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Summary. We develop a higher level terminology for the SCM
machine defined by Nakamura and Trybulec in [6]. Among numerous
technical definitions and lemmas we define a complexity measure of a
halting state of SCM and a loader for SCM for arbitrary finite sequence
of instructions. In order to test the introduced terminology we discuss
properties of eight shortest halting programs, one for each instruction.

7

MMUL Identifier: SCM_1.

The notation and terminology used in this paper have been introduced in the
following articles: [10], [1], [13], [11], [9], [4], [5], [2], [3], [8], [6], [7], and [12].
Let 7 be an integer. Then (2) is a finite sequence of elements of Z.
One can prove the following propositions:
(1) For every state s of SCM holds IC, = s(0) and Curlnstr(s) = s(s(0)).
(2) TFor every state s of SCM and for every natural nuimber k
holds Curlnstr((Computation(s))(k)) = s(IC(Computatmn(s))(k)) and
Curlnstr((Computation(s))(k)) = s((Computation(s) )(k)(0))-
(3) For every state s of SCM such that there exists a natural number k
such that s(IC(Computation( () (k) = haltscm holds sis haltmg
(4) For every state s of SCM and for every ‘mnatural number k
such that S(IC(Computation(s))(k)) = haltgcps  holds Result(s) =
(Computation(s))(k).
(6) For all natural numbers k, I such that k& # [ holds dk #d;.
(6) For all natural numbers k, [ such that &k # [ holds i ik £ 1.
(7)  For all natural numbers 7, m holds ICgcm # in. and ICscMm # d
and i, # d,
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Let I be a finite sequence of elements of the instructions of SCM, let D be
a finite sequence of elements of Z, and let i1, p1, di be natural numbers. A state
of SCM is said to be a state with instruction counter on 4y, with I located from
p1, and D from dj if it satisfies the conditions (Def.1). ‘
(Defl) (1) ICit = i(il)a
(ii) for every natural number k such that k& < lenI holds it(ip, 4%) =
e I(k+1), and
e (iii)  for every natural number k such that ¥ < len D holds it(dg,+5) =
One can prove the following propositions:
(8) Let zi1, z2, ©3, €4 be arbitrary and let p be a finite sequence. Ifp =
(z1) ~ (z9) ~ (z3) " (24), then lenp = 4 and p(1) = @1 and p(2) = z; and
p(3) = z3 and p(4) = z4.
(9) Let zy, 3, €3, T4, T5 be arbitrary and let p be a finite sequence. Suppose
p = (z1) ~ (22) ~ (23) ~ {z4) ~ (5). Then lenp = 5 and p(1) = z; and
p(2) = 24 and p(3) = 3 and p(4) = z4 and p(5) = xs.
(10) Let z1, 22, T3, T4, T5, Te be arbitrary and let p be a finite sequence.
Suppose p = (z1) ™ (23) ~ {x3) ~ (z4) ~ (¢5) ~ (z6). Then lenp = 6 and
p(1) = z; and p(2) = z3 and p(3) = z3 and p(4) = z4 and p(5) = 5 and
p(6) = Ig. K
(11) Let 2y, %2, 3, 4, T5, T6, T7 be arbitrary and let p be a finite sequence.
Suppose p = (21) ™ (z9) ~ (x3) ™ (w4) ™ (z5) ~ (z6) ~ (z7). Thenlenp =7
and p(1) = z; and p(2) = =2 and p(3) = z3 and p(4) = z4 and p(5) = x5
and p(6) = z¢ and p(7) = z7.
(12) Let z3, z2, 23, T4, T5, Te, 27, Ts be arbitrary and let p be a finite
sequence. Suppose p = (z1) ~ {z2) " (z3) ~ (z4) ~ (25) ~ (26) ~ (7) ~ (Ts).
Then len p = 8 and p(1) = 21 and p(2) = 2 and p(3) = 3 and p(4) = 24
and p(5) = x5 and p(6) = z6 and p(7) = 27 and p(8) = 5.
(13)  Let 21, 2, €3, T4, Ts, T6, L7, L8, T9 be arbitrary and let p be a finite
sequence. Suppose p = (xl)“(xg)"(xg)"(x4)"(:v5)"(xe)"(x7)"(w8)"(x9).
Then lenp = 9 and p(1) = z; and p(2) = z2 and p(3) = z3 and p(4) = 24
and p(5) = z5 and p(6) = z6 and p(7) = z7 and p(8) = zs and p(9) = 9.
(14) Let Iy, I, I3, Iy, Is, Is, I7, Is, Iy be instructions of SCM, and let i,
i3, 14, 45 be integers, and let iy be a natural number, and let s be a state
with instruction counter on iy, with (1) ~ (L)~ (Is) ~ (Ls) ~ {Is) ~ {16} ~
(I7) ~ (Is) ~ (Io) located from 0, and (i3) ~ {i3) = (44) = (is) from 0. Then
() IC, =ig),
(i) s(io) = I
(i) s(i1)=15,
(iv) s(iz) = I,
) s(is) =Ly
(vi) s(is) = I,
(Vll) : S(i5)f:—‘ 167
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(viii)  s(ig)-= I,

