Subalgebras of the Universal Algebra. Lattices of Subalgebras

Ewa Burakowska Warsaw University Białystok

Summary. Introduces a definition of a subalgebra of a universal algebra. A notion of similar algebras and basic operations on subalgebras such as a subalgebra generated by a set, the intersection and the sum of two subalgebras were introduced. Some basic facts concerning the above notions have been proved. The article also contains the definition of a lattice of subalgebras of a universal algebra.

MML Identifier: UNIALG_2.

The papers [7], [8], [4], [1], [5], [3], [9], [2], and [6] provide the terminology and notation for this paper.

One can prove the following propositions:

- (1) For every natural number n and for every non empty set D and for every non empty subset D_1 of D holds $D^n \cap D_1^n = D_1^n$.
- (2) For every non empty set D and for every homogeneous quasi total non empty partial function h from D^* to D holds dom $h = D^{\text{arity } h}$.

We follow a convention: U_0 , U_1 , U_2 , U_3 denote universal algebras, n, i denote natural numbers, and a denotes an element of the carrier of U_0 .

Let D be a non empty set. A non empty set is called a set of universal functions on D if:

(Def.1) Every element of it is a homogeneous quasi total non empty partial function from D^* to D.

Let D be a non empty set and let P be a set of universal functions on D. We see that the element of P is a homogeneous quasi total non empty partial function from D^* to D.

Let us consider U_1 . A set of universal functions on U_1 is a set of universal functions on the carrier of U_1 .

Let U_1 be a universal algebra structure. A partial function on U_1 is a partial function from (the carrier of U_1)* to the carrier of U_1 .

Let us consider U_1 , U_2 . We say that U_1 and U_2 are similar if and only if:

(Def.2) signature U_1 = signature U_2 .

Let us observe that the predicate introduced above is reflexive symmetric.

The following propositions are true:

- (3) If U_1 and U_2 are similar, then len Opers $U_1 = \text{len Opers } U_2$.
- (4) If U_1 and U_2 are similar and U_2 and U_3 are similar, then U_1 and U_3 are similar.
- (5) rng Opers U_0 is a non empty subset of (the carrier of U_0)* \rightarrow the carrier of U_0 .

Let us consider U_0 . The functor Operations (U_0) yielding a set of universal functions on U_0 is defined as follows:

(Def.3) Operations $(U_0) = \operatorname{rng} \operatorname{Opers} U_0$.

Let us consider U_1 . A operation of U_1 is an element of Operations (U_1) .

Let us consider U_0 . A subset of U_0 is a subset of the carrier of U_0 .

In the sequel x_1, y_1 will denote finite sequences of elements of A.

One can prove the following proposition

(6) If $n \in \text{dom Opers } U_0$, then $(\text{Opers } U_0)(n)$ is a operation of U_0 .

Let U_0 be a universal algebra, let A be a subset of U_0 , and let o be a operation of U_0 . We say that A is closed on o if and only if:

(Def.4) For every finite sequence s of elements of A such that len s = arity o holds $o(s) \in A$.

Let U_0 be a universal algebra and let A be a subset of U_0 . We say that A is operations closed if and only if:

(Def.5) For every operation o of U_0 holds A is closed on o.

Let us consider U_0 , A, o. Let us assume that A is closed on o. The functor o_A yielding a homogeneous quasi total non empty partial function from A^* to A is defined as follows:

(Def.6) $o_A = o \mid A^{\text{arity}o}$.

Let us consider U_0 , A. The functor $Opers(U_0, A)$ yields a finite sequence of elements of $A^* \rightarrow A$ and is defined as follows:

(Def.7) dom Opers $(U_0, A) = \text{dom Opers } U_0$ and for all n, o such that $n \in \text{dom Opers}(U_0, A)$ and $o = (\text{Opers } U_0)(n)$ holds $(\text{Opers}(U_0, A))(n) = o_A$.

The following two propositions are true:

- (7) For every non empty subset B of U_0 such that B = the carrier of U_0 holds B is operations closed and for every o holds $o_B = o$.
- (8) Let U_1 be a universal algebra, and let A be a non empty subset of U_1 , and let o be a operation of U_1 . If A is closed on o, then $arity(o_A) = arity o$.

