FORMALIZED MATHEMATICS

Volume 5, Number 4, 1996
Warsaw University - Bialystok

Left and Right Component of the
Complement of a Special Closed Curve

Andrzej Trybulec
Warsaw University
Biatystok

Summary. In the article the concept of the left and right compo-
nent are introduced. These are the auxiliary notions needed in the proof
of Jordan Curve Theorem.
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The articles (23], [26], [7], [25], [11], [2], [21], [18], [27], [6], [5], [3], [24], [12], [1],
[13], [20], [28], [19], [4], [9], [10], [14], [15], [16], [8], [22], and [17] provide the
notation and terminology for this paper.

For simplicity we adopt the following rules: f will denote a non constant
standard special circular sequence, i, j, k will denote natural numbers, p, ¢ will
denote points of 5%, and G will denote a Go-board.

The following propositions are true:

(1) i—'i=0.

(2) i—"j<i.

(3) Let G be anon empty topological space and let Aj, A, B be subsets of
the carrier of G1. Suppose A; is a component of B and As is a component
of B. Then A1 = Ay or A; misses As.

(4) Let G7 be a non empty topological space, and let A, B be non empty
subsets of the carrier of G1, and let A3 be a subset of the carrier of G1| B.If
A=Az, then G| A=G1| B As.

(5) Let G1 be a non empty topological space and let A, B be non empty
subsets of the carrier of G;. Suppose A C B and A is connected. Then
there exists a subset C' of the carrier of G such that C' is a component
of Band A C C.

(6) Let G1 be anon empty topological space and let A, B, C, D be subsets
of the carrier of G1. Suppose B is connected and C' is a component of D
and A C C and A meets B and B C D. Then B C C.
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(7)  L(p,q) is convex.

(8) L(p,q) is connected.

One can check that there exists a subset of the carrier of E% which is convex.
One can prove the following three propositions:

(9)  For all convex subsets P, Q of the carrier of £2 holds PN Q is convex.

(10)  For every finite sequence f of elements of £2 holds Rev(X-coordinate(f))
X-coordinate(Rev(f)).

(11)  For every finite sequence f of elements of £2 holds Rev(Y-coordinate( f))
Y-coordinate(Rev(f)).

Let us mention that there exists a finite sequence which is non constant.
Let f be a non constant finite sequence. Note that Rev(f) is non constant.
Let f be a standard special circular sequence. Then Rev(f) is a standard
special circular sequence.
We now state a number of propositions:
(12) If ¢« > 1 and j > 1 and ¢ + j = lenf, then leftcell(f,i) =
rightcell(Rev(f), 7).
(13) Ifi > 1and j > 1 and i + j = lenf, then leftcell(Rev(f),i) =
rightcell(f, 7).

(14)  Suppose 1 < k and k + 1 < len f. Then there exist i, j such that
i < lenthe Go-board of f and j < widththe Go-board of f and cell(the
Go-board of f, i,7) = leftcell(f, k).

If j < width G, then Int hstrip(G, j) is convex.
If 1 <len @, then Int vstrip(G, i) is convex.
If i <lenG and j < width G, then Int cell(G, 1, j) # 0.
If 1 <kand k+ 1 <len f, then Intleftcell(f, k) # 0.
If 1 <kand k+1<len f, then Int rightcell(f, k) # 0.
If i <lenG and j < width G, then Int cell(G, 1, j) is convex.
If i <lenG and j < width G, then Int cell(G, 1, j) is connected.
If 1 <k and k+ 1 <len f, then Intleftcell(f, k) is connected.
If 1 <kand k+ 1 <len f, then Intrightcell(f, k) is connected.
Let us consider f. The functor LeftComp(f) yields a subset of the carrier of
EZ and is defined as follows:
(Def. 1) LeftComp(f) is a component of (£(f))¢ and Intleftcell(f,1) C
LeftComp(f).
The functor RightComp(f) yields a subset of the carrier of £2 and is defined
by:
(Def. 2)  RightComp(f) is a component of (£(f))¢ and Intrightcell(f,1) C
RightComp(f).
One can prove the following propositions:
(24)  For every k such that 1 < k and k4 1 <len f holds Int leftcell(f, k) C
LeftComp(f).
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(25)  The Go-board of Rev(f) = the Go-board of f.

(26)  RightComp(f) = LeftComp(Rev(f)).

(27)  RightComp(Rev(f)) = LeftComp(f).

(28)  For every k such that 1 < k and k+1 < len f holds Int rightcell(f, k) C
RightComp(f).
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Summary. The goal of the article is to start the formalization
of Knuth-Bendix completion method (see [2,11] or [1]; see also [12,10]),
i.e. to formalize the concept of the completion of a reduction relation.
The completion of a reduction relation R is a complete reduction rela-
tion equivalent to R such that convertible elements have the same normal
forms. The theory formalized in the article includes concepts and facts
concerning normal forms, terminating reductions, Church-Rosser prop-
erty, and equivalence of reduction relations.

MML Identifier: REWRITE1.

The terminology and notation used here are introduced in the following articles:
[16], [17], 91, [3], [6], [18], [19], [4], [13], [14], [5], [15], [7], and [3].

1. FORGETTING CONCATENATION AND REDUCTION SEQUENCE

Let p, ¢ be finite sequences. The functor p %~ ¢ yielding a finite sequence is
defined as follows:
(Def. 1) (i) pPqg=p-qifp=corqg=c¢,
(ii)  there exists a natural number ¢ and there exists a finite sequence r
such that lenp =17+ 1 and r = p | Segi and p $~ ¢ = r " ¢, otherwise.
In the sequel p, ¢ are finite sequences and x, y are sets.
We now state several propositions:

(1) e¥p=pandp¥ec=p.

(2) Ifg#e, then (p~(z)) % g=p~gq

B) @ @)W d=p" ) ¢

(4) Ifq+#e, then (z) % ¢ =q.

(5) If p # e, then there exist z, ¢ such that p = (z) ~ ¢ and lenp = len g+ 1.
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The scheme PathCatenation concerns finite sequences A, B and a binary
predicate P, and states that:
Let i be a natural number. Suppose i € dom(A > B) and i + 1 €
dom(A %~ B). Let z, y be sets. If 2 = (A% B)(i) and y = (A%
B)(i + 1), then P[x,y]
provided the parameters satisfy the following conditions:
e For every natural number i such that i € dom A and i+ 1 € dom A
holds P[A(i), A(i + 1)],
e For every natural number ¢ such that i € dom B and ¢ +1 € dom B
holds P[B(i), B(i + 1)],
e len A > 0and lenB > 0 and A(len A) = B(1).
Let R be a binary relation. A finite sequence is said to be a reduction
sequence w.r.t. R if:
(Def. 2)  lenit > 0 and for every natural number i such that ¢ € domit and
i+ 1 € domit holds (it(7), it(i + 1)) € R.
Next we state the proposition
(6) For every binary relation R and for every reduction sequence p w.r.t.
R holds 1 € domp and lenp € dom p.
Let R be a binary relation. Note that every reduction sequence w.r.t. R is
non empty.
One can prove the following propositions:
(7)  For every binary relation R and for every set a holds (a) is a reduction
sequence w.r.t. R.
(8) For every binary relation R and for all sets a, b such that {(a, b) € R
holds (a, b) is a reduction sequence w.r.t. R.
(9) Let R be a binary relation and let p, ¢ be reduction sequences w.r.t. R.
If p(lenp) = g(1), then p *~ ¢ is a reduction sequence w.r.t. R.
(10) Let R be a binary relation and let p be a reduction sequence w.r.t. R.
Then Rev(p) is a reduction sequence w.r.t. R~.

(11)  For all binary relations R, @ such that R C @ holds every reduction
sequence w.r.t. R is a reduction sequence w.r.t. Q.

2. REDUCIBILITY, CONVERTIBILITY AND NORMAL FORMS

Let R be a binary relation and let a, b be sets. We say that R reduces a to
b if and only if:
(Def. 3)  There exists a reduction sequence p w.r.t. R such that p(1) = a and
p(lenp) = b.
Let R be a binary relation and let a, b be sets. We say that a and b are
convertible w.r.t. R if and only if:
(Def. 4)  RU R reduces a to b.
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One can prove the following propositions:

(12)  Let R be a binary relation and let a, b be sets. Then R reduces a to b if
and only if there exists a finite sequence p such that lenp > 0 and p(1) = a
and p(lenp) = b and for every natural number i such that ¢ € dom p and
i+ 1 € domp holds (p(i), p(i + 1)) € R.

(13)  For every binary relation R and for every set a holds R reduces a to a.

(14)  For all sets a, b such that () reduces a to b holds a = b.

(15)  For every binary relation R and for all sets a, b such that R reduces a
to b and a ¢ field R holds a = b.

(16)  For every binary relation R and for all sets a, b such that (a, b) € R
holds R reduces a to b.

(17)  Let R be a binary relation and let a, b, ¢ be sets. Suppose R reduces a
to b and R reduces b to c. Then R reduces a to c.

(18) Let R be a binary relation, and let p be a reduction sequence w.r.t. R,
and let 7, j be natural numbers. If ¢ € domp and j € domp and i < j,
then R reduces p(i) to p(j).

(19)  For every binary relation R and for all sets a, b such that R reduces a
to b and a # b holds a € field R and b € field R.

(20)  For every binary relation R and for all sets a, b such that R reduces a
to b holds a € field R iff b € field R.

(21)  For every binary relation R and for all sets a, b holds R reduces a to b
iff a=0or (a, b) € R*.

(22)  For every binary relation R and for all sets a, b holds R reduces a to b
iff R* reduces a to b.

(23) Let R, @ be binary relations. Suppose R C Q. Let a, b be sets. If R
reduces a to b, then () reduces a to b.

(24) Let R be a binary relation, and let X be a set, and let a, b be sets.
Then R reduces a to b if and only if R U A x reduces a to b.

(25)  For every binary relation R and for all sets a, b such that R reduces a
to b holds R~ reduces b to a.

(26) Let R be a binary relation and let a, b be sets. Suppose R reduces a
to b. Then a and b are convertible w.r.t. R and b and a are convertible
w.r.t. R.

(27)  For every binary relation R and for every set a holds a and a are con-
vertible w.r.t. R.

(28)  For all sets a, b such that a and b are convertible w.r.t. () holds a = b.

(29) Let R be a binary relation and let a, b be sets. If a and b are convertible
w.r.t. R and a ¢ field R, then a = b.

(30)  For every binary relation R and for all sets a, b such that (a, b) € R
holds a and b are convertible w.r.t. R.

(31) Let R be a binary relation and let a, b, ¢ be sets. Suppose a and b are
convertible w.r.t. R and b and ¢ are convertible w.r.t. R. Then a and ¢
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are convertible w.r.t. R.

(32) Let R be a binary relation and let a, b be sets. Suppose a and b are
convertible w.r.t. R. Then b and a are convertible w.r.t. R.

(33) Let R be a binary relation and let a, b be sets. If a and b are convertible
w.r.t. R and a # b, then a € field R and b € field R.

Let R be a binary relation and let a be a set. We say that a is a normal form
w.r.t. R if and only if:

(Def. 5) It is not true that there exists a set b such that (a, b) € R.
The following propositions are true:

(34) Let R be a binary relation and let a, b be sets. If a is a normal form
w.r.t. R and R reduces a to b, then a = b.