(ix) s(ir) = Is,

(x)  s(is) = Io,

(Xl) S(do) = ’1:2,

(xii) s(d;) = 13,

(xili) s(dg) = 14, and

(XJV) S(d3) =15

(15) Let I, I be instructions of SCM, and let 2, i3 be integers, and let 4;
be a natural number, and let s be a state with instruction counter on %5,
with (I1) ~ (I2) located from 0, and (i3) ~ (13) from 0. Then IC; = i(;,
and s(ip) = I and s(iy) = I, and s(do) = 72 and s(d;) = 3.

Let a, b be data-locations. Then a:=b is an instruction of SCM. Then
AddTo(a,b)is an instruction of SCM. Then SubFrom(a, b) is an instruction of
SCM. Then MultBy(a,b) is an instruction of SCM. Then Divide(a,b) is an
instruction of SCM.

Let I3 be an instruction-location of SCM. Then goto /; is an instruction of
SCM. Let a be a data-location. Then if a = 0 goto /; is an instruction of
SCM. Then if a > 0 goto [; is an instruction of SCM.

Let s be a state of SCM. Let us assume that s is halting. The complexity
of s is a natural number and is defined by the conditions (Def.2).

(Def.2) (i)  CurInstr((Computation(s))(the complexity of s)) = haltgcpg, and
(ii) forevery natural number & such that Curlnstr((Computation(s))(k)) =
haltgcopn holds the complexity of s < k.

We now state a number of propositions:
(16) Let s be a state of SCM and let k¥ be a natural number. Then

S(IC(Computatlon(s))(k)) # haltgcy and S(IC Computatlon(s))(k-{—l)) =
haltgcy if and only if the complexity of s = k£ + 1 and s is halting.

(17) Let s be a state of SCM and let k be a natural number. If

IC(Computatlon(s))(k) 7£ IC(Computatlon(s))(k+1) and S(IC(Computatlon(s))(k+1 ) =
haltgcng, then the complexity of s = k 4 1.

(18) Let k, n be natural numbers, and let s be a state of SCM, and let «,
b be data—locatlons Suppose IC(Computatlon(s))(k) i, and s(i,) = a:=b.
Then IC(Computatlon(s))(k-}-l) = In41 and (Computatmn(s))(k’ + 1)(&) -
(Computation(s))(k)(b) and for every data-location d such that d # a
holds (Computation(s))(k 4 1)(d) = (Computation(s))(k)(d).

(19) Let %k, n be natural numbers, and let s be a state of SCM,
and let a, b be data-locations. Suppose IC(Computation(s))(k) =
i, and s(i,) = AddTo(a,b). Then IC(Computation(s))(k+1) =
iny1 and (Computation(s))(k + 1)(a) = (Computatlon(s))(k)(a) +
(Computation(s))(k)(b) and for every data-location d such that d # a
holds (Computation(s))(k + 1)(d) = (Computation(s))(k)(d).

