Complex Sequences

Agnieszka Banachowicz Warsaw University Białystok

Anna Winnicka Warsaw University Białystok

Summary. Definitions of complex sequence and operations on sequences (multiplication of sequences and multiplication by a complex number, addition, subtraction, division and absolute value of sequence) are given. We followed [3].

MML Identifier: COMSEQ_1.

The terminology and notation used here are introduced in the following articles: [5], [1], [2], [4], and [3].

For simplicity we follow a convention: f will denote a function, n will denote a natural number, r, p will denote elements of C, and x will be arbitrary.

A complex sequence is a function from N into C.

In the sequel s_1 , s_2 , s_3 , s_4 , s'_1 , s'_2 denote complex sequences.

One can prove the following propositions:

- (1) f is a complex sequence iff dom $f = \mathbb{N}$ and for every x such that $x \in \mathbb{N}$ holds f(x) is an element of \mathbb{C} .
- (2) f is a complex sequence iff dom $f = \mathbb{N}$ and for every n holds f(n) is an element of \mathbb{C} .

Let us consider s_1 , n. Then $s_1(n)$ is an element of \mathbb{C} .

The scheme ExComplexSeq deals with a unary functor $\mathcal F$ yielding an element of $\mathbb C$, and states that:

There exists s_1 such that for every n holds $s_1(n) = \mathcal{F}(n)$ for all values of the parameter.

A complex sequence is non-zero if:

(Def.1) $\operatorname{rngit} \subseteq \mathbb{C} \setminus \{0_{\mathbb{C}}\}.$

One can prove the following proposition

(3) s_1 is non-zero iff for every x such that $x \in \mathbb{N}$ holds $s_1(x) \neq 0_{\mathbb{C}}$. Let us mention that there exists a complex sequence which is non-zero. Next we state four propositions:

- (4) s_1 is non-zero iff for every n holds $s_1(n) \neq 0_{\mathbb{C}}$.
- (5) For all s_1, s_2 such that for every x such that $x \in \mathbb{N}$ holds $s_1(x) = s_2(x)$ holds $s_1 = s_2$.
- (6) For all s_1 , s_2 such that for every n holds $s_1(n) = s_2(n)$ holds $s_1 = s_2$.
- (7) For every r there exists s_1 such that $\operatorname{rng} s_1 = \{r\}$.

Let us consider s_2 , s_3 . The functor $s_2 + s_3$ yielding a complex sequence is defined as follows:

(Def.2) For every n holds $(s_2 + s_3)(n) = s_2(n) + s_3(n)$.

The functor $s_2 s_3$ yielding a complex sequence is defined by:

(Def.3) For every n holds $(s_2 s_3)(n) = s_2(n) \cdot s_3(n)$.

Let us consider r, s_1 . The functor $r s_1$ yielding a complex sequence is defined as follows:

(Def.4) For every n holds $(r s_1)(n) = r \cdot s_1(n)$.

Let us consider s_1 . The functor $-s_1$ yielding a complex sequence is defined as follows:

(Def.5) For every n holds $(-s_1)(n) = -s_1(n)$.

Let us consider s_2 , s_3 . The functor $s_2 - s_3$ yields a complex sequence and is defined as follows:

(Def.6) $s_2 - s_3 = s_2 + -s_3$.

Let us consider s_1 . The functor s_1^{-1} yields a complex sequence and is defined as follows:

(Def.7) For every n holds $s_1^{-1}(n) = s_1(n)^{-1}$.

Let us consider s_2 , s_1 . The functor $\frac{s_2}{s_1}$ yielding a complex sequence is defined as follows:

(Def.8) $\frac{s_2}{s_1} = s_2 s_1^{-1}$.

Let us consider s_1 . The functor $|s_1|$ yields a sequence of real numbers and is defined by:

(Def.9) For every n holds $|s_1|(n) = |s_1(n)|$.

The following propositions are true:

- $(8) \quad s_2 + s_3 = s_3 + s_2.$
- $(9) \quad (s_2+s_3)+s_4=s_2+(s_3+s_4).$
- $(10) \quad s_2 \, s_3 = s_3 \, s_2.$
- $(11) \quad (s_2 \, s_3) \, s_4 = s_2 \, (s_3 \, s_4).$
- $(12) \quad (s_2 + s_3) \, s_4 = s_2 \, s_4 + s_3 \, s_4.$
- $(13) s_4(s_2+s_3) = s_4 s_2 + s_4 s_3.$
- $(14) -s_1 = (-1_{\mathbb{C}}) s_1.$
- (15) $r(s_2 s_3) = (r s_2) s_3$.
- (16) $r(s_2 s_3) = s_2(r s_3).$
- $(17) \quad (s_2 s_3) \, s_4 = s_2 \, s_4 s_3 \, s_4.$
- $(18) s_4 s_2 s_4 s_3 = s_4 (s_2 s_3).$

(19)
$$r(s_2+s_3)=rs_2+rs_3.$$

$$(20) (r \cdot p) s_1 = r (p s_1).$$

(21)
$$r(s_2-s_3)=rs_2-rs_3$$
.

