.

(42)  StoneH(H) preserves bottom.
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The notation and terminology used in this paper are introduced in the following
articles: [9], [7], [4], [5], [3], [10], [11], [8], [12], [1], [2], and [6].

In the sequel T is a topological space, X, Y are subsets of T, and z is
arbitrary. _

Let T be a topological space. The functor OpenClosedSet(T") yielding a non
empty family of subsets of the carrier of T" is defined as follows:

(Def.1)  OpenClosedSet(T) = {z : z ranges over subsets of 7', z is open A z is
closed}.

The following propositions are true:

(1) If z € OpenClosedSet(T), then there exists X such that X = z.

(2) If X € OpenClosedSet(T'), then X is open.

(3) If X € OpenClosedSet(T), then X is closed.

(4) 1If X is open and closed, then X € OpenClosedSet(T).

Let X be a non empty set and let ¢ be a non empty family of subsets of X.
We see that the element of ¢ is a subset of X.

In the sequel z, y, z will denote elements of OpenClosedSet (7).

Let us consider T and let C, D be elements of OpenClosedSet(7"). Then
C U D is an element of OpenClosedSet(T).

Let us consider T' and let C, D be elements of OpenClosedSet(7T"). Then
C' N D is an element of OpenClosedSet(T’).

Let us consider T. The functor join(7') yielding a binary operation on
OpenClosedSet(T') is defined by: :

(Def.2) For all elements A, B of OpenClosedSet(T) holds (join(T))(A, B) =
AU B.

© 1993 Fondation Philippe le Hodey
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Let us consider T. The functor meet(7T) yields a binary operation on
OpenClosedSet(T") and is defined by:

(Def.3) TFor all elements A, B of OpenClosedSet(7") holds (meet(7"))(A4, B) =
ANB.

We now state several propositions:

L (5) Let z, y be elements of the carrier of (OpenClosedSet(T'),join(T),
: meet(7")) and let z', y' be elements of OpenClosedSet(T). If ¢ = 2f
e and y =9/, thenzUy =2'Uy".
: (6) Let z, y be elements of the carrier of (OpenClosedSet(T’),join(T),
~ meet(T)) and let 2/, y' be elements of OpenClosedSet(T). If z = 2
and y = ¢/, then 2 My =2’ Ny :
(7) @7 is an element of OpenClosedSet(T).
(8) Q7 is an element of OpenClosedSet(T").

(9) For every element z of OpenClosedSet(T") holds z¢ is an element of
OpenClosedSet(T').

(10) (OpenClosedSet(T), join(T"), meet(T')) is a lattice.
Let T be a topological space. The functor OpenClosedSetLatt(7T) yields a
lattice and is defined by:
(Def.4)  OpenClosedSetLatt(7T") = (OpenClosedSet(T’), join(T"), meet(T)).
’ Next we state two propositions:
(11)  For every topological space T and for all elements z, y of the carrier of
OpenClosedSetLatt(7) holds z Uy =z U y.
(12)  For every topological space T’ and for all elements z, y of the carrier of
OpenClosedSetLatt(T) holds z My =2 Ny.

We follow a convention: a, b, ¢ denote elements of the - carrier
of (OpenClosedSet(T"),join(T), meet(T)) and =z, y, z denote elements of
- OpenClosedSet(T).
The following propositions are true:
(13)  The carrier of OpenClosedSetLatt(T) = OpenClosedSet(T).
(14)  OpenClosedSetLatt(T") is Boolean.
(15) = Qr is an element of the carrier of OpenClosedSetLatt(7).-
(16) Q7 is an element of the carrier of OpenClosedSetLatt(7').
One can check that there exists a Boolean lattice which is non trivial.
For simplicity we adopt the following convention: L1, Ly denote lattices, a,
.p, ¢’ denote elements of the carrier of By, Uy denotes a filter of By, B denotes
a subset of the carrier of By, and D denotes a non empty subset of the carrier
of Bl .
Let us consider By. The functor ultraset(B) yields a non empty subset of
gthe carrier of By and js-defined by:
(Def.5)  ultraset(By) = {F : F is ultrafilter}.
Next we state two propositions:
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(18)! =z € ultraset(B, ) iff there exists Uy such that Uy = z and Uy is ultrafilter.
(19) For every a holds {F : F is ultrafilter A a € F} C ultraset(By).

Let us consider B;. The functor UFilter(B;) yielding a function is defined
as follows:

(Def.6) dom UFilter(B;) = the carrier of By and for every element a of the
carrier of By holds (UFilter(B;))(a) = {Uy : Uy is ultrafilter A a € U1 }.

Next we state several propositions:

(20) =z € (UFilter(By))(a) iff there exists F such that FF = z and F is
ultrafilter and a € F. '

(21) F € (UFilter(By))(a) iff F is ultrafilter and a € F.

(22) For every F such that F' is ultrafilter holds allb € F iffa € F orbeF.
(23) (UFilter(By))(anb) = (UFilter(B;))(a) N (UFilter(By))(b).

(24) (UFilter(By))(e U b) = (UFilter(By))(a) U (UFilter(By))(d).

Let us consider B;. Then UFilter(B;) is a function from the carrier of By
into Qultraset(B1)

Let us consider By. The functor StoneR(B;) yielding a non empty set is
defined as follows: :

(Def.7)  StoneR(B;) = rng UFilter(By).
The following propositions are true:
(25)  StoneR(B,;) C 2ultraset(B1),
(26) z € StoneR(Bj) iff there exists a such that (UFilter(B1))(a) = z.

Let us consider By. The functor StoneSpace(B;) yielding a strict topological
space is defined by:

(Def.8) The carrier of StoneSpace(B;) = ultraset(B;) and the topology of
StoneSpace(B;) = {{JA : A ranges over subsets of 2ultraset(B1) 4 C
StoneR(By)}.

One can prove the following two propositions:
(27) If F is ultrafilter and F' ¢ (UFilter(By))(a), then ¢ ¢ F.
(28)  ultraset(B;) \ (UFilter(B1))(a) = (UFilter(By))(a®).
Let us consider By. The functor StoneBLattice(B1) yields a lattice and is
defined as follows:
(Def.9) StoneBLattice(B;) = OpenClosedSetLatt(StoneSpace(By)).
One can prove the following four propositions:
(29) UFilter(B,) is one-to-one.
- (30) |UStoneR(Bj;) = ultraset(By).
(31) Forall sets A, B, X such that X C |J(4 U B) and for arbitrary Y such
that Y € B holds Y N X = { holds X C {J A.

(32) For every non empty set X holds there exists finite subset of X whlch
is non empty. :

!The proposition (17) has been removed.

49
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Let D be a non empty set. Note that there exists a finite subset of ) which
is non empty.
The following propositions are true:

(33) For every lattice L and for all elements a, b, ¢, d of the carrier of L such
that aCcand bC.d holds a B C cM d.

(34) Let L be anon trivial Boolean lattice and let D be a non empty subset
e of the carrier of L. Suppose Lz, € [D). Then there exists a non empty
iR finite subset B of the carrier of L such that BC D and [ ;5 = Ly.

5] (35) For every lower bound lattice L it is not true that there exists a filter
; . F of L such that F is ultrafilter and 1 € F.

(36) (UFilter(Bl))(J_(BL)) = {.

(37)  (UFilter(B1))(T(p,)) = ultraset(By).

(38) If ultraset(B;) = |JX and X is a subset of StoneR(Bj), then there
exists a finite subset Y of X such that ultraset(By) = JY.

(39) Ifz € 2¥X and y € 2%, then z Ny € 2%.

(40)  StoneR(B;) = OpenClosedSet(StoneSpace(By)).

Let us consider B;. Then UFilter(B;) is a homomorphism from B; to
StoneBLattice(B).
Next we state four propositions:
(41) tng UFilter(B;) = the carrier of StoneBLattice(By).
(42) UFilter(B;) is isomorphism.
(43)  Bp and StoneBLattice(B;) are isomorphic.
(44)  For every non trivial Boolean lattice B there exists a topological space
T such that B; and OpenClosedSetLatt(7T') are isomorphic.
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Summary. We prove some results on SCM needed for the proof
of the correctness of Euclid’s algorithm. We introduce the following con-
cepts:

- starting finite partial state (Start-At(l)), then assigns to the in-
struction counter an instruction location (and consists only of this
assignment),

- programmed finite partial state, that consists of the instructions (to
be more precise, a finite partial state with the domain consisting of
instruction locations).

We define for a total state s what it means that s starts at { (the value
of the instruction counter in the state s is I) and s halts at { (the halt
instruction is assigned to ! in the state s). Similar notions are defined for
finite partial states.

MML Identifier: AMI.3.

The articles [22], [20], [5], [6], [21], [12], [1], [17], [23], [4], [13], [2], [18], [24],
{71, [19], (8], (9], [11], [3], [10], [14], [15], and [16] provide the notation and

terminolegy for this paper.

1. PRELIMINARIES

I
g

One can prove the following proposition . o

(1) For all integers m, j holds m - j = +0(mod m) : o

In the sequel ¢, 7, k& will denote natural numbers., ..

The scheme INDI concerns natural numbers A, B and a unary predlcate P,
and states that:
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P(B]

provided the following requirements are met:

o P0],
s A>0, .
e Forall ¢, j such that P[A-7]and j # 0 and § < A holds P[A-i+7].

In the sequel z will be arbitrary.

Next we state a number of propositions:

(2) Let X,Y be non empty set and let f, g be partial functions from X to
Y. Suppose that for every element  of X and for every element y of ¥
holds (z, y) € f iff (z, y) € g. Then f =g.

(3) For all functions f, g and for all sets A, B such that f | A=g| A and
f1B=gtBholds f1(AUB) =g} (AUB).

(4) For every set X and for all functions f, g such that domg C X and
gC fholdsg C fIX.

(5) For every function f and for arbitrary z such that z € dom f holds
f iz} = {{z, f(2))}.

(6) Tor every function f and for every set X such that X Ndom f = () holds -
frx=90.

(7)  For all functions f, g and for arbitrary « such that dom f = dom g and
f(z) = g(z) holds f I {z} =4 Hez}.

(8) For all functions f, g and for arbitrary z, y such that dom f = domyg
and f(z) = g(z) and f(y) = g(y) holds f | {z,y} = g I {z,y}.

(9) Let f, g be functions and let z, y, z be arbitrary. If dom f = domg
and f(z) = g(e) and f(y) = g(y) and f(2) = g(2), then f I {z,y,2} =
g H{z,y,2}.

(10)  For arbitrary a, b and for every function f such that a € dom f and

f(a) = b holds a~—b C f.

(11)  For arbitrary a, b, ¢, d such that a # ¢ holds [a — b,¢ = d] = {{a,
b), {c, d)}.

(12)  For arbitrary a, b, ¢, d and for every function f such that a € dom f
and ¢ € dom f and f(a) = b and f(c) = d holds [a —> b,c—— d] C f.

(13)  For all functions f, g, h holds (f+-g)+-h = f+-(g+ h).

2. COMPUTATIONS

In the sequel N denotes a non empty set with non empty elements.
Next we state the proposition
(14)  For every AMI S over N and for every finite partial state p of S holds
p € FinPartSt(5).
Let us consider N and let § be an AMI over N. Then FinPartSt(5) is a non

empty subset of [] (the object kind of 5).
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Next we state two propositions:

(15)  For every AMI § over N holds every element of FinPartSt(5) is a finite
partial state-of 5.

(16) Let S be an AMI over N and let Fy, F> be partial functions from
FinPartSt(5) to FinPartSt(5). Suppose that for all finite partial states
p, g of S holds (p, ¢) € Fy iff {p, ¢) € F>. Then F; = F,.

The scheme FgqFPSFunc concerns a non empty set 4 with non empty
elements, an AMI B over A, partial functions C, D from FinPartSt(B) to
FinPartSt(B), and a binary predicate P, and states that:

C=7DD
provided the parameters meet the following conditions:

o For all finite partial states p, ¢ of B holds {p, ¢) € C iff P[p, q],

e For all finite partial states p, ¢ of B holds (p, ¢} € D iff P|p, q|.

Let us consider N, let S5 be a von Neumann definite AMI over N, -and let [
be an instruction-location of 5. The functor Start-At(/) yielding a finite partial
state of S is defined by:

(Def.1)  Start-At(l) = ICs——1.
One can prove the following proposition

(17) For every von Neumann definite AMI S over N and for every
instruction-location ! of S holds dom Start-At({) = {ICg}.

Let us consider N and let .5 be an AMI over . A finite partial state of S is
programmed if:
(Def.2) domit C the instruction locations of S.
We now state four propositions:

(18) Let S be a steady-programmed von Neumann definite AMI over N
and let py, po be programmed finite partial state of S. Then p; +- pg is
programmed.

(19) For every AMI S over N and for every state s of § holds dom s = the
objects of 5.

(20) For every AMI S over N and for every finite partial state p of S holds
dom p C the objects of .S.

(21) Let S be a steady-programmed von Neumann definite AMI over N, and
let p be a programmed finite partial state of S, and let s be a state of S.
If p C s, then for every & holds p C (Computation(s))(k). ‘

Let us consider N, let .S be a von Neumann AMI over V', let s be a state of
S, and let [ be an instruction-location of 5. We say that's’starts at [ if and only
if:
(Def.3) IC; =1.
‘We say that s halts at 77f and only if:
(Def.4)  s(I) = haltg.
The following proposition is true
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(22) For every AMI § over N-and for every finite partial state p of S there
exists a state s of S such that p C s. ‘

Let us consider N, let S be a definite von Neumann AMI over NV, and let p
be a finite partial state of 5. Let us assume that ICs € dom p. The functor IC,
‘ yielding an instruction-location of 5 is defined by:

L (Det.5) IC, = p(ICs).
Let us consider IV, let § be a definite von Neumann AMI over NV, let p be a

o ««~ finite partial state of §, and let [ be an instruction-location of §. We say that

»  pstarts at [ if and only if:
7 (Def.6) ICg € domp and IC, =1.
We say that p halts at ! if and only if:
(Def 7) 1€ domp and p(l) = haltg.
One can prove the following propositions: :
(23) Let S be a von Neumann definite steady-programmed AMI over N and

let s be a state of §. Then s is halting if and only if there exists &k such
that s halts at IC(Computatlon(s))(k’)

(24) Let S be a von Neumann definite steady-programmed AMI over N, and
let s be a state of S, and let p be a finite partial state of .5, and let ! be
an instruction-location of S. If p C s and p halts at [, then s halts at .

(25) Let S be ahalting steady-programmed von Neumann definite AMT over
N, and let s be a state of S, and given k. If s is halting, then Result(s) =
(Computation(s))(k) iff s halts at IC(computation(s))(k)-

(26) Let S be a steady-programmed von Neumann definite AMI over NV, and
let s be a state of §, and let p be a programmed finite partial state of S,
and given k. Then p C s if and only if p C (Computation(s))(k).

(27)  Let S be a halting steady-programmed von Neumann definite AMI over

N, and let s be a state of §, and given k. If s halts at IC(computation(s)) (k)
then Result(s) = (Computation(s))(k).

(28) Suppose ¢ < j. Let § be a halting steady-programmed von Neu-
mann definite AMI over N and let s be a state of 5. If s halts at
IC(Computation(s))(')y then s halts at IC(Computation(s))(j)

(29) Suppose ¢ < j. Let S be a halting steady-programmed von Neu-
mann definite AMI over N and let s be a state of §. If s halts at
IC (Gomputation(s))(i)» then (Computatlon(s))( j) = (Computation(s))(t).

(30) Let S be a steady- programmed von Neumann halting definite AMI
over N and let s be a state of §. If there exists k such that
s halts at IC(Computation(s))(k), then for every ¢ holds Result(s)
Result((Computation(s))(z)).

(31) Let S be a steady-programmed von Neumann definite AMI over N, and

let s be a state of .S, and let [ be an instruction-location of 5, and given
k. Then s halts at { if and only if (Computation(s))(k) halts at [.
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(32) -Let S be a definite von Neumann AMI over N, and let p be a finite
partial state of .5, and let [ be an instruction-location of S. Suppose p
starts at [. Let s be a state of 5. If p C s, then s starts at {.

(33) For every von Neumann definite AMI S over N and for every
instruction-location ! of S holds Start-At(!)(ICs) = .

Let us consider NV, let S be a definite von Neumann AMI over N, let [ be
an instruction-location of S, and let I be an instruction of §. Then I——1 is a
programmed finite partial state of S.

3. INSTRUCTION LOCATIONS AND DATA LOCATIONS

We now state the proposition
(34) SCM is realistic. A

SCM is a steady-programmed halting realistic von Neumann data-oriented
definite strict AMI over {Z}.

Let us consider k. The functor d; yields a data-location and is defined by:

(Def.8) dp=2-k+1.
The functor i) yielding an instruction-location of SCM is defined by:
(Def9) i, =2-k+2.
Next we state three propositions:
(35) For all 7, j such that 7 # j holds d; # d;.
(36) For all 4, j such that ¢ # j holds i; # i;.
(837) Next(ix) = igt1-

Let s be a state of SCM and let a be a data-location. Then s(a) is an
integer.

Let us consider a, b. Then a:=b is an instruction of SCM. Then AddTo(a,b)
is an instruction of SCM. Then SubFrom(a, b) is an instruction of SCM. Then
MultBy(a,b) is an instruction of SCM. Then Divide(a,b) is an instruction of
SCM.

Let us consider /;. Then goto Iy is an instruction of SCM. Let us consider
a. Then if a = 0 goto [; is an instruction of SCM. Then if a > 0 goto /; is
an instruction of SCM.

Next we state the proposition

(38) For every data-location ! holds ObjectKind(l) = Z.

Let I3 be a data-location and let @ be an integer. Then ly——a is a finite
partial state of SCM.

Let I, I3 be data-locations and let a, b be integers. Then [l3 — a,l3 — b]
is a finite partial state of SCM.

Next we state two propositions:

(39) For all 4, j holds d; # i;.
(40) For every i holds ICgcm # di and ICscoM # 1i-
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Andrzej Trybulec Yatsuka Nakamura
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Summary. The main goal of the paper is to prove the correctness
of the Euclid’s algorithm for SCM. We define the Euclid’s algorithm
and describe the natural semantics of it. Eventually we prove that the
Euclid’s algorithm computes the Euclid’s function. Let us observe that
the Euclid’s function is defined as a function mapping finite partial states
to finite partial states of SCM rather than pairs of integers to integers.

MML Identifier: AMI_4.

The papers [20], (18], 5], (6], [19], [11], [1], [15], [22], [4], [12], (2], [16], [23], [17],
[7], [8], [10], [3], [9], [13], [14], and [21] provide the notation and terminology for
this paper.

¢

1. PRELIMINARIES

One can prove the following propositions: :
(1) For all integers 4, j such that ¢ > 0 and j > 0 holds 7+ j > 0.
(2) For all integers 4, j such that i > 0 and § > 0 holds |i| mod |j] = imod j
and |i| + 7| =1+ 7. “
In the sequel 7, 7, k denote natural numbers.
Next we state the proposition
(3) For all ¢, j such that ¢ > 0 and j > 0 holds ged(s,75) > 0.
The scheme Fuklides’ concerns a unary functor F yielding a natural number,
a unary functor ¢ yielding a natural number, a natural number A, and a natural
number B, and states that: ‘ ‘ =
There exists k such that F(k) = gcd(A, B) and G(k) =0
provided the following requirements are met: o '
e 0< B, o ‘ B
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B < A,

F(0) =

g(0) = B,

For every k such that G(k) > 0 holds F(k+1) = G(k) and G(k+1) =
F(k) mod G(k).

2. Evcrip’s ALGORITHM

The Euclid’s algorithm is a programmed finite partial state of SCM and is
defined by: :

(Def.1) The Euclid’s algorithm = (ig——(dg:=d;)) +- ((ia~—Divide(do, d1)) +-
((ig——(do:=d3)) +- ((is——(if dy > 0 goto ip)) +- (is——haltscm))))-
Next we state the proposition
(4) dom (the Euclid’s algorithm) = {io, i1, iz, 13,14}

3. THE NATURAL SEMANTICS oF THE EvucLip’s ALGORITHM

‘We now state several propositions:

(5) Let s be a state of SCM. Suppose the Euclid’s algorithm C s. Given
k. Suppose IC(Computatlon(s))(k) = ip. Then IC(Computatlon(s))(k+1) =
iy and (Computation(s))(k + 1)(d0) = (Computation(s))(k)(do)
and (Computation(s))(k + 1)(dy) (Computation(s))(k)(d1) ~and
(Computation(s))(k + 1)(d2) = (Computatwn(s))(k)(dl)

- (6) Let s be a state of SCM. Suppose the Euclid’s algorithm C s. Given
k. Suppose IC(Computatlon(s))(k) = i;. Then IC(Computatlon(s))(k+1) =
i and (Computation(s))(k + 1)(d¢) = (Computation(s))(k)(do) +
(Computation(s))(k)(d;) and (Computatlon(s))(k + 1)(dy) =
(Computation(s))(k)(do) mod (Computation(s))(k)(d;) and
(Computation(s))(k + 1)(dz) = (Computation(s))(k)(d2).

(7) Let s be a state of SCM. Suppose the Euclid’s algorithm C s. Given
k. Suppose IC(Computatlon(s))(k) = ip. Then IC(Computatlon(s))(k+1 =
iz and (Computation(s))(k + 1)(do) = (Computat1on(s))(k)(d2)
and (Computation(s))(k + 1)(d;) = (Computation(s))(k)(d;) and
(Computation(s))(k + 1)(d2) = (Computation(s))(k)(ds).

