Hahn-Banach Theorem

Bogdan Nowak Lódź University Andrzej Trybulec Warsaw University Białystok

Summary. We prove a version of Hahn-Banach Theorem.

MML Identifier: HAHNBAN.

The notation and terminology used here are introduced in the following papers: [13], [5], [9], [2], [3], [17], [16], [15], [8], [4], [10], [6], [14], [12], [11], [1], and [7].

1. Preliminaries

The following propositions are true:

- (1) For arbitrary x, y and for every function f such that $\langle x, y \rangle \in f$ holds $y \in \text{rng } f$.
- (2) For every set X and for all functions f, g such that $X \subseteq \text{dom } f$ and $f \subseteq g$ holds $f \upharpoonright X = g \upharpoonright X$.
- (3) For every non empty set A and for arbitrary b such that $A \neq \{b\}$ there exists an element a of A such that $a \neq b$.

Let B be a non empty functional set. Observe that every element of B is function-like.

The following propositions are true:

- (4) For all sets X, Y holds every non empty subset of $X \rightarrow Y$ is a non empty functional set.
- (5) Let B be a non empty functional set and let f be a function. Suppose $f = \bigcup B$. Then dom $f = \bigcup \{\text{dom } g : g \text{ ranges over elements of } B$, $\}$ and $\text{rng } f = \bigcup \{\text{rng } g : g \text{ ranges over elements of } B$, $\}$.

The scheme NonUniqExD' deals with a non empty set \mathcal{A} , a non empty set \mathcal{B} , and a binary predicate \mathcal{P} , and states that:

There exists a function f from \mathcal{A} into \mathcal{B} such that for every element e of \mathcal{A} holds $\mathcal{P}[e, f(e)]$

provided the parameters satisfy the following condition:

• For every element e of \mathcal{A} there exists an element u of \mathcal{B} such that $\mathcal{P}[e,u]$.

One can prove the following propositions:

- (6) For every non empty subset A of $\overline{\mathbb{R}}$ such that for every Real number r such that $r \in A$ holds $r \leq -\infty$ holds $A = \{-\infty\}$.
- (7) For every non empty subset A of \mathbb{R} such that for every Real number r such that $r \in A$ holds $+\infty \leq r$ holds $A = \{+\infty\}$.
- (8) Let A be a non empty subset of $\overline{\mathbb{R}}$ and let r be a Real number. If $r < \sup A$, then there exists a Real number s such that $s \in A$ and r < s.
- (9) Let A be a non empty subset of $\overline{\mathbb{R}}$ and let r be a Real number. If inf A < r, then there exists a Real number s such that $s \in A$ and s < r.
- (10) Let A, B be non empty subset of $\overline{\mathbb{R}}$. Suppose that for all Real numbers r, s such that $r \in A$ and $s \in B$ holds $r \leq s$. Then sup $A \leq \inf B$.
- $(12)^1$ Let x, y be real numbers and let x', y' be Real numbers. If x = x' and y = y', then $x \le y$ iff $x' \le y'$.

2. SETS LINEARLY ORDERED BY THE INCLUSION

A set is \subseteq -linear if:

(Def.1) For arbitrary x, y such that $x \in \text{it and } y \in \text{it holds } x \subseteq y \text{ or } y \subseteq x$.

Let A be a non empty set. Note that there exists a subset of A which is \subseteq -linear and non empty.

We now state the proposition

(13) For all sets X, Y and for every \subseteq -linear non empty subset B of $X \to Y$ holds $\bigcup B \in X \to Y$.

3. SUBSPACES OF A REAL LINEAR SPACE

In the sequel V will be a real linear space.

One can prove the following propositions:

- (14) For all subspaces W_1 , W_2 of V holds the carrier of $W_1 \subseteq$ the carrier of $W_1 + W_2$.
- (15) Let W_1 , W_2 be subspaces of V. Suppose V is the direct sum of W_1 and W_2 . Let v, v_1 , v_2 be vectors of V. If $v_1 \in W_1$ and $v_2 \in W_2$ and $v = v_1 + v_2$, then $v \triangleleft (W_1, W_2) = \langle v_1, v_2 \rangle$.

¹The proposition (11) has been removed.