Let us consider U_0 . A universal algebra is said to be a subalgebra of U_0 if it satisfies the conditions (Def.8).

(ii) for every non empty subset B of U_0 such that B = the carrier of it holds Opers it = Opers (U_0, B) and B is operations closed.

Let U_0 be a universal algebra. One can verify that there exists a subalgebra of U_0 which is strict.

One can prove the following propositions:

- (9) Let U_0 , U_1 be universal algebras, and let o_0 be a operation of U_0 , and let o_1 be a operation of U_1 , and let n be a natural number. Suppose U_0 is a subalgebra of U_1 and $n \in \text{dom Opers } U_0$ and $o_0 = (\text{Opers } U_0)(n)$ and $o_1 = (\text{Opers } U_1)(n)$. Then arity $o_0 = \text{arity } o_1$.
- (10) If U_0 is a subalgebra of U_1 , then dom Opers $U_0 = \text{dom Opers } U_1$.
- (11) U_0 is a subalgebra of U_0 .
- (12) If U_0 is a subalgebra of U_1 and U_1 is a subalgebra of U_2 , then U_0 is a subalgebra of U_2 .
- (13) If U_1 is a strict subalgebra of U_2 and U_2 is a strict subalgebra of U_1 , then $U_1 = U_2$.
- (14) For all subalgebras U_1 , U_2 of U_0 such that the carrier of $U_1 \subseteq$ the carrier of U_2 holds U_1 is a subalgebra of U_2 .
- (15) For all strict subalgebra U_1 , U_2 of U_0 such that the carrier of U_1 = the carrier of U_2 holds $U_1 = U_2$.
- (16) If U_1 is a subalgebra of U_2 , then U_1 and U_2 are similar.
- (17) For every non empty subset A of U_0 holds $\langle A, \operatorname{Opers}(U_0, A) \rangle$ is a strict universal algebra.

Let U_0 be a universal algebra and let A be a non empty subset of U_0 . Let us assume that A is operations closed. The functor $\langle A, \operatorname{Ops} \rangle$ yielding a strict subalgebra of U_0 is defined as follows:

(Def.9) $\langle A, \text{Ops} \rangle = \langle A, \text{Opers}(U_0, A) \rangle$.

Let us consider U_0 and let U_1 , U_2 be subalgebras of U_0 . Let us assume that (the carrier of U_1) \cap (the carrier of U_2) $\neq \emptyset$. The functor $U_1 \cap U_2$ yielding a strict subalgebra of U_0 is defined by the conditions (Def.10).

- (Def.10) (i) The carrier of $U_1 \cap U_2 =$ (the carrier of $U_1) \cap$ (the carrier of U_2), and
 - (ii) for every non empty subset B of U_0 such that B = the carrier of $U_1 \cap U_2$ holds $Opers(U_1 \cap U_2) = Opers(U_0, B)$ and B is operations closed.

Let us consider U_0 . The functor Constants (U_0) yielding a subset of U_0 is defined by:

(Def.11) Constants(U_0) = {a : a ranges over elements of the carrier of U_0 , \exists_o arity $o = 0 \land a \in \operatorname{rng} o$ }.

A universal algebra has constants if:

(Def.12) There exists a operation o of it such that arity o = 0.

Let us note that there exists a universal algebra which is strict and has constants.

Let U_0 be a universal algebra with constants. Then Constants (U_0) is a non empty subset of U_0 .

One can prove the following three propositions:

- (18) For every universal algebra U_0 and for every subalgebra U_1 of U_0 holds Constants(U_0) is a subset of U_1 .
- (19) For every universal algebra U_0 with constants and for every subalgebra U_1 of U_0 holds Constants(U_0) is a non empty subset of U_1 .
- (20) Let U_0 be a universal algebra with constants and let U_1 , U_2 be subalgebras of U_0 . Then (the carrier of U_1) \cap (the carrier of U_2) $\neq \emptyset$.

Let U_0 be a universal algebra and let A be a subset of U_0 . Let us assume that Constants $(U_0) \neq \emptyset$ or $A \neq \emptyset$. The functor $\text{Gen}^{\text{UA}}(A)$ yields a strict subalgebra of U_0 and is defined by the conditions (Def.13).