(35)  For every binary relation R and for every set a such that a ¢ field R
holds a is a normal form w.r.t. R.

Let R be a binary relation and let a, b be sets. We say that b is a normal
form of @ w.r.t. R if and only if:

(Def. 6) b is a normal form w.r.t. R and R reduces a to b.
We say that a and b are convergent w.r.t. R if and only if:

(Def. 7)  There exists a set ¢ such that R reduces a to ¢ and R reduces b to c.
We say that a and b are divergent w.r.t. R if and only if:

(Def. 8)  There exists a set ¢ such that R reduces c to a and R reduces ¢ to b.
We say that a and b are convergent at most in 1 step w.r.t. R if and only if:
(Def. 9)  There exists a set ¢ such that {a, c) € R or a = ¢ but (b, ¢) € R or

b=c.
We say that a and b are divergent at most in 1 step w.r.t. R if and only if:
(Def. 10)  There exists a set ¢ such that (¢, a) € R or a = ¢ but (¢, b) € R or
b=c.
Next we state a number of propositions:

(36) For every binary relation R and for every set a such that a ¢ field R
holds a is a normal form of a w.r.t. R.

(37)  Let R be a binary relation and let a, b be sets. Suppose R reduces a to
b. Then

(i) a and b are convergent w.r.t. R,

(ii) a and b are divergent w.r.t. R,

(iii) b and a are convergent w.r.t. R, and

(iv) b and a are divergent w.r.t. R.

(38) Let R be a binary relation and let a, b be sets. Suppose a and b are
convergent w.r.t. R or a and b are divergent w.r.t. R. Then a and b are
convertible w.r.t. R.

v

(39) Let R be a binary relation and let a be a set. Then a and a are
convergent w.r.t. R and a and a are divergent w.r.t. R.
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(40)  For all sets a, b such that a and b are convergent w.r.t. () or @ and b are
divergent w.r.t. () holds a = b.

(41) Let R be a binary relation and let a, b be sets. Suppose a and b are
convergent w.r.t. R. Then b and a are convergent w.r.t. R.

(42) Let R be a binary relation and let a, b be sets. Suppose a and b are
divergent w.r.t. R. Then b and a are divergent w.r.t. R.

(43)  Let R be a binary relation and let a, b, ¢ be sets. Suppose that
(i) R reduces a to b and b and ¢ are convergent w.r.t. R, or
(ii) @ and b are convergent w.r.t. R and R reduces c to b.
Then a and ¢ are convergent w.r.t. R.

(44) Let R be a binary relation and let a, b, ¢ be sets. Suppose that
(i) R reduces b to a and b and c are divergent w.r.t. R, or
(ii) @ and b are divergent w.r.t. R and R reduces b to c.
Then a and c are divergent w.r.t. R.
(45) Let R be a binary relation and let a, b be sets. Suppose a and b are
convergent at most in 1 step w.r.t. R. Then a and b are convergent w.r.t.
R.
(46) Let R be a binary relation and let a, b be sets. Suppose a and b are
divergent at most in 1 step w.r.t. R. Then a and b are divergent w.r.t.
R.
Let R be a binary relation and let a be a set. We say that a has a normal
form w.r.t. R if and only if:
(Def. 11)  There exists set which is a normal form of a w.r.t. R.
Next we state the proposition
(47)  For every binary relation R and for every set a such that a ¢ field R
holds @ has a normal form w.r.t. R.

Let R be a binary relation and let a be a set. Let us assume that a has a
normal form w.r.t. R and for all sets b, ¢ such that b is a normal form of a
w.r.t. R and c is a normal form of @ w.r.t. R holds b = ¢. The functor nf g(a)
is defined by:

(Def. 12)  nfg(a) is a normal form of a w.r.t. R.

3. TERMINATING REDUCTIONS

Let R be a binary relation. We say that R is reversely well founded if and
only if:
(Def. 13) R~ is well founded.
We say that R is weakly-normalizing if and only if:

(Def. 14)  For every set a such that a € field R holds a has a normal form w.r.t.
R.

We say that R is strongly-normalizing if and only if:

473
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(Def. 15)  For every many sorted set f indexed by N there exists a natural number
i such that (f(4), f(i +1)) ¢ R.
Let R be a binary relation. Let us observe that R is reversely well founded
if and only if the condition (Def. 16) is satisfied.

(Def. 16)  Let Y be a set. Suppose Y C field R and Y # (). Then there exists a
set a such that a € Y and for every set b such that b € Y and a # b holds
(a, b) ¢ R.
The scheme coNoetherianInduction deals with a binary relation A and a
unary predicate P, and states that:
For every set a such that a € field A holds PJa]
provided the parameters meet the following conditions:
e A is reversely well founded,
e For every set a such that for every set b such that (a, b) € A and
a # b holds P[b] holds Pl[a].

One can check that every binary relation which is strongly-normalizing is
also irreflexive and reversely well founded and every binary relation which is
reversely well founded and irreflexive is also strongly-normalizing.

Let us note that every binary relation which is empty is also weakly-normalizing
and strongly-normalizing.

Let us note that there exists a binary relation which is empty.

Next we state the proposition

(48)  Let @ be a reversely well founded binary relation and let R be a binary
relation. If R C @, then R is reversely well founded.

Let us observe that every binary relation which is strongly-normalizing is
also weakly-normalizing.

4. CHURCH-ROSSER PROPERTY

Let R, @ be binary relations. We say that R commutes-weakly with @ if and
only if the condition (Def. 17) is satisfied.
(Def. 17)  Let a, b, ¢ be sets. Suppose {a, b) € R and (a, ¢) € Q. Then there
exists a set d such that @) reduces b to d and R reduces c to d.
Let us notice that the predicate defined above is symmetric. We say that R
commutes with @ if and only if the condition (Def. 18) is satisfied.
(Def. 18)  Let a, b, ¢ be sets. Suppose R reduces a to b and @ reduces a to c.
Then there exists a set d such that @ reduces b to d and R reduces ¢ to d.
Let us notice that the predicate introduced above is symmetric.
We now state the proposition
(49) For all binary relations R, @ such that R commutes with @ holds R
commutes-weakly with Q.

Let R be a binary relation. We say that R has unique normal form property
if and only if the condition (Def. 19) is satisfied.
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(Def. 19)  Let a, b be sets. Suppose a is a normal form w.r.t. R and b is a normal
form w.r.t. R and a and b are convertible w.r.t. R. Then a = b.

We say that R has normal form property if and only if the condition (Def. 20)
is satisfied.

(Def. 20)  Let a, b be sets. Suppose a is a normal form w.r.t. R and a and b are
convertible w.r.t. R. Then R reduces b to a.

We say that R is subcommutative if and only if:

(Def. 21)  For all sets a, b, ¢ such that {a, b) € R and (a, ¢) € R holds b and ¢ are
convergent at most in 1 step w.r.t. R.

We introduce R has diamond property as a synonym of R is subcommutative.
We say that R is confluent if and only if:

(Def. 22)  For all sets a, b such that a and b are divergent w.r.t. R holds a and b
are convergent w.r.t. R.

We say that R has Church-Rosser property if and only if:

(Def. 23)  For all sets a, b such that a and b are convertible w.r.t. R holds a and
b are convergent w.r.t. R.

We say that R is locally-confluent if and only if:

(Def. 24)  For all sets a, b, ¢ such that {a, b) € R and (a, ¢) € R holds b and ¢ are
convergent w.r.t. R.

We introduce R has weak Church-Rosser property as a synonym of R is locally-
confluent.
Next we state four propositions:

(50) Let R be a binary relation. Suppose R is subcommutative. Let a, b,
¢ be sets. Suppose R reduces a to b and (a, ¢) € R. Then b and ¢ are
convergent w.r.t. R.

(51)  For every binary relation R holds R is confluent iff R commutes with
R

(52) Let R be a binary relation. Then R is confluent if and only if for all
sets a, b, ¢ such that R reduces a to b and (a, ¢) € R holds b and ¢ are
convergent w.r.t. R

(53)  For every binary relation R holds R is locally-confluent iff R commutes-
weakly with R.

One can verify the following observations:
*  every binary relation which has Church-Rosser property is confluent,

%  every binary relation which is confluent is also locally-confluent and has
Church-Rosser property,

%  every binary relation which is subcommutative is also confluent,

*  every binary relation which has Church-Rosser property has also normal
form property,

*  every binary relation which has normal form property has also unique
normal form property, and

475
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*  every binary relation which is weakly-normalizing and has unique nor-
mal form property has Church-Rosser property.

One can check that every binary relation which is empty is also subcommu-
tative.

One can verify that there exists a binary relation which is empty.

The following three propositions are true:

(54) Let R be a binary relation with unique normal form property and let
a, b, ¢ be sets. Suppose b is a normal form of @ w.r.t. R and c is a normal
form of a w.r.t. R. Then b= c.

(55)  Let R be a weakly-normalizing binary relation with unique normal form
property and let a be a set. Then nfr(a) is a normal form of @ w.r.t. R.

(56)  Let R be a weakly-normalizing binary relation with unique normal form
property and let a, b be sets. If a and b are convertible w.r.t. R, then
nfr(a) = nfr(d).

Let us note that every binary relation which is strongly-normalizing and
locally-confluent is also confluent.

Let R be a binary relation. We say that R is complete if and only if:

(Def. 25) R is confluent and strongly-normalizing.

Let us note that every binary relation which is complete is also confluent and
strongly-normalizing and every binary relation which is confluent and strongly-
normalizing is also complete.

Let us mention that there exists a binary relation which is empty.

Let us note that there exists a non empty binary relation which is complete.

We now state three propositions:

(57) Let R, @ be binary relations with Church-Rosser property. If R com-
mutes with ), then R U @ has Church-Rosser property.

(58)  For every binary relation R holds R is confluent iff R* has weak Church-
Rosser property.

(59)  For every binary relation R holds R is confluent iff R* is subcommuta-
tive.

5. COMPLETION METHOD

Let R, Q be binary relations. We say that R and ) are equivalent if and
only if the condition (Def. 26) is satisfied.
(Def. 26)  Let a, b be sets. Then a and b are convertible w.r.t. R if and only if a
and b are convertible w.r.t. Q.
Let us observe that the predicate introduced above is symmetric.

Let R be a binary relation and let a, b be sets. We say that a and b are
critical w.r.t. R if and only if:
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(Def. 27)  a and b are divergent at most in 1 step w.r.t. R and a and b are not
convergent w.r.t. R.

We now state four propositions:

(60) Let R be a binary relation and let a, b be sets. Suppose a and b are
critical w.r.t. R. Then a and b are convertible w.r.t. R.

(61) Let R be a binary relation. Suppose that it is not true that there exist
sets a, b such that a and b are critical w.r.t. R Then R is locally-confluent.

(62) Let R, Q be binary relations. Suppose that for all sets a, b such that

(a, b) € @ holds a and b are critical w.r.t. R. Then R and RU Q are
equivalent.

(63) Let R be a binary relation. Then there exists a complete binary relation
() such that
(i) field@ C field R, and
(ii)  for all sets a, b holds a and b are convertible w.r.t. R iff a and b are
convergent w.r.t. Q.