- (16) Let W_1 , W_2 be subspaces of V. Suppose V is the direct sum of W_1 and W_2 . Let v, v_1 , v_2 be vectors of V. If $v \triangleleft (W_1, W_2) = \langle v_1, v_2 \rangle$, then $v = v_1 + v_2$.
- (17) Let W_1 , W_2 be subspaces of V. Suppose V is the direct sum of W_1 and W_2 . Let v, v_1 , v_2 be vectors of V. If $v \triangleleft (W_1, W_2) = \langle v_1, v_2 \rangle$, then $v_1 \in W_1$ and $v_2 \in W_2$.
- (18) Let W_1 , W_2 be subspaces of V. Suppose V is the direct sum of W_1 and W_2 . Let v, v_1 , v_2 be vectors of V. If $v \triangleleft (W_1, W_2) = \langle v_1, v_2 \rangle$, then $v \triangleleft (W_2, W_1) = \langle v_2, v_1 \rangle$.
- (19) Let W_1 , W_2 be subspaces of V. Suppose V is the direct sum of W_1 and W_2 . Let v be a vector of V. If $v \in W_1$, then $v \triangleleft (W_1, W_2) = \langle v, 0_V \rangle$.
- (20) Let W_1 , W_2 be subspaces of V. Suppose V is the direct sum of W_1 and W_2 . Let v be a vector of V. If $v \in W_2$, then $v \triangleleft (W_1, W_2) = \langle 0_V, v \rangle$.
- (21) Let V_1 be a subspace of V, and let W_1 be a subspace of V_1 , and let v^{\dagger} be a vector of V. If $v \in W_1$, then v is a vector of V_1 .
- (22) For all subspaces V_1 , V_2 , W of V and for all subspaces W_1 , W_2 of W such that $W_1 = V_1$ and $W_2 = V_2$ holds $W_1 + W_2 = V_1 + V_2$.
- (23) For every subspace W of V and for every vector v of V and for every vector w of W such that v = w holds $\text{Lin}(\{w\}) = \text{Lin}(\{v\})$.
- (24) Let v be a vector of V and let X be a subspace of V. Suppose $v \notin X$. Let y be a vector of $X + \text{Lin}(\{v\})$ and let W be a subspace of $X + \text{Lin}(\{v\})$. If v = y and W = X, then $X + \text{Lin}(\{v\})$ is the direct sum of W and $\text{Lin}(\{y\})$.
- (25) Let v be a vector of V, and let X be a subspace of V, and let y be a vector of $X + \text{Lin}(\{v\})$, and let W be a subspace of $X + \text{Lin}(\{v\})$. If v = y and X = W and $v \notin X$, then $y \triangleleft (W, \text{Lin}(\{y\})) = \langle 0_W, y \rangle$.
- (26) Let v be a vector of V, and let X be a subspace of V, and let y be a vector of $X + \text{Lin}(\{v\})$, and let W be a subspace of $X + \text{Lin}(\{v\})$. Suppose v = y and X = W and $v \notin X$. Let w be a vector of $X + \text{Lin}(\{v\})$. If $w \in X$, then $w \triangleleft (W, \text{Lin}(\{y\})) = \langle w, 0_V \rangle$.
- (27) For every vector v of V and for all subspaces W_1 , W_2 of V there exist vectors v_1 , v_2 of V such that $v \triangleleft (W_1, W_2) = \langle v_1, v_2 \rangle$.
- (28) Let v be a vector of V, and let X be a subspace of V, and let y be a vector of $X + \text{Lin}(\{v\})$, and let W be a subspace of $X + \text{Lin}(\{v\})$. Suppose v = y and X = W and $v \notin X$. Let w be a vector of $X + \text{Lin}(\{v\})$. Then there exists a vector x of X and there exists a real number r such that $w \triangleleft (W, \text{Lin}(\{y\})) = \langle x, r \cdot v \rangle$.
- (29) Let v be a vector of V, and let X be a subspace of V, and let y be a vector of $X + \text{Lin}(\{v\})$, and let W be a subspace of $X + \text{Lin}(\{v\})$. Suppose v = y and X = W and $v \notin X$. Let w_1 , w_2 be vectors of $X + \text{Lin}(\{v\})$, and let x_1 , x_2 be vectors of X, and let r_1 , r_2 be real numbers. If $w_1 < (W, \text{Lin}(\{y\})) = \langle x_1, r_1 \cdot v \rangle$ and $w_2 < (W, \text{Lin}(\{y\})) = \langle x_2, r_2 \cdot v \rangle$, then $(w_1 + w_2) < (W, \text{Lin}(\{y\})) = \langle x_1 + x_2, (r_1 + r_2) \cdot v \rangle$.