- (Def.13) (i) $A \subseteq \text{the carrier of Gen}^{UA}(A)$, and
 - (ii) for every subalgebra U_1 of U_0 such that $A \subseteq$ the carrier of U_1 holds $\operatorname{Gen}^{\mathrm{UA}}(A)$ is a subalgebra of U_1 .

Next we state two propositions:

- (21) For every strict universal algebra U_0 holds $\operatorname{Gen}^{\mathrm{UA}}(\Omega_{\mathrm{the\ carrier\ of\ }U_0}) = U_0$.
- (22) Let U_0 be a universal algebra, and let U_1 be a strict subalgebra of U_0 , and let B be a non empty subset of U_0 . If B = the carrier of U_1 , then $\operatorname{Gen}^{\mathrm{UA}}(B) = U_1$.

Let U_0 be a universal algebra and let U_1 , U_2 be subalgebras of U_0 . The functor $U_1 \bigsqcup U_2$ yields a strict subalgebra of U_0 and is defined by:

(Def.14) For every non empty subset A of U_0 such that A = (the carrier of U_1) \cup (the carrier of U_2) holds $U_1 \sqcup U_2 = \operatorname{Gen}^{\operatorname{UA}}(A)$.

Next we state four propositions:

- (23) Let U_0 be a universal algebra, and let U_1 be a subalgebra of U_0 , and let A, B be subsets of U_0 . If $A \neq \emptyset$ or Constants $(U_0) \neq \emptyset$ and if $B = A \cup$ the carrier of U_1 , then $\text{Gen}^{\text{UA}}(A) \sqcup U_1 = \text{Gen}^{\text{UA}}(B)$.
- (24) For every universal algebra U_0 and for all subalgebras U_1 , U_2 of U_0 holds $U_1 \sqcup U_2 = U_2 \sqcup U_1$.
- (25) For every universal algebra U_0 with constants and for all strict subalgebra U_1 , U_2 of U_0 holds $U_1 \cap (U_1 \sqcup U_2) = U_1$.
- (26) For every universal algebra U_0 with constants and for all strict subalgebra U_1 , U_2 of U_0 holds $U_1 \cap U_2 \sqcup U_2 = U_2$.

Let U_0 be a universal algebra. The functor Subalgebras (U_0) yields a non empty set and is defined as follows:

- (Def.15) For every x holds $x \in \text{Subalgebras}(U_0)$ iff x is a strict subalgebra of U_0 . Let U_0 be a universal algebra. The functor \bigsqcup_{U_0} yielding a binary operation on Subalgebras (U_0) is defined by:
- (Def.16) For all elements x, y of Subalgebras (U_0) and for all strict subalgebra U_1 , U_2 of U_0 such that $x = U_1$ and $y = U_2$ holds $\bigsqcup_{(U_0)}(x, y) = U_1 \bigsqcup U_2$.

Let U_0 be a universal algebra. The functor \bigcap_{U_0} yields a binary operation on Subalgebras (U_0) and is defined by:

(Def.17) For all elements x, y of Subalgebras (U_0) and for all strict subalgebra U_1 , U_2 of U_0 such that $x = U_1$ and $y = U_2$ holds $\prod_{(U_0)} (x, y) = U_1 \cap U_2$.

One can prove the following four propositions:

- (27) $\bigsqcup_{(U_0)}$ is commutative.
- (28) $\bigsqcup_{(U_0)}$ is associative.
- (29) For every universal algebra U_0 with constants holds $\prod_{(U_0)}$ is commutative.
- (30) For every universal algebra U_0 with constants holds $\bigcap_{(U_0)}$ is associative. Let U_0 be a universal algebra with constants. The lattice of subalgebras of U_0 yielding a strict lattice is defined as follows:
- (Def.18) The lattice of subalgebras of $U_0 = \langle \text{Subalgebras}(U_0), \bigsqcup_{(U_0)}, \bigsqcup_{(U_0)} \rangle$.

REFERENCES

- [1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- 2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
- [3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
- [4] Czeslaw Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [6] Jarosław Kotowicz, Beata Madras, and Malgorzata Korolkiewicz. Basic notation of universal algebra. Formalized Mathematics, 3(2):251-253, 1992.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
- [8] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [9] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215–222, 1990.

Received July 8, 1993