Let R be a binary relation. A complete binary relation is said to be a
completion of R if it satisfies the condition (Def. 28).

(Def. 28)  Let a, b be sets. Then a and b are convertible w.r.t. R if and only if a
and b are convergent w.r.t. it.

Next we state three propositions:

(64)  For every binary relation R and for every completion C' of R holds R
and C are equivalent.

(65) Let R be a binary relation and let @) be a complete binary relation. If
R and @ are equivalent, then () is a completion of R.

(66) Let R be a binary relation, and let C' be a completion of R, and let a, b be
sets. Then a and b are convertible w.r.t. R if and only if nfo(a) = nfe(b).
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1. MORE ON EQUIVALENCE RELATIONS

For simplicity we adopt the following convention: I, X denote sets, M de-
notes a many sorted set indexed by I, R; denotes a binary relation on X, and
FE1, B>, E3 denote equivalence relations of X.

We now state the proposition

(1) (El (] Eg) UFE3=FE U (E2 U Eg).

Let X be a set and let R be a binary relation on X. The functor EqCI(R)
yielding an equivalence relation of X is defined as follows:

(Def. 1) R C EqCI(R) and for every equivalence relation Fo of X such that
R C Es holds EqCI(R) C Es.

One can prove the following propositions:
(2) EyUEy=EqCI(Ey U E3).

(3) EqCl(E;) = Ej.

(4) VxUR; =Vxk.

© 1996 Warsaw University - Bialystok
479 ISSN 1426-2630



480 ROBERT MILEWSKI

2. LATTICE OF EQUIVALENCE RELATIONS

Let X be a set. The functor EqRelLatt(X) yields a strict lattice and is
defined by the conditions (Def. 2).

(Def. 2) (i)  The carrier of EqRelLatt(X) = {z :  ranges over relations between
X and X, z is an equivalence relation of X}, and

(ii)  for all equivalence relations x, y of X holds (the meet operation of

EqRelLatt(X))(z, y) = 2Ny and (the join operation of EqRelLatt(X))(x,

y)=xUuy.

3. MANY SORTED EQUIVALENCE RELATIONS

Let us consider I, M. Note that there exists a many sorted relation of M
which is equivalence.

Let us consider I, M. An equivalence relation of M is an equivalence many
sorted relation of M.

We adopt the following convention: I will denote a non empty set, M will de-
note a many sorted set indexed by I, and Ey4, E1, Ey, F5 will denote equivalence
relations of M.

Let I be a non empty set, let M be a many sorted set indexed by I, and let
R be a many sorted relation of M. The functor EqCI(R) yields an equivalence
relation of M and is defined as follows:

(Def. 3)  For every element i of I holds (EqCI(R))(:) = EqCI(R(7)).
The following proposition is true
(5)  EqCl(Ey) = Ej.

4. LATTICE OF MANY SORTED EQUIVALENCE RELATIONS

Let I be a non empty set, let M be a many sorted set indexed by I, and
let Fq, Eo be equivalence relations of M. The functor Fi U Es yielding an
equivalence relation of M is defined as follows:

(Def. 4)  There exists a many sorted relation F3 of M such that Es3 = Ej U Ey
and Fq U FEy = Equ(Eg).
Let us observe that the functor introduced above is commutative.
Next we state several propositions:
(6) FEiUFE, C E1UES.
(7)  For every equivalence relation F4 of M such that Fy U Ey C E4 holds
FEiUFEy C Ey.
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(8) 1If E1 U Ey C F5 and for every equivalence relation E4 of M such that
F1UEy C E4 holds E3 C Ey, then E3 = Fq U Es.

(9) E,UE,=E,.
(10) (El U Eg) U Es=FE; L (E2 (] Eg).
(11) EyN(E1UEy) = Fy.
(12)  For every equivalence relation F4 of M such that F4y = F; N Ey holds

E\UFE,=F;.
(13)  For all equivalence relations Ey, Es of M holds F1NEs is an equivalence
relation of M.

Let I be a non empty set and let M be a many sorted set indexed by I.
The functor EqRelLatt(M) yielding a strict lattice is defined by the conditions
(Def. 5).

(Def. 5) (i)  For arbitrary = holds = € the carrier of EqRelLatt(M) iff = is an
equivalence relation of M, and

(ii))  for all equivalence relations x, y of M holds (the meet operation of

EqRelLatt(M))(x, y) = Ny and (the join operation of EqRelLatt(M))(z,

y)=zUy.

5. LATTICE OF CONGRUENCES IN MANY SORTED ALGEBRA

Let S be a non empty many sorted signature and let A be an algebra over
S Note that every many sorted relation of A which is equivalence is also equiv-
alence.

In the sequel S will denote a non void non empty many sorted signature and
A will denote a non-empty algebra over S.

Next we state several propositions:

(14)  Let o be an operation symbol of S, and let C;, Cy be congruences of A,
and let x1, y; be arbitrary, and let a1, by be finite sequences. Suppose (z1,
Y1) € C1(Ten aq+1 Arity(0)) U Co(Ten ay +1 Arity(0)). Let z, y be elements
of Args(o, A). Suppose x = a1 ~ (z1) by and y = a1 ~ (y1) ~ b1. Then
((Den(o, A))(z), (Den(o, A))(y)) € C1(the result sort of 0) U Ca(the result
sort of o).

(15) Let o be an operation symbol of S, and let C7, Cy be congruences
of A, and let C be an equivalence many sorted relation of A. Suppose
C = C1UCy. Let 1, y1 be arbitrary, and let n be a natural number, and let
a1, as, by be finite sequences. Suppose lena; = n and lena; = lenas and
for every natural number k such that k € domay holds {a;1(k), az(k)) E
C' (7, Arity(0)). Suppose ((Den(o, A))(a1”(z1)"b1), (Den(o, A))(az™(x1
b1)) € C(the result sort of 0) and (z1, y1) € C(m,41 Arity(0)). Let x be
an element of Args(o,A). If x = a1 ~ (x1) ~ b1, then ((Den(o, A))(z),
(Den(o, A))(az2 ™ (y1) ~ b1)) € C(the result sort of o).
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(16)

(17)
(18)
Let us consider S and let A be a non-empty algebra over S. The functor

ROBERT MILEWSKI

Let o be an operation symbol of S, and let Cq, Cs be congruences of
A, and let C' be an equivalence many sorted relation of A. Suppose C' =
C1UC,. Let z, y be elements of Args(o, A). Suppose that for every natural
number n such that n € dom z holds (x(n), y(n)) € C(m, Arity(0)). Then
((Den(o, A))(x), (Den(o, A))(y)) € C(the result sort of o).

For all congruences Cy, Cs of A holds Cy U C5 is a congruence of A.

For all congruences Cy, Cs of A holds Cy N Cy is a congruence of A.

CongrLatt(A) yielding a strict sublattice of EqRelLatt(the sorts of A) is defined

by:

(Def. 6)

For arbitrary x holds = € the carrier of CongrLatt(A) iff x is a congru-
ence of A.

We now state four propositions:
(19)
(20)
(21)
(22)

Let us consider S and let us consider A. One can check that CongrLatt(A)

id (the sorts of 4) 15 @ congruence of A.
[the sorts of A, the sorts of A] is a congruence of A.

J—CongrLatt(A) = id(the sorts of A)-
T CongrLatt(4) = [the sorts of A, the sorts of AJ.

is bounded.
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1. PRELIMINARIES

For simplicity we adopt the following rules: z is arbitrary, m, n are natural
numbers, f, g are functions, and A, B are sets.

We now state several propositions:

(1)  For every function f and for every set X such that rng f C X holds
idx - f=f.

(2) Let X be a set, and let Y be a non empty set, and let f be a function
from X into Y. Suppose f is one-to-one. Let B be a subset of X and let
C be asubset of Y. If C C f°B, then f ~' C C B.

(3) Let X, Y be non empty sets and let f be a function from X into Y.
Suppose f is one-to-one. Let x be an element of X and let A be a subset
of X. If f(x) € f°A, then x € A.

(4) Let X, Y be non empty sets and let f be a function from X into Y.
Suppose f is one-to-one. Let x be an element of X, and let A be a subset
of X, and let B be a subset of Y. If f(z) € f°A\ B, then x € A\ f ! B.

(5) Let X, Y be non empty sets and let f be a function from X into Y.
Suppose f is one-to-one. Let y be an element of Y, and let A be a subset
of X, and let B be a subset of Y. If y € f°A\ B, then f~'(y) € A\ f~'B.

(6) For every function f and for arbitrary a such that a € dom f holds
f1{a} =a——f(a).

© 1996 Warsaw University - Bialystok
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Let z, y be arbitrary. Observe that z+——y is non empty.

Let z, y, a, b be arbitrary. One can check that [x — a,y —— b] is non
empty.

One can prove the following propositions:

(7)  For every set I and for every many sorted set M indexed by I and for
arbitrary 4 such that ¢ € I holds i—— M (i) = M | {i}.

(8) Let I, J be sets, and let M be a many sorted set indexed by [ I, J {, and
let i, j be arbitrary. If ¢ € I and j € J, then [(i,5) — M4, j)] = M | [ {3},
{7H.

(9) Ifx € domf and x ¢ dom g, then (f+-g)(z) = f(x).

(10)  For all functions f, g, h such that rngg C dom f and rngh C dom f
holds f - (g+-h) = f - g+-f - h.

(11)  For all functions f, g, h holds (g+-h) - f=g- f+h- f.

(12)  For all functions f, g, h such that rng f misses dom g holds (h+-g)- f =
h-f.

(13)  For all sets A, B and for arbitrary y such that A meets rng(idp+-(A —
y)) holds y € A.

(14)  For arbitrary x, y and for every set A such that = # y holds = ¢
rng(id 4+ (x——y)).

(15)  For every set X and for arbitrary a and for every function f such that
dom f = X U{a} holds f = f | X+ (a—— f(a)).

(16) For every function f and for all sets X, y, z holds f+(X r—
PIH(X > 2) = (X s 2),

17 If 0 <m and m <n, then 7,, C Z,,.
18 Z+#1T"
19 0* = {0}.

(x) e A*iff z € A.

A C B iff A* C B*.

For every subset A of N such that for all n, m such that n € A and
m < n holds m € A holds A is a cardinal number.

(23) Let A be a finite set and let X be a non empty family of subsets of A.
Then there exists an element C' of X such that for every element B of X
such that B C C holds B = C.

(24) Let p, q be finite sequences. Suppose lenp = leng + 1. Let i be a
natural number. Then ¢ € dom ¢ if and only if the following conditions
are satisfied:

(i) i€ domp, and

(i) i+1 € domp.

Let us note that there exists a finite sequence which is function yielding non
empty and non-empty.

Note that ¢ is function yielding. Let f be a function. Observe that (f) is
function yielding. Let g be a function. One can check that (f,g) is function

N N N /S /S A/
[\ [\
[\ (=)
— — — — — ~—
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yielding. Let h be a function. Observe that (f, g, h) is function yielding.

Let n be a natural number and let f be a function. One can verify that
n +— f is function yielding.

Let p be a finite sequence and let ¢ be a non empty finite sequence. One can
verify that p ™ ¢ is non empty and ¢ ~ p is non empty.