(8) Let s be a state of SCM. Suppose the Euclid’s algorithm C s. Given
k. Suppose IC(Computatlon(s))(k) = i3. Then

(i) if (Computation(s))(k)(d1) > 0, then IC(Computatxon(s))(k+1) =i,

(ii) if (Computation(s))(k)(d1)'< 0, then IC(Computation(s)) (k-+1) = 14,

(iii) (Computation(s))(k + 1)(do) = (Computation(s))(k)(do), and

(iv) (Computation(s))(k + 1)(d;) = (Computation(s))(k)(d1)-
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(9) For.every state s of SCM such that the Euclid’s algorithm C s and for
all k, ¢ such that IC(gomputation(s))(k) = 14 holds (Computation(s))(k+¢) =
(Computation(s))(k).

(10) Let s be a state of SCM. Suppose s starts at ip and the Euclid’s
algorithm C s. Let z, y be integers. If s(dg) = z and s(d;) =y and z > 0
and y > 0, then (Result(s))(do) = ged(z, y).
The Euclid’s function is a partial function from FinPartSt(SCM) to
FinPartSt(SCM) and is defined by the condition (Def.2).

(Def.2) Let p, g be finite partial states of SCM. Then (p, ¢) € the Euclid’s
function if and only if there exist integers z, ¥ such that z > 0 and y > 0
and p = [do — z,d; —— y] and ¢ = do—— gcd(z, y).
The following three propositions are true:

(11) Let p be arbitrary. Then p € dom (the Euclid’s function) if and only
if there exist integers z, y such that 2 > 0 and y > 0 and p = [dg —
Z, dl — y]

(12)  For all integers ¢, j such that ¢+ > 0 and 7 > 0 holds (the Euclid’s
function)([dg — 4,d; — j]) = do=— ged(z, 7).

(13)  Start-At(ig) +- (the Euclid’s algorithm) computes the Euclid’s function.

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of hatural numbers. Formalized Math-
ematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. Konig’s theorem. Formalized Mathematzcs, 1(3):589-593, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.
(4] Cazesltaw Bylinski. A classical first order langnage. Formalized Mathematics, 1{4):669—
676, 1990.
[5] Cazestaw Bylinski. Functions and their basic properties. Formalized Mathematics,
1(1):55-65, 1990.
[6] Czeslaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,
1990.
7] Czeslaw Bylifiski. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521-527, 1990. ~
8] Cazeslaw Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
9] Cgzeslaw Bylifiski. Products and coproducts in categories. Formalized Mathematics,
2(5):701-709, 1991.
[10] Agata Darmochwat. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
(11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.
[12] Rafal Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative
primes. Formalized Mathematics, 1(5):829-832, 1990.
[13] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
" Mathematics, 3(2):151-160, 1992.
[14]" Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
+  malized Mathematics, 3(2);241-250, 1992.
[15] Jan Popiolek. Some properties of functlons modul and signum. Formalized Mathematics,
1(2):263-264, 1990.
[16] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Math-
ematics, 2(5):623-627, 1991.



60

ANDRZEJ TRYBULEC AND YATSUKA NAKAMURA

Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
1(2):329-334, 1990.

Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990,
Andrzej Trybulec. Function domains and Freankel operator. Formalized Mathematics,
1(3):495-500, 1990. )

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
1990.

Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51-56, 1993.

Michal J. Trybulec. Integers. Formalized Mathematics, 1(8):501-505, 1990.

Edmund Woronowicz. Relations and their basic properties. ‘Formalized Mathématics,
1(1):73-83, 1990. :

Received October 8, 1993

;
i
;
A
:
:




FORMALIZED MATHEMATICS

Volume 4, Number 1, 1993
Université Catholique de Louvain

Development of Terminology for SCM !
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Summary. We develop a higher level terminology for the SCM
machine defined by Nakamura and Trybulec in [6]. Among numerous
technical definitions and lemmas we define a complexity measure of a
halting state of SCM and a loader for SCM for arbitrary finite sequence
of instructions. In order to test the introduced terminology we discuss
properties of eight shortest halting programs, one for each instruction.

7

MML Identifier: SCM_1.

The notation and terminology used in this paper have been introduced in the
following articles: [10], [1], [13], [11], [9], [4], [5], [2], [3], 8], [6], [7], and [12].
Let i be an integer. Then (i) is a finite sequence of elements of z.
One can prove the following propositions:
(1) For every state s of SCM holds IC; = s(0) and Curlnstr(s) = s(s(0)).
(2) For every state s of SCM and for every natural number k
holds CurlInstr((Computation(s))(k)) = s(IC(computation(s))(s)) and
Curlnstr((Computation(s))(k)) = s((Computation(s))(k)(0)).
(3) For every state s of SCM such that there exists a natural number k
such that s(IC(Computation(s))(k)) = haltscm holds sis haltmg
(4) For every state s of SCM and for every ‘natural number k
such that s(IC(Computation(s))(k)) = haltSCM holds Result(s) =
(Computation(s))(k).
(5) For all natural numbers k, ! such that & # [ holds dk £d;.
(6) For all natural numbers k, [ such that k # [ holds i # i;.
(7) For all natural numbers n, m holds ICscm # in. and ICscMm # d
and i, # d, ;

1This work was partially supported by NSERC Grant OGP9207 while the first author
visited University of Alberta, May-June 1993.
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Let I be a finite sequence of elements of the instructions of SCM, let D be
a finite sequence of elements of Z, and let 41, py, d1 be natural numbers. A state
of SCM is said to be a state Wlth instruction counter on 4y, with T 10cated from
p1, and D from d; if it satisfies the conditions (Def.1).
(Def.1) (i) ICq =i,
(ii) for every natural number k such that £ < lenI holds it(ip, +%)
L I(k+ 1), and
L (ili)  for every natural number k such that k& < len D holds it(dg,+x)
;;‘:if D(k + 1)_
-One can prove the following propositions:

it

fl

(8) Let z1, z3, 3, x4 be arbitrary and let p be a finite sequence. If p =
(z1) ™ (z2) ~ (23) ~ (x4), then lenp = 4 and p(1) = z; and p(2) = z; and
p(3) = z3 and p(4) = z4.

(9) Let 21, 23, 23, 24, 25 be arbitrary and let p be a finite sequence. Suppose
p = (z1) ~ (22) = (@3) ~ (z4) ~ (z5). Then lenp = 5 and p(1) = z; and_
p(2) = 29 and p(3) = z3 and p(4) = z4 and p(5) = zs.

(10) Let 21, z2, Z3, T4, 5, T be arbitrary and let p be a finite sequence.
Suppose p = (z1) ™ {@2) ~ (z3) ™ (24) ~ (25) ~ (v6). Then lenp = 6 and

p(1) = z; and p(2) = x5 and p(3) = z3 and p(4) = z4 and p(5) = =5 and
p(6) = .

(11) Let 21, @2, %3, 24, =5, Te, T7 be arbitrary and let p be a finite sequence.
Suppose p = (¢1) ~ (2} ~ (a3} ~ (w4) ~ (a5) ~ (a) ~ (a7). Then lenp = 7
and p(1) = z1 and p(2) = 22 and p(3) = z3 and p(4) = z4 and p(5) = x5
and p(6) = z¢ and p(7) = z7.

(12) Let 21, 2, ©3, 24, &5, &6, &7, Tg be arbitrary and let p be a finite
sequence. Suppose p = {z1) ™ (z2) ~ (z3) "~ (z4) ~ (z5) ™ (z6) ~ (27) ~ (28).
Then len p = 8 and p(1) = z1 and p(2) = 2 and p(3) = z3 and p(4) = x4
and p(5) = z5 and p(6) = z¢ and p(7) = z7 and p(8) = zs.

(13)  Let 21, 2, 23, ©4, =5, Tg, T7, T3, L9 be arbitrary and let p be a finite
sequence. Suppose p = (1)~ (z2)"~(z3)"~(z4)~(z5)~(2e) ™ (2z7) " (28)"(9).
Then lenp = 9 and p(1) = z1 and p(2) = z2 and p(3) = z3 and p(4) = =4
and p(5) = :c5 and p(6) = z¢ and p(7) = z7 and p(8) = zg and p(9) = z,.

(14) Let I, Ig, I3, Iy, Is, I, I7, Ig, Is be instructions of SCM, and let i,
i3, 14, 15 be integers, and let ¢; be a natural number, and let s be a state
with instruction counter on iy, with (I1) ~ (I2) ~ (I3) ~ (L) ~ (Is) ~ (Is) ~
(I7) ~ {Ig) ~ (Is) located from 0, and (i3) ~ (i) ~ (i4) ~ (45) from 0. Then

(i) ICs =iy,
(ii) s(io) = I,
(i)  s(iy) =,
(iv) s(iz) = I,
) s(is) = Loy
(vi) s(is) =I5,

(vii). . s(is) = I,
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(viii)  s(ig) = I,

(ix) s(ir) = Is,

(x)  s(is) = Io,

(Xl) S(do) = ’1:2,

(xii) s(d;) = 13,

(xiii) s(dg) = @4, and

(xiv)  s(ds) =

(15) Let I, 12 be instructions of SCM, and let i3, ¢35 be integers, and let 4;
be a natural number, and let s be a state with instruction counter on ¢,
with (I1) ~ (I2) located from 0, and (iz) ~ (¢3) from 0. Then IC, = i(;,)
and s(ip) = I and s(iy) = I and s(do) = 42 and s(d;) = 3.

Let @, b be data-locations. Then a:=b is an instruction of SCM. Then
AddTo(a,b) is an instruction of SCM. Then SubFrom(a, b) is an instruction of
SCM. Then MultBy(a,b) is an instruction of SCM. Then Divide(a,b) is an
instruction of SCM.

Let I; be an instruction-location of SCM. Then goto /; is an instruction of
SCM. Let a be a data-location. Then if a = 0 goto I is an instruction of
SCM. Then if a > 0 goto [y is an instruction of SCM.

Let s be a state of SCM. Let us assume that s is halting. The complexity
of s is a natural number and is defined by the conditions (Def.2).

(Def.2) (i)  Curlnstr((Computation(s))(the complexity of s)) = haltgcnm, and
(ii) forevery natural number & such that Curlnstr((Computation(s))(k)) =
haltgcp holds the complexity of s < k.
We now state a number of propositions:

(16) Let s be a state of SCM and let k& be a natural number. Then
S(IC(Computation(s))(k)) # haltgcm and S(IC(Computation(s))(k+1)) =
haltgcpg if and only if the complexity of s = & + 1 and s is halting.

(17) Let s be a state of SCM and let ¥ be a natural number. If
\IC(Computation(s))(k) # IC(Computation(s))(k+1) and S(IC(Computation(s))(k+1)) =
haltgcng, then the complexity of s = &k + 1.

(18) Let k, n be natural numbers, and let s be a state of SCM, and let q,
b be data—locatlons Suppose IC(Computatxon(s))(k) i, and s(i,) = a:=b.
Then IC(computation(s))(k+1) = in+1 and (Computation(s))(k + 1)(a) =
(Computation(s))(k)(b) and for every data-location d such that d # a
holds (Computation(s))(k + 1)(d) = (Computation(s))(k)(d).

(19) Let k, » be natural numbers, and let s be a state of SCM,
and let a, b be data-locations. Suppose IC(computation(s))(k) =
i, and s(i,) = AddTo(e,b). Then IC(computation(s))(k+1) =
iny1 and (Computation(s))(k + 1)(a) = (Computation(s))(k)(a) +
(Computation(s))(k)(b) and for every data-location d such that d # a
holds (Computation(s))(k + 1)(d) = (Computation(s))(k)(d).

(20) Let k, n be natural numbers, and let s be a state of SCM,
and let a, b be data-locations. Suppose IC(Computation(s))(k) =
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i, and s(i,) = SubFrom(a,b). Then IC(computation(s))(k+1) =
iny1 and (Computation(s))(k + 1)(a) = (Computatlon(s))(k)(a) -
(Computation(s))(k)(b) and for every data-location d such that d # a
holds (Computation(s))(k + 1)(d) = (Computation(s))(k)(d).

(21) Let k, n be natural numbers, and let s be a state of SCM,

S and let @, b be data-locations. Suppose IC(computation(s))(k) =

L i, and s(i,) = MultBy(a,b). Then IC(computation(s))(k+1) =

(s i,+1 and (Computation(s))(k + 1)(a) = (Computation(s))(k)(a) :

(Computation(s))(k)(b) and for every data-location d such that d # «

_holds (Computation(s))(k + 1)(d) = (Computation(s))(k)(d).

(22) Let k, n be natural numbers, and let s be a state of SCM, and let a, b be
data-locations. Suppose IC(Computation(s))(k) = 1n and s(i,) = Divide(a, b)
and a # b. Then

(1) IC(Computation(s))(k+1) = int1,
(ii) (Computation(s))(k + 1)(a) =
(Computation(s))(k)(a) + (Computation(s))(k)(b),
(i) (Computation(s))(k + 1)(b) =
(Computation(s))(k)(a) mod (Computation(s))(k)(b), and
(iv) for every data-location d such that d # @ and d # b holds
(Computation(s))(k + 1)(d) = (Computation(s))(k)(d).

- (23) Let k, n be natural numbers, and let s be a state of SCM, and let
3 be an instruction-location of SCM. Suppose IC(Computatlon(s))(k) i
and (i) = goto 41. Then IC(gomputation(s))(k+1) = %1 and for every data—
location d holds (Computation(s))(k + 1)(d) = (Computation(s))(k)(d).

(24) Let k, n be natural numbers, and let s be a state of SCM, and let a be

: a data-location, and let 4, be an instruction-location of SCM. Suppose
IC(computatlon(s))(k) i, and s(i,) = if @ = 0 goto ¢;. Then
(1) if (Computatlon(s))(k)(a) =0, then IC(Computatxon(s))(k+1) =11,
(11) if (Computatlon(s))(k)(a) 7é 0, then IC(Computatlon(s))(k—l—l) = I'n.~|~17 and
(iii) for every data-location d holds (Computation(s))(k + 1)(d) =
(Computation(s))(k)(d).

(25) Let k, n be natural numbers, and let s be a state of SCM, and let a be
a data-location, and let ¢; be an instruction-location of SCM. Suppose
IC(Computation(s))(k) = in and s(i,) = if a > 0 goto 4;. Then

(1) if (ComPUta’tlon(s))(k)(a’) > 0, then IC(Comput;anon(s))(k-}-l) =11,
(ii)  if (Computation(s))(k)(a) < 0, then IC(Computation(s))(k+1) = in+1, and
(iii) for every data-location d holds (Computation(s))(k + 1)(d) =
(Computation(s))(k)(d).
(26) (i) (haltscm) =0,
ii) for all data-locations a, b holds (a:=b); = 1,
(iii) for all data-locations a, b holds (AddTo(a,b))1 = 2,
(iv) for all data-locations @, b holds (SubFrom(a,b))1 = 3,
(v) for all data-locations a, b holds (MultBy(a,b)); = 4,
(vi) for all data-locations a, b holds (Divide(a, b)) = 5,
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(vii) for every instruction-location ¢ of SCM holds (goto i); = 6,

(viii) for every data-location a and for every instruction-location i of SCM

holds (if @ = 0 goto i)1 = 7, and
(ix) for every data-location a and for every instruction-location 7 of SCM
holds (if a@ > 0 goto 4); = 8. '

(27)  For all states s, s; of SCM and for every natural number k such that
82 = (Computation(s; })(k) and s is halting holds s, is halting.

(28) Let s1, sp be states of SCM and let k, ¢ be natural numbers. Suppose
83 = (Computation(s;))(k) and the complexity of s = ¢ and s; is halting
and 0 < ¢. Then the complexity of s = k +c.

(29) For all states s1, s of SCM and for every natural number k such
that s, = (Computation(s;))(k) and s, is halting holds Result(sz) =
Result(sy).

(30) Let I, I3, I3, I, Is, Is, Iz, Is, Iy be instructions of SCM, and let ¢z,
i3, 14, 15 be integers, and let iy be a natural number, and let s be a state
of SCM. Suppose that

(i) ICs=1iu,
(11) S(io) = Il,
(lll) S(il) = .[2,
(iv)  s(iz) = I3,
(V) S(i3) = 14,
(Vl) S(i4) = I5,

(vii)  s(is) = I,
(Vlll) S(ie) = I7,
(ix) s(ir) = Is,

(x)  s(is) = I,

(xi)  s(do) = iz,
(Xll) S(dl) = ’i3,

(xili) s(d3) = 44, and

(xiv)  s(ds) = 5.

Then s is a state with instruction couriter on 7y, with (I3) ~ (I2) ~ (I3) ~
(L)~ {Is) ~ {Ie) ~ (Ir) ~ {Is) ~ (Io) located from 0, and (iz) " {i3) ~ (ia) "~ (i5)
from 0.

(31) Let s be a state with instruction counter on 0, with (haltgcn) located
from 0, and €z from 0. Then s is halting and the complexity of s = 0 and
Result(s) = s.

(32) Let iy, ¢35 be integers and let s be a state with instruction counter on 0,
with (dg:=d;) ~ (haltgcn) located from 0, and (i) ~ (é3) from 0. Then

(i) s is halting,

- (i) the complexity of s = 1,

(iii) (Result(s))(do) = i3, and ‘ ‘
(iv) for every data-location d such that d # dg holds (Result(s))(d) = s(d).

65




- --------"-"

66 GRZEGORZ BANCEREK AND PIOTR RUDNICKI

(33) Let ig, i3 be integers and let s be a state with instruction counter on 0,
with (AddTo(do,d1)) ~ (haltgcn) located from 0, and (i3) ~ (¢3) from. 0.
Then :
(i) s is halting,
(ii)) the complexity of s =1,
(i)  (Result(s))(do) = i + 43, and
't (iv)  for every data-location d such that d # do holds (Result(s))(d) = s(d).
i “_“,”(34)_ Let i, i3 be integers and let s be a state with instruction counter on 0,
i with (SubFrom(dy, d;))~ (haltgcn) located from 0, and (éz) ~ (i) from
-0. Then
o (i) s is halting,
(ii) the complexity of s =1,
(iii)  (Result(s))(do) = i3 — ¢3, and
(iv) for every data-location d such that d # dg holds (Result(s))(d) = s(d).
(35) Let i2, i3 be integers and let s be a state with instruction counter on 0,
' with (MultBy(do,d;)) ~ (haltscp) located from 0, and (i3) ~ (i) from
0. Then
(i) s is halting,
(ii) the complexity of s =1,
(ili)  (Result(s))(do) = 42 - t3, and )
(iv) for every data-location d such that d # dg holds (Result(s))(d) = s(d).
(36) Let 42, i3 be integers and let s be a state with instruction counter on 0,
with (Divide(do, d1)) ~ (haltgcn) located from 0, and (i) ~ (43) from 0.
Then
(i) s is halting,
© (ii) the complexity of s =1,
(111) (Result(s))(do) =19 + i3,
(iv)  (Result(s))(dy) = 42 mod 43, and
(v) for every data-location d such that d # do and d_# di holds
(Result(s))(d) = s(d).
(37) Let iy, i3 be integers and let s be a state with instruction counter on
0, with (goto (i)} ~ (haltgem) located from 0, and (iz) ~ (43) from 0.
Then s is halting and the complexity of s = 1 and for every data-location
d holds (Result(s))(d) = s(d).
(38) Let i3, 5 be integers and let s be a state with instruction counter on
0, with (if dp = 0 goto i;) ~ (haltgcym) located from 0, and (ig) ™ (i3)
from 0. Then s is halting and the complexity of s = 1 and for every
data-location d holds (Result(s))(d) = s(d).
(39) Let 13, i3 be integers and let s be a state with instruction counter on
0, with (if do > 0 goto i1) ~ (haltgem) located from 0, and (iz) ~ (i3)
from 0. Then s is halting and the complexity of s = 1 and for every
data-location d holds (Result(s))(d) = s(d).
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Summary. In two articles (this one and [3]) we discuss correctness
of two short programs for the SCM machine: one computes Fibonacci
numbers and the other computes the fusc function of Dijkstra [7]. The
limitations of current Mizar implementation rendered it impossible to
present the correctness proofs for the programs in one article. This part
is purely technical and contains a number of very specific lemmas about
integer division, floor, exponentiation and logarithms. The formal defini-
tions of the Fibonacci sequence and the fusc function may be of general
interest.

MML Identifier: PRE_FF.

The terminology and notation used in this paper are introduced in the following
papers: [12], [1], [14], [9], [13], [11], [10], [8], (5], [6], [2], [4], and [15].

Let X7, X2 be non empty set, let Y; be a non empty subset of Xy, and let
Y2 be a non empty subset of X;. Then [ Y3, Y2 ] is a non empty subset of [ X7,
X3

Let X1, X2 be non empty set, let Y7 be a non empty subset of Xy, let Y5 be
a non empty subset of X5, and let z be an element of Y7, Y2 . Then z7 is an
element of Y;. Then zg is an element of Y5. '

In the sequel n will denote a natural number.

