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Summary. Definitions of complex sequence and operations on
sequences (multiplication of sequences and multiplication by a complex-
number, addition, subtraction, division and absolute value of sequence)
are given. We followed [3].

MML Identifier: COMSEQ_1.

The terminology and notation used here are introduced in the fo]lowmg articles:
1, [1], (2], (4], and [3].
For simplicity we follow a convention: f will denote a function, n will denote
a natural number, r, p will denote elements of C, and z will be arbitrary.
A complex sequence is a function from N into C.
In the sequel s1, s2, 33, 84, 8}, s5 denote complex sequences.
One can prove the following propositions:
(1) fis a complex sequence iff dom f = N and for every z such that z € N
holds f(z) is an element of C.
(2) fis a complex sequence iff dom f = N and for every n holds f(n) is an
element of C. »
Let us consider sy, n. Then s1(n) is an element of C.
The scheme ExComplexSeq deals with a unary functor F yielding an element
of C, and states that:
There exists s; such that for every n holds s3(n) = F(n)
for all values of the parameter.
A complex sequence is non-zero if:
(Def.1) rmngit € C\ {0c}.
One can prove the following proposition
(3) s is non-zero iff for every z such that z € N holds s1(z) # 0¢c. =
Let us mention that there exists a complex sequence which is non-zero.
Next we state four propositions:
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(4)  s; is non-zero iff for every n holds s1(n) # Oc¢.

(5) For all sy, 53 such that for every z such that z € N holds s;(z) = so(z)
holds s; = ss.

(6) For all s1, s2 such that for every n holds s;(n) = s2(n) holds s; = s,.

(7) For every r there exists sy such that rngs; = {r}.

Let us consider s, s3. The functor s, + s3 yielding a complex sequence is
defined as follows:

o L,,,,»(,:Def.Q) For every n holds (s + s3)(n) = sa(n) + s3(n).

T e

vl

" The functor s2 83 yielding a complex sequence is defined by:
o (Def.3) For every n holds (s; s3)(n) = sa(n) - s3(n).
] Let us consider r, s;. The functor 7 s; yielding a complex sequence is defined
as follows:
) (Def.4) For every n holds (rs1)(n) = r- s1(n).
Let us consider s;. The functor —s; yielding a complex sequence is defined
as follows:
. (Def.5)  For every n holds (—s1)(n) = —s1(n).
. Let us consider sg, s3. The functor s; — s3 yields a complex sequence and is
defined as follows:
(Def.6) s2 — 83 = 83 + —s3. .
Let us consider s;. The functor s; ! yields a complex sequence and is defined
as follows:
(Def.7)  For every n holds 3171 (n) = s1(n)~ 1.
Let us consider s,, s1. The functor ﬁ’f yielding a complex sequence is defined
- as follows:
. (Def8) %‘12- = 89 81—1.
Let us consider s;. The functor |s;| yields a sequence of real numbers and is
defined by:
| (Def.9)  For every n holds |s1|(n) = |s1(n)|.
The following propositions are true:
(8) 82 + 83 = 83 + S9.
(9)  (s2+s3)+ 84 =352+ (83 + 54).
(10) 89 83 = 83 S2.
(11)  (s283) 84 = 2 (83 84)-
(12)  (sg + 83) 84 = 83 84 + 83 84.
(13) 84 (82 + 33) = 84 82 + S4 83.
(14) -81 = (-10) 81.
(15) 7 (s283) = (rs2) 3.
(16) 7 (s2.83) = s2(r s3). |
(17 (s2— 33) S4 = 89 84 — S3 S4.
(18) 84 89 — 84 83 = 84 (82 — 33).
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COMPLEX SEQUENCES

T (S + 83) =783 + T 83.

(r-p)si =r(ps1).

T (83 — 83) =T33 — T 83.

If s; is non-zero, then r 2 =I2,
Sy — (834 84) = 82 — 83 — 34.

1c 81 = 81,

——381 = 81.

89 — —83 = 83 + S3.

83 — (83— 84) = (82 — $3) + 34.
s34+ (83 — 84) = (S2 4 83) — 34.
(—82) 83 = —82 83 and s3 —83 = —359 s3.

! is non-zero.

If sy is non-zero, then s;~
If 51 is non-zero, then (s;71)~! = 3.

s1 is non-zero and s, is non-zero iff s; s, is non-zero.

If s, is non-zero and s; is non-zero, then ;7! s971 = (51 82)~1.
If s is non-zero, then §'f 81 = Sg.

f

. . st s sl s
If 51 is non-zero and s; is non-zero, then L -2 = 21°2,
81 82 S1 52

If s; is non-zero and s, is non-zero, then % is non-zero.

If sy is non-zero and s, is non-zero, then (%)‘1 = ff

If s is non-zero, then s3 -:-f = SJSTSZ

If sy is non-zero and sg is non-zero, then £ = %%z,
22

If 51 is non-zero and s, is non-zero, then -:—ii = ﬁ—;l

If r # Oc and s; is non-zero, then r s; is non-zero.

If s; is non-zero, then —s; is non-zero.

If 7 # O¢ and sy is non-zero, then (rsy)~! =r~—1g 1

If s5; is non-zero, then (—s1)™! = (—1¢) s~ 1.

If s; is non-zero, then —%2 = =52 apnd 82 = .22,
s1 s1 —51 51
. st so4-5 s! 59 —s8k
If s is non-zero, then 22 4 22 — 5249 and 52 — %2 — $2-%
51 s1 S1 $1 S1 81
. . st sp sh sl s
If s; is non-zero and s is non-zero, then %2 4 %2 — S251+S%8 .4
1 ? 51 Y 51 8
sz _ flz _ 82 s’]—sz' s
51 51T 51 8] *
s
. . . = sl s
If s is non-zero and s/ is non-zero and s, is non-zero, then <+ = 222
1 1 2 ’ 1 51 81

»
[

|s1 84| = [s1] [s1]-

I 51 is non-zero, then |sy| is non-zero. ;
If s; is non-zero, then |s;|™1 = |s;71|.
!

/
If 51 is non-zero, then || = I—:LI[

123




124

AGNIESZKA BANACHOWICZ AND ANNA WINNICKA

(53) |rsi|=Irllsil-
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