Let p, ¢ be function yielding finite sequences. Note that p ~ ¢ is function
yielding.

Next we state the proposition

(25)  Let p, ¢ be finite sequences. Suppose p ~ ¢ is function yielding. Then p
is function yielding and ¢ is function yielding.

2. SOME USEFUL SCHEMES

In this article we present several logical schemes. The scheme KappaD con-
cerns non empty sets A, B and a unary functor F yielding arbitrary, and states
that:

There exists a function f from A into B such that for every element
x of A holds f(x) = F(z)
provided the parameters meet the following condition:

e For every element x of A holds F(x) € B.

The scheme Kappa2D deals with non empty sets A, B, C and a binary functor
F yielding arbitrary, and states that:

There exists a function f from [.4, B] into C such that for every
element = of A and for every element y of B holds f({z, y)) =
F(z,y)
provided the parameters meet the following requirement:
e For every element z of A and for every element y of B holds
F(z,y) €C.

The scheme FinMono concerns a set A, a non empty set B, and two unary
functors F and G yielding arbitrary, and states that:

{F(d) : d ranges over elements of B, G(d) € A} is finite
provided the following conditions are satisfied:

e A is finite,

e For all elements dy, dy of B such that G(dy) = G(dz) holds d; = ds.

The scheme CardMono concerns a set A, a non empty set B3, and a unary
functor F yielding arbitrary, and states that:

A~ {d : d ranges over elements of B, F(d) € A}
provided the following requirements are met:
e For arbitrary x such that € A there exists an element d of B such
that = = F(d),

e For all elements dy, dy of B such that F(d;) = F(d3) holds d; = da.

The scheme CardMono’ concerns a set A, a non empty set B, and a unary
functor F yielding arbitrary, and states that:

487
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A~ {F(d) : d ranges over elements of B, d € A}
provided the following conditions are satisfied:
e ACB,
e For all elements dy, dy of B such that F(d;) = F(d3) holds d; = ds.
The scheme FuncSeqlnd concerns a unary predicate P, and states that:
For every function yielding finite sequence p holds P|p]
provided the following conditions are satisfied:
e Pl
e For every function yielding finite sequence p such that P[p] and for
every function f holds Plp ~ (f)].

3. SOME AUXILIARY CONCEPTS

Let x be arbitrary and let y be a set. Let us assume that x € y. The functor
z(€ y) yielding an element of y is defined as follows:

(Def. 1)  z(ey) ==.
One can prove the following proposition
(26) Ifx € AN B, then z(€ A) = z(€ B).
Let f, g be functions and let A be a set. We say that f and g equal outside
A if and only if:
(Def. 2)  f1 (dom f\ A) =g (domg\ A).
Next we state several propositions:
(27)  For every function f and for every set A holds f and f equal outside
A.
(28)  For all functions f, g and for every set A such that f and g equal outside
A holds g and f equal outside A
(29) Let f, g, h be functions and let A be a set. Suppose f and g equal
outside A and g and h equal outside A. Then f and h equal outside A.
(30)  For all functions f, g and for every set A such that f and g equal outside
A holds dom f\ A =domg \ A.
(31)  For all functions f, g and for every set A such that dom g C A holds f
and f4-g equal outside A
Let f be a function and let i, x be arbitrary. The functor f +- (i, z) yields a
function and is defined by:
(Def. 3) i) f+ (i,x) = f+-(i—x) if i € dom f,
(ii) f+- (i,x) = f, otherwise.
Next we state several propositions:
(32)  For every function f and for arbitrary d, i holds dom(f +- (i,d)) =
dom f.

(33)  For every function f and for arbitrary d, i such that i € dom f holds
(f + (i, d))(i) =d.
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(34) For every function f and for arbitrary d, i, j such that ¢ # j and
Jj € dom f holds (f +- (i,d))(45) = f(4)-

(35)  For every function f and for arbitrary d, e, ¢, j such that i # j holds
f +- (zvd) + (]7 8) = f +- (]7 e) + (Zvd)

(36)  For every function f and for arbitrary d, e, i holds f +- (i,d) +- (i,e) =
f+-(i,e).

(37)  For every function f and for arbitrary i holds f +- (i, f(4)) = f.

Let f be a finite sequence, let i be a natural number, and let = be arbitrary.
One can check that f +- (i, ) is finite sequence-like.

Let D be a set, let f be a finite sequence of elements of D, let i be a natural
number, and let d be an element of D. Then f +- (i,d) is a finite sequence of
elements of D.

The following three propositions are true:

(38) Let D be a non empty set, and let f be a finite sequence of elements
of D, and let d be an element of D, and let ¢ be a natural number. If
i € dom f, then m;(f +- (i,d)) = d.

(39) Let D be a non empty set, and let f be a finite sequence of elements of
D, and let d be an element of D, and let i, j be natural numbers. If i # j
and j € dom f, then 7;(f +- (i,d)) = 7; f.

(40)  Let D be a non empty set, and let f be a finite sequence of elements of
D, and let d, e be elements of D, and let ¢ be a natural number. Then

[ Gmif)=f.

4. ON THE COMPOSITION OF A FINITE SEQUENCE OF FUNCTIONS

Let X be a set and let p be a function yielding finite sequence. The functor
compose y p yielding a function is defined by the condition (Def. 4).
(Def. 4)  There exists a many sorted function f of N such that
(i) composey p = f(lenp),
(i)  f(0) =idx, and
(iii)  for every natural number i such that i+1 € dom p and for all functions
g, h such that g = f(i) and h = p(i + 1) holds f(i+1) =h-g.
Let p be a function yielding finite sequence and let = be a set. The functor
apply(p, z) yields a finite sequence and is defined by the conditions (Def. 5).
(Def. 5) (i) lenapply(p,z) =lenp+1,
(ii)  (apply(p,z))(1) =z, and
(iii)  for every natural number i and for every function f such that ¢ € domp
and f = p(i) holds (apply(p, z))(i + 1) = f((apply(p,z))(7))-
We adopt the following convention: X, Y, x denote sets, p, ¢ denote function
yielding finite sequences, and f, g, h denote functions.
The following propositions are true:
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composey € = idx.
apply(e,z) = (z).
composey (p ~ (f)) =

apply(p ~ (f), ) = (apply(p,x)) ~ (f((apply(p, z))(lenp + 1))).
composeX(( ) " p) = composesoy p- (f [ X).

apply((f) ™ p, ) = () ~ apply(p, f(x)).

composeX<f> = f-idx.

If dom f C X, then composey (f) = f.

apply((f), z) = (z, f(x)).

If rngcomposexp C Y, then composex(p ™ ¢) = composey q -

f - compose p.

composex p.

(apply(p ~ ¢,z))(len(p ~ ¢q) + 1) = (apply(q, (apply(p,x))(lenp +

1)))(leng+ 1).

apply(p " ¢,x) = (apply(p, z)) ¥~ apply(q, (apply(p, z))(len p + 1)).
composex (f,g9) =g f-idx.

If dom f C X or dom(g - f) C X, then composex(f,g) =g f.
apply((f, 9), #) = (z, f (), 9(f(2)))-

composey (f,g,h) =h-g- f-idx.

If dom f C X ordom(g-f) € X ordom(h-g-f) C X, then compose yx (f,

g:h)y=h-g-f.

apply((f, g, h), x) = () ~ (f(2), g(f (x)), h(g(f(x))))-

Let F be a finite sequence. The functor firstdom(F’) is defined as follows:
(Def. 6) (i) firstdom(F) is empty if F' is empty,

(i)

The functor lastrng(F’) is defined by:

firstdom(F') = 71 (F (1)), otherwise.

(Def. 7) (i) lastrng(F) is empty if F' is empty,

(i)

lastrng(F') = mo(F'(len F)), otherwise.

Next we state three propositions:

(59)
(60)

(61)

firstdom(e) = 0 and lastrng(e) = 0.
For every finite sequence p holds firstdom((f) ~ p) = dom f and

lastrng(p = (f)) = mg f.

For every function yielding finite sequence p such that p # & holds

rng compose y p C lastrng(p).

Let I; be a finite sequence. We say that I is composable if and only if:
(Def. 8)

There exists a finite sequence p such that lenp = len I; +1 and for every

natural number 7 such that i € dom I; holds I (i) € p(i + 1)P®.

We now state the proposition

(62)

For all finite sequences p, ¢ such that p ™ ¢ is composable holds p is

composable and ¢ is composable.
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One can verify that every finite sequence which is composable is also function
yielding.
Let us observe that every finite sequence which is empty is also composable.
Let f be a function. One can check that (f) is composable.
Let us observe that there exists a finite sequence which is composable non
empty and non-empty.
A composable sequence is a composable finite sequence.
Next we state several propositions:
(63) For every composable sequence p such that p # ¢ holds
dom compose y p = firstdom(p) N X.
(64) For every composable sequence p holds dom composeg,sidom(p)? =
firstdom(p).
(65) For every composable sequence p and for every function f such that
rng f C firstdom(p) holds (f) ~ p is a composable sequence.
(66) For every composable sequence p and for every function f such that
lastrng(p) € dom f holds p = (f) is a composable sequence.
(67)  For every composable sequence p such that x € firstdom(p) and x € X
holds (apply(p, z))(lenp + 1) = (compose x p)(x).
Let X, Y be sets. Let us assume that if Y is empty, then X is empty. A
composable sequence is called a composable sequence from X into Y if:
(Def. 9)  firstdom(it) = X and lastrng(it) C Y.
Let Y be a non empty set, let X be a set, and let F' be a composable sequence
from X into Y. Then composey F is a function from X into Y.
Let ¢ be a non-empty non empty finite sequence. A finite sequence is said to
be a composable sequence along q if:

(Def. 10)  lenit + 1 = leng and for every natural number 4 such that i € domit
holds it(i) € g(i + 1)9).
Let ¢ be a non-empty non empty finite sequence. Observe that every com-
posable sequence along ¢ is composable and non-empty.
One can prove the following three propositions:

(68) Let ¢ be a non-empty non empty finite sequence and let p be a com-
posable sequence along ¢q. If p # e, then firstdom(p) = ¢(1) and
lastrng(p) C ¢(len q).

(69) Let ¢ be a non-empty non empty finite sequence and let p be a
composable sequence along ¢. Then domcompose,)p = q(1) and
rng composegy p C q(lengq).

(70)  For every function f and for every natural number n holds f" =
COmMpOs€q4m, fUrngf(n = f)
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Summary. We continue the formalization of the category theory.

MML Identifier: ALTCAT_2.

The notation and terminology used here are introduced in the following papers:
[17], [19], [9], [20], [18], [5], [6], [2], [13], [1], 8], [4], 3], [7], [16], [12], [14], [15],
[10], and [11].

1. PRELIMINARIES

One can prove the following proposition

(1)  For all sets X3, X, and for arbitrary ay, ag holds [ X; — a1, Xo —
a2:] = [:Xl, Xg:] — (al, CL2>.

Let I be a set. Observe that (); is function yielding.

The following two propositions are true:

(2)  For all functions f, g holds ~(g- f) = g-~f.

(3)  For all functions f, g, h holds ~(f - fg, h]) =~f-[h, g]

Let f be a function yielding function. Observe that ~f is function yielding.