(30) Let v be a vector of V, and let X be a subspace of V, and let y be a vector of $X + \text{Lin}(\{v\})$, and let W be a subspace of $X + \text{Lin}(\{v\})$. Suppose v = y and X = W and $v \notin X$. Let w be a vector of $X + \text{Lin}(\{v\})$, and let x be a vector of X, and let x, y be real numbers. If $y \triangleleft (W, \text{Lin}(\{y\})) = \langle x, y \rangle$, then $(t \cdot w) \triangleleft (W, \text{Lin}(\{y\})) = \langle t \cdot x, t \cdot r \cdot v \rangle$.

4. Functionals

Let V be an RLS structure.

(Def.2) A function from the carrier of V into \mathbb{R} is called a functional in V. Let us consider V. A functional in V is subadditive if:

(Def.3) For all vectors x, y of V holds $it(x + y) \le it(x) + it(y)$.

A functional in V is additive if:

(Def.4) For all vectors x, y of V holds it(x + y) = it(x) + it(y).

A functional in V is homogeneous if:

(Def.5) For every vector x of V and for every real number r holds $it(r \cdot x) = r \cdot it(x)$.

A functional in V is positively homogeneous if:

(Def.6) For every vector x of V and for every real number r such that r > 0 holds it $(r \cdot x) = r \cdot \text{it}(x)$.

A functional in V is semi-homogeneous if:

(Def.7) For every vector x of V and for every real number r such that $r \ge 0$ holds it $(r \cdot x) = r \cdot it(x)$.

A functional in V is absolutely homogeneous if:

(Def.8) For every vector x of V and for every real number r holds it $(r \cdot x) = |r| \cdot it(x)$.

A functional in V is 0-preserving if:

(Def.9) $It(0_V) = 0.$

Let us consider V. One can verify the following observations:

- * every functional in V which is additive is also subadditive,
- st every functional in V which is homogeneous is also positively homogeneous,
- * every functional in V which is semi-homogeneous is also positively homogeneous,
- * every functional in V which is semi-homogeneous is also 0-preserving,
- * every functional in V which is absolutely homogeneous is also semi-homogeneous, and
- * every functional in V which is 0-preserving and positively homogeneous is also semi-homogeneous.

Let us consider V. Observe that there exists a functional in V which is additive absolutely homogeneous and homogeneous.

Let us consider V. A Banach functional in V is a subadditive positively homogeneous functional in V. A linear functional in V is an additive homogeneous functional in V.

We now state four propositions:

- (31) For every homogeneous functional L in V and for every vector v of V holds L(-v) = -L(v).
- (32) For every linear functional L in V and for all vectors v_1 , v_2 of V holds $L(v_1 v_2) = L(v_1) L(v_2)$.
- (33) For every additive functional L in V holds $L(0_V) = 0$.
- (34) Let X be a subspace of V, and let f_1 be a linear functional in X, and let v be a vector of V, and let y be a vector of $X + \text{Lin}(\{v\})$. Suppose v = y and $v \notin X$. Let r be a real number. Then there exists a linear functional p_1 in $X + \text{Lin}(\{v\})$ such that $p_1 \upharpoonright \text{(the carrier of } X) = f_1$ and $p_1(y) = r$.

5. HAHN-BANACH THEOREM

One can prove the following three propositions:

- (35) Let V be a real linear space, and let X be a subspace of V, and let q be a Banach functional in V, and let f_1 be a linear functional in X. Suppose that for every vector x of X and for every vector v of V such that x = v holds $f_1(x) \leq q(v)$. Then there exists a linear functional p_1 in V such that $p_1 \upharpoonright$ (the carrier of X) = f_1 and for every vector x of V holds $p_1(x) \leq q(x)$.
- (36) For every real normed space V holds the norm of V is an absolutely homogeneous subadditive functional in V.
- (37) Let V be a real normed space, and let X be a subspace of V, and let f_1 be a linear functional in X. Suppose that for every vector x of X and for every vector v of V such that x = v holds $f_1(x) \leq ||v||$. Then there exists a linear functional p_1 in V such that $p_1 \upharpoonright (\text{the carrier of } X) = f_1$ and for every vector x of V holds $p_1(x) \leq ||x||$.

REFERENCES

- [1] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.
- [2] Czeslaw Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [4] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

- Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [6] Jaroslaw Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the set of real numbers. Formalized Mathematics, 3(2):279-288, 1992.
- [7] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151-160, 1992.
- [8] Jan Popiolek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
- [9] Jan Popiolek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
- [10] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
- [11] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
 - [12] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
 - [13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
 - [14] Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990.
 - [15] Wojciech A. Trybulec. Operations on subspaces in real linear space. Formalized Mathematics, 1(2):395-399, 1990.
 - [16] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297-301, 1990.
 - [17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

Received July 8, 1993