(22) If
$$s_1$$
 is non-zero, then $r \frac{s_2}{s_1} = \frac{r s_2}{s_1}$.

$$(23) s_2 - (s_3 + s_4) = s_2 - s_3 - s_4.$$

(24)
$$1_{\mathbb{C}} s_1 = s_1$$
.

(25)
$$--s_1 = s_1$$
.

$$(26) s_2 - -s_3 = s_2 + s_3.$$

$$(27) s_2 - (s_3 - s_4) = (s_2 - s_3) + s_4.$$

(28)
$$s_2 + (s_3 - s_4) = (s_2 + s_3) - s_4.$$

(29)
$$(-s_2) s_3 = -s_2 s_3$$
 and $s_2 - s_3 = -s_2 s_3$.

(30) If
$$s_1$$
 is non-zero, then s_1^{-1} is non-zero.

(31) If
$$s_1$$
 is non-zero, then $(s_1^{-1})^{-1} = s_1$.

(32)
$$s_1$$
 is non-zero and s_2 is non-zero iff $s_1 s_2$ is non-zero.

(33) If
$$s_1$$
 is non-zero and s_2 is non-zero, then $s_1^{-1} s_2^{-1} = (s_1 s_2)^{-1}$.

(34) If
$$s_1$$
 is non-zero, then $\frac{s_2}{s_1} s_1 = s_2$.

(35) If
$$s_1$$
 is non-zero and s_2 is non-zero, then $\frac{s_1'}{s_1} \frac{s_2'}{s_2} = \frac{s_1' s_2'}{s_1 s_2}$.

(36) If
$$s_1$$
 is non-zero and s_2 is non-zero, then $\frac{s_1}{s_2}$ is non-zero.

(37) If
$$s_1$$
 is non-zero and s_2 is non-zero, then $\left(\frac{s_1}{s_2}\right)^{-1} = \frac{s_2}{s_1}$.

(38) If
$$s_1$$
 is non-zero, then $s_3 \frac{s_2}{s_1} = \frac{s_3 s_2}{s_1}$

(39) If
$$s_1$$
 is non-zero and s_2 is non-zero, then $\frac{s_3}{\frac{s_1}{s_2}} = \frac{s_3 s_2}{s_1}$.

(40) If
$$s_1$$
 is non-zero and s_2 is non-zero, then $\frac{s_3}{s_1} = \frac{s_3 s_2}{s_1 s_2}$.

(41) If
$$r \neq 0_{\mathbb{C}}$$
 and s_1 is non-zero, then $r s_1$ is non-zero.

(42) If
$$s_1$$
 is non-zero, then $-s_1$ is non-zero.

(43) If
$$r \neq 0_{\mathbb{C}}$$
 and s_1 is non-zero, then $(r s_1)^{-1} = r^{-1} s_1^{-1}$.

(44) If
$$s_1$$
 is non-zero, then $(-s_1)^{-1} = (-1_{\mathbb{C}}) s_1^{-1}$.

(45) If
$$s_1$$
 is non-zero, then $-\frac{s_2}{s_1} = \frac{-s_2}{s_1}$ and $\frac{s_2}{-s_1} = -\frac{s_2}{s_1}$.

(46) If
$$s_1$$
 is non-zero, then $\frac{s_2}{s_1} + \frac{s_2'}{s_1} = \frac{s_2 + s_2'}{s_1}$ and $\frac{s_2}{s_1} - \frac{s_2'}{s_1} = \frac{s_2 - s_2'}{s_1}$.

(47) If
$$s_1$$
 is non-zero and s'_1 is non-zero, then $\frac{s_2}{s_1} + \frac{s'_2}{s'_1} = \frac{s_2 s'_1 + s'_2 s_1}{s_1 s'_1}$ and $\frac{s_2}{s_1} - \frac{s'_2}{s'_1} = \frac{s_2 s'_1 - s'_2 s_1}{s_1 s'_1}$.

(48) If
$$s_1$$
 is non-zero and s_1' is non-zero and s_2 is non-zero, then $\frac{\frac{s_2'}{s_1}}{\frac{s_1'}{s_2}} = \frac{s_2' s_2}{s_1 s_1'}$.

$$(49) |s_1 s_1'| = |s_1| |s_1'|.$$

(50) If
$$s_1$$
 is non-zero, then $|s_1|$ is non-zero.

(51) If
$$s_1$$
 is non-zero, then $|s_1|^{-1} = |s_1|^{-1}$.

(52) If
$$s_1$$
 is non-zero, then $\left|\frac{s_1'}{s_1}\right| = \frac{|s_1'|}{|s_1|}$.

(53) $|r s_1| = |r| |s_1|$.

REFERENCES

- [1] Czeslaw Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,
- [3] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [4] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
- [5] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Received November 5, 1993