One can prove the following proposition

(4)  Let I be a set and let A, B, C' be many sorted sets indexed by I.
Suppose A is transformable to B. Let F' be a many sorted function from
Ainto B and let G be a many sorted function from B into C'. Then Go F
is a many sorted function from A into C.

Let I be a set and let A be a many sorted set indexed by [ I, I]. Then ~A

is a many sorted set indexed by [ I, I{.
We now state the proposition

© 1996 Warsaw University - Bialystok
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(5) Let I; be a set, and let I3 be a non empty set, and let f be a function
from I into Is, and let B, C' be many sorted sets indexed by Io, and let
G be a many sorted function from B into C. Then G - f is a many sorted
function from B - f into C - f.

Let I be a set, let A, B be many sorted sets indexed by [ I, I], and let F
be a many sorted function from A into B. Then ~F is a many sorted function
from A into ~B.

We now state the proposition

(6) Let I1, I be non empty sets, and let M be a many sorted set indexed

by [ I, Is ] and let 01 be an element of I, and let 0y be an element of I5.
Then (FWM) (02, 01) = M(o1, 02).

Let I; be a set and let f, g be many sorted functions of I; Then go f is a

many sorted function of I.

2. AN AUXILIARY NOTION

Let I, J be sets, let A be a many sorted set indexed by I, and let B be a
many sorted set indexed by .J. The predicate A C B is defined as follows:
(Def. 1) I C J and for arbitrary ¢ such that i € I holds A(i) C B(i).

One can prove the following four propositions:

(7)  For every set I and for every many sorted set A indexed by I holds
ACA.

(8) Let I, J be sets, and let A be a many sorted set indexed by I, and let
B be a many sorted set indexed by J. If A C B and B C A, then A = B.

(9) Let I, J, K be sets, and let A be a many sorted set indexed by I, and
let B be a many sorted set indexed by .J, and let C' be a many sorted set
indexed by K. If A C Band B C C, then A C C.

(10)  Let I be a set, and let A be a many sorted set indexed by I, and let B

be a many sorted set indexed by I. Then A C B if and only if A C B.

3. A BIT OF LAMBDA CALCULUS

In this article we present several logical schemes. The scheme OnSingletons
deals with a non empty set A, a unary functor F yielding arbitrary, and a unary
predicate P, and states that:

{{o, F(0)) : o ranges over elements of A, P[o]} is a function
for all values of the parameters.

The scheme DomOnSingletons deals with a non empty set A, a function B,
a unary functor F yielding arbitrary, and a unary predicate P, and states that:

dom B = {0 : o ranges over elements of A, P[o]}
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provided the following condition is satisfied:

e B ={(o, F(0)) : o ranges over elements of A, P[o]}.

The scheme ValOnSingletons deals with a non empty set A, a function B, an
element C of A, a unary functor F yielding arbitrary, and a unary predicate P,
and states that:

B(C) = F(C)
provided the following requirements are met:
e B ={(o, F(0)) : o ranges over elements of A, P[o]},
e P[C].

4. MORE ON OLD CATEGORIES

The following propositions are true:
(11)  For every category C and for all objects i, j, k of C holds [ hom(j, k),
hom(, j) | € dom (the composition of C').
(12)  For every category C and for all objects 4, j, k of C holds (the compo-
sition of C')°fhom(yj, k), hom(4, j) | C hom(i, k).
Let C be a category structure. The functor HomSets¢ yields a many sorted
set indexed by [ the objects of C, the objects of C'] and is defined as follows:
(Def. 2)  For all objects 4, j of C holds HomSetsc (7, j) = hom(i, 7).
The following proposition is true
(13)  For every category C and for every object i of C holds id; € HomSets¢ (7,
i).

Let C be a category. The functor Composition yielding a binary composi-
tion of HomSets¢ is defined by:

(Def. 3)  For all objects 4, j, k of C holds Composition(i, j, k) = (the compo-
sition of C) | | HomSetsc (4, k), HomSetsc (i, 7).

Next we state three propositions:

(14) Let C be a category and let i, j, k be objects of C Suppose hom(z, j) # ()
and hom(j,k) # 0. Let f be a morphism from i to j and let g be a
morphism from j to k. Then Composition-(z, j, k)(g, f) =g - f.

(15)  For every category C holds Composition, is associative.
16 For every category C holds Composition, has left units and right units.
( y category p c g

5. TRANSFORMING AN OLD CATEGORY INTO A NEW ONE

Let C be a category. The functor Alter(C) yielding a strict non empty
category structure is defined as follows:

(Def. 4)  Alter(C) = (the objects of C', HomSets¢, Composition,).
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We now state three propositions:
(17)  For every category C holds Alter(C) is associative.
(18)  For every category C holds Alter(C') has units.
(19)  For every category C holds Alter(C) is transitive.

Let C be a category. Then Alter(C) is a strict category.

6. MORE ON NEW CATEGORIES

Let us note that there exists a graph which is non empty and strict.
Let C be a graph. We say that C is reflexive if and only if:

(Def. 5)  For arbitrary x such that = € the carrier of C holds (the arrows of C')(,
x) # 0.
Let C' be a non empty graph. Let us observe that C is reflexive if and only
if:
(Def. 6)  For every object o of C holds (o, 0) # 0.
Let C be a non empty category structure. Observe that the carrier of C' is
non empty.
Let C be a non empty transitive category structure. Let us observe that C
is associative if and only if the condition (Def. 7) is satisfied.

(Def. 7)  Let o1, 09, 03, 04 be objects of C' and let f be a morphism from o4
to 09, and let g be a morphism from o9 to o3, and let h be a morphism
from o3 to o4. If (01,02) # 0 and (09,03) # 0 and (03,04) # 0, then
(h-g)-f=h-(g-[)

Let C be a non empty category structure. Let us observe that C' has units
if and only if the condition (Def. 8) is satisfied.

(Def. 8)  Let o be an object of C. Then
(i)  (o,0) #0, and
(ii)  there exists a morphism 4 from o to o such that for every object o’ of
C and for every morphism m’ from o' to o and for every morphism m”
from o to o’ holds if (0',0) # (), then i - m' = m’ and if (0,0’) # 0, then
m'’ i =m".
Let us observe that every non empty category structure which has units is
reflexive.
One can check that there exists a graph which is non empty and reflexive.
One can verify that there exists a category structure which is non empty and
reflexive.
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7. THE EMPTY CATEGORY

The strict category structure ) o4 is defined by:
(Def. 9)  The carrier of D car is empty.
Let us note that D car is empty.
Let us mention that there exists a category structure which is empty and
strict.
Next we state the proposition
(20)  For every empty strict category structure E holds F = (gar.

8. SUBCATEGORIES

Let C be a category structure. A category structure is said to be a substruc-
ture of C if it satisfies the conditions (Def. 10).

(Def. 10) (i)  The carrier of it C the carrier of C,
(ii)  the arrows of it C the arrows of C, and
(iii)  the composition of it C the composition of C.
In the sequel C, Cy, Cy, C3 denote category structures.
The following propositions are true:
(21)  C is a substructure of C'.

(22) If (4 is a substructure of Cy and Cy is a substructure of C3, then C is
a substructure of Cj.

(23) Let C1, Cy be category structures. Suppose C is a substructure of Cy
and C5 is a substructure of C'y. Then the category structure of C'; = the
category structure of Cj.

Let C be a category structure. One can check that there exists a substructure
of C' which is strict.
Let C' be a non empty category structure and let o be an object of C. The

functor Ofo yielding a strict substructure of C' is defined by the conditions
(Def. 11).

(Def. 11) (i)  The carrier of Olo = {o},
(ii)  the arrows of Olo = [{0,0) — (0,0)], and
(ili)  the composition of OJo = (o, 0, 0)——(the composition of C)(o, o, 0).
In the sequel C denotes a non empty category structure and o denotes an
object of C.
One can prove the following proposition

(24)  For every object o' of OJo holds o' = o.

Let C be a non empty category structure and let o be an object of C'. Observe
that OJo is transitive and non empty.
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Let C be a non empty category structure. One can verify that there exists a
substructure of C' which is transitive non empty and strict.
We now state the proposition

(25) Let C be a transitive non empty category structure and let D1, Do be
transitive non empty substructures of C'. Suppose the carrier of D1 C the
carrier of Dy and the arrows of Dy C the arrows of Dy. Then Dj is a
substructure of Ds.

Let C be a category structure and let D be a substructure of C. We say that
D is full if and only if:

(Def. 12)  The arrows of D = (the arrows of C') | [ the carrier of D, the carrier of
D.
Let C' be a non empty category structure with units and let D be a substruc-
ture of C. We say that D is id-inheriting if and only if:

(Def. 13)  For every object o of D and for every object o’ of C' such that o = o
holds idy € (o0, 0).

Let C be a category structure. One can verify that there exists a substructure
of C' which is full and strict.

Let C be a non empty category structure. Observe that there exists a sub-
structure of C' which is full non empty and strict.

Let C' be a category and let o be an object of C'. Note that OJo is full and
id-inheriting.

Let C be a category. One can verify that there exists a substructure of C
which is full id-inheriting non empty and strict.

In the sequel C' is a non empty transitive category structure.

The following propositions are true:

(26) Let D be a substructure of C. Suppose the carrier of D = the carrier
of C' and the arrows of D = the arrows of C. Then the category structure
of D = the category structure of C.

(27)  Let Dy, D2 be non empty transitive substructures of C. Suppose the
carrier of D7 = the carrier of Dy and the arrows of D; = the arrows of
D5. Then the category structure of Dy = the category structure of Ds.

(28) Let D be a full substructure of C. Suppose the carrier of D = the
carrier of C'. Then the category structure of D = the category structure
of C.

(29) Let C be a non empty category structure, and let D be a full non empty
substructure of C, and let 01, 02 be objects of C' and let py, p2 be objects
of D If oy = p; and 09 = po, then (01,09) = (p1,p2).

(30)  For every non empty category structure C' and for every non empty
substructure D of C holds every object of D is an object of C.

Let C be a transitive non empty category structure. Note that every sub-
structure of C' which is full and non empty is also transitive.
The following propositions are true:
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(31) Let Dy, Dy be full non empty substructures of C'. Suppose the carrier
of D; = the carrier of Dy. Then the category structure of D; = the
category structure of Ds.

(32) Let C be a non empty category structure, and let D be a non empty
substructure of C, and let 01, 02 be objects of C' and let py, p2 be objects
of D If oy = p; and 02 = po, then (p1,p2) C (01, 09).
(33) Let C be a non empty transitive category structure, and let D be a
non empty transitive substructure of C, and let p1, p2, p3 be objects of
D Suppose (p1,p2) # 0 and (p2,p3) # 0. Let o1, 02, 03 be objects of C
Suppose 01 = p; and 09 = py and 03 = p3. Let f be a morphism from o
to 02, and let g be a morphism from 05 to o3, and let f; be a morphism
from p; to po, and let g1 be a morphism from ps to ps. If f = f1 and
g =g, theng-f=g1-fi
Let C' be an associative transitive non empty category structure. Note that
every non empty substructure of C' which is transitive is also associative.
One can prove the following proposition

(34) Let C be a non empty category structure, and let D be a non empty
substructure of C, and let 01, 02 be objects of C and let p1, ps be objects
of D If 01 = p1 and 0y = py and (p1, p2) # (), then every morphism from
p1 to po is a morphism from o7 to oo.