Let us consider n. The functor Fib(n) yielding a natural number is defined
by the condition (Def.1). |

(Def.1)  There exists a function f; from N into [N, N ] such that

(i) Fib(n) = fi(n)1, |

(i)  f1(0)=(0, 1), and

1This work was partially supported by NSERC Grant OGP9207 while the first author
visited University of Alberta, May-June 1993.
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(iii) for every natural number n and for every element z of [N, N ] such
that z = fi(n) holds fi(n+ 1) = (z2, 1 + z2).
We now state a number of propositions:
(1) Fib(0) = 0 and Fib(1) = 1 and for every natural number 7 holds Fib(n+
1+ 1) = Fib(n) + Fib(n + 1).
For every integer ¢ holds ¢ ++1 = 4.
For all integers ¢, j such that j >0 and ¢+ j =0holds 2 < j.,
For all integers 2, 7 such that 0 < 7 and 7 < 7 holds ¢ + j = 0.
For all integers ¢, j, k such that j > 0and k > Oholds ¢t +-j5+k = ¢+7-k.
For every integer ¢ holds ¢ mod +2 = 0 or ¢ mod +2 = 1.
For every integer ¢ such that ¢ is a natural number holds ¢ + +2 is a
natural number. )
(8) For every natural number k such that £ > 0 and for every natural
number n holds £ > 0.
. (9)? For every natural number n holds 2" = 27,
¢, (10)  For all real numbers a, b, ¢ such that a < b and ¢ > 1 holds ¢* < c’.
Let a, n be natural numbers. Then a™ is a natural number.
Next we state several propositions:
(11)  For all real numbers r, s such that » > s holds [r| > |s].
(12)  For all real numbers a, b, ¢ such that ¢ > 1 and b > 0 and ¢ > b holds
log, ¢ > log, b.
(13)  For every natural number n such that n > 0 holds |logy(2-n)| +1 #
|log,(2-n+1)].
(14) For every natural number n such that » > 0 holds |log,(2-n)] +1 >
lloga(2 - + 1)].
(15)  For every natural number n such that n > 0 holds [logy(2-n)| =
llogy(2 - n + 1)].
(16) For every natural number n such that n > 0 holds [logyn] +1 =
lloga(2 - n + 1)].
Let f be a function from N into N* and let n be a natural number. Then
f(n) is a finite sequence of elements of N. -
Let n be a natural number. The functor Fusc(n) yields a natural number
and is defined by: '
(Def.2) (i) Fusc(n)=0if n =0,

(ii) there exists a natural number / and there exists a function f; from N
into N* such that /4+1 = n and Fusc(n) = 7, f2(l) and f(0) = (1) and for
every natural number n holds for every natural number k such that n+2 =
2.k holds fo(n + 1) = fa(n) "~ (zifa(n)) and for every natural number k
such that n4+2 = 2-k+1holds fo(n+1) = fo(n) " (mrfo(n)+ Trs1 fo(n)),
otherwise. -

2Both power functions in this theorem are different. The first is defined in [10] and the
second in [8]. T -
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The following propositions are true:

(17)  Fusc(0) = 0 and Fusc(l) = 1 and for every natural number n holds
Fusc(2 - n) = Fusc(n) and Fusc(2-n + 1) = Fusc(n) + Fuse(n + 1).

(18)  For all natural numbers ny, nf such that ny # 0 and »; = 2-nf holds
n’l < ni.

(19)  For all natural numbers ny, n{ such that ny = 2-n{ + 1 holds n{ < n;.

(20)  For all natural numbers A, B holds B = A - Fusc(0) + B - Fusc(0 + 1).

(21)  For all natural numbers nq, n§, A, B, N such that n; = 2-n{ + 1 and
Fusc(N) = A-Fusc(ni) + B - Fusc(ny + 1) holds Fusc(N) = A-Fuse(n)) +
(B+ A) - Fusc(nf +1).

(22) For all natural numbers ny, n{, A, B, N such that ny = 2-n{ and
Fusc(N) = A - Fusc(nq) + B - Fusc(ny + 1) holds Fusc(N) = (A + B) -
Fusc(nj) + B - Fusc(n] + 1).

(23) 6+1=6-(|logy1]+1)+1.

(24) For every natural number n} such that n{ > 0 holds |log,n}]| is a
natural number and 6 - (|logyni| + 1)+ 1> 0.

(25) For all natural numbers n1, n{ such that ny = 2-n{ +1 and n{ > 0
holds 6 + (6 - ([logy 2} | +1)+ 1) =6-(|logyny| + 1) + 1.

(26) For all natural numbers ny, n} such that n; = 2-n} and n} > 0 holds
6+ (6 - (llogam1] +1) +1) = 6 - ([logy 1] + 1) + 1.

(27)  For every natural number N such that N # 0 holds 6- N — 4 > 0.

(28)  For every natural number N holds 6 + (6 - N = 4)=6-(N +1) — 4.

(29) For all natural numbers m, k, N such that m = (k+ 14 N) — 1 holds
m=(k+(N+1))-1.

(30) For every natural number N holds 2+ (6- N —4)=6-N — 2.
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Summary. We prove the correctness of two short programs for the
SCM machine: one computes Fibonacci numbers and the other computes
the fusc function of Dijkstra [11]. The formal definitions of these functions
can be found in [5]. We prove the total correctness of the programs in
two ways: by conducting inductions on computations and inductions on
input data. In addition we characterize the concrete complexity of the
programs as defined in [4].

MML Identifier: FIB_FUSC.

The papers [17], [1], [20], [13], [18], [10], [16], [12], [7], (8], [2], [3], [6], [21], [9],
[14], [15], [4], [19], and [5] provide the terminology and notation for this paper.
The program computing Fib is a finite sequence of elements of the instruc-
tions of SCM and is defined as follows:
(Def.1) The program computing Fib = (if d; > 0 goto i) ~ (haltgon) ™
. (d3:=do)"(SubFrom(d1,do))"(if dy =0 goto il)"<d422d2)'\<d2!=d3)'\-
(AddTo(ds, d4)) ~ (goto (i3)).
The following proposition is true ;
(1) Let N be a natural number and let s be a state with instruction counter
on 0, with the program computing Fib located from 0, and {(+1)~{(+N)~
(+0) 7~ {(+0) from 0. Then
- (i) s is halting, _
_(ii)  if N =0, then the complexity of s = 1,
(i) if N > 0, then the complexity of s = 6 - N — 2, and
(iv)  (Result(s))(ds) = Fib(N). o
1This work was partially supported by NSERC Grant OGP9207 while the first: author
visited University of Alberta, May-June 1993.
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__ (Def.3) The program computing Fusc = (if d;y = 0 goto ig) ~ (dg:=dg) °
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-

Let ¢ be an integer. The functor Fusc(i) yields a natural number and is
defined as follows:

(Def.2)  There exists a natural number n such that ¢ = n and Fusc(¢) = Fusc(n)
or ¢ is not a natural number and Fusc(¢) = 0.

Let a, n be natural numbers. Then a” is an integer. :
The program computing Fusc is a finite sequence of elements of the instruc-
tions of SCM and is defined by:

(Divide(dl,d4)) - (if d; =0 goto i6> - <AddT0(d3,d2)> - (gOtO (io)) -
(AddTO(dz, dg)) - <g0t0 (io)) - (haltSCM>.
We now state several propositions:

(2) Let N be a natural number. Suppose N > 0. Let s be a state
with instruction counter on 0, with the program computing Fusc located
from 0, and (+2) ~ (+N)~ (+1) ~ (4+0) from 0. Then s is halting and
(Result(s))(ds) = Fusc(N) and the complexity of s = 6-(|log, N |+1)+1.

(3) Let N be a natural number, and let k, Fy, F be natural numbers, and
let s be a state with instruction counter on 3, with the program computing
Fib located from 0, and (+1) ~ (+N) =~ (+F1) ~ (+F32) from 0. Suppose
N >0 and F; = Fib(k) and F; = Fib(k +1). Then

(i) s is halting, '
(ii) the complexity of s=6-N —4, and

(iii)  there exists a natural number m such that m = (k¥ + N) — 1 and
(Result(s))(dz2) = Fib(m) and (Result(s))(ds) = Fib(m + 1).

(4) Let N be anatural number and let s be a state with instruction counter
on 0, with the program computing Fib located from 0, and (+1)~(+N)~
(+0) ~ (40) from 0. Then

(i) s is halting,
(ii) if N =0, then the complexity of s = 1,

(ii) if N > 0, then the complexity of s =6 - N — 2, and

(iv) (Result(s))(ds) = Fib(V).

(5) Let n be anatural number, and let N, A, B be natural numbers, and let
s be a state with instruction counter on 0, with the program computing
Fusc located from 0, and (+2) ~ (+n) ~ (+A4) ~ (+B) from 0. Suppose
N > 0 and Fusc(N) = A - Fusc(n) + B - Fusc(n + 1). Then

(i) s is halting,
(i) - (Result(s))(ds) = Fusc(N),
. (iii)) if n =0, then the complexity of s =1, and

(iv) if n > 0, then the complexity of s = 6 - (|logyn} + 1) + 1.

(6) Let N be a natural number. Suppose N > 0. Let s be a state with
instruction counter on 0, with the program computing Fusc located from
0, and (+2) ~ (+N) ~ (+1) 2 (+0) frém 0. Then

(i) s is halting,
(ii) - - (Result(s))(ds) = Fusc(N),

corsbaod BCQL U3
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(iii) if N =0, then the complexity of s = 1, and
(iv) if N > 0, then the complexity of s = 6 - ({log, N| + 1) + 1.
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Summary. This is the continuation of the sequence of articles on
-trees (see [3,4,5]). The main goal is to introduce joining operations on
decorated trees corresponding with operations introduced in [5]. We will
also introduce the operation of substitution. In the last section we dealt
with trees decorated by Cartesian product, i.e. we showed some lemmas
on joining operations applied to such trees.

MML ldentifier: TREES_4.

The notation and terminology used here are introduced in the following papers:

(15], (2], [9], [16], [11], [14], [13], [12], [10], [7], 6], [8], [3], [4], [1], and [5].

1. JOINING OF DECORATED TREE

Let T be a decorated tree. A node of 7" is an element of dom T'.
We adopt the following convention: z, y, z are arbitrary, i, j, n denote
natural numbers, and p, ¢ denote finite sequences.
Let Ty, T3 be decorated trees. Let us observe that T3 = T3 if and only 1f
(Def.1) domT; = domT;, and for every node p of T3 holds T1(p) = Ta(p)-
One can prove the following two propositions: ,
(1) For all natural numbers ¢, j such that the elementary tree of i C the
elementary tree of j holds ¢ < ]

(2) For all natural numbers %, j such that the elementary tree of i ='the
elementary tree of 7 holds ¢ = 7. *' " ©

Let us consider z. The root tree of z 1s a decorated tree and is deﬁned as
follows:

(Def 2) The root tree of z = (the elementary tree of 0°) — x

Let D be a non empty set and let d be an element of D. Then the root tree
of d is an element, of FinTrees(D). . .
We now state four proposrtrons

1 S T
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(3) dom (the root tree of z) = the elementary tree of 0 and (the root tree
of z)(e) = =.
(4) If the root tree of = the root tree of y, then z = v.

(5) For every decorated tree T such that dom 7 = the elementary tree of 0
holds 7" = the root tree of T'(¢).

(6) The root tree of z = {(e, z)}.
Let us consider = and let p be a finite sequence. The flat tree of z and p is
B decorated tree and is defined by the conditions (Def.3).
(Def 3) (i) dom(the flat tree of z and p) = the elementary tree of len P,
© (ii) (the flat tree of z and p)(¢) = z, and
(iii) for every n such that n < lenp holds (the flat tree of z and p)((n)) =
p(n+1).
The following propositions are true:
(7) If the flat tree of z and p = the flat tree of y and ¢, then z = y and
rp=q
(8) Ifj <<, then (the elementary tree of 7) () = the elementary tree of 0.
(9) Ifi<lenp,then (the flat tree of z and p) [ () = the root tree of p(i+1).

Let us consider z, p. Let us assume that p is decorated tree yielding. The
functor z-tree(p) yields a decorated tree and is defined by the conditions (Def.4).

(Def.4) (i)  There exists a decorated tree yielding finite sequence g such that
—_——~—
p = ¢ and dom(z-tree(p)) = d%m q(k),
(i) (z-tree(p))(e) = z, and ~
- (iii) for every n such that n < len p holds (z-tree(p)) I (n) = p(n+1).

Let us consider z and let T' be a decorated tree. The functor z-tree(T')
yielding a decorated tree is defined by:

(Def.5) z-tree(T) = z-tree((T)).
Let us consider z and let 77, T3 be decorated trees. The functor z-tree(Ty, Ts)
yields a decorated tree and is defined as follows:
(Def.6)  z-tree(Ty,T,) = z-tree((T1,T2)).
We now state a number of propositions:
(10)  For every decorated tree yielding finite sequence p holds dom(z-tree(p)) =
dom p(K)-
(11) - Let p be a decorated tree yielding finite sequence. Then y €
'4 dom(z-tree(p)) if and only if one of the following conditions is satisfied:
(i) y=e¢or
(i) there exists a natural number  and there exists a decorated tree T
and there exists a node ¢ of T such that ¢ <lenp and T = p(¢ + 1) and
y=(i)"¢
~ (12)  Let p be a decorated tree yielding finite sequence, and let 7 be a natural
number, and let 7" be a decorated tree, and let ¢ be a node of T. If
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t<lenpand T = p(¢+ 1), then (z-tree(p))({:) ~ q) = T(q).

. ——
(13)  For every decorated tree T holds dom(z-tree(T)) = dom T .
(14) For all decorated trees Tj, T» holds dom(z-tree(T1,T2)) =

——N——
dom T1 , dom T2 .

(15)  For all decorated tree yielding finite sequence p, g such that z-tree(p) =
y-tree(q) holds z = y and p = g¢.

(16)  If the root tree of & = the flat tree of y and p, then z = y and p = «.

(17) If the Toot tree of 2 = y-tree(p) and p is decorated tree yielding, then
z=yand p=c.

(18) Suppose the flat tree of z and p = y-tree(q) and ¢ is decorated tree
yielding. Then z = y and len p = len q and for every 7 such that 7 € domp
holds ¢(4) = the root tree of p(3). ‘

(19) Let p be a decorated tree yielding finite sequence, and let n be a natural
number, and let ¢ be a finite sequence. If (n) ~ ¢ € dom(z-tree(p)), then
(z-tree(p))((n) ~ q) = p(n + 1)(g).-

(20) The flat tree of z and ¢ = the root tree of z and z-tree(¢) = the root
tree of z. '

(21)  The flat tree of 2 and (y) = ((the elementary tree of 1) — z)({(0)/(the
root tree of y)). .

(22)  For every decorated tree T holds z-tree((T)) = ((the elementary tree of
1) — 2)((0)/T). , '

Let D be a non empty set, let d be an element of D, and let p be a finite
sequence of elements of D. Then the flat tree of d and p is a tree decorated by
D.

Let D be a non empty set, let F' be a non empty set of trees decorated by D,
let d be an element of D, and let p be a finite sequence of elements of F. Then
d-tree(p) is a tree decorated by D.

Let D be a non empty set, let d be an element of D, and let T be a tree
decorated by D. Then d—tree(T) is a tree decorated by D.

Let D be a non empty set, let d be an element of D, and let Tl, T, be trees
decorated by D. Then d- tree(Tl, Ts) is a tree decorated by D

‘Let D be a non empty set and let p be a finite sequence of elements of
FinTrees(D). Then dom, p(x) is a finite sequence of elements of FinTrees.

Let D be a non empty set, let d be an element of D, and let p be a finite se-
quence of elements of FlnTrees(D) Then d-tree(p) is an element of FinTrees( D).

Let D be a non empty set and let z be a subset of D. We see that the finite
sequence of elements of  is a finite sequence of elements of D.

Let D be a non empty constituted of decorated trees set and let X be a

~subset of D. Note that every finite sequence of elements of X is decorated tree .-
‘yielding.

79
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2. EXPANDING OF DECORATED TREE BY SUBSTITUTION

The scheme FzpandTree concerns a tree A, a tree B, and a unary predicate
P, and states that:
" There exists a tree T" such that for every p holds p € T if and only
L if one of the following conditions is satisfied:

(i) peAor
(ii) there exists an element g of A and there exists an element r
o . of B such that Plgland p=g¢~r

for all values of the parameters.
Let T, T' be decorated trees and let z be arbitrary. The functor T, 7

% yielding a decorated tree is defined by the conditions (Def.7).

.. (Def.7) (i) For every p holds p € dom(T,7) iff p € domT or there exists a
node ¢ of 7" and there exists a node r of 77 such that ¢ € Leavesdom T
and T(¢)=zand p=gq~r,

(ii) for every node p of T' such that p ¢ Leavesdom T or T(p) # « holds
Tax—-T’(p) = T(p)a and
(ili) for every node p of T and for every node ¢ of 7" such that p €
Leavesdom T and T(p) = z holds Tp7:(p~ q) = T'(g).
Let D be a non empty set, let T', T' be trees decorated by D, and let = be
arbitrary. Then T, is a tree decorated by D.
We follow a convention: T, T!, Ty, Ty are decorated trees and z, y, z are
arbitrary.
One can prove the following proposition

(23) Xz ¢mngT orz ¢ LeavesT, then T 7 = T.

3. DouBLE DECORATED TREES

For simplicity we adopt the following rules: Dy, D, are non empty set, T is
a tree decorated by D; and D,, F is a non empty set of trees decorated by D;
and D,, and Fj is a non empty set of trees decorated by Dj.

The following propositions are true:

(24)  For all Dy, Dy, T holds dom(Ty) = dom T and dom(T2) = dom 7.

(25)  (the root tree of {di, d2))1 = the root tree of dy and (the root tree of
{(dy, d2))2 = the root tree of ds.

(26)  (the Toot tree of z, the root tree of y) = the root tree of (z, v).

(27)  Given Dy, Ds, dy; dy, F; Fy;-and let p be a finite sequence of elements
of F, and let p; be a finite sequence of elements of F;. Suppose dom p; =
dom p and for every i such that ¢ € domp and for every T such that
T = p(3) holds p1 (i) = T1. Then ({di, d2)-tree(p))1 = di-tree(p;).
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(28) Given Dy, Do, d1, da, F, Fy, and let p be a finite sequence of elements
of F, and let p; be a finite sequence of elements of F3. Suppose dom p, =
domp and for every ¢ such that ¢ € domp and for every T such that
T = p(¢) holds pa(i) = Ta. Then ({dy, d2)-tree(p))a = da-tree(ps).

(29) Given Dy, Dq, d1, d2, F and let p be a finite sequence of elements of F.
Then there exists a finite sequence p; of elements of Trees(D;) such that
dom p; = dom p and for every ¢ such that ¢ € dom p there exists an element
T of F such that T = p(i) and p1(¢) = Ty and ({di, d2)-tree(p))1 =
di-tree(pr). :

(30) Given Dy, Dy, d1, d2, F and let p be a finite sequence of elements of F.
Then there exists a finite sequence ps of elements of Trees(D;) such that
dom p, = dom p and for every ¢ such that ¢ € dom p there exists an element
T of F such that T = p(¢) and pa(s) = Ta and ({di, d3)-tree(p))2 =
dy-tree(pz). :

(81) Given Dy, D, di, do and let p be a finite sequence of elements of -
FinTrees(} D1, D2 ]). Then there exists a finite sequence p; of elements
of FinTrees(D;) such that domp; = domp and for every ¢ such that
¢ € domp there exists an element T of FinTrees(} Dy, D2 ]) such that
T = p(i) and p1(i) = T1 and ({d1, da)-tree(p))1 = dy-tree(p,).

(32) Given Dy, Dy, dy, do and let p be a finite sequence of elements of
FinTrees([: D1, D2 {). Then there exists a finite sequence p, of elements
of FinTrees(Dj3) such that domp, = domp and for every i such that
i € domp there exists an element T of FinTrees([ D1, Do) such that

T = p(i) and pa(i) = T2 and ({d1, d2)-tree(p))z = da-tree(ps).
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Summary. Formalizes the basic concepts of binary arithmetic and
its related operations. We present the definitions for the following logical
operators: ’or’ and ’xor’ (exclusive or) and include in this article some
theorems concerning these operators. We also introduce the concept of an
n-bit register. Such registers are used in the definition of binary unsigned
arithmetic presented in this article. Theorems on the relationships of
such concepts to the operations of natural numbers are also given.

MML Identifier: BINARITH.

The notation and terminology used in this paper are introduced in the fo]lowmg
papers: [12], [1], [13], [15], [7], [8], [4], 2], [9], [11], [10], [5], [3], [6], and [14].

Let us observe that there exists a natural number which is non empty
One can prove the following proposition

(1) For all natural numbers ¢, § holds +wn(¢, j) =44 J.

Let » be a natural number and let X be a non empty set. A tuple of n and
X is an element of X™. ‘

One can prove the following propositions:

(2) Let i, n be natural numbers, and let D be a non empty set, and let d
be an element of D, and let 2 be a tuple of » and D If ? 6 Segn then

(27 (d)) = miz |
(3) Letnbea na,tural number, and let D be a non émﬁfy’set and let d be
an element of D, and let z be a tuple of n and D. Then 7, q(27 (d)) =
(4) For every non empty natural number n holds n > 1.
(5) For all natural numbers ¢, n such that ¢ € Segn liolds ¢ is noii empty.
Let z, y be elements of Boolean. The functor z V-y yields an element of
Boolean and is defined by: : : :
(Defl) zVy=-(-zA-y).

(© 1993 Fondation Philippe le Hodey
83 ISSN 0777-4028




84 TAKAYA NISHIYAMA AND YASUHO MIZUHARA -~

Let z, y be elements of Boolean. The functor 2z @ y yielding an element of
Boolean is defined by:

i (Def2) z@®y=-zAyVvVzeA-y.
. In the sequel z, y, z will denote elements of Boolean.
The following propositions are true:
(6) zVy=yVaz.
- (7) =z V false = z and false V 2 = z.
i (8) @Vy=-(-z A-y).
< (9) ~(eAy)=-zVoy
(10) -—(zVy)=-zA-y.
(11) z0y=yP=.
(12) zAy=-(-zV-y).
- (13)  true @ x = -z and z @ true = 2.
- (14) false® 2z =z and = @ false = 2.
(15) z @&z = false.
(16) zAz=z.
(17)  a @® -2 = true and ~z § = = true.

|
b

(18) =z V -z = true and ~z V z = true.
(19) =z V true = true and true V & = true.
(20) (zvy)Vz=zV(yVa2).

(21) zvz==.

(22) zA(yvz)=zAyVzAz

(23) zVyAz=(zVy)A(zVa2).
(24) zVzAy=a.

(25) zA(zVy) =z

(26) zV-zAy=zVy.

(27) zA(-zVy)=zAy.

(28) -z A~z = false'and —~z A z = false.
(29)  false A x = false and z A false = false.
(30) zAzAy=zAyAz
(31) zAyAz=¢ AyAz

(32) zAzAy=zAyAz

(33) true @ false = true and false @ true = true.
(34) z0yPz=z0yd-=.

(35) z@-zAy=zVy.

(36) zVz@y=zVy:

(37) zV -z dy=2V-y.

(38) zAyPz=zAydzA=z
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In the sequel 7, 7, k will be natural numbers.
Let us consider ¢, 7. The functor ¢ —' § yields a natural number and is defined
as follows:
(Def3)(i) t-'j=i—jifi—75>0,
(ii) ¢-"7 =0, otherwise.
Next we state the proposition
(39) (i+4)~"j=1.
We adopt the following convention: n will denote a non empty natural num-
ber and z, y, 2, 21, 2o will denote tuples of n and Boolean.
Let us consider n, z. The functor -z yields a tuple of » and Boolean and is
defined as follows:
(Def.4)  For every ¢ such that ¢ € Segn holds 7;n2 = —m;z.
Let us consider y. The functor carry(z,y) yielding a tuple of n and Boolean is
defined as follows:
(Def.5) m carry(z,y) = false and for every 4 such that 1 < ¢ and ¢ < n holds
Tip1 carry(z,y) = mz Ay V mz A m; carry(z, y) V iy A 7 carry(z, ).
Let us consider n, z. The functor Binary(z) yielding a tuple of n and N is
defined by:
(Def.6) For every 7 such that ¢ € Segn holds =; Binary(z) = (mz = false —
0,the ¢ —' 1-th power of 2).
Let us consider n, z. The functor Absval(z) yielding a natural number is
defined by:
(Def.7)  Absval(z) = +n ® Binary(z).
Let us consider n, z, y. The functor z + y yielding a tuple of » and Boolean
is defined by:
(Def.8) Foreveryisuchthati € Seg n holds wi(z+y) = mzdmyd™; carry(w, Y)-
Let us consider n, z1, 2. The functor add_ovfl(z, z3) yleldlng an element of
Boolean is defined by
(Def.9) add-ovfl(z1,22) = 7pz1 A Tp22 V T2y A wpcarry(z1, z2) V Tp2z2 A
Ty carry(z1, 22).
Let us consider n, z;, 2. We say that z; and zy are summable if and only if:
(Def.10)  add-ovfl(z, z2) = false.
Let us consider n, k. Then n + k is a non empty natural number.
One can prove the following proposition ' L
(40)  For every tuple z; of 1 and Boolean holds 21 = { false) or z1 = (true)
Let n; be a non empty natural number, let ny; be a natural number, let D
be a non empty set, let z; be a tuple of ny and D, ‘and let 2, be a tuple of ny
and D. Then z ~ 2z, is a tuple of ny + ny and D.
Let D be a non empty set and let d be an element of D. Then (d) is a tuple

of 1 and D.
The following propositions are true:
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(41) Given n, and let 2, 25 be tuples of n and Boolean, and let dy, d; be
elements of Boolean, and let ¢ be a natural number. If ¢ € Segn, then
m; carry(z1 ~ (d1), 22 ™ (dg)) = m; carry(z1, 22).
(42) For every n and for all tuples 21, z; of n and Boolean and for all elements
di, dy of Boolean holds add-ovfl(z1, 22) = mp41 carry(z1 ~ (d1), 22 = (d2)).
(43)  For every n and for all tuples 21, z; of n and Boolean and for all elements
di, da of Boolean holds z; ~ (d1) + 22~ (d2) = (71 + 22) ~ {d1 ® do @
add_ovfl(z, 22)).
" 1%7(44)  For every n and for every tuple z of n and Boolean and for every element
~d of Boolean holds Absval(z~ (d)) = Absval(z) + (d = false — 0,the n-th
power of 2).

(45)  For every n and for all tuples z;, z2 of n and Boolean holds Absval(z; +
z2) + (add-ovfl(z1, 22) = false — 0,the n-th power of 2) = Absval(z) +
Absval(zs).

(46)  For every n and for all tuples 21, z; of n and Boolean such that z; and
7o are summable holds Absval(z + 22) = Absval(z1) + Absval(zs).

*
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Summary. Contains basic concepts for Petri nets with Boolean
markings and the firability /firing of single transitions as well as sequences
of transitions [7]. The concept of a Boolean marking is introduced as a
mapping of a Boolean TRUE/FALSE to each of the places in a place/
transition net. This simplifies the conventional definitions of the firabil-
ity and firing of a transition. One note of caution in this article - the -
definition of firing a transition does not require that the transition be

- firable. Therefore, it is advisable to check that transitions ARE firable
before firing them.

MML Identifier: BOOLMARK.

The papers [12], [1], [15], [17], [18], [4], [5], [13], [10], [11], [9], [2], [3], [14], [6],
(16], and [8] provide the notation and terminology for this paper.

1. PRELIMINARIES

The following four propositions are true:

(1) Let A, B be non empty set, and let f be a function from A into B, and
let C be a subset of A, and let v be an element of B. Then f+-(C —— v)
is a function from A into B.

(2) Let X,Y be non empty set, and let A, B be subsets of X, and let f be
a function from X into Y. If f°ANf°B =0, then ANB = 0.

(3) For all sets A, B and for every function f and for arbitrary z such that
ANB =0 holds (f+ (A 2))°B = f°B.

(4) Let n be a natural number, and let D be a non empty set, and let d -
be an element of D, and let z be a finite sequence of elements of D. If
len z = n, then T4 (2~ (d)) = d.
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2. BOOLEAN MARKING AND FIRABILITY/FIRING OF TRANSITIONS

Let P; be a place/transition net structure. The functor Bool.marks_of P;
yielding a non empty set of functions from the places of P; to Boolean is defined
by:

(Def 1) Bool.marks_of P, = Booleanthe Places of P1

i

.. Let P; be a place/transition net structure. A Boolean marking of P is an
element of Bool_.marks_of P;.

Let P; be a place/transition net structure, let My be a Boolean marking of
Py, and let t be a transition of P,. We say that t is firable on Mj if and only if:

(Def2)  Mo° (*{t}) C {true).
Let P, be a place/transition net structure, let Mg be a Boolean marking of

Py, and let ¢ be a transition of P;. The functor Firing(t, My) yields a Boolean
- marking of P.and is defined by:
-+ (Def.3)  Firing(t, Mo) = Mo +- (*{t} +— false) +- ({t}* +— true).

: Let P; be a place/transition net structure, let My be a Boolean marking of ‘
Py, and let @ be a finite sequence of elements of the transitions of P;. We say
that @ is firable on My if and only if the conditions (Def.4) are satisfied.

(Def4) (i) @ =¢,or

(ii)  there exists a finite sequence M of elements of Bool marks_of P; such
that len @ = len M and m;Q is firable on My and 7 M = Firing(m1Q, Mo)
and for every natural number ¢ such that ¢ < len @ and ¢ > 0 holds m; ;1 Q
is firable on m;M and w43 M = Firing(7;11Q, mM).

Let Py be a place/transition net structure, let My be a Boolean marking of

P, and let @ be a finite sequence of elements of the transitions of P;. The
functor Firing(Q, M) yielding a Boolean marking of P; is defined as follows:
(Def.5) (i) Firing(Q, Mo) = Mo if @ = ¢,

(ii)  there exists a finite sequence M of elements of Bool marks_of P;
such that len Q = len M and Firing(Q, Mp) = MenmM and mM =
Firing(m@Q, Mp) and for every natural number ¢ such that ¢ < len @ and
2 > 0 holds m;41 M = Firing(7;11Q, 7 M), otherwise.

One can prove the following propositions:

(5) For every non empty set A and for arbltrary y and for every functlon
fholds (f + (A y))° A= {y}.

 (6) Let Py be a place/transition net structure, and let Mo be a Boolean
marking of Py, and let ¢ be a transition of P;, and let s be a place of P;.
If s € {t}*, then (Firing(t, Mo))(s) = true.

(7) Let P; be a place/transition net structure and let. ;. be a non empty set
of places of P,. Then 5 is deadlock-]jke if and only if for every Boolean
marking My of P; such that My ° Sy = {false} and for every transition £ .
of Py such that ¢ is firable on My holds (Firing(t, Mp)) ° S1 = {false}.
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(8) Let D be anon empty set, and let Qo, Q1 be finite sequences of elements
of D, and let 7 be a natural number. If 1 < 7 and ¢ < len @q, then
mi(Qo ™~ Q1) = mQo.

(9) Let D be anon empty set, and let Qo, @1 be finite sequences of elements
of D, and let 7 be a natural number. If 1 < 7 and ¢ < len )y, then
TenQo+i(@o ™ @1) = mQ1.

(10) Let P; be a place/transition net structure, and let My be a Boolean
marking of P;, and let Qq, @1 be finite sequences of elements of the
transitions of P;. Then Firing(Qo~ @1, Mo) = Firing(Q1, Firing(Qo, Mo)).

(11) Let P, be a place/transition net structure, and let My be a Boolean
marking of Py, and let @y, ¢J1 be finite sequences of elements of the
transitions of P;. If Q¢ ~ @1 is firable on My, then ¢y is firable on
Firing(Qo, Mo) and Qg is firable on M.

(12) Let Py be a place/transition net structure, and let My be a Boolean
marking of Py, and let ¢ be a transition of P;. Then t is firable on My if
and only if (t) is firable on Mj.

(13) Let Py be a place/transition net structure, and let My be a Boolean
marking of Py, and let ¢ be a transition of Py, Then Firing(t, Mo) =
Firing((t), Mo).

(14) Let Py be a place/transition net structure and let S be a non empty set
of places of P,. Then 5y is deadlock-like if and only if for every Boolean
marking Mo of Py such that My°S; = {false} and for every finite sequence
@) of elements of the transitions of P; such that @ is firable on My holds

(Firing(Q, Mo)) ° 51 = {false}.
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Summary. The continuation of the sequence of articles on trees
(see [3,5,7,4]) and on context-free grammars ([15]). We define the set of
complete parse trees for a given context-free grammar. Next we define
the scheme of induction for the set and the scheme of defining functions
by induction on the set. For each symbol of a context-free grammar we
define the terminal, the pretraversal, and the posttraversal languages.
The introduced terminology is tested on the example of Peano naturals.

MML Identifier: DTCONSTR.

The terminology and notation used in this paper are introduced in the following
articles: [18], [2], [21], [12], [13], [9], [1], [14], [8], [11], [16], [19], [6]), {17], [10],
[20], (18], 3], [5], [7], and [4]. | SR ”

1. PRELIMINARIES

The following propositions are true:
(1) For every non empty set D holds every finite sequence of elements of
FinTrees(D) is a finite sequence of elements of Trees(D).
(2) For arbitrary z, y and for every finite sequence p of elements of z such
that y € domp or y € Seglen p holds p(y) € =. :
Let X be a set. Observe that every element of X:* is function- hke
Let X be a set. Note that every element of X* is finite sequence-like.
Let D be a set and let p, ¢ be elements of D*. Then p~ ¢ is an element.of
D*. ‘ «
!This work was partially supported by NSERC Grant OGP9207 while the first author
visited University of Alberta, May-June 1993.
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Let D be a non empty set and let ¢ be an element of FinTrees(D). Then

domt is a finite tree. :
Let D be a non empty set and let T be a set of trees decorated by D. One
can verify that every finite sequence of elements of T is decorated tree yielding.
Let D be a non empty set, let ' be a non empty set of trees decorated by
D, and let Ty be a non empty subset of F. We see that the element of 77 is an

o " element of F.

Let p be a finite sequence. Let us assume that p is decorated tree yielding.
+ “The roots of p constitute finite sequences and is defined by the conditions (Def.1).

:%(Def.l) (i) dom (the roots of p) = domp, and
(i)  for every natural number i such that i € dom p there exists a decorated
tree T such that T' = p(¢) and (the roots of p)(¢) = T'(e).

. Let D be a non empty set, let T be a set of trees decorated by D, and let p
- be a finite sequence of elements of T. Then the roots of p is a finite sequence of
elements of D.

One can prove the following propositions:
(3) The roots of ¢ = €.
(4) For every decorated tree T holds the roots of (T') = (T'(¢)).

(5) Let D be anon empty set, and let F be a subset of FinTrees(D), and let
p be a finite sequence of elements of F'. Suppose len (the roots of p) = 1.
Then there exists an element z of FinTrees(D) such that p = (z) and
z e F.

(6) For all decorated trees T, T3 holds the roots of (T3, 73) = (Ta(¢), T5(¢))-
Let f be a function. The functor pri(f) yields a function and is defined by:

(Def.2) domprl(f) = dom f and for arbitrary z such that z € dom f holds
oprl(f)(=) = f(2)a-
The functor pr2(f) yielding a function is defined by:

(Def.3) dompr2(f) = dom f and for arbitrary z such that z € dom f holds
pr2(f)(z) = f(z)2.
Let X,Y be sets and let f be a finite sequence of elements of [ X, Y . Then

prl(f) is a finite sequence of elements of X. Then pr2(f) is a finite sequence of
elements of Y.

:One-can prove the following proposition
(7) prl(e) =€ and pr2(e) =¢.
- The scheme MonoSetSeq concerns a function A, a set 5, and a binary functor
F yielding a set, and states that:
Tor all ‘natural numbers k, s holds A(k) C A(k + s)
provided the paraiieters meet the following requirement: :
o For évery natural number n and for arbitrary z such that ¢ = A(n) -
holds A(n + 1) = 2 U F(n,z).
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2. THE SET OF PARSE TREES

Now we present two schemes. The scheme DT ConstrStrEz concerns a non
empty set A and a binary predicate P, and states that:
There exists a strict tree construction structure G such that
(i) the carrier of G = A, and
(ii) for every symbol z of G and for every finite sequence p of
elements of the carrier of G holds z = p iff P[z, p|
for all values of the parameters.
The scheme DTConstrStrUniq deals with a non empty set A and a binary
predicate P, and states that:
Let G'1, G'; be strict tree construction structure. Suppose that
(i) the carrier of G1 = A,
(ii) for every symbol z of G and for every finite sequence p of
elements of the carrier of G holds z = p iff P[z, p],
(i)  the carrier of G2 = A, and
(iv) for every symbol z of G5 and for every finite sequence p of
elements of the carrier of G2 holds z = p iff Pz, p].
Then G1 = G2
for all values of the parameters.
Next we state the proposition

(8) For every tree constructlon structure G holds (the termmals of G)N(the
nonterminals of G) = :

Now we present four schemes The scheme DT CMin concerns a function A,

a tree construction structure B, a non empty set C, a unary functor F yielding
an element of C, and a ternary functor G yielding an element of C, a,nd states
that:

There exists a subset X of FmTrees([ the carrier of B, C 1) such

that

(i) X =UA,

(ii) for every symbol d of B such that d € the terminals of B

holds the root tree of (d, F(d)) € X,

(ifi)  for every symbol o of B and for every finite sequence p of .

elements of X such that o = prl(the roots of p) and for arbitrary

s, v such that s = prl(the roots of p) and v = pr2(the roots of p)

holds (0, G(o, 5, v))-tree(p) € X, and

(iv) for every subset F' of FinTrees(|the carrier of B C ]) such :

that for every symbol d of B such that d € the terminals of B

holds the root tree of (d, F(d)) € F and for every symbol o of .

B and. for. every finite sequence p of elements of F .such that o =

prl(the roots of p) holds (o, G(o, pri(the roots of p), pr2(the roots -

of p)))-tree(p) € F holds X C F
provided the following conditions are satisfied:
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o dom A =N,

e A(0) = {the root tree of (¢, d): t ranges over symbols of B, d ranges
over elements of C, ¢ € the terminalsof BAd=F(t)Vt=>eAd=
G(t,¢,€)},

o Let n be a natural number and let 2 be arbitrary. Suppose z =
A(n). Then A(n + 1) = z U {{o, G(o,prl(the roots of p),pr2(the
roots of p)))-tree(p) : o ranges over symbols of B, p ranges over
elements of z*, 3, p = ¢ A o = prl(the roots of ¢)}.

- The scheme DTCSymbols deals with a function A, a tree construction struc-
ture B, a non empty set C, a unary functor F yielding an element of C, and a
ternary functor G yielding an element of C, and states that:

There exists a subset X; of FmTrees(the carrier of B) such that

(i) Xj = {t1 : t ranges over elements of FinTrees(|: the carrier of

B, C]),telJA},

(if) for every symbol d of B such that d € the terminals of B

holds the root tree of d € X7,

(i) for every symbol o of B and for every finite sequence p of

elements of Xy such that o = the roots of p holds o-tree(p) € Xj,

and

(iv) for every subset F of FinTrees(the carrier of B) such that for

every symbol d of B such that d € the terminals of B holds the

root tree of d € F and for every symbol o of B and for every finite

sequence p of elements of F such that o = the roots of p holds

o-tree(p) € F holds X; C F
provided the parameters meet the following requirements:

e domA =N,

e A(0) = {the root tree of (t, d): t ranges over symbols of B, d ranges
over elements of C, t € the terminalsof BAd=F(t) Vi =>e Ad=
G(t,e,¢€)},

o Let n be a natural number and let z be arbitrary. Suppose z =
A(n). Then A(n 4+ 1) = z U {{o, G(o, prl(the roots of p), pr2(the
roots of p)))-treetp) : o ranges over symbols of B, p ranges over
elements of z*, 3, p = ¢ A o = prl(the roots of ¢)}.

The scheme DTCHeight concerns a function A, a tree construction structure

B, a non empty set C, a unary functor F yielding an element of C, and a ternary
functor G yielding an element of C, and states that:
Let n be anatural number and let dy be an element of FinTrees([: the
carrier of B, C ). f d; € U A, then dy € A(n) iff heightdomd; < n
provided the parameters meet the following conditions:

e domA=N,

o A(0) = {the root tree of {t, d): ¢ ranges over symbols of B, d ranges
over elements of C,t € the terminalsof BAd=F(t)Vi=>e Ad=
G(t,¢,2)}, v

e Let » be a natural number and let z be arbitrary. Suppose z =
A(n). Then A(n + 1) = z U {{0, G(o,prl(the roots of p), pr2(the
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roots of p)))-tree(p) : o ranges over symbols of B, p ranges over
elements of z*, 3, p = ¢ A o = prl(the roots of ¢)}.
The scheme DTCUniq concerns a function A, a tree construction structure
B, a non empty set C, a unary functor F yielding an element of C, and a ternary
functor G yielding an element of C, and states that:
For all trees d;, d3 decorated by [the carrier of B, C ] such that
dy € UA and d3 € |JA and (dy)1 = (d3)1 holds ds = d3
provided the following conditions are satisfied:
e domA =N,
o A(0) = {the root tree of (¢, d): ¢ ranges over symbols of B, d ranges
over elements of C, ¢ € the terminals of BAd=F()Vi=>ecAd=
G(t,e,e)},
o Let n be a natural number and let z be arbitrary. Suppose z =
A(n). Then A(n + 1) = 2 U {{o, G(o, prl(the roots of p), pr2(the
roots of p)))- tree(p) : o ranges over symbols of B, p ranges over
elements of 2*, 3, p = ¢ A o= prl(the roots of ¢)}.
Let G be a tree construction structure. The functor TS(G) yields a subset
of FinTrees(the carrier of G) and is defined by the conditions (Def.4).

(Def.4) (i) For every symbol d of G such that d € the terminals of G holds the
root tree of d € TS(G),
(if) . for every symbol o of G and for every finite sequence p of elements of
TS(G) such that o = the roots of p holds o-tree(p) € TS(G), and
(ili) for every subset F' of FinTrees(the carrier of G) such that for every
symbol d of G such that d € the terminals of G holds the root tree of
d € F and for every symbol o of G and for every finite sequence p of
elements of F' such that o = the roots of p holds o-tree(p) € F holds
TS(G) C F. ,
Now we present three schemes. The scheme DT Constrind concerns a tree
construction structure 4 and a unary predicate P, and states that:
For every tree t decorated by the carrier of A such that ¢t € TS(A)
holds P[]
provided the parameters meet the following requirements:
o For every symbol s of A such that s € the terminals of A holds
P[the root tree of s], |
o Let n; be a symbol of A and let ¢; be a finite sequence of elements
of TS(A). Suppose ny = the roots of ¢; and for every tree t dec-
orated by the carrier of A such that ¢t € ng t1 holds P[t]. Then
Pny-tree(ty)].
.- The scheme DT ConstrIndDef concerns a tree construction structure A, a non
empty set B, a unary functor F yielding an element of B, and a ternary functor
G yielding an element of B, and states that:
There exists a function f from TS(A) into B such that
(i) for every symbol ¢ of A such that ¢ € the terminals of .A holds
f(the root tree of ¢t) = F(¢), and = 3 Y
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(ii)  for every symbol n; of A and for every finite sequence #;
of elements of TS(A) and for every finite sequence 7; such that
r1 = the roots of ¢; and n; = r; and for every finite sequence z of
elements of B such that = f-t; holds f(n;-tree(t1)) = G(n1,71, )
for all values of the parameters.
The scheme DTConstrUniqDef deals with a tree construction structure A, a
non empty set B, a unary functor F yielding an element of B, a ternary functor
G yielding an element of B, and functions C, D from TS(A) into B, and states

7 that:

C=D
provided the parameters satisfy the following conditions:

o (i) For every symbol t of A such that ¢ € the terminals of A
holds C(the root tree of t) = F(t), and
(ii) for every symbol n; of A and for every finite sequence #;
of elements of TS(A) and for every finite sequence r; such that
r1 = the roots of #; and ny; = r; and for every finite sequence z of
elements of B such that ¢ = C-t; holds C(n;-tree(t1)) = G(ny,71,2),

o (i) For every symbol ¢ of A such that ¢ € the terminals of A
holds D(the root tree of t) = F(¢), and
(iiy  for every symbol ny of A and for every finite sequence t;
of elements of TS(A) and for every finite sequence r; such that
ry = the roots of t; and my = 71 and for every finite sequence
z of elements of B such that ¢ = D - ¢; holds D(n;-tree(?1)) =
G(na,71,2).

3. AN EXAMPLE: PEANO NATURALS

The strict tree construction structure Npeano is defined by the conditions
(Def.5).

(Def.5) (i)  The carrier of Npeano = {0,1}, and
(ii) for every symbol z of Npeano and for every finite sequence y of elements
of the carrier of Npeano holds z = y iff z = 1 but y = (0) or y = (1).

4. PROPERTIES OF PARSE TREES

Let G be a tree construction structure. We say that G has terminals if and
only if:
(Def.6) The terminals of G # 0.
We say that G has nonterminals if and only if:
(Def.7)  The nonterminals of G # .




ON DEFINING FUNCTIONS ON TREES 97

We say that G has useful nonterminals if and only if the condition (Def.8) is
satisfied.

(Def.8) Let ny be a symbol of G. Suppose nq € the nonterminals of G. Then
there exists a finite sequence p of elements of TS(G) such that ny = the
roots of p.

Let us note.that there exists a tree construction structure which is strict and
has terminals, nonterminals, and useful nonterminals.

Let G be a tree construction structure with terminals. Then the terminals of
G is a non empty subset of the carrier of G. Then TS(G) is a non empty subset
of FinTrees(the carrier of G).

Let G be a tree construction structure with useful nonterminals. Then TS(G)
is a non empty subset of FinTrees(the carrier of G).

Let G be a tree construction structure with nonterminals. Then the nonter-
minals of G is a non empty subset of the carrier of G.

Let G be a tree construction structure with terminals. A terminal of & is an
element of the terminals of G.

Let G be a tree construction structure with nonterminals. A nonterminal of
G is an element of the nonterminals of G.

Let G be a tree construction structure with nonterminals and useful nonter-
minals and let n; be a nonterminal of G. A finite sequence of elements of TS(G)
is called a subtree sequence joinable by n; if:

(Def.9) ny = the roots of it.

Let G be a tree construction structure with terminals and let ¢ be a terminal
of G. Then the root tree of ¢ is an element of TS(G). :

Let G be a tree construction structure with nonterminals and useful nonter-
minals, let n; be a nonterminal of G, and let p be a subtree sequence joinable
by ny. Then nq-tree(p) is an element of TS(G).

One can prove the following two propositions:

(9) Let G be a tree construction structure with terminals, and let Z; be an
element of TS(G), and let s be a terminal of G. If ty(¢) = s, then t = the
root tree of s.

(10) Let G be a tree construction structure with terminals and nonterminals,
and let ¢; be an element of TS(G), and let ny be a nonterminal of G.
Suppose t3(¢) = ny. Then there exists a finite sequence ; of elements of
TS(G) such that t; = ny-tree(?;) and ny = the roots of #;.

5. THE EXAMPLE CONTINUED

Npeano 18 a strict tree construction structure with terminals, nonterminals,
and useful nonterminals. -

Let n; be a nonterminal of Npeano and let ¢ be an element of TS(Npeano)
Then ny-tree(t) is an element of TS(Npeano)-
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Let « be a finite sequence of elements of N. Let us assume that z # ¢. The
functor (z)(1+1) yielding a natural number is defined as follows:

"+ (Def.10) There exists a natural number n such that (z)(4+1) = n+1 and :v(l) =

n.
The function Npeano — N from TS(Npeano) into N is defined by the conditions
~ (Def.11).
(Def 11) (i) For every symbol ¢ of Npeano such that ¢ € the terminals of Npeano
s holds (Npeano — N)(the root tree of t) = 0, and
s (i) for every symbol ny of Npeano and for every finite sequence t; of ele-
ments of TS(Npeano) and for every finite sequence r; such that 7y = the
roots of #; and n»; = 71 and for every finite sequence = of elements of
N such that £ = (Npeano — N) - t1 holds (Npeano — N)(n1-tree(t;)) =
(2)(1+1).
‘ Let z be an element of TS(Npeano). The functor succ(z) yielding an element
7 of TS(Npeano) is defined as follows:
(Def.12)  succ(z) = 1-tree({z)).
The function N — Npeano from N into TS(Npeano) is defined by the conditions
(Def.13).
(Def.13) (i) (N — Npeano)(0) = the root tree of 0, and
(i) for every natural number n and for every element & of TS(Npeano) such
that 2 = (N = Npeano)(n) holds (N — Npeano)(n + 1) = suce(z).
One can prove the following propositions:
(11)  For every element p; of TS(Npeano) holds p1 = (N — Npeano)((NPeano —

N)(p1))-

. (12)  For every natural number 1 holds 7 = (Npeano — N)((N = Npeano)(72)).

6. TREE TRAVERSALS AND TERMINAL LANGUAGE

Let D be a set and let F be a finite sequence of elements of D*. The functor
Flat(F) yields an element of D* and is defined as follows:
(Def.14)  There exists a binary operation g on D* such that for all elements p, ¢
o of D* holds g(p, q) = p~ ¢ and Flat(F) =g © F.
Next we state the proposition
(13)  For every set D and for every element d of D* holds Flat({d)) = d
Let G be a tree construction structure and let t; be a tree decorated by
the carrier of G. Let us assume that {2 € TS(G). The terminals of ¢; is a
finite sequence of elements of the terminals of G and is defined by the condition
- (Def.15). -
(Def.15) There exists a function f from TS(G) into (the terminals of G)* such
! - that _ ‘
(i) the terminals of t2 = f(t2),
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(ii) for every symbol ¢ of G such that ¢ € the terminals of G holds f(the
root tree of t) = (t), and \

(iii) for every symbol n; of G and for every finite sequence t; of ele-
ments of TS(G) and for every finite sequence ry such that r; = the

roots of ¢, and ny = 7 and for every finite sequence z of elements of
(the terminals of G)* such that 2 = f - ¢; holds f(ny-tree(t1)) = Flat(z).

The pretraversal string of £, is a finite sequence of elements of the carrier of G
and is defined by the condition (Def.16).

(Def.16)  There exists a function f from TS(G) into (the carrier of G)* such that
(i) the pretraversal string of ¢ = f(t3),
(ii) for every symbol ¢ of G such that ¢ € the terminals of G holds f(the
root tree of t) = (t), and
(i) for every symbol ny of G and for every finite sequence t; of elements of
TS(G) and for every finite sequence 1 such that r; = the roots of #; and
n1 = 71 and for every finite sequence z of elements of (the carrier of G)*
such that z = f -1, holds f(ni-tree(t1)) = (ny) ~ Flat(z).
The posttraversal string of ¢5 is a finite sequence of elements of the carrier of G
and is defined by the condition (Def.17).

(Def.17)  There exists a function f from TS(G) into (the carrier of G)* such that
(i)  the posttraversal string of t; = f(t2),
(ii)- for every symbol ¢ of G such that ¢ € the terminals of G holds f(the
root tree of t) = (t), and
(iii)  for every symbol n; of G and for every finite sequence ¢; of elements of
TS(G) and for every finite sequence 7y such that 4 = the roots of ¢, and
np = r1 and for every finite sequence z of elements of (the carrier of G)*
such that = f-#; holds f(ny-tree(t1)) = Flat(z) ~ (ny).
Let G be a tree construction structure with nonterminals and let n; be a
symbol of G. The language derivable from n; is a subset of (the terminals of G)*
and is defined by the condition (Def.18).

(Def.18)  The language derivable from ny = {the terminals of t3: ¢, ranges over
elements of FinTrees(the carrier of G), t2 € TS(G) A t2(e) = m}.
The language of pretraversals derivable from 7, is a subset of (the carrier of G)*
and is defined by the condition (Def.19).
(Def.19) The language of pretraversals derivable from n; = {the pretraversal
string of t5: ¢y ranges over elements of FinTrees(the carrier of G), t2 €
TS(G) A ta(e) = n1}. .
Thelanguage of posttraversals derivable from n; is a subset of (the carrier of G)
and is defined by the condition (Def.20).

(Def.20) The language of posttraversals derivable from ny = {the posttraversal
string of #5: t; ranges over elements of FmTrees(the carrier of G), .ty €.

TS(G) A ta(e) = my).

One can prove the following propositions:-
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(14) For every tree t decorated by the carrier of Npeano such that t €
TS(Npeano) holds the terminals of t = (0).

(15) For every symbol ny of Npeano holds the language derivable from n; =
{{0)}- |
(16)  For every element ¢ of TS(Npeano) holds the pretraversal string of t =
: (height dom t — 1)~ (0).
\;i~“: ~ (17) Let ny be a symbol of Npeano. Then
R (i) if ny; = 0, then the language of pretraversals derivable from ny = {(0)},
and
(ii) if ny = 1, then the language of pretraversals derivable from n; =
{(n — 1)~ (0) : n ranges over natural numbers, n # 0}.
(18) For every element ¢ of TS(Npeano) holds the posttraversal string of ¢ =
(0) ~ (height dom ¢t — 1).
(19)  Let nq be a symbol of Npeano. Then
(i) if ny = 0, then the language of posttraversals derivable from n; = {( b
and
(ii) if ny = 1, then the language of posttraversals derivable from n; =
{{0)~ (n — 1) : n ranges over natural numbers, n # 0}.
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1. PropucT oF Two ALGEBRAS

The following proposition is true
(1) For all non-empty set Dl, D, and for all natural numbers n, m such
.that D™ = D;™ holds n =
For simplicity we follow a convention: Uy, Us, Us denote universal algebras,
k, m, 1 denote natural numbers, z is arbitrary, and hq, hy denote finite sequences
of elements of [ 4, B .
Let us consider A, B and let us consider h;. The functor m1(hy) yielding a
finite sequence of elements of A is defined as follows:
(Def.1) lenmy(hy) = lenhy and for every n such that n € dommy(hy) holds
(r1(h1))(n) = ha(n)1.
The functor m2(hq) yielding a finite sequence of elements of B is defined as
follows:
(Def.2) lenma(hy) = lenhy and for every n such that n € dom mwy(hy) holds

(ma(h1))(n) = h1(n)2.
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Let us consider A, B, let f; be a homogeneous quasi total non-empty partial
function from A* to A, and let f; be a homogeneous quasi total non-empty
partial function from B* to B. Let us assume that arity fi = arity fo. The
functor 1] f1, f2[[ yielding a homogeneous quasi total non-empty partial function
from [ A, B]" to [ A, B{is defined by the conditions (Def.3).

. (Def.3) (i) dom]lfi, foll= [ A4, BI"™#, and

(i) for every finite sequence h of elements of [ A, B such that h €
i domT] f1, f2[[ holds T} f1, f2[[(h) = (fi(m1(R)), f2(m2(h)))-
%7 In the sequel h; will denote a homogeneous quasi total non-empty partial
 function from (the carrier of U;)* to the carrier of U;.
Let us consider U;, U,;. Let us assume that U; and U; are simi-
lar. The functor Opers(Uy,Us) yielding a finite sequence of elements of
[ the carrier of Uy, the carrier of Uz *>[ the carrier of Uy, the carrier of Us ]
is defined as follows:

(Def.4) - len Opers(Uy,U;) = lenOpersU; and for every n such that n €
dom Opers(Uy, U;) and for all hq, hy such that hy = (Opers Uy)(n) and
hy = (Opers U )(n) holds (Opers(Uy, Us))(n) =]|h1, ha.

The following proposition is true
(2) If U; and U, are similar, then ([the carrier of Uy, the carrier of Uy,
Opers(Uq, Uy)) is a strict universal algebra.
Let us consider Uy, U;. Let us assume that U; and U, are similar. The
functor [ Uy, Uy ] yielding a strict universal algebra is defined as follows:

(Def.5) [ Uy, Uz] = ([ the carrier of U, the carrier of Us |, Opers(Uy, Us)).

Let A, B be non-empty set. The functor Inv(A, B) yielding a function from

[ A, B]into [ B, A{]is defined as follows:

. (Def.6) For every element a of [ A, B] holds (Inv(A4, B))(a) = (a2, a1).
One can prove the following propositions:
(3) For all non-empty set A, B holds rngInv(A, B) = [ B, A.
(4) For all non-empty set A, B-holds Inv(A, B) is one-to-one.
(5) Suppose U; and U, are similar. Then Inv(the carrier of Uy, the carrier
of Us) is a function from the carrier of [: Uy, Uz ] into the carrier of [ Uy,
Uy
(6) Suppose U; and U, are similar. Let o; be a operation of Uy, and let o,
be a operation of Uz, and let o be a operation of [ Uy, Uz |, and let n be a
natural number. Suppose 0y = (Opers Uy )(n) and o, = (Opers U )(n) and
o = (Opers[ Uy, Uz ])(n) and n € dom Opers U;. Then arity o = arityo;
and arity o = arity o, and o =J|oy, 02[[.
(7) If Uy and U, are similar, then [ Uy, Us ] and Uy are similar.
(8) Let Uy, Uy, Us, Us be universal algebras. Suppose U; is a subalgebra
" of Uz and Us is a subalgebra of Uy and Uy and Uy are similar. Then [ Uy,
Us ] is a subalgebra of [ Uy, Us 1.
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2. TRIVIAL ALGEBRA

Let k£ be a natural number. The functor TrivOp(k) yields a homogeneous

quasi total non-empty partial function from {§}* to {0} and is defined as follows:
(Def.7)  dom TrivOp(k) = {k — @} and tng TrivOp(k) = {0}.

The following proposition is true

(9) arity TrivOp(k) =

Let f be a finite sequence of elements of N. The functor TrivOps( f) yielding
a finite sequence of elements of {(}}*->{0} is defined as follows:

(Def.8)  len TrivOps(f) = len f and for every n such that n € dom TrivOps(f)
and for every m such that m = f(n) holds (TrivOps(f))(n) = TrivOp(m).

‘We now state two propositions:

(10)  For every finite sequence f of elements of N holds TrivOps(f) is homo-
geneous quasi total and non-empty.

(11)  For every finite sequence f of elements of N such that f # ¢ holds ({0},
TrivOps(f)) is a strict universal algebra.

Let D be a non empty set. Observe that there exists a finite sequence of
elements of D which is non empty and there exists an element of D* which is
non empty.

Let f be a non empty finite sequence of elements of N. The trivial algebra
of f yielding a strict universal algebra is defined as follows:

(Def.9) The trivial algebra of f = ({0}, TrivOps(f)).

3. PropUCT OF UNIVERSAL ALGEBRAS

A function is universal algebra yielding if:
(Def.10)  For every z such that z € domit holds it(z) is a universal algebra.
A function is 1-sorted yielding if:
(Def.11)  For every z such that z € domit holds it(z) is a 1-sorted structure.
One can check that there exists a function which is universal algebra yielding,.
One can verify that every function which is universal algebra yielding is also
1-sorted yielding.
Let I be a set. Observe that there exists a many sorted set of I which is
1-sorted yielding.
A function is equal signature if:
(Def.12)  For all z, y such that 2 € domit and y € domit and for all Uy, U2 such
that Uy =it(z) and U, = it(y) holds signature Uy = signature Us.
" Let J be a non-empty set. One can check that there exists a many sorted
set of J which is equal signature and universal algebra yielding. .
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Let J be a non empty set, let A be a universal algebra yielding many sorted
set of J, and let j be an element of J. Then A(j) is a universal algebra. -

Let J be a non-empty set and let A be a universal algebra yielding many
sorted set of J. The functor support A yields a non-empty many sorted set of
J and is defined as follows:

o (Def.13)  For every element j of J holds (support A)(j) = the carrier of A(j).

Let J be a non-empty set and let A be an equal signature universal algebra
yielding many sorted set of J. The functor ComSign(A) yields a finite sequence
of elements of N and is defined as follows: ‘

(Def.14)  For every element j of J holds ComSign(A) = signature A(j).

A function is function yielding if:

- (Def.15)  For every « such that @ € domit holds it(z) is a function.

Let us note that there exists a function which is function yielding.

Let I be a set. Note that there exists a many sorted set of I which is function
yielding.

Let I be a set. A many sorted function of I is a function yielding many
sorted set of I.

Let J be a non-empty set, let B be a many sorted function of J, and let j
be an element of J. Then B(j) is a function.

Let J be a non-empty set, let B be a non-empty many sorted set of J, and
let j be an element of J. Then B(j) is a non-empty set.

Let J be a non-empty set and let B be a non-empty many sorted set of J.
Then [] B is a non-empty set.

Let J be a non-empty set and let B be a non-empty many sorted set of J.
A many sorted function of J is said to be a many sorted operation of B if:

(Def.16)  For every element j of J holds it(j) is a homogeneous quasi total non-

empty partial function from B(7)* to B(j).
Let J be a non-empty set, let B be a non-empty many sorted set of J, let O
be a many sorted operation of B, and let j be an element of J. Then O(j) is a
homogeneous quasi total non-empty partial function from B(j)* to B(j).
A function is equal arity if satisfies the condition (Def.17).

(Def.17)  Let z, y be arbitrary. Suppose & € domit and y € domit. Let f, g be

functions. Suppose it(z) = f and it(y) = g. Let n, m be natural numbers

and let X, Y be non-empty set. Suppose dom f = X™ and dom g = Y™,

Let 01 be a homogeneous quasi total non-empty partial function from X*

to X and let 0y be a homogeneous quasi total non-empty partial function
- fromY*to Y. f = 0, and g = 0y, then arity o; = arity os.

Let J be a non-empty set and let B be a non-empty many sorted set of J.
One can verify that there exists a many sorted operation of B which is equal
arity. , ' ‘
The following proposition'is true
(12) Let J be a non-empty set, and let B be a non-empty many sorted set

of J, and let O be a many sorted operation of B. Then O is equal arity
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if and only if for all elements ¢, j of J holds arity O(7) = arity O(j).
Let I be a set, let f be a many sorted function of I, and let z be a many
sorted set of I. The functor f «P & yields a many sorted set of I and is defined
as follows:

(Def.18)  For arbitrary ¢ such that ¢+ € I and for every function g such that
g = f(3) holds (f «p z)(3) = g(z(%)).

Let J be a non-empty set, let B be a non-empty many sorted set of J, and
let p be a finite sequence of elements of [[ B. Then uncurry p is a many sorted
set of [domp, J J.

Let I, J be sets and let X be a many sorted set of {1, J]. Then ~X is a
many sorted set of [ J, I'].

Let X be a set, let Y be a non-empty set, and let f be a many sorted set of
[X,Y ]. Then curry f is a many sorted set of X.

Let J be a non-empty set, let B be a non-empty many sorted set of J, and
let O be an equal arity many sorted operation of B. The functor ComAr(O)
yielding a natural number is defined as follows:

(Def.19)  For every element j of J holds ComAr(O) = arity O(7).
Let I be a set and let A be a many sorted set of I. The functor ¢4 yielding
a many sorted set of I is defined as follows:
(Def.20)  For arbitrary ¢ such that ¢ € I holds £4(7) = EA(ij.
Let J be a non-empty set, let B be a non-empty many sorted set of J, and
let O be an equal arity many sorted operation of B. The functor [|O[[ yielding

a homogeneous quasi total non-empty partial function from ([T B)* to [[ B is
defined by the conditions (Def.21).

(Def.21) (i) dom]|O[[= ([T B)ComAr(9), and
(ii) for every element p of ([] B)* such that p € dom]]O[[ holds if domp =
@, then T|O[[(p) = O «r (eB) and if domp # @, then for every non-empty
set Z and for every many sorted set w of [ J, Z ] such that Z = domp
and w = «~uncurry p holds JO[[(p) = O + curry w.

Let J be a non-empty set, let A be an equal signature universal algebra
yielding many sorted set of J, and let n be a natural number. Let us assume
that n € Seglen ComSign(A). The functor ProdOp(A,n) yielding an equal arity
many sorted operation of support A is defined by:

(Def.22)  For every element j of J and for every operation o of A(j) such that
(Opers A(7))(n) = o bolds (ProdOp(A4,n))(j) = o.

Let J be a non-empty set and let A be an equal signature universal algebra
yielding many sorted set of J. The functor ProdOpSeq(A4) yielding a finite
sequence of elements of ([]support A)*-> []support A is defined as follows:

(Def.23) lenProdOpSeq(A) = len ComSign(A) and for every n such that n €
dom ProdOpSeq(A) holds (ProdOpSeq(A))(n) =]] ProdOp(A, n)[[.

Let J be a non-empty set and let A be an equal signature universal algebra
yielding many sorted set of J. The functor ProdUnivAlg(A) yields a strict
universal algebra and is defined as follows:
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(Def.24)  ProdUnivAlg(A) = ([]support A, ProdOpSeq(A)).

[11]
[12]

[13]

[14]

[15]

"REFERENCES

Grzegorz Bancerek. Curried and wuncurried functions. Formalized Mathematics,
1(3):537-541, 1990.

Grzegorz Bancerek. Konig’s theorem. Formalized Mathematics, 1(3):589-593, 1990.
Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

Ewa Burakowska. Subalgebras of the universal algebra. Lattices of subalgebras. For-
malized Mathematics, 4(1):23-27, 1993.

Czestaw Bylifiski. Finite sequences and tuples of elements of a non-empty sets. Formal-
ized Mathematics, 1(3):529-536, 1990.

Czeslaw Bylinski. Functions and their basic properties. - Formalized Mathematics,
1(1):55-65, 1990. ,

Czeslaw Byliiski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,
1990.

Czeslaw Byliniski. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521-527, 1990.

Czeslaw Bylifiski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
Jarostaw Kotowicz, Beata Madras, and Malgorzata Korolkiewicz. Basic notation of
universal algebra. Formalized Mathematics, 3(2):251-253, 1992.

Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
1(2):329-334, 1990.

Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
1(1):115-122, 1990.

Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
1990.

Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,
1(1):97-105, 1990.

Received October 12, 1993



FORMALIZED MATHEMATICS

Volume 4, Number 1, 1993
Université Catholigue de Louvain

Homomorphisms of Algebras. Quotient
Universal Algebra

Malgorzata Korolkiewicz
Warsaw University

Bialystok

Summary. The first part introduces homomorphisms of univer-
sal algebras and their basic properties. The second is concerned with
the construction of a quotient universal algebra. The ﬁrst isomorphism
theorem is proved.

MML Identifier: ALG_1.

The articles [9], [10], [11], [4], [5], [1], [8], [3], [6], [7], and [2] provide the termi-
nology and notation for this paper.

1. HOMOMORPHISMS OF ALGEBRAS

For simplicity we adopt the following convention: Uy, U, Us will denote
universal algebras, n will denote a natural number, 0; will denote a operation
of Uy, 0 will denote a operation of Uz, and z, y will be arbitrary.

Let Dq, D; be non empty set, let p be a finite sequence of elements of Dy,
and let f be a function from Dj into Dj. Then f - p is a finite sequence of
elements of Ds. ‘

The following propositions are true:

(1) Let Dy, D; be non empty set, and let p be a finite sequence of elements
of Dy, and let f be a function from Dy into Ds. Then dom(f-p) = domp
and len(f - p) = lenp and for every 7 such that n € dom(f - p) holds
(f-p)(n) = f(p(n)). - -

(2) For every non empty subset B of U1 such that B = the carrier of Uy
holds Opers(Uy, B) = Opers Uy.
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Let U; be a universal algebra. A finite sequence of elements of U is a finite
sequence of elements of the carrier of U;. Let U, be a universal algebra. A
function from Uj into U3 is a function from the carrier of Uy into the carrier of
Us.

In the sequel a, a3, ay denote finite sequences of elements of U; and f denotes

v a function from U;j into Us. ' :
N One can prove the following three propositions:

] (3) I €(the carrier of Up) = &(the carrier of Uz)*
: ‘ (4) id(the carrier of Up) * a=a.
ke (5) Let hy be a function from U; into Us, and let hy be a function from Us
. into Us, and let @ be a finite sequence of elements of U;. Then hy-(hy-a) =
(h2 . hl) +a. '
: Let us consider Uy, Usa, f. We say that f is a homomorphism of Uy into Uy
if and only if the conditions (Def.1) are satisfied.
(Def.1) (i) Uy and U; are similar, and
' (i) for every n such that n € dom OpersU; and for all o1, 0, such that
01 = (Opers U;)(n) and o = (Opers Uy )(n) and for every finite sequence
z of elements of Uy such that z € dom oy holds f(o1(2)) = 02(f - ).
Let us consider Uy, Uy, f. We say that f is a monomorphism of U; into U,
if and only if:

(Def.2)  f is a homomorphism of U; into U, and one-to-one.
We say that f is an epimorphism of Uy onto Us if and only if:
(Def.3)  f is a homomorphism of Uy into Uy and rng f = the carrier of Us.
Let us consider Uy, U,, f. We say that f is an isomorphism of U; and U if
and only if:
(Def.4)  fis a monomorphism of U; into U; and an epimorphism of U; onto Us.
Let us consider Uy, U;. We say that Uy and U; are isomorphic if and only if:
(Def.5)  There exists f which is an isomorphism of U; and U;.
One can prove the following propositions: .
(6)  id(the carrier of 1) i8 @ homomorphism of Uy into Us.
(7) Let h; be a function from Uy into U and let Ay be a function from
U, into Us. Suppose h; is a homomorphism of Uy into U, and hs is a
homomorphism of U, into Uz. Then hg - hy is a homomorphism of U; into
Us. .
(8) fis an isomorphism of U; and U, if and only if f is a homomorphism
of Uy into Uy and rng f = the carrier of Uy and f is one-to-one.
(9) If f is an isomorphism of U; and Us, then dom f = the carrier of Uy
and rng f = the carrier of U,.
(10) Let h be a function from Uy into Uz and let hy be a function from U,
into U;. Suppose h is an isomorphism of U; and U; and hy = h~1. Then
hq is a homomorphism of Us into U;. '



HOMOMORPHISMS OF ALGEBRAS. QUOTIENT ...

(11) Let h be a function from U, into U, and let h; be a function from U,
into U;. Suppose h is an isomorphism of Uj and Uy and hy = A~1. Then
by is an isomorphism of U; and U;.

(12) Let h be afunction from U; into U, and let h; be a function from U, into
Us. Suppose h is an isomorphism of U; and U and h; is an isomorphism
of Uy and Us. Then hy - h is an isomorphism of U; and Us.

(13) Uy and U, are isomorphic.

(14) If Uy and U, are isomorphic, then Uy and Uy are isomorphic.

(15) If Uy and U, are isomorphic and U, and Uz are isomorphic, then U;
and Us are isomorphic.

Let us consider Uy, Uy, f. Let us assume that f is a homomorphism of Uy
into Us. The functor Im f yielding a strict subalgebra of Us is defined as follows:

(Def.6) The carrier of Im f = f ° (the carrier of Uy).
Next we state two propositions:
(16) For every function h from Uj into Us such that h is a homomorphlsm
of U; into U; holds rng h = the carrier of Im A.
(17) Let U; be a strict universal algebra and let f be a function from U,
into U;. Suppose f is a homomorphism of Uy into U;. Then f is an
epimorphism of U; onto Us if and only if Im f = U,.

2. QUOTIENT UNIVERSAL ALGEBRA

Let us consider U;. A binary relation on Uj is a binary relation on the carrier
of U;. An equivalence relation of U; is an equivalence relation of the carrier of
Ur. .

Let D be a non empty set and let R be a binary relation on D. The functor
R# yielding a binary relation on D* is defined by the condition (Def.7).

(Def.7) Let z, y be finite sequences of elements of D. Then (z, y) € R# if and
only if the following condltlons are satisfied:
(i) lenz =leny, and
(ii) for every n such that n € dom z holds (:c(n) y(n)) € R.
The following proposition is true
(18)  For every non empty set D holds (Ap)# = Aps.

Let us consider U;. An equivalence relation of U is said to be a congruence
of Uy if it satisfies the condition (Def.8).
(Def.8) Given n, 01. Suppose n € dom Opers Uy and o1 = (Opers Uy)(n). Let
z, y be ﬁmte sequences of elements of U. If z € domo; and y € domo,
and (z, y) € it¥, then {01(z), 01(y)) € it. e
Let D be a non empty set and let R be an’ eqmvalence relatlon of D. Then
Classes R is a non empty family of subsets of D.
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Let D be a non empty set, let R be an equivalence relation of D, let y be a
finite sequence of elements of Classes R, and let = be a finite sequence of elements
of D. We say that z is a finite sequence of representatives of y if and only if:

(Def.9) lenz = leny and for every n such that n € dom « holds [z(n)]z = y(n).
We now state the proposition

... (19) Let D be anon empty set, and let R be an equivalence relation of D, and
: let y be a finite sequence of elements of Classes R. Then there exists finite
e sequence of elements of D which is a finite sequence of representatives of

. y‘ ‘

Let U; be a universal algebra, let E be a congruence of Uy, and let o be a
operation of Uy. The functor o/ yields a homogeneous quasi total non-empty
partial function from (Classes E)* to Classes E and is defined by the conditions
(Def.10).

(Def.10) (i) dom(o/g) = (Classes E)atityo and
(ii) for every finite sequence y of elements of Classes E such that y €
dom(o,z) and for every finite sequence = of elements of the carrier of Uy
such that z is a finite sequence of representatives of y holds o/g(y) =
[o(=)]E-
Let us consider Uy, E. The functor Opers(Uy),g yields a finite sequence of
elements of (Classes E)*— Classes E and is defined as follows:

(Def.11)  len(Opers((U1))/g) = lenOpersU; and for every n such that n €
dom(Opers((U1))/g) and for every oy such that (Opers U;)(n) = o1 holds
Opers((U1))/E(n) = (01)/E.

Next we state the proposition

~(20) For all Uy, E holds {Classes E, Opers((U1)) /E) is a strict universal al-
gebra.

Let us consider Uy, E. The functor Uy, g yielding a strict universal algebra
is defined by:
(Def.12)  (U1)/g = (Classes E, Opers((U1))/E)-
Let us consider Uy, E. The natural homomorphism of U1 w.r.t. E yielding
a function from Uy into (U1)/g is defined as follows:
(Def.13)  For every element u of the carrier of U; holds (the natural homomor-
phism of U7 w.r.t. E)(u) = [u]g.
One can prove the following two propositions:
(21) For all U, E holds the natural homomorphism of U; w.rt. F is a
homomorphism of Uy into (U1)/E-
(22) For all Uy, E holds the natural homomorphism of U; w.r.t. E is an
* epimorphism of U; onto (Uy)/g.

Let us consider Uy, U; and let f be a function from Uj into Us;. Let us
assume that f is a homomorphism of Uy into U;. The functor Cng( f) yielding
a congruence of Uy is defined by:
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(Def.14)  For all elements a, b of the carrier of Uy holds {a, b) € Cng(f) iff
f(a) = f(b).
Let Uy, U; be universal algebras and let f be a function from U; into Us.
Let us assume that f is a homomorphism of U; into U;. The functor f yielding -
a function from (U1))cng(s) into Uy is defined by: (

(Def.15) For every element a of the carrier of U; holds (f)([a]cng(f)) = f(a).
We now state three propositions:

(23) Suppose f is a homomorphism of Uy into Uz. Then f is a homomor-
phism of (U1); cng(#) into Uz and f is a monomorphism of (U1)/ cng(y) into
U,.

(24) If f is an epimorphism of U; onto U,, then f is an isomorphism of
(Ul)/ Cng(f) and U,.

- (25) If f is an epimorphism of U; onto Uy, then (Uy);cng(s) and Uz are

isomorphic.
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The articles [17], [19], [20], [9], [13], [10], [11], [5], [16], [8], [18], [1], [3], [4], [2],
[15], [7], [12], [6], and [14] provide the terminology and notation for this paper.

1. PRELIMINARIES

In the sequel z is arbitrary and n denotes a natural number.
Let D be a non empty set and let X be a set. Then D U X is a non empty
set. :

A set is missing N if:

(Def.l) It NN = §.
One can check that there exists a set which is non empty and missing N .
A finite sequence has zero if:

(Def.2) 0 € rngit.

Let us observe that there exists a finite sequence of elements of N which is
non empty and has zero and there exists a finite sequence of elements of N which
is non empty and without zero.

Let f be a non empty finite sequence. Then dom f is a non empty set.

Let X be a set let D be a non empty set, let f be a partlal functlon from X

yxelds an element of D and is deﬁned as fo]lows

(Def.3) w.f = f(z).
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2. FREE UNIVERSAL ALGEBRA - GENERAL NOTIONS

Let U; be a universal algebra and let n be a natural number. Let us assume
that n € dom Opers Uy. The functor oper(n, U;) yleldmg a operation of Uy is
E defined as follows:
i . (Def.4) oper(n,U;) = (Opers U;)(n).
L Let Uy be a universal algebra. A subset of Uy is called a generator set of Uy

.....

S\
i, (Def.5) The carrier of GenY(it) = the carrier of U.
Let Uy be a universal algebra. A generator set of Up is free if satisfies the
condition (Def.6).
- (Def.6) Let Uy be a universal algebra. Suppose Up and U; are similar. Let f
be a function from it into the carrier of U;. Then there exists a function
h from Uy into Uy such that h is a homomorphlsm of Up into U; and
htit=f.
A umiversal algebra is free if:
(Def.7)  There exists generator set of it which is free.
Let us observe that there exists a universal algebra which is free and strict.
‘ Let Uy be a free universal algebra. Observe that there exists a generator set
% of Uy which is free.
One can prove the followmg proposition :
(1) Let U be a strict universal algebra and let A be a subset of Uy. Then
A is a generator set of Uy if and only if GenVA(4) =

3. CONSTRUCTION OF DECORATED TREE STRUCTURE FOR FREE
UNIVERSAL ALGEBRA

Let f be a non empty finite sequence of elements of N and let X be a set.
The functor REL( f, X) yielding a relation between dom f UX and (dom f U X)*
is defined by: - ;

(Def.8) For every element a of domf U X and for every element b of
(dom f U X)* holds (a, b) € REL(f, X) iff « € dom f and f(a) =lenb.

Let f be a non'empty finite sequence of elements of N and let X be a set.
The functor DTConUA(f, X) yields a strict tree construction structure and is
defined as follows:

(Def.9) DTConUA(f, X) = (dom f U X, REL(f, X)).
Next we state two propositions:
(2) Let f be a non empty finite sequence of elements of N and let X be a
set. Then the terminals of DTConUA(f, X) C X and the nontermmals
of DTConUA(f, X) = dom f.
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(3) Let f be a non empty finite sequence of elements of N and let X be a
‘missing N set. Then the terminals of DTConUA(f,X) =X '

Let f be a non empty finite sequence of elements of N and let X be a set.
Then DTConUA(f, X) is a strict tree construction structure with nonterminals.

Let f be a non empty finite sequence of elements of N with zero and let
X be a set. Then DTConUA(f, X) is a strict tree construction structure Wlth
nonterminals and useful nonterminals.

Let f be a non empty finite sequence of elements of N and let D be a missing
N non empty set. Then DTConUA(f, D) is a strict tree construction structure
with terminals, nonterminals, and useful nonterminals.

Let f be a non empty finite sequence of elements of N, let X be a set, and let
n be a natural number. Let us assume that » € dom f. The functor Sym(=, f, X)
yielding a symbol of DTConUA(f, X) is defined by:

(Def.10) ~ Sym(n, f,X)=n.

4. CONSTRUCTION OF FREE UNIVERSAL ALGEBRA FOR NON-EMPTY SET OF
GENERATORS AND GIVEN SIGNATURE

Let f be a non empty finite sequence of elements of N, let D be a missing N
non empty set, and let » be a natural number. Let us assume that n € dom f.
The functor FreeOpNSG(n, f, D) yields a homogeneous quasi total non empty
partial function from TS(DTConUA(f, D))* to TS(DTConUA(f, D)) and is de-
fined by the conditions (Def.11).

(Def11) (i) dom FreeOpNSG(n, f,D) = TS(DTConUA(f, )™, and
(ii)  for every finite sequence p of elements of TS(DTConUA(f, D)) such
that p € dom FreeOpNSG(n, f, D) holds (FreeOpNSG(z, f, D))(p) =
(Sym(n, f, D))-tree(p).
Let f be a non empty finite sequence of elements of N and let D be a missing
N non empty set. The functor FreeOpSeqNSG( f, D) yleldmg»avﬁmte sequence of
elements of TS(DTConUA(f, D))* TS(DTConUA(f, D)) is defined as follows:

(Def.12)  len FreeOpSeqNSG(f,D) = lenf and for every n such that
n € dom FreeOpSeqNSG(f, D) holds (FreeOpSeqNSG(f,D))(n) =
FreeOpNSG(n, f, D).

Let f be a non empty finite sequence of elements of N and let D be a missing
M non empty set. The functor FreeUvalgNSG( f, D) yields a strict universal
algebra and is defined as follows:

(Def.13)  FreeUnivAlgNSG(f, D) = (TS(DTConUA(f, D)) FreeOpSeqNSG(f, D))

One can prove the following proposition

(4) For every non empty finite sequence f of elements of N and for every
missing N non empty set D holds signature FreeUnivAlgNSG(f, D) =
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Let f be a non empty finite sequence of elements of N and let D be a non
empty missing N set. The functor FreeGenSetNSG(f, D) yielding a subset of
FreeUnivAlgNSG(f, D) is defined by:

 (Def.14)  FreeGenSetNSG(f, D) = {the root tree of s: s ranges over symbols of
DTConUA(f, D), s € the terminals of DTConUA( f, D)}.

One can prove the following proposition

(5) Let f be a non empty finite sequence of elements of N and let D be a
ol o non empty missing N set. Then FreeGenSetNSG( f, D) is non empty.

Let f be a non empty finite sequence of elements of N and let D be a
non empty missing N set. Then FreeGenSetNSG(f, D) is a generator set of
FreeUnivAlgNSG(f, D).

Let f be a non empty finite sequence of elements of N, let D be a non empty
missing N set, let C' be a non empty set, let s be a symbol of DTConUA(f, D),
and let F be a function from FreeGenSetNSG(f, D) into C. Let us assume that
s € the terminals of DTConUA(f, D). The functor 7, F yielding an element of
C is defined as follows:

(Def.15) 75 F = F(the root tree of s).
. Let f be a non empty finite sequence of elements of N, let D be a non empty
missing N set, and let s be a symbol of DTConUA( f, D). Let us assume that

there exists a finite sequence p such that s = p. The functor @s yielding a
natural number is defined by:
(Def.16) ®s=s.

Next we state the proposition

(6) For every non empty finite sequence f of elements of N and for every

non empty missing N set D holds FreeGenSetNSG(f, D) is free.

Let f be a non empty finite sequence of elements of N and let D be a non
empty missing N set _Then FreeUnivAlgNSG(f, D) is a strict free universal
algebra. '

Let f be a non empty finite sequence of elements of N and let D be a non

- empty missing N'set. Then FreeGenSetNSG( f, D) is a free generator set of
FreeUnivAlgNSG(f, D).

5. CONSTRUCTION OF FREE UNIVERSAL ALGEBRA AND SET OF
' GENERATORS

[

Let f bea non empty ﬁmte sequence of elements of N with zero, let D be a

missing N set, and let © be a natural number. Let us assume that n € dom f. The

~ functor FreeOpZAO(n f, D) yields a homogeneous quasi total non empty partial

function from TS(DTConUA(f, D))* to TS(DTConUA(f, D)) and is defined by
the conditions (Def.17).

(Def 17) (i) dom FreeOpZAO(n, f, D) = TS(DTConUA(f, D))”ﬂf, and
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(i) for every finite sequence p of elements of TS(DTConUA(f, D)) such
that p € dom FreeOpZAO(n, f, D) holds (FreeOpZAO(=n, f, D))(p) =
(Sym(n, f, D))-tree(p).

Let f be a non empty finite sequence of elements of N with zero and let D

be a missing N set. The functor FreeOpSeqZAO(f, D) yields a finite sequence
of elements of TS(DTConUA(f, D))*~ TS(DTConUA(f, D)) and is defined by:

(Def.18)  len FreeOpSeqZAO(f,D) = lenf and for every n such that
n € domFreeOpSeqZAO(f, D) holds (FreeOpSeqZAO(f,D))(n) =
FreeOpZAO(n, f, D).

Let f be a non empty finite sequence of elements of N with zero and let D be
a missing N set. The functor FreeUnivAlgZAO( f, D) yielding a strict universal
algebra is defined by:

(Def.19)  FreeUnivAlgZAO(f, D) = (TS(DTConUA(f, D)), FreeOpSeqZAO(f, D))
We now state three propositions:

(7) For every non empty finite sequence f of elements of N with zero and
for every missing N set D holds signature FreeUnivAlgZAO(f, D) = f

(8) Let f be anon empty finite sequence of elements of N with zero and let
D be a missing N set. Then FreeUnivAlgZAO(f, D) has constants.

(9) For every non empty finite sequence f of elements of N with zero and
~ for every missing N set D holds Constants(FreeUnivAlgZAO(f, D)) # 0.

Let f be a non empty finite sequence of elements of N with zero and let
D be a missing N set. The functor FreeGenSetZAO(f, D) yielding a subset of
FreeUnivAlgZAO(f, D) is defined as follows:

(Def.20)  FreeGenSetZAO(f, D) = {the root tree of s: s ranges over symbols of
DTConUA(f, D), s € the terminals of DTConUA(f, D)}.

Let f be a non empty finite sequence of elements of N with zero and
let D be a missing N set. Then FreeGenSetZAO(f,D) is a generator set of
FreeUnivAlgZAO(f, D). :

Let f be a non empty finite sequence of elements of N with zero, let D be a
missing N set, let C' be a non empty set, let s be a symbol of DTConUA(f, D),
and let F be a function from FreeGenSetZAO( f, D) into C. Let us assume that
s € the terminals of DTConUA( f, D). The functor 7, F yields an element of C
and is defined by: }

(Def.21) 7, F = F(the root tree of s).

Let f be a non empty finite sequence of elements of N w1th zero, let D be a
missing N set, and let s be a symbol of DTConUA(f, D). Let us assume that
there exists a ﬁnite sequence p such that s = p. The functor @s yields a natural
number and is defined by:

(Def.22) ©s=s.
The following proposition is true

(10) For every non empty finite sequence f of elements of N with zero and
for every missing N set D holds FreeGenSetZAO(f, D) is free.




120 BEATA PERKOWSKA

Let f be a non empty finite sequence of elements of N with zero and let D be
a missing N set. Then FreeUnivAlgZAO(f, D) is a strict free universal algebra.
Let f be a non empty finite sequence of elements of N with zero and let
D be a missing N set. Then FreeGenSetZAO(f, D) is a free generator set of
FreeUnivAlgZAO(f, D).
One can verify that there exists a universal algebra which is strict and free
" and has constants.
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Summary. Definitions of complex sequence and operations on
sequences (multiplication of sequences and multiplication by a complex-
number, addition, subtraction, division and absolute value of sequence)
are given. We followed [3].

MML Identifier: COMSEQ_1.

The terminology and notation used here are introduced in the fo]lowmg articles:
1, [1], (2], (4], and [3].
For simplicity we follow a convention: f will denote a function, n will denote
a natural number, r, p will denote elements of C, and z will be arbitrary.
A complex sequence is a function from N into C.
In the sequel s1, s2, 33, 84, 8}, s5 denote complex sequences.
One can prove the following propositions:
(1) fis a complex sequence iff dom f = N and for every z such that z € N
holds f(z) is an element of C.
(2) fis a complex sequence iff dom f = N and for every n holds f(n) is an
element of C. »
Let us consider sy, n. Then s1(n) is an element of C.
The scheme ExComplexSeq deals with a unary functor F yielding an element
of C, and states that:
There exists s; such that for every n holds s3(n) = F(n)
for all values of the parameter.
A complex sequence is non-zero if:
(Def.1) rmngit € C\ {0c}.
One can prove the following proposition
(3) s is non-zero iff for every z such that z € N holds s1(z) # 0¢c. =
Let us mention that there exists a complex sequence which is non-zero.
Next we state four propositions:
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(4) s; is non-zero iff for every n holds s;(n) # O¢.

(5) For all s1, sy such that for every z such that z € N holds s;(z) = s2()
holds s; = ss.

(6) For all s1, so such that for every n holds s1(n) = sz(n) holds 51 = ss.

(7)  For every r there exists sy such that rngs; = {r}.

Let us consider sy, s3. The functor s, 4 s3 yielding a complex sequence is
defined as follows:

‘ ‘ ‘T'“'('Def-2) For every n holds (sg + s3)(n) = s3(n) + s3(n).

(O

" The functor s s3 yielding a complex sequence is defined by:
) 4" (Def.3) For every n holds (s s3)(n) = sa(m) - s3(n).

Let us consider », s1. The functor r s yielding a complex sequence is defined
as follows:

‘ (Def.4) For every n holds (rs1)(n) = r-s1(n).

Let us consider s;. The functor —s; yielding a complex sequence is defined
as follows:

. (Def.5) For every n holds (—s1)(n) = —s1(n).

. Let us consider sy, s3. The functor s; — s3 yields a complex sequence and is
defined as follows:
(Defﬁ) 89 — 83 = 89 + —s3. .
Let us consider s;. The functor s; ! yields a complex sequence and is defined
as follows:
(Def.7)  For every n holds s;=1(n) = s1(n)~L.
Let us consider s3, s1. The functor %% yielding a complex sequence is defined
- as follows:

- (Def.8) 2 = s1~ L

Let us consider s;. The functor |s;| yields a sequence of real numbers and is

defined by:

| (Def.9)  For every n holds |s1]|(n) = |s1(n)|.

The following propositions are true:
(8) 82 + 83 = 83 + S9.
(9)  (s2+s3)+8¢4= 32+ (83 + s4).
(10) 983 = 83 2.
(11)  (s283) 84 = 52 (83 54).
(12) (89 + 83) 84 = 82 54 + $3 54.
(13)  s4(s2+ $3) = 5482 + 84 53.
(14) -5 =(-1¢)s1.
(15)  r(s2s3) = (72) s3.
(16) 7 (s2.83) = s2(7 83). |
(17)  (s2— 33) S4 = Sg 84 — 83 S4.
(18) 8489 — 84 83 = 84 (82 — 83).



(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)

(40)
(41)
(42)
(43)
(44)
(45)
(46)

(47)

(48)

(49)
(50)
(51)
(52)

COMPLEX SEQUENCES

7(8g + 83) =182 + T 83.
(r-p)sy=r(ps1).
7 (8y — 83) = T8 — T S3.

If s; is non-zero, then r —Z = le
2—(33+S4)—-32—53—34-

lc 81 = S1.

-—81 = 81.

89 — —83 = 89 4 S3.

83 — (83 — 84) = (82 — 83) + $a.
82 + (83 — 84) = (82 + 83) — 54.
(—82) 83 = —sg 83 and s3 —s3 = —33 83.
If sy is non-zero, then s;~! is non-zero.
If 51 is non-zero, then (s;71)~! = .
s1 is non-zero and s, is non-zero iff s; s, is non-zero.
If s; is non-zero and s, is non-zero, then 5371 8371 = (81 82)7 L.
If s; is non-zero, then §'f 81 = Sg. ;
S’ ' !

. . s s) s
If s, is non-zero and s; is non-zero, then =+ 22 = 12,
s1 82 81 82

If s; is non-zero and sy is non-zero, then % is non-zero.
If s; is non-zero and s, is non-zero, then (%)‘1 = ff
If s; is non-zero, then s3 -:-f = SJSTSZ
If s is non-zero and s is non-zero, then £ = i3sT32
22
If s; is non-zero and s, is non-zero, then -z—ii = %f—i%
If r # Oc and s; is non-zero, then r s; is non-zero.
If s; is non-zero, then —s; is non-zero.
If 7 # O¢c and s; is non-zero, then (rsy)~! =r~1s 7L
If s; is non-zero, then (—s1)™! = (=1¢) 817}
If s; is non-zero, then —R==2 and :ﬁ; = ~§f.
If s; is non-zero, then £ + R R 2 % 2%
1 s1 s1 S1 5

1 !
2 4 3_2 _ s287+s; 81

If sy is non-zero and s} is non-zero, then 22 2 ; and
1 1 ? s Y 51 8

5% 28-%a

s1 51 51 8]

RS

sl s
If s; is non-zero and s is non-zero and s, is non-zero, then 1= EfT’z
A 1

$2
|s1 81| = [sa] |s1].
If 51 is non-zero, then |s;| is non-zero. ;
If s; is non-zero, then |s1|71 = |s1 7.

'

. s4 s
If 51 is non-zero, then || = }—Si—}
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(53) Irs1| = 7| |31|°

o
1
o
S

sl
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Summary. Let X be a topological space and let D be a subset of
X. D is said to be discrete provided for every subset A of X such that
A C D there is an open subset G of X such that A = Dn G (comp. e.g.,
[7]). A discrete subset M of X is said to be mazimal discrete provided for
every discrete subset D of X if M C D then M = D. A subspace of X
is discrete (mazimal discrete) iff its carrier is discrete (maximal discrete)
in X. :

Our purpose is to list a number of properties of discrete and maximal
discrete sets in Mizar formalism. In particular, we show here that if D
is.dense and discrete then D is mazimal discrete; moreover, if D is open
and marimal discrete then D is dense. We discuss also the problem of
the existence of maximal discrete subsets in a topological space.

To present the main results we first recall a definition of a class of
topological spaces considered herein. A topological space X is called al-
most discrete if every open subset of X is closed; equivalently, if every
closed subset of X is open. Such spaces were investigated in Mizar for-
malism in [4] and [5]. We show here that every almost discrete space
contains a mazimal discrete subspace and every such subspace is a retract
of the enveloping space. Moreover, if Xo is a maximal discrete subspace
of an almost discrete space X andr: X — Xy is a continuous retraction,
then r~1(z) = {z} for every point z of X belonging to Xo. This fact is
a specialization, in the case of almost discrete spaces, of the theorem of
M.H. Stone that every topological space can be made into a Tp-space by
suitable identification of points (see [9]).

MML Identifier: TEX_2.

e

The terminology and notation used in this paper are introduced in the following
papers: [13], [14], [10], [2], [3], [12], (1], [8], [15], [11], [4], and [6].
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1. PROPER SUBSETS OF 1-SORTED STRUCTURES

‘ A non empty set is trivial if:
(Def.1) There exists an element s of it such that it = {s}.

o ' Let us note that there exists a non empty set which is trivial and there exists
"a non empty set which is non trivial.
. «»~Next we state four propositions:

+ (1) For every non empty set A and for every trivial non empty set B such
' that A C B holds A = B.
(2) For every trivial non empty set A and for every set B such that AN B
is non empty holds A C B.
. (3) TFor every 1-sorted structure Y holds Y is trivial iff the carrier of Y is
trivial.
(4) Let Yo, Y7 be 1-sorted structures. Suppose the carrier of ¥p = the
carrier of Y;. If Yy is trivial, then Y; is trivial.

Let S be a set. An element of S is proper if:
(Def.2) Tt #£US.

Let S be a set. Observe that there exists a subset of S which is non proper.
Next we state the proposition

(5) For every set S and for every subset A of S holds A is proper iff A # §.

Let S be a non empty set. Observe that every subset of S which is non
proper is also non empty and every subset of S which is empty is also proper.

Let S be a trivial non empty set. Observe that every subset of § which
is proper is also empty and every subset of .5 which is non empty is also non
‘proper. k

Let S be a non empty set. One can check that there exists a subset of §
which is proper and there exists a subset of § which is non proper.

Let S be a non empty set and let y be an element of S. Then {y} is a non
empty subset of 5. :

Let S be a non empty set. Observe that there exists a non empty subset of
S which is trivial.

Let S be a non empty set'and let y be an element of 5. Then {y} is a trivial
non empty subset of 5.

We now state two propositions:

(6) Forevery non empty set S and for every element . of S such that {y}
is proper holds 5 is non trivial.

(7) TFor every non trivial non empty set S and for every element y of S
holds {y} is proper.

Let S be a trivial non empty set. Note that every non empty subset of 5 is
non proper and every non empty subset of § which is non proper is also trivial. -




MAXIMAL DISCRETE SUBSPACES OF ALMOST ...

Let S be a non trivial non empty set. Observe that every non empty subset
of S which is trivial is also proper and every non empty subset of S which is
non proper is also non trivial.

Let S be a non trivial non empty set. One can check that there exists a
non empty subset of S which is trivial and proper and there exists a non empty
subset of S which is non trivial and non proper.

One can prove the following propositions:

(8) Let Y be a l-sorted structure and let y be an element of the carrier of
Y. If {y} is proper, then Y is non trivial.

(9) For every non trivial 1-sorted structure Y and for every element y of
the carrier of Y holds {y} is proper.

Let Y be a trivial 1-sorted structure. Note that every non-empty subset of
Y is non proper and every non empty subset of Y which is non proper is also
trivial.

Let Y be a non trivial 1-sorted structure. Omne can verify that every non
empty subset of Y which is trivial is also proper and every non empty subset of
Y which is non proper is also non trivial.

Let Y be a non trivial 1-sorted structure. One can check that there exists a
non empty subset of Y which is trivial and proper and there exists a non empty
subset of Y which is non trivial and non proper.

2. PROPER SUBSPACES OF TOPOLOGICAL SPACES

The following three propositions are true:

(10) Let X be a topological structure and let Xy be a subspace of X. Then
the topological structure of Xg is a strict subspace of X.

(11) Let X be a topological structure and let X3, Xy be subspaces of X.
Suppose the carrier of X; = the carrier of X;. Then the topological
structure of X; = the topological structure of X5.

(12) Let Yo, Y1 be topological structures. Suppose the topological structure
of Yy = the topological structure of Y;. If Yy is topological space-like,
then Y; is topological space-like. g

Let Y be a topological structure. A subspace of Y is proper if:
(Def.3) For every subset A of Y such that A = the carrier of it holds A is
proper.
We now state three propositions:

(13) Let Yp be a subspace of Y and let A be asubset of Y. If A = the carrier
of Yy, then A is proper iff Yp is proper.

(14) Let Yp, Y7 be subspaces of Y. Suppose the topological structure of
Yo = the topological structure of Y;. If Yy is proper, then Y; is proper-

(15) For every subspace Yy of Y such that the carrier of Yp = the carrier of
Y holds Y; is non proper. : :
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Let Y be a trivial topological structure. Observe that every subspace of ¥
is non proper and every subspace of Y which is non proper is also trivial.
Let Y be a non trivial topological structure. Observe that every subspace of
Y which is trivial is also proper and every subspace of Y which is non proper is
also non trivial.
" Let Y be a topological structure. Observe that there exists a subspace of Y
\+, which is non proper and strict.
| Next we state the proposition

(16) For every non proper subspace Yy of Y holds the topological structure
of Yy = the topological structure of Y.

4

Let Y be a topological structure. One can check the following observations:
* every subspace of Y which is discrete is also topological space-like,
* every subspace of Y which is anti-discrete is also topological space-like,
* every subspace of Y which is non topological space-like is also non
discrete, and

* every subspace of Y which is non topological space-like is also non anti-
- discrete.

Omne can prove the following propositions:

(17)  Let Yo, Y3 be topological structures. Suppose the topological structure
of Y = the topological structure of Y7. If Yy is discrete, then Y; is discrete.

(18) Let Yp, Y7 be topological structures. Suppose the topological structure
of Yo = the topological structure of Y7. If Yy is anti-discrete, then Y is
anti-discrete.

- Let Y be a topological structure. One can verify the following observations:

x every subspace of Y which is discrete is also almost discrete,
*  every subspace of Y which is non almost discrete is also non discrete,
* every subspace of Y which is anti-discrete is also almost discrete, and
* every subspace of ¥ which is non almost discrete is also non anti-
‘discrete. »
One can prove the following proposition

(19) Let Yb,‘Yl be topological‘structures. Suppose the topological structure
of Yy = the topological structure of Y. If Y is almost discrete, then Y;
is almost discrete. ‘ _

Let Y be a topological structure. One can check the following observations:
* évery subspace of Y which is discrete and anti-discrete is also trivial,
* every subspace of Y which is anti-discrete and non trivial is also non
discrete, and :
. % every subspace of Y which is discrete and non trivial is also non anti-
~ discrete.

Let Y be a topological structure and let y be a point of Y. The functor
Sspace(y) yielding a strict subspace of Y is defined as follows:
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(Def.4)  The carrier of Sspace(y) = {y}.

Let Y be a topological structure. Observe that there exists a subspace of Y
which is trivial and strict.
‘ Let Y be a topological structure and let y be a point of Y. Then Sspace(y)
is a trivial strict subspace of Y.
We now state three propositions:
(20) For every topological structure Y and for every point y of Y holds
Sspace(y) is proper iff {y} is proper.
(21) For every topological structure Y and for every point y of Y such that
Sspace(y) is proper holds Y is non trivial.
(22) For every non trivial topological structure Y and for every point y of
Y holds Sspace(y) is proper.

Let Y be a non trivial topological structure. One can verify that there exists
a subspace of Y which is proper trivial and strict.
We now state two propositions:

(23) Let Y be a topological structure and let Yy be a trivial subspace of Y.
Suppose Y is topological space-like. Then there exists a point y of Y .
such that the topological structure of Y5 = the topological structure of
Sspace(y).

(24) Let Y be a topological structure and let y be a point of Y. If Sspace(y)
is topological space-like, then Sspace(y) is discrete and anti-discrete.

Let Y be a topological structure. Note that every. subspace of Y which is
trivial and topological space-like is also discrete and anti-discrete.

Let X be a topological space. Note that there exists a subspace of X" which
is trivial strict and topological space-like.

Let X be a topological space and let z be a point of X. Then Sspace(z) is
a trivial strict topological space-like subspace of X. .

Let X be a topological space. Observe that there exists a subspa,ce of X
which is discrete anti-discrete and strict. :

Let X be a topological space and let = be a point of X. Then Sspace(m) is
a discrete anti-discrete strict subspace of X. ‘

Let X be a topological space. One can check the following observatlons

*  every subspace of X which is non proper is also open and closed,
*  every subspace of X which is non open is also proper, and
*  every subspace of X which is non closed is also proper.

Let X be a topological space. Note that there exists a subspace of X which
is open closed and strict.

Let X be a discrete topological space. Note that every subspace of X which
is anti-discrete is also trivial and every subspace of X which is non trivial is also
non anti-discrete. ‘ )

Let X be ‘a discrete non trivial topological space. Observe that there exists
a subspace of X which is discrete open closed proper and strict.
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Let X be an anti-discrete topological space. One can check that every sub-
space of X which is discrete is also trivial and every subspace of X which is non
trivial is also non discrete.

Let X be an anti-discrete non trivial topological space. One can verify that
every proper subspace of X is non open and non closed and every discrete
subspace of X is trivial and proper.

Let X be an anti-discrete non trivial topological space. One can check that
there exists a subspace of X which is anti-discrete non open non closed proper

- and strict.
Let X be an almost discrete non trivial topological space. Observe that there
exists a subspace of X which is almost discrete proper and strict.

3. MAXIMAL DISCRETE SUBSETS AND SUBSPACES

Let Y be a topological structure. A subset of Y is discrete if:
* (Def.5)  For every subset D of Y such that D C it there exists a subset G of Y’
such that G is open and it NG = D.
Let Y be a topological structure. Let us observe that a subset of YV is discrete
if: )
(Def.6)  For every subset D of Y such that D C it there exists a subset F' of Y,
such that F is closed and it NF = D. )
We now state three propositions:

(25) Let Yy, Y1 be topological structures, and let Dy be a subset of Yy, and
let Dy be a subset-of Y;. Suppose the topological structure of Yy = the
topological structure of Y3 and Doy = D;. If Dy is discrete, then D is
discrete.

(26) Let Y be a topological structure, and let Y be a subspace of Y, and let
A be a subset of Y. Suppose A = the carrier of Y. Then A is discrete if
and only if Yp is discrete. '

(27) Let Y be a topological structure and let A be a subset of Y. Suppose
A = the carrier of Y. Then A is discrete if and only if Y is discrete.

In the sequel Y will denote a topological structure.
We now state several propositions:

(28) For all subsets A, B of Y such that B C A holds if A is discrete, then
B is discrete.

(29) For all subsets A, B of Y such that A is discrete or B is discrete holds
AN B is discrete.

(30) Suppose that for all subsets P, ) of Y such that P is open and Q is
open holds PN Q) is open and P UTQ is open. Let A, B be subsets of Y.
Suppose A is open and B is open. If A is discrete and B is discrete, then
AU B is discrete.
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(31) Suppose that for all subsets P, @ of Y such that P is closed and @ is
closed holds PN @Q is closed and P U @ is closed. Let A, B be subsets of
Y. Suppose A is closed and B is closed. If A is discrete and B is discrete,
then A U B is discrete.

(32) Let A be a subset of Y. Suppose A is discrete. Let z be a point of
Y. If z € A, then there exists a subset G of Y such that G is open and
ANG = {z}.

(33) Let A be a subset of Y. Suppose A is discrete. Let z be a point of
Y. If z € A, then there exists a subset F' of Y such that F is closed and
ANF ={z}.

In the sequel X denotes a topological space.
The following propositions are true:

(34) Let Ag be a non empty subset of X. Suppose Ay is discrete. Then there
exists a discrete strict subspace X of X such that Ay = the carrier of
Xo.

(35) Every empty subset of X is discrete.

(36) For every point z of X holds {z} is discrete.

(37) Let A be a subset of X. Suppose that for every point & of X such that
z € A there exists a subset G of X such that G is open and ANG = {z}.
Then A is discrete.

(38) Let A, B be subsets of X. Suppose A is open and B is open. If A is
diserete and B is discrete, then A U B is discrete.

(39) Let A, B be subsets of X. Suppose A is closed and B is closed. If A is
discrete and B is discrete, then AU B is discrete.

(40) For every subset A of X such that A is everywhere dense holds if A is

v discrete, then A is open.

(41)  For every subset A of X holds A is discrete iff for every subset D of X
such that D C A holds AND = D.

(42) For every subset A of X such that A is discrete and for every point z
of X such that z € A holds An {z} = {z}. .

(43) For every discrete topologlcal space X holds every subset of X is dis-
crete.

(44) Let X be an anti-discrete topological space and let A be a non empty
subset of X. Then A is discrete if and only if A is trivial.

Let Y be a topological structure. A subset of Y is maximal discrete if:
(Def.7) It is discrete and for every subset D of Y such that D is discrete and it
C D holds it = D.
The following proposition is true
(45) Let Yp, Y7 be topological structures, and let Do be a subset of Yy, and
let D; be a subset of Y;. Suppose the topological structure of Y5 = the
topological structure of Y; and Do = D;. If Dy is:maximal discrete, then
D, is maximal discrete. :
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In the sequel X will denote a topological space.
Next we state several propositions:
(46) Every empty subset of X is not maximal discrete.
(47) For every subset A of X such that A is open holds if A is maximal
discrete, then A is dense.
(48)  For every subset A of X such that A is dense holds if A is discrete, then
A is maximal discrete.

.- (49) Let X be a discrete topological space and let A be a subset of X. Then
A is maximal discrete if and only if A is non proper.

(50) Let X be an anti-discrete topological space and let A be a non empty
subset of X. Then A is maximal discrete if and only if A is trivial.

7 Let Y be a topological structure. A subspace of Y is maximal discrete if:
“ (Def.8) For every subset A of Y such that A = the carrier of it holds A is
maximal discrete.
One can prove the following proposition

(51) Let Y be a topological structure, and let Yy be a subspace of Y, and let
A be a subset of Y. Suppose A = the carrier of Y. Then A is maximal
discrete if and only if Yp is maximal discrete.

Let Y be a topological structure. Note that every subspace of ¥ which is
maximal discrete is also discrete and every subspace of Y which is non discrete
is also non maximal discrete.

Next we state two propositions:

(52) Let X, be a subspace of X. Then X, is maximal discrete if and only if
the following conditions are satisfied:

(i) Xo is discrete, and

(i) for every dlscrete subspace Yy of X such that X, is a subspace of Yj

holds the topological structure of X = the topological structure of Yo.

(53) Let Ag be a non empty subset of X. Suppose Ag is maximal discrete.
"Then there exists a strict subspace Xy of X such that Xy is maximal
discrete and Ag = the carrier of Xj.

Let X be a discrete topological space. One can verify the following observa-
tions:
*  every subspace of X which is maximal discrete is also non proper,
*  every subspace of X, Whlch is proper is also non maximal discrete,
*  every subspace of X Wthh is non proper is also maximal discrete, and
x  every subspace of X which is non maximal discrete is also proper.

Let X be an anti-discrete topological space. One.can check the following
observations: ‘

* every subspace of X .which is ma)ﬂmal dlscrete is also trivial,
* = every.subspace of X which is nonﬁc,n}vml s also, ‘nongmamma,l discrete,
% every subspace of X which is trivial is also:maxima} discrete, and
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*x  every subspace of X which is non maximal discrete is also non trivial.

4. MAXIMAL DISCRETE SUBSPACES OF ALMOST DISCRETE SPACES

The scheme FzChoiceFCol deals with a topological structure A, a family B
of subsets of A, and a binary predicate P, and states that:
There exists a function f from B into the carrier of A such that for
every subset S of A such that § € B holds P[S, f(5)]
provided the following condition is met:
o For every subset S of A such that § € B there exists a point z of
A such that P[§,z].
In the sequel X will denote an almost discrete topological space.
We now state a number of propositions:

(54) For every subset A of X holds 4 = U{m : a ranges over points of X,
a€ A}

(65)  For all points a, b of X such that a € {b} holds {a} = {b}.

(56)  For all points a, b of X holds {a} N {b} = @ or {a} = {b].

(57) Let A be a subset of X. Suppose that for every point « of X such that
z € A there exists a subset F of X such that F is closed and ANF = {z}.
Then A is discrete.

(58)  For every subset A of X such that for every point z of X such that
z € A holds AN {z} = {z} holds A is discrete.

(59) Let A be a subset of X. Then A is discrete if and only if for all points
a, b of X such that a € A and b € A holds if a # b, then {a} N {6} = 0.

(60) Let A be a subset of X. Then A is discrete if and only if for every point
z of X such that z € A there exists a point a of X such that a € A and
An{z} = {a).

(61) For every subset A of X such that A is open or closed holds if A is
maximal discrete, then A is not proper.

(62) For every subset A of X such that A is maximal discrete holds A is
dense.

(63) Forevery subset A of X such that A is maximal dlscrete holds U{{a} a
ranges over points of X, a € A} = the carrier of X

(64) Let A be a subset of X. Then A is maximal discrete if and only if
for every point z of X there exists a point ¢ of X such that ¢ € A and
AnTe] = {a}.

(65) For every subset A of X such that A is discrete there exists a subset M
of X such that A C M and M is maximal discrete.

(66) There exists subset of X which is maximal discrete.

(67) Let Yp be a discrete subspace of X. Then there exists a strict subspace
Xo of X such that Yy is a subspace of Xy and X¢ is maximal discrete.
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Let X be an almost discrete non discrete topological space. One can verify

. that every subspace of X which is maximal discrete is also proper and every
" subspace of X which is non proper is also non maximal discrete.

Let X be an almost discrete non anti-discrete topological space. Observe
. that every subspace of X which is maximal discrete is also non trivial and every
E -, subspace of X which is trivial is also non maximal discrete. :
/.. Let X be an almost discrete topological space. Note that there exists a
" subspace of X which is maximal discrete and strict.

" 5. CONTINUOUS MAPPINGS AND ALMOST DISCRETE SPACES

' The scheme MapFEzChoiceF concerns a topological structure A, a topological
structure B, and a binary predicate P, and states that:
: There exists a map f from A into B such that for every point = of
- A holds Pz, f(z)]
provxded the parameters have the following property:
e For every point z of A there exists a point y of B such that P[z,y].
In the sequel X, Y are topological spaces.
Next we state four propositions:
(68) For every discrete topological space X holds every mapping from X
into Y is continuous.
(69) If for every topological space Y holds every mapping from X into Y is
continuous, then X is discrete.
(70)  For every anti-discrete topological space Y holds every mapping from
X into Y is continuous
(71)  If for every topological space X holds every mapping from X mto Y is
- continuous, then Y is anti-discrete.
In the sequel X will be a discrete topological space and X will be a subspace
of X. _
One can prove the following two propositions:
(72)  There exists continuous mapping from X into Xo which is a retraction.
(73) Xo is a retract of X.

In the sequel X will be an almost discrete topological space and X, will be
a maximal discrete subspace of X.
Next we state four propositions:
(74)  There exists continuous mapping from X into Xo which is a retraction.
(75)  Xo is a retract of X.
(76) Let r be a continuous mapping from X into Xo. Suppose r is a retrac-
tion. Let F be a subset of Xy and let E be a subset of X. U F=EFE,then
r1F=F.
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(77) Let r be a continuous mapping from X into Xo. Suppose r is a retrac-
tion. Let a be a point of Xg and let & be a point of X. If a = b, then

r =1 {a} = {b}.
In the sequel X, is a discrete subspace of X.
The following two propositions are true:

(78)  There exists continuous mapping from X into Xy which is a retraction.
(79) Xp is a retract of X.
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1. SOME PROPERTIES OF SUBSETS OF A TOPOLOGICAL SPACE

In the sequel X denotes a topological space and A, B denote subsets of X.

The following propositions are true:

(1) If A and B constitute a decomposition, then A is non empty iff B is
proper.

(2) If A and B constitute a decomposition, then A is dense iff B is boundary.

© (3) If A and B constitute a decomposition, then A is boundary iff B is

. dense.

(4) If A and B constitute a decomposition, then A is everywhere dense iff
B is nowhere dense.

(5) If A and B constitute a decomposition, then A is nowhere dense iff B
is everywhere dense.

In the sequel Yy, Y5 will be subspaces of X.

Next we state three propositions:

(6) If Y7 and Y, constitute a decomposition, then Y7 is proper and Y3 is
proper. -

«(7) Let X be a non trivial topological space and let D be a non empty
proper subset of X. Then there exists a proper strict subspace Yp of X
such that D = the carrier of Y.

(8) Let X bea non trivial topological space and let Y; be a proper subspace
of X. Then there exists a proper strict subspace Y; of X such that ¥;
and Y5 constitute a decomposition.

2. DENSE AND EVERYWHERE DENSE SUBSPACES

Let X be a topological space. A subspace of X is dense if:

(Def.1)  For every subset A of X such that A = the carrier of it holds A is dense.

The following proposition is true
(9) Let X, be a subspace of X and let A be a subset of X. If A = the
carrier of Xp, then X is dense iff A is dense.

Let X be a topological space. One can check the following observations:
* every subspace of X which is dense and closed is also non proper,
*  every subspace of X which is dense and proper is also non closed, and
* every subspace of X which is proper and closed is also non dense.

Let X be a topological space. Note that there exists a subspace of X which

is dense and strict.
We now state severa,l propositions:

(10) Let Ao be a non empty subset of X. Suppose Ao is dense. Then there
exists a dense strict subspace Xj of X such that Ag = the carrier of Xj.
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(11) Let X, be a dense subspace of X, and let A be a subset of X, and let
B be a subset of Xo. If A = B, then B is dense iff A is dense.

(12)  For every dense subspace X; of X and for every subspace X3 of X such
that X; is a subspace of X3 holds X3 is dense.

(13) Let X; be a dense subspace of X and let X3 be a subspace of X. If X;
is a subspace of X3, then X; is a dense subspace of Xj.

(14)  For every dense subspace X; of X holds every dense subspace of X is
a dense subspace of X.

(15)  Let Y7, Y2 be topological spaces. Suppose Y, = the topological structure
of Y;. Then Y; is a dense subspace of X if and only if Y is a dense subspace
of X.

Let X be a topological space. A subspace of X is everywhere dense if:
(Def.2) For every subset A of X such that A = the carrier of it holds A4 is
everywhere dense.
Next we state the proposition

(16) Let Xo be a subspace of X and let A be a subset of X. Suppose A = the
carrier of Xg. Then Xj is everywhere dense if and only if A is everywhere
dense.

Let X be a topological space. One can check the following observations:
* every subspace of X which is everywhere dense is also dense,
* every subspace of X which is non dense is also non everywhere dense,
* every subspace of X which is non proper is also everywhere dense, and
+ every subspace of X which is non everywhere dense is also proper.

Let X be a topological space. Observe that there exists a subspace of X

which is everywhere dense and strict.

We now state several propositions:

(17)  Let Ao be a non empty subset of X. Suppose Ag is everywhere dense.
Then there exists an everywhere dense strict subspace Xg of X such that
Ag = the carrier of Xg.

(18) Let Xp be an everywhere dense subspace of X, and let A be a subset of
X, and let B be a subset of Xy. Suppose A = B. Then B is everywhere
dense if and only if A is everywhere dense.

(19) Let X; be an everywhere dense subspace of X and let X2 be a subspace
of X. If X; is a subspace of X3, then X is everywhere dense.

(20) Let X; be an everywhere dense subspace of X and let X, be a subspace
of X. Suppose X; is a subspace of Xs. Then X; is an everywhere dense
subspace of Xs.

(21) . For every everywhere dense subspace X1 of X holds every everywhere
dense subspace of X is an everywhere dense subspace of X.

(22) LetYy,Y;be topological spaces. Suppose Y2 = the topological structure
of Y;. Then Y7 is an everywhere dense subspace of X if and only if Y2 is
an everywhere dense subspace of X.
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Let X be a topological space. One can check the following observations:
*x  every subspace of X which is dense and open is also everywhere dense,
%  every subspace of X which is dense and non everywhere dense is also
non open, and
* every subspace of X which is open and non everywhere dense is also
non dense. ,
- Let X be a topological space. Note that there exists a subspace of X which
'-_is dense open and strict.
" We now state two propositions:

S (23) Let Ag be a non empty subset of X. Suppose Ag is dense and open.
B Then there exists a dense open strict subspace X of X such that Ag = the
carrier of Xg.

"~ (24) For every subspace Xg of X holds X is everywhere dense iff there exists
e dense open strict subspace of X which is a subspace of Xp.
In the sequel X7, X, denote subspaces of X.
‘ One can prove the following four propositions:
B (25) If X; is dense or X3 is dense, then X; U X3 is a dense subspace of X.

(26) If X, is everywhere dense or X3 is everywhere dense, then X; U X is
an everywhere dense subspace of X.

(27) If X is everywhere dense and X is everywhere dense, then X; N X3 is
an everywhere dense subspace of X.

(28) Suppose X; is everywhere dense and X3 is dense or X3 is dense and X,
is everywhere dense. Then X; N X3 is a dense subspace of X.

3. BOUNDARY AND NOWHERE DENSE SUBSPACES

Let X be a topological space. A subspace of X is boundary if:

(Def.3) For every subset A of X such that A = the carrier of it holds A is
boundary.

We now state the proposition

(29) Let Xp be a subspace of X and let A be a subset of X. Suppose A = the
carrier of Xp. Then X is boundary if and only if A is boundary.

Let X be a topological space. One can verify the following observations:
*  every subspace of X which is open is also non boundary,
*  every subspace of X which is boundary is also non open,

* every subspace of X which is everywhere dense is also non boundary,
and

%  every subspace of X which is boundary is also non everywhere dense.
Next we state several propositions:
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(30) Let Ap be a non empty subset of X. Suppose Ag is boundary. Then
there exists a strict subspace Xg of X such that Xg is boundary and
Ap = the carrier of Xp. .

(31) Let X, X5 be subspaces of X. Suppose X; and X, constitute a de-
composition. Then X; is dense if and only if X, is boundary.

(32) Let X;, X5 be subspaces of X. Suppose X; and X, constitute a de-
composition. Then X; is boundary if and only if X, is dense.

(33) Let Xp be a subspace of X. Suppose Xp is boundary. Let A be a subset
of X. If A C the carrier of Xg, then A is boundary.

(34) For all subspaces X7, X3 of X such that X; is boundary holds if X is
a subspace of Xy, then X5 is boundary.

Let X be a topological space. A subspace of X is nowhere dense if:

(Def.4) For every subset A of X such that A = the carrier of it holds A is
nowhere dense.

We now state the proposition

(35) Let Xo be a subspace of X and let A be a subset of X. Suppose A = the
carrier of Xy. Then Xy is nowhere dense if and only if A is nowhere dense.

Let X be a topological space. One can verify the following observations:

*  every subspace of X which is nowhere dense is also boundary,

'« every subspace of X which is non boundary is also ion nowhere dense,
*  every subspace of X which is nowhere dense is also non dense, and

*  every subspace of X which is dense is also non nowhere dense.

In the sequel X will denote a topological space.

One can prove the following propositions:

(36) Let Ag be a non empty subset of X. Suppose Ag is nowhere dense.
Then there exists a strict subspace Xy of X such that Xy is nowhere
dense and Ag = the carrier of Xj. ;

(37) Let X3, X3 be subspaces of X. Suppose X; and Xo constitute a de-
composition. Then X is everywhere dense if and only if X, is nowhere
dense.

(38) Let Xi, X, be subspaces of X. Suppose X; and X; constitute a de-
composition. Then X; is nowhere dense if and only if X5 is everywhere
dense.

(39) Let-Xo bea subspace of X. Suppose Xj is nowhere dense. Let A be a
subset of X. If A C the carrier of Xo, then A is nowhere dense.

(40) Let X;, X2 be subspaces of X. Suppose X; is nowhere dense. If X, is
a subspace of X, then X is nowhere dense.

Let X be a topological space. One can verify the following observations:
*  every subspace of X which is boundary and closed is also-nowhere deﬁse
* every subspace of X" which is boundary and non nowhere dense is_also
non closed, and : *

141
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* every subspace of X which is closed and non nowhere dense is also non
boundary.
The following propositions are true:
(41) Let Ao be a non empty subset of X. Suppose Ap is boundary and
closed. Then there exists a closed strict subspace Xg of X such that Xj
. is boundary and Ay = the carrier of Xp.
e ' (42) Let Xo be a subspace of X. Then X is nowhere dense if and only if
there exists a closed strict subspace X; of X such that X; is boundary
and Xg is a subspace of X;.
In the sequel Xy, X, will be subspaces of X.
One can prove the following propositions:
(43) If X; is boundary or X3 is boundary and if X; meets X3, then X7 M1 X>
is boundary.
(44) If X; is nowhere dense and X is nowhere dense, then X;UX}5 is nowhere
dense. _
(45) If X; is nowhere dense and X, is boundary or X; is boundary and X,
is nowhere dense, then X; U X3 is boundary.
(46) If X; is nowhere dense or X3 is nowhere dense and if X; meets X, then
X1 N X, is nowhere dense.

4. DENSE AND BOUNDARY SUBSPACES OF NON-DISCRETE SPACES

Next we state two propositions:
(47)  For every topological space X such that every subspace of X is non
" boundary holds X is discrete.
(48)  For every non trivial topological space X such that every proper sub-
space of X is non dense holds X is discrete.
Let X be a d1screte topological space. One can check the following observa-
‘tions: ”
* every subspace of X is non boundary,
*x  every subspace of X which is proper is also non dense, and
* every subspace of X which is dense is also non proper.
Let X be a discrete topological space. Observe that there exists a subspace
of X which is non boundary and strict.
Let X be a dlscrete non trivial topological space. Note that there exists a
subspace of X which is non dense and strict.
One can prove the following two propositions:
(49) TFor every topological space X such that there exists subspace of X
which is boundary holds X is non discrete.
(50) For every topological space X such that there exists subspace of X
which is dense and proper holds X is non discrete.
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Let X be a non discrete topological space. One can check that there exists
a subspace of X which is boundary and strict and there exists a subspace of X
which is dense proper and strict.

In the sequel X will be a non discrete topological space.

We now state several propositions:

(51) Let Ap be a non empty subset of X. Suppose Ap is boundary. Then
there exists a boundary strict subspace Xg of X such that Ag = the carrier
of Xo.

(52) Let Ag be a non empty proper subset of X. Suppose Ap is dense. Then
there exists a dense proper strict subspace Xo of X such that Ag = the
carrier of Xj.

(53) Let X; be a boundary subspace of X. Then there exists a dense proper
strict subspace X5 of X such that X; and X, constitute a decomposition.

(54) Let X7 be a dense proper subspace of X. Then there exists a boundary
strict subspace X, of X such that X; and X, constitute a decomposition.

(55) Let Y3, Y, be topological spaces. Suppose Y3 = the topological structure
of Y;. Then Y; is a boundary subspace of X if and only if Y3 is a boundary
subspace of X.

5. EVERYWHERE AND NOWHERE DENSE SUBSPACES OF
NON-ALMOST-DISCRETE SPACES

Next we state two propositions:

(56) For every topological space X such that every subspace of X is non
nowhere dense holds X is almost discrete.

(57)  For every non trivial topological space X such that every proper sub-
space of X is non everywhere dense holds X is almost discrete.

Let X be an almost discrete topological space. One can verify the following

observations: ‘

* every subspace of X is non nowhere dense, ‘
every subspace of X which is proper is also non everywhere dense,
every subspace of X which is everywhere dense is also non proper,
every subspace of X which is boundary is also non closed,
every subspace of X which is closed is also non boundary,
every subspace of X which is dense and proper is also non open,

* ¥ ¥ X ¥ ¥

every subspace of X which is dense and open is also non proper, and
*° every subspace of X which is open and proper is also non dense.
Let X be an almost discrete topological space. One can verify that there
exists a subspace of X which is non nowhere dense and strict. ‘
Let X be an almost discrete non trivial topological space. Note that there
exists a subspace of X which is non everywhere dense and strict.



144 ' ZBIGNIEW KARNO

The following four propositions are true:

(58) For every topological space X such that there exists subspace of X
which is nowhere dense holds X is non almost discrete.

(59) For every topological space X such that there exists subspace of X
which is boundary and closed holds X is non almost discrete.

(60) For every topological space X such that there exists subspace of X
which is everywhere dense and proper holds X is non almost discrete.

(61) For every topological space X such that there exists subspace of X
" which is dense and open and proper holds X is non almost discrete.

Let X be a non almost discrete topological space. One can check that there

. exists a subspace of X which is nowhere dense and strict and there exists a

subspace of X which is everywhere dense proper and strict.
In the sequel X denotes a non almost discrete topological space.
The following propositions are true:

(62) Let Ag be a non empty subset of X. Suppose Ag is nowhere dense.
Then there exists a nowhere dense strict subspace Xo of X such.that
Ag = the carrier of Xj.

(63) Let Ag be a non empty proper subset of X. Suppose A is everywhere
dense. Then there exists an everywhere dense proper strict subspace Xg
of X such that Ag = the carrier of Xg.

(64) Let X; be a nowhere dense subspace of X. Then there exists an ev-
erywhere dense proper strict subspace X3 of X such that X; and X,
constitute a decomposition.

~(65) Let X, be an everywhere dense proper subspace of X. Then there exists
a nowhere dense strict subspace X, of X such that X; and X, constitute
a decomposition.

(66) Let Y, Y2 be topological spaces. Suppose Y, = the topological structure
of Y;. Then Y] is a nowhere dense subspace of X if and only if Y5 is a
nowhere dense subspace of X.

Let X be a non almost discrete topological space. One can verify that there
exists a subspace of X which is boundary closed and strict and there exists a
subspace of X which is dense open proper and strict.

Next we state several propositions: .

(67) Let Ag be a non empty subset of X. Suppose Ag is boundary and
closed. Then there exists a boundary closed strict subspace Xy of X such
that Ag = the carrier of Xj.

(68) Let A be a non empty proper subset of X. Suppose Ag is dense and
open. Then there exists a dense open proper strict subspace Xo of X such
that Ap = the carrier of X.

(69) Let X; be'a boundary closed subspace of X. Then there exists a dense

open proper strict subspace X3 of X such that X; and X, constitute a
decomposition.



ON NOWHERE AND EVERYWHERE DENSE SUBSPACES OF ... 145

(70) Let X3 be a dense open proper subspace of X. Then there exists a
boundary closed strict subspace X3 of X such that X; and X, constitute
a decomposition.

(71) Let X be a subspace of X. Then Xy is nowhere dense if and only if
there exists a boundary closed strict subspace X7 of X such that Xo isa
subspace of X;.

(72) Let Xo be a nowhere dense subspace of X. Then
(i) Xp is boundary or closed, or
(ii) there exists an everywhere dense proper strict subspace X3 of X and
there exists a boundary closed strict subspace X3 of X such that X1NX, =
the topological structure of Xy and X; U X; = the topological structure
of X.

(73) Let X be an everywhere dense subspace of X. Then
(i) Xo is dense or open, or
(ii)  there exists a dense open proper strict subspace X7 of X and there
exists a nowhere dense strict subspace X5 of X such that X7 misses X,
and X3 U X, = the topological structure of Xg.

(74) Let Xo be a nowhere dense subspace of X. Then there exists a dense
open proper strict subspace X; of X and there exists a boundary closed
strict subspace X, of X such that Xy and X, constitute a decomposition
and Xg is a subspace of Xj.

(75) Let Xo be an everywhere dense proper subspace of X. Then there
exists a dense open proper strict subspace X; of X and there exists a
boundary closed strict subspace Xz of X such that X; and X, constitute
& decomposition and X, is a subspace of Xg.
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