(20) Let k, n be natural numbers, and let s be a state of SCM,
and let a, b be data-locations. Suppose IC(Computation(s)) (k) =
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i, and s(i,) = SubFrom(a,b). Then IC(computation(s))(k+1) =
ing1 and (Computation(s))(k + 1)(a) = (Computation(s))(k)(a) —
(Computation(s))(k)(b) and for every data-location d such that d # a
holds (Computation(s))(k + 1)(d) = (Computation(s))(k)(d).
(21) Let k, nm be natural numbers, and let s be a state of SCM,
o and let @, b be data-locations. Suppose IC(Computation(s))(k) =
§j ‘E.vl‘ ' i and S(in) = MU1tBY(a7 b) Then IC(Computation(s))(k+1) =
ing1 and (Computation(s))(k + 1)(a) = (Computation(s))(k)(a) -
(Computation(s))(k)(b) and for every data-location d such that d £ a
¥ _holds (Computation(s))(k + 1)(d) = (Computation(s))(k)(d)-
- (22) Let k, n be natural numbers, and let s be a state of SCM, and let a, b be

‘ data-locations. Suppose IC(computation(s))(k) = i, and s(i,) = Divide(a, b)

and a # b. Then
(1) IC(Computation(s))(k+1) = in+17
(ii) (Computation(s))(k + 1)(a) =
(Computation(s))(k)(a) + (Computation(s))(k)(b),
(i) (Computation(s))(k+1)(b) = _
(Computation(s))(k)(a) mod (Computation(s))(k)(b), and "
(iv) for every data-location d such that d # a and d # b holds
(Computation(s))(k + 1)(d) = (Computation(s))(k)(d).

- (23) Let k, n be natural numbers, and let s be a state of SCM, and let
iy be an instruction-location of SCM. Suppose IC computation(s))(k) = i,
and s(ip) = goto i1. Then IC Computation(s))(k+1) = 1 and for every data-
location d holds (Computation(s))(k + 1)(d) = (Computation(s))(k)(d).

(24) Let k, n be natural numbers, and let s be a state of SCM, and let a be

: a data-location, and let 4; be an instruction-location of SCM. Suppose
‘IC(computation(s))(k) =i, and s(i,) = if @ = 0 goto ¢;. Then
(1) if (Computa‘tion(s))(k)(a) =0, then IC(Computation(s))(k+1) = 11,
(ii)  if (Computation(s))(k)(a) # 0, then IC(computation(s)) (k-+1) = int1, and
(iii)  for every data-location d holds (Computation(s))(k + 1)(d) =
(Computation(s))(k)(d).

(25) Let k, n be natural numbers, and let s be a state of SCM, and let a be
a data-location, and let 4; be an instruction-location of SCM. Suppose
IC(Computation(s)) (k) = i, and s(i,) =if a > 0 goto ;. Then

(i) if (Computation(s))(k)(a) > 0, then IC(computation(s))(k+1) = i1,
(ii)  if (Computation(s))(k)(a) < 0, then IC(computation(s))(k+1) = 41, and
(iii) for every data-location d holds (Computation(s))(k + 1)(d) =
(Computation(s))(k)(d).
(26) () (haltsecm) =0,
(i) for all data-locations a, b holds (a:=b)1 = 1,
(iii) for all data-locations a, b holds (AddTo(a,b))1 = 2,
(iv) for all data-locations a, b holds (SubFrom(a,b))1 = 3,
(v) for all data-locations a, b holds (MultBy(a,b))1 = 4,
(vi) for all data-locations a, b holds (Divide(a, b))1 = 5,
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(vii) for every instruction-location ¢ of SCM holds (goto i); = 6,

(viii)) for every data-location a and for every instruction-location i of SCM
holds (if @ = 0 goto i)1 = 7, and

(ix) for every data-location a and for every instruction-location 7 of SCM
holds (if @ > 0 goto 7); = 8. '

(27) For all states sy, s; of SCM and for every natural number & such that
sz = (Computation(sy))(k) and s, is halting holds s is halting.

(28) Let sy, 53 be states of SCM and let k, ¢ be natural numbers. Suppose
sy = (Computation(s;))(k) and the complexity of s; = ¢ and s, is halting
and 0 < c. Then the complexity of s; = k + c.

(29) For all states sy, s; of SCM and for every natural number k such
that s = (Computation(s;))(k) and sy is halting holds Result(sy) =
Result(sy).

(30) Let L, Iy, I3, 1y, Is, Is, Iz, Is, Iy be instructions of SCM, and let 43,
13, t4, 15 be integers, and let ¢y be a natural number, and let s be a state
of SCM. Suppose that

(i) ICs =iy,
(11) S(io) = Il,
(lll) S(il) = .[2,
(iv)  s(iz) = I,
(V) S(i3) = 14,
(Vl) S(i4) = I5,

(vii)  s(i5) = I,

(Vlll) S(ie) = I7,

(ix) s(ir) = Is,

(x) s(is) = Iy,
(Xl) S(do) = ’iz,

(Xll) S(dl) = ’i3,

(xili) s(d3) = 44, and

(XIV) S(dg) = ’55.

Then s is a state with instruction cousiter on ¢y, with (1) ~ (I2) ~ (I3) ~
(L)~ (Is) ~{Ie) ~ (I7) ~ {Is) ~ (Is) located from 0, and (i2) " (%3) ~ (4) ~ (45)
from 0.

(31) Let s be a state with instruction counter on 0, with (haltgcng) located
from 0, and £z from 0. Then s is halting and the complexity of s = 0 and
Result(s) = s.

(32) Let 4g, i3 be integers and let s be a state with instruction counter on 0,
with (do:=d;) ~ (haltgcnm) located from 0, and (32) ~ (i3) from 0. Then

(i) s is halting,

(i) the complexity of s = 1,

(iii) " (Result(s))(do) = 43, and ‘ ‘
(iv) for every data-location d such that d # do holds (Result(s))(d) = s(d).
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(33) Let 4o, i3 be integers and let s be a state with instruction counter on 0,
with (AddTo(do, d;)) ~ (haltgcn) located from 0, and (i2) ~ (i3) from: 0.
Then :

(i) s is halting,
(ii) the complexity of s =1,
(iii)  (Result(s))(do) = 42 + i3, and

» (iv) for every data-location d such that d # do holds (Result(s))(d) = s(d).

S “_“,”(34)_ Let iq, 43 be integers and let s be a state with instruction counter on 0,

o with (SubFrom(do,d;))~ (haltgcm) located from 0, and (i) ~ (i3) from

-0. Then
(i) sis halting,
(ii) the complexity of s = 1,
(iii)  (Result(s))(do) = ¢ — ¢3, and
(iv) for every data-location d such that d # do holds (Result(s))(d) = s(d).
(35) Let i, i3 be integers and let s be a state with instruction counter on 0,
' with (MultBy(do,d;)) ~ (haltscpm) located from 0, and (iz) ~ (i3) from
0. Then
(i) s is halting,
(ii) the complexity of s = 1,
(iii) (Result(s))(do) = iz - i3, and )
(iv) for every data-location.d such that d # do holds (Result(s))(d) = s(d).

(36) Let i, i3 be integers and let s be a state with instruction counter on 0,
with (Divide(do, d1)) ~ (haltgcm) located from 0, and (i2) ™ (i3) from 0.
Then

(i) s is halting,
© (i) the complexity of s =1,
(111) (Result(s))(do) = 19 + i3,
(iv) (Result(s))(d1) = i mod 73, and
(v) for every data-location d such that d # do and d_# di holds
(Result(s))(d) = s(d).

(37)  Let ¢y, i3 be integers and let s be a state with instruction counter on

, 0, with (goto (i1)) ~ (haltgcnm) located from 0, and (iz) ~ (i) from 0.

| Then s is halting and the complexity of s = 1 and for every data-location
d holds (Result(s))(d) = s(d).

(38)  Let iy, i3 be integers and let s be a state with instruction counter on
0, with (if dg = 0 goto i;) ~ (haltgcpm) located from 0, and (iz) ~ (i3)
from 0. Then s is halting and the complexity of s = 1 and for every
data-location d holds (Result(s))(d) = s(d).

(39) Let 13, i3 be integers and let s be a state with instruction counter on
0, with (if do > 0 goto i1) 2 (haltgem) located from 0, and (i2) = (i3)
from 0. Then s is halting and the complexity of s = 1 and for every
data-location d holds (Result(s))(d) = s(d).
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