Let C' be a transitive non empty category structure with units. Note that
every non empty substructure of C' which is id-inheriting and transitive has
units.

Let C be a category. Note that there exists a non empty substructure of C
which is id-inheriting and transitive.

Let C be a category. A subcategory of C is an id-inheriting transitive sub-
structure of C.

We now state the proposition

(35) Let C be a category, and let D be a non empty subcategory of C, and
let 0 be an object of D, and let o’ be an object of C. If 0o = ¢, then
id, = id, .
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1. PRELIMINARIES

Let I be a relation structure. We say that Iy is discrete if and only if:
(Def. 1)  The internal relation of I1 = Ahe carrier of I -

Let us mention that there exists a poset which is strict discrete and non
empty and there exists a poset which is strict discrete and empty.

Let X be a set. Then Ax is an order in X.

Observe that (i, Ay) is empty. Let P be an empty relation structure. One
can check that the internal relation of P is empty.

Let us mention that every relation structure which is empty is also discrete.

Let P be a relation structure and let I; be a subset of P. We say that Iy is
disconnected if and only if the condition (Def. 2) is satisfied.

(Def. 2)  There exist subsets A, B of P such that
() A0,
Gi) B,
(i) I, =AUB,
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(iv) A misses B, and
(v) the internal relation of P = (the internal relation of P)|? (A) U (the
internal relation of P) |? (B).
We introduce I; is connected as an antonym of I is disconnected.
Let 17 be a non empty relation structure. We say that Iy is disconnected if
and only if:
(Def. 3)  Q(y,) is disconnected.
We introduce I is connected as an antonym of I is disconnected.
In the sequel T" will denote a non empty relation structure and a will denote
an element of 7.
One can prove the following propositions:
(1)  For every discrete non empty relation structure D; and for all elements
x,y of Dy holds x <y iff x = y.
(2)  For every binary relation R and for arbitrary a such that R is an order
in {a} holds R = Ag.
(3) If T is reflexive and Qr = {a}, then T is discrete.
In the sequel a will be arbitrary.
One can prove the following two propositions:
(4) If Qr = {a}, then T is connected.

(5) For every discrete non empty poset Dj such that there exist elements
a, b of Dy such that a # b holds D; is disconnected.

One can check that there exists a non empty poset which is strict and con-

nected and there exists a non empty poset which is strict disconnected and
discrete.

2. ON THE CATEGORY OF POSETS

Let I1 be a set. We say that I; is poset-membered if and only if:
(Def. 4)  For arbitrary a such that a € I; holds a is a non empty poset.

One can check that there exists a set which is non empty and poset-membered.

A set of posets is a poset-membered set.

Let P be a non empty set of posets. We see that the element of P is a non
empty poset.

Let L1, Ly be relation structures and let f be a map from L; into Lo. We
say that f is monotone if and only if:

(Def. 5)  For all elements x, y of Ly such that x <y and for all elements a, b of
Lo such that a = f(z) and b = f(y) holds a < b.

In the sequel P will denote a non empty set of posets and A, B will denote

elements of P.

Let A, B be relation structures. The functor B4 is defined by the condition
(Def. 6). -
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(Def. 6) a € Bé if and only if there exists a map f from A into B such that
a = f and f € (the carrier of B)the carier of 4 3nq f is monotone.
The following propositions are true:

(6) For all non empty relation structures A, B, C' and for all functions f,
g such that f € Bg and g € C’g holds g - f € C’é.

() id(the carrier of T) € Tg-
Let us consider T'. Observe that T is non empty.
Let X be a set. The functor Carr(X) yields a set and is defined by:
(Def. 7)  a € Carr(X) iff there exists a 1-sorted structure s such that s € X and
a = the carrier of s.
Let us consider P. Observe that Carr(P) is non empty.
The following propositions are true:
(8)  For every 1l-sorted structure f holds Carr({f}) = {the carrier of f}.
(9) For all 1-sorted structures f, g holds Carr({f,g}) = {the carrier of f,
the carrier of g}.
(10) B2 C Funcs Carr(P).

(11)  For all relation structures A, B holds B2 C (the carrier of
B)the carrier of A‘ N

Let A, B be non empty poset. Observe that Bé‘ is functional.
Let P be a non empty set of posets. The functor POSCat(P) yielding a strict
category with triple-like morphisms is defined by the conditions (Def. 8).
(Def. 8) (i) The objects of POSCat(P) = P,

(ii)  for all elements a, b of P and for every element f of Funcs Carr(P)
such that f € b% holds ({a, b), f) is a morphism of POSCat(P),

(iii)  for every morphism m of POSCat(P) there exist elements a, b of P
and there exists an element f of Funcs Carr(P) such that m = ({(a, b), f)
and f € b2, and

(iv)  for all morphisms mj, my of POSCat(P) and for all elements ay, az,
as of P and for all elements f1, fo of Funcs Carr(P) such that my = ({a1,
ag), f1> and mo = ((CLQ, CLg), fg) holds mo-myp = <<CL1, CLg), f2 . fl)

3. ON THE ALTERNATIVE CATEGORY OF POSETS

In this article we present several logical schemes. The scheme AltCatEz
concerns a non empty set A and a binary functor F yielding a functional set,
and states that:

There exists a strict category structure C' such that

(i)  the carrier of C' = A, and

(ii)  for all elements i, j of A holds (the arrows of C)(i, j) = F(i, )
and for all elements 4, j, k of A holds (the composition of C)(, j,
k) = FuncComp(F (i, j), F (5, k))
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provided the following condition is met:
e For all elements i, j, k of A and for all functions f, g such that
feF(@i,j) and g € F(j, k) holds g - f € F(i, k).
The scheme AltCatUniq deals with a non empty set A and a binary functor
F yielding a functional set, and states that:
Let C4, Cs be strict category structures. Suppose that
(i)  the carrier of C; = A,
(ii)  for all elements i, j of A holds (the arrows of C1)(i, j) =
F(i,j) and for all elements i, j, k of A holds (the composition of
Cl)(Z ]7 ) FuncComp(f(i,j),f(j, k)),
(111) the carrier of Cy = A, and
v)  for all elements i, j of A holds (the arrows of C2)(i, j) =
F(i,j) and for all elements i, j, k of A holds (the composition of
Co)(i j. k) = FuncComp(F(i, j), F(j, k).
Then C7 = Cy
for all values of the parameters.
Let P be a non empty set of posets. The functor POSAltCat(P) yielding a
strict category structure is defined by the conditions (Def. 9).

(Def. 9) (i)  The carrier of POSAltCat(P) = P, and
(i)  for all elements i, j of P holds (the arrows of POSAltCat(P))(i,
j) = j. and for all elements i, j, k of P holds (the composition of
POSAItCat(P))(i, j, k) = FuncComp(j, k).
Let P be a non empty set of posets. One can verify that POSAltCat(P) is
transitive and non empty.
Let P be a non empty set of posets. Observe that POSAltCat(P) is associa-
tive and has units.
One can prove the following proposition

(12)  Let o1, 02 be objects of POSAltCat(P) and let A, B be elements of P.
If 0, = A and 0y = B, then (01, 07) C (the carrier of B)the carrier of 4,
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In this paper x will be arbitrary and k will denote a natural number.

The subset Data-Locgcnmyg, of Z is defined as follows:

(Def. 1)  Data-Locscmyg, = Data-Locgcm.
The subset Data*-Locsomyg, Of Z is defined as follows:
(Def. 2)  Data*-Locsompg, = Z \N.
The subset Instr-Locsomygg, of Z is defined as follows:
(Def. 3)  Instr-Locscmyg, = Instr-Locgcom.
One can check the following observations:
*  Data*-Locscmpg, is non empty,
*  Data-Locsomyg, is non empty, and
*  Instr-Locscmpg, 1S non empty.
For simplicity we adopt the following convention: J, K are elements of Z 3,
a is an element of Instr-Locscmpg,, bs ¢, ¢1 are elements of Data-Locscmpg,
and f, fi are elements of Data*-Locscmpg, -
The subset Instrgomypg, Of [ Z13, (U{Z,Z*} U Z)*] is defined by:
(Def. 4)  Instrscmps, = Instrsem U {(J, (¢, f,b)) : J € {9,10}} U {(K, (c1, f1)) :
K € {11,12}}.
The following two propositions are true:
(1) Instrsomps, = Instrsem U {(J, (¢, f,0)) : J € {9,10}} U {(K, (c1, f1)) :
K e {11,12}}.
(2) Instrsom C InstrsoMpg, -

© 1996 Warsaw University - Bialystok
507 ISSN 1426-2630



508 ANDRZEJ TRYBULEC et al.

Let us observe that Instrsomgg, is non empty.
Let I be an element of Instrscmgg,. The functor InsCode([) yielding a
natural number is defined by:
(Def. 5)  InsCode(I) = I3.
The following two propositions are true:
(3)  For every element I of Instrgcmgg, such that InsCode(I) < 8 holds
I € Instrscum.
(4) (0, €) € Instrgcmpg, -
The function OKgcmyg, from 7 into {7, 7*}U{Instrscnygg, , Instr-Locscmps ,
is defined by:
(Def. 6)  OKscmpsy, = (Z +—  Z%)+-OKscm+(Instrsev——Instrsonpg,) -
(OKgsem | Instr-Locgom ).
One can prove the following propositions:
(5) OKscmpsy, = (Z +— 7%)+-OKgcom+ (Instrsem——Instrgempg,) -
(OKgscm | Instr-Locgom ).

(6) If z € {9,10}, then (xz, (¢, f,b)) € Instrscmpg, -
(7) If z € {11,12}, then (z, (c, f)) € Instrgcmpg, -
(8) Z ={0} UData-Locscmyg, UData*-Locgompg, U Instr-Locgompg , -
(9) OKSCMFSA (0) = InStr-LOCSCMFSA.
(10)  OKscmgsa (b) = Z.
(11) OKSCMFSA (a) = InstrscMpg, -
(12)  OKscwmgpsa (f) = 77
(13)  Instr-Locscmps, 7# Z and Instrscmgs, # Z and Instr-Locsomps, 7#

Instrsomyg, and Instr-Locsomypg, 7 2 and Instrsenpg, 7# Z°
(14)  For every integer i such that OKgcmypg, (¢) = Instr-Locsomygg, holds
1=0.
(15) For every integer i such that OKgcmpg,(?) = Z holds i €
Data-LocscMypg, -
(16) For every integer i such that OKgcwmygg, (4) = Instrgompg, holds ¢ €
Instr-LocscMpg, -
(17)  For every integer ¢ such that OKgscmgpg, (i) = Z* holds i €
Data*-LocscMpg, -
An SCMprga-state is an element of [T(OKscmyg, )-
Next we state two propositions:
(18)  For every SCMpga-state s and for every element I of Instrgcy holds
s | N+-(Instr-Locgom —— ) is a state son -
(19)  For every SCMpga-state s and for every state gop 8" holds s+-s'+-s |
Instr-Locscmpg, is an SCMFpga-state.

In the sequel s is an SCMpga-state.
Let s be an SCMrpga-state and let u be an element of Instr-Locscnpg, - The
functor Chggeppg, (5, u) yields an SCMpga-state and is defined as follows:
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(Def. 7)  Chggoppg, (8, u) = 5+-(0——u).
Let s be an SCMFpga-state, let ¢t be an element of Data-Locscnpg,, and let

u be an integer. The functor Chggenyg, (5,1, 1) yielding an SCMFpga-state is
defined as follows:

(Def. 8)  Chggoppg, (81, u) = s+ (t——u).
Let s be an SCMrga-state, let ¢t be an element of Data*-Locscygg, » and let

u be a finite sequence of elements of Z The functor Chggony,g, (5,1, u) yielding
an SCMpgga-state is defined as follows:
(Def. 9)  Chggoppg, (851, u) = s+ (t——u).

Let s be an SCMpga-state and let a be an element of Data-Locgcnypg, - Then
s(a) is an integer.

Let s be an SCMpgga-state and let a be an element of Data*-Locsomyg, -
Then s(a) is a finite sequence of elements of Z.

Let = be an element of Instrscmyg, - Let us assume that there exist ¢, f, b,
J such that = = (J, (¢, f,b)). The functor x int-addr; yielding an element of
Data-Locsomyg, is defined by:

(Def. 10)  There exist ¢, f, b such that (¢, f,b) = x9 and z int-addr; = c.

The functor = int-addry yielding an element of Data-Locscnyg, is defined as
follows:

(Def. 11)  There exist ¢, f, b such that (¢, f,b) = x9 and z int-addry = b.
The functor = coll-addr; yields an element of Data*-Locscmyg, and is defined
as follows:
(Def. 12)  There exist ¢, f, b such that (¢, f,b) = x9 and z coll-addr; = f.
Let  be an element of Instrscmyg,. Let us assume that there exist ¢, f,
J such that x = (J, (¢, f)). The functor x int-addrs yielding an element of
Data-Locscmyg, is defined as follows:
(Def. 13)  There exist ¢, f such that (¢, f) = x9 and z int-addrs = c.
The functor = coll-addrsy yields an element of Data*-Locscmyg, and is defined
as follows:
(Def. 14)  There exist ¢, f such that (¢, f) = x9 and z coll-addry = f.
Let I be an element of Instr-Locscmgg,- The functor Next(l) yielding an
element of Instr-Locscmyg, is defined as follows:
(Def. 15)  There exists an element L of Instr-Locgom such that L = [ and
Next(l) = Next(L).
Let s be an SCMFpga-state. The functor IC; yielding an element of
Instr-Locscmpg, is defined by:
(Def. 16) ICs = s(0).
Let  be an element of Instrscmpg, and let s be an SCMpga-state. The
functor Exec-Resgcmpg, (2, ) yielding an SCMpga-state is defined by:

(Def. 17) (i)  There exists an element z’ of Instrgcym and there exists a state som
s’ such that x = 2/ and s’ = s | N+-(Instr-Locscy —— 2') and
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Exec-Resgcmypg, (7, ) = s+-Exec-Ressom (@, s')+-s | Instr-Locgconygs, if
InsCode(z) < 8,

(ii)  there exists an integer i and there exists k such that k =
|s(z int-addrs)| and ¢ = mgs(z coll-addr;) and Exec-Resscmyg, (2,5) =
Chggonpe s (Chgsenpg, (8, 7 int-addry, i), Next(IC;)) if InsCode(z) = 9,

(iii) there exists a finite sequence f of elements of 7Z and
there exists k such that k& = |s(z int-addrg)| and [ =
s(xz coll-addr;) +- (k,s(z int-addr;)) and Exec-Resgompg,(2,s) =
Chggonpe s (Chgsenpg, (8; 2 coll-addry, f), Next(ICy)) if InsCode(z) =
10,

(iv)  Exec-ResscMpgy (7, 5) = Chggonpg s (Chgscnpg, (8,7 int-addrs,
len s(z coll-addrs)), Next(ICy)) if InsCode(x) = 11,

(v)  there exists a finite sequence f of elements of 7 and there exists k such
that k¥ = |s(z int-addrs)| and f = k — 0 and Exec-Resgcmypg, (2,5) =
Chggonps s (Chgsenpg, (8; 2 coll-addry, f), Next(ICy)) if InsCode(z) =
12,

(vi)  Exec-Resgcmpg, (2, 8) = s, otherwise.

The function Execsomyg, from Instrscngg, into (H(OKSCMFSA))H(OKSCMFSA)

is defined by:

(Def. 18)  For every element z of Instrgcmgg, and for every SCMpga-state y
holds (Execscmyg, () qua element of (H(OKSCMFSA))H(OKSCMFSA))(y) =
Exec-ResgcMpga (2, Y)-

One can prove the following propositions:

(20)  For every SCMpga-state s and for every element u of Instr-Locgcompg,
holds (Chggenyg, (5,1))(0) = u.

(21)  For every SCMpyga-state s and for every element u of Instr-Locgcnmpg ,
and for every element m; of Data-Locscmgs, holds (Chggonyg, (5, 4))(m1)
s(myq).

(22)  For every SCMyga-state s and for every element u of Instr-Locscnpg,
and for every element p of Data*-Locsomyg, holds (Chggonyg, (5,u))(p) =
s(p)-

(23)  For every SCMpga-state s and for all elements u, v of Instr-Locgcmpg,
holds (Chggenpg, (8, 1)) (v) = s(v).

(24)  For every SCMpga-state s and for every element ¢ of Data-Locscnmpg,
and for every integer u holds (Chggenyg, (5, 1))(0) = s(0).

(25)  For every SCMpga-state s and for every element ¢ of Data-Locgcmypg,
and for every integer u holds (Chggepgyg, (5,1, 1)) (t) = u.

(26)  Let s be an SCMrpga-state, and let ¢ be an element of Data-Locscmpg., »
and let u be an integer, and let m; be an element of Data-Locgonpg, - If
my # t, then (Chggonyg, (5,1, 1)) (m1) = s(ma).

(27)  Let s be an SCMpga-state, and let ¢ be an element of Data-Locgcmpg , s
and let u be an integer, and let f be an element of Data*-Locscmyg, - Then

(Chggomypgy (5, 8u))(f) = s(f)-
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(28)  Let s be an SCMpga-state, and let ¢ be an element of Data-Locgcmyg,, »
and let v be an integer, and let v be an element of Instr-Locscnypg, - Then
(Chggomypg, (8, 11)(v) = s(v).

(29) Let s be an SCMrpga-state, and let ¢ be an element of
Data*-LocscmMpg, , and let u be a finite sequence of elements of 7. Then
(CthCMFSA (57 t U))(t) = u.

(30)  Let s bean SCMyga-state, and let ¢ be an element of Data*-Locscmyg, »
and let u be a finite sequence of elements of 7, and let m; be an element
of Data*-Locscmpgy - If m1 # ¢, then (Chggeng, (5,1 u))(m1) = s(my).

(31)  Let s be an SCMpga-state, and let ¢ be an element of Data*-Locscmyg,, »
and let u be a finite sequence of elements of 7, and let a be an element of
Data-LocscMpg, - Then (Chggonyg, (55t u))(a) = s(a).

(32) Let s bean SCMpga-state, and let ¢ be an element of Data*-Locscmyg, »
and let u be a finite sequence of elements of 7, and let v be an element of
Instr-Locsomps, - Then (Chggeongpg, (5,1 u))(v) = s(v).
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Summary. First, we generalized skl function for a subset of topo-
logical spaces the value of which is the component including the set. Sec-
ond, we introduced a concept of union of components a family of which
has good algebraic properties. At the end, we discuss relationship be-
tween connectivity of a set as a subset in the whole space and as a subset
of a subspace.

MML Identifier: CONNSP_3.

The notation and terminology used in this paper are introduced in the following
articles: [8], [11], [3], [1], [10], [5], [9], [7], [2], [6], [12], and [4].

1. THE COMPONENT OF A SUBSET IN A TOPOLOGICAL SPACE

In this paper GG; will denote a non empty topological space and V', A will
denote subsets of the carrier of 7.

Let G1 be a non empty topological structure and let V' be a subset of the
carrier of G1. The functor Component(V') yields a subset of the carrier of G
and is defined by the condition (Def. 1).

(Def. 1)  There exists a family F' of subsets of G; such that for every subset

A of the carrier of G holds A € F iff A is connected and V' C A and
U F = Component (V).

One can prove the following propositions:

(1) If there exists A such that A is connected and V' C A, then V C
Component (V).

(2) If it is not true that there exists A such that A is connected and V' C A,
then Component(V') = 0.

(3)  Component(q,)) = the carrier of G.
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(4)  For every subset V of the carrier of G; such that V' is connected holds
Component(V') # 0.

(5)  For every subset V of the carrier of G; such that V is connected and
V' # 0 holds Component(V) is connected.

(6) For all subsets V, C of the carrier of G such that V is connected and
C' is connected holds if Component(V) C C, then C' = Component(V).

(7)  For every subset A of the carrier of Gy such that A is a component of
G holds Component(A) = A.

(8) Let A be a subset of the carrier of G;. Then A is a component of Gy
if and only if there exists a subset V' of the carrier of G such that V is
connected and V # () and A = Component(V).

(9)  For every subset V of the carrier of G; such that V is connected and
V' # () holds Component(V') is a component of G1.

(10) If A is a component of Gy and V is connected and V C A and V # (),
then A = Component(V).

(11)  For every subset V of the carrier of Gy such that V is connected and
V' # () holds Component(Component(V')) = Component(V).

(12) Let A, B be subsets of the carrier of G;. If A is connected and B is
connected and A # () and A C B, then Component(A) = Component(B).

(13)  For all subsets A, B of the carrier of G; such that A is connected and
B is connected and A # () and A C B holds B C Component(A).

(14)  For all subsets A, B of the carrier of G such that A is connected and
AU B is connected and A # () holds AU B C Component(A).

(15)  For every subset A of the carrier of G and for every point p of G} such
that A is connected and p € A holds Component(p) = Component(A).

(16) Let A, B be subsets of the carrier of G;. Suppose A is connected and B
is connected and AN B # (). Then AU B C Component(A) and AU B C
Component(B) and A C Component(B) and B C Component(A).

(17)  For every subset A of the carrier of Gy such that A is connected and
A # () holds A C Component(A).

(18)  Let A, B be subsets of the carrier of G;. Suppose A is a component of Gy
and B is connected and B # () and AN B = (). Then ANComponent(B) =
0.

2. ON UNIONS OF COMPONENTS

Let G1 be a non empty topological structure. A subset of the carrier of G
is called a union of components of G if it satisfies the condition (Def. 2).
ef. 2)  There exists a family F' of subsets of G such that for every subset B
of the carrier of G1 such that B € F holds B is a component of (G; and
it=UF.
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The following propositions are true:
(19)  0(q,) is a union of components of G1.

(20) Let A be a subset of the carrier of G1. If A = the carrier of Gy, then A
is a union of components of G;.

(21) Let A be a subset of the carrier of Gy and let p be a point of Gy. If
p € A and A is a union of components of G, then Component(p) C A.

(22) Let A, B be subsets of the carrier of G;. Suppose A is a union of
components of Gy and B is a union of components of G;. Then AU B is
a union of components of G; and AN B is a union of components of G

(23)  Let Fy be a family of subsets of GG;. Suppose that for every subset A of
the carrier of GG1 such that A € F} holds A is a union of components of
G1. Then | Fy is a union of components of G;.

(24)  Let Fy be a family of subsets of GG;. Suppose that for every subset A of
the carrier of GG1 such that A € F} holds A is a union of components of
G1. Then N Fy is a union of components of G;.

(25) Let A, B be subsets of the carrier of G;. Suppose A is a union of
components of G; and B is a union of components of G;. Then A\ B is
a union of components of G1.

3. OPERATIONS DOWN AND UpP

Let us consider GGy, let B be a subset of the carrier of G1, and let p be a point
of Gy. Let us assume that p € B. The functor Down(p, B) yielding a point of
G1 | B is defined by:

(Def. 3)  Down(p, B) = p.

Let us consider 1, let B be a subset of the carrier of G1, and let p be a
point of G | B. Let us assume that B # (). The functor Up(p) yielding a point
of (G1 is defined as follows:

(Def. 4)  Up(p) = p.

Let us consider G; and let V, B be subsets of the carrier of G;. Let us
assume that B # (). The functor Down(V, B) yields a subset of the carrier of
G1 | B and is defined by:

(Def. 5)  Down(V,B) =V N B.

Let us consider G1, let B be a subset of the carrier of G, and let V be a
subset of the carrier of G | B. Let us assume that B # (. The functor Up(V)
yielding a subset of the carrier of G is defined as follows:

(Def. 6) Up(V)=1V.
Let us consider G1, let B be a subset of the carrier of G1, and let p be a

point of G7. Let us assume that p € B. The functor skl(p, B) yields a subset of
the carrier of GG1 and is defined as follows:
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For every point ¢ of G7 | B such that ¢ = p holds skl(p,B) =
Component(q).

The following propositions are true:

(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)

(34)

(35)

(1]
2]
3]
[4]
0
[7]
8]
[9]

[10]

For every subset B of the carrier of G and for every point p of G; such
that p € B holds skl(p, B) # 0.

For every subset B of the carrier of G and for every point p of G; such
that p € B holds skl(p, B) = Component(Down(p, B)).

For all subsets V, B of the carrier of Gy such that B # () and V C B
holds Down(V, B) = V.

For all subsets V', B of the carrier of G such that B # () and V is open
holds Down(V, B) is open.

For all subsets V', B of the carrier of G such that B # ) and V C B
holds Down(V, B) =V N B.

Let B be a subset of the carrier of G; and let V be a subset of the
carrier of G1 | B.If B # (), then V = Up(V) N B.

For all subsets V, B of the carrier of Gy such that B # () and V C B
holds Down(V, B) C V.

Let B be a subset of the carrier of G; and let V be a subset of the
carrier of Gy | B.If B # () and V C B, then Down(Up(V),B) = V.

Let V, B be subsets of the carrier of G; and let W be a subset of the
carrier of G1 | BIf V. =W and V # () and B # () and W is connected,
then V is connected.

For every subset B of the carrier of G; and for every point p of G; such
that p € B holds skl(p, B) is connected.
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The articles [20], [26], [11], 1], [24], [27], [21], [2], [14], [3], [15], [7], [17], [8], [19],
[18], [10], [5], [9], [6], [25], [4], [12], [13], [22], [16], and [23] provide the notation
and terminology for this paper.

1. PRELIMINARIES

One can prove the following propositions:

(1) Let N be a non empty set with non empty elements and let S be a
von Neumann definite realistic AMI over N. Then ICg ¢ the instruction
locations of S.

(2) Let N be a non empty set with non empty elements, and let S be a
definite AMI over N, and let s be a state of .S, and let ¢ be an instruction-
location of S. Then s(i) is an instruction of S.

(3) Let N be a non empty set with non empty elements, and let S be an
AMI over N, and let s be a state of S. Then the instruction locations of
S C dom s.

(4) Let N be a non empty set with non empty elements, and let S be a von
Neumann AMI over N, and let s be a state of S. Then IC; € dom s.

(5) Let N be a non empty set with non empty elements, and let S be an
AMI over N, and let s be a state of S, and let [ be an instruction-location
of S. Then [ € dom s.

© 1996 Warsaw University - Bialystok
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2. THE SCMpspa COMPUTER

The strict AMI SCMpggp over {Z,7*} is defined by:
(Def. 1) SCMypsp = (Z,0(e 7), Instr-LocscMpga > Z13, 0(e Zi3), Instrscmpg s 5
OKsoMpga» Execsonpsa )-
We now state two propositions:

(6) (i) The instruction locations of SCMpga # Z,

(ii)  the instructions of SCMpga # Z,

(iii)  the instruction locations of SCMpga # the instructions of SCMrpga,
(iv)  the instruction locations of SCMpga # Z*, and

(v)  the instructions of SCMpga # Z*.

(7)  ICscMys, =0

3. THE MEMORY STRUCTURE

In the sequel k, ki, ks denote natural numbers.
The subset Int-Locations of the objects of SCMpggy is defined by:

(Def. 2)  Int-Locations = Data-Locgcmpg , -
The subset FinSeq-Locations of the objects of SCMpggy is defined by:
(Def. 3)  FinSeq-Locations = Data*-LocscMpg , -
The following proposition is true

(8)  The objects of SCMpga = Int-Locations U FinSeq-Locations U
{ICsCMys, + U the instruction locations of SCMrsa.

An object of SCMFggy is called an integer location if:
(Def. 4) It € Data-Locscmpg, -
An object of SCMFpg, is said to be a finite sequence location if:
(Def. 5) It € Data*-LocscMyg, -

In the sequel d; denotes an integer location, f; denotes a finite sequence
location, and x is arbitrary.
We now state several propositions:

dy1 € Int-Locations .
f1 € FinSeq-Locations.
If x € Int-Locations, then x is an integer location.

)
)
)
12)  If 2 € FinSeq-Locations, then x is a finite sequence location.
) Int-Locations misses the instruction locations of SCMpga .

) FinSeg-Locations misses the instruction locations of SCMyga .
) Int-Locations misses FinSeqg-Locations.

Let us consider k. The functor intloc(k) yields an integer location and is
defined as follows:
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(Def. 6)  intloc(k) = d.
The functor insloc(k) yields an instruction-location of SCMpga and is defined
by:
(Def. 7)  insloc(k) = i.
The functor fsloc(k) yields a finite sequence location and is defined as follows:
(Def. 8)  fsloc(k) = —(k +1).
One can prove the following propositions:
(16)  For all k1, ko such that ki # ko holds intloc(k;) # intloc(ks).
(17)  For all k1, ko such that k; # ko holds fsloc(kq) # fsloc(kz).
(18)  For all kq, ko such that k1 # ko holds insloc(ky) # insloc(kz).
(19)

19 For every integer location ds there exists a natural number ¢ such that

dy = intloc(3).
(20)  For every finite sequence location f2 there exists a natural number i
such that fo = fsloc(7).

(21)  For every instruction-location i; of SCMpgy there exists a natural num-
ber i such that ¢; = insloc(7).

22
23
24

Int-Locations is infinite.

FinSeq-Locations is infinite.

The instruction locations of SCMyggy is infinite.
Every integer location is a data-location.

N TN N N N N /N
N DN
S Ot

T o=

For every integer location [ holds ObjectKind(l) = Z.
For every finite sequence location ! holds ObjectKind(l) = Z*.
For arbitrary x such that x € Data-Locscmpg, holds x is an integer
location.
(29) For arbitrary = such that x € Data*-Locscmyg, holds z is a finite
sequence location.
(30)  For arbitrary x such that = € Instr-Locscmyg, holds  is an instruction-
location of SCMgpga.

Let I3 be an instruction-location of SCMpga. The functor Next(l;) yields
an instruction-location of SCMpga and is defined by:

(Def. 9)  There exists an element m; of Instr-Locsomyg, such that m; =1; and
Next(l1) = Next(myq).

Next we state two propositions:

(31)  For every instruction-location [; of SCMpga and for every element my
of Instr-Locgcmpg, such that mq = Iy holds Next(m) = Next(l).
(32)  Next(insloc(k)) = insloc(k + 1).

For simplicity we adopt the following convention: [o, I3 are instructions-
locations of SCMFpsa, L1 is an instruction-location of SCM, i is an instruction
of SCMFgsa, I is an instruction of SCM, [ is an instruction-location of SCMgga,
f, f1, g are finite sequence locations, A, B are data-locations, and a, b, ¢, dq,
dsz are integer locations.
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We now state the proposition
(33) If I, = Ly, then Next(lg) = Next(Lq).

4. THE INSTRUCTION STRUCTURE

Let I be an instruction of SCMpga. The functor InsCode(I) yielding a
natural number is defined as follows:

(Def. 10)  InsCode(I) = I3.
The following propositions are true:

(34)  For every instruction I of SCMpga such that InsCode(I) < 8 holds I
is an instruction of SCM.

(35)  For every instruction I of SCMpga holds InsCode(I) < 12.

(36)  For every instruction i of SCMpga such that InsCode(i) = 0 holds
1= haltSCMFSA-

(37)  For every instruction i of SCMpga and for every instruction I of SCM
such that ¢ = I holds InsCode(i) = InsCode(I).

(38)  Every instruction of SCM is an instruction of SCMpga .

Let us consider a, b. The functor a:=b yields an instruction of SCMpga and
is defined as follows:

(Def. 11)  There exist A, B such that a = A and b = B and a:=b = A:=B.
The functor AddTo(a,b) yields an instruction of SCMpga and is defined by:
(Def. 12)  There exist A, B such that a« = A and b = B and AddTo(a,b) =
AddTo(A, B).
The functor SubFrom(a,b) yields an instruction of SCMpga and is defined as
follows:
(Def. 13)  There exist A, B such that a = A and b = B and SubFrom(a,b) =
SubFrom(A, B).
The functor MultBy(a,b) yields an instruction of SCMpga and is defined as
follows:
(Def. 14)  There exist A, B such that « = A and b = B and MultBy(a,b) =
MultBy (A, B).
The functor Divide(a, b) yielding an instruction of SCMFpgy is defined as follows:
(Def. 15)  There exist A, B such that @ = A and b = B and Divide(a,b) =
Divide(A4, B).
We now state the proposition

(39) The instruction locations of SCM = the instruction locations of
SCMpsa .-
Let us consider l5. The functor goto Iy yields an instruction of SCMpga and
is defined as follows:

(Def. 16)  There exists L such that lo = L1 and goto lo = goto L.
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Let us consider a. The functor if @ = 0 goto ls yields an instruction of
SCMpgsa and is defined by:

(Def. 17)  There exist A, L; such that a = A and ls = Ly and if a = 0 goto Iy =
if A=0 goto L.
The functor if a > 0 goto [s yields an instruction of SCMpga and is defined
as follows:

(Def. 18)  There exist A, Ly such that a = A and Iy = Ly and if a > 0 goto Iy =
if A> 0 goto L.

Let ¢, i be integer locations and let a be a finite sequence location. The
functor c:=a; yielding an instruction of SCMFgsy is defined by:

(Def. 19)  c:=a; = (9, (¢, a,i)).
The functor a;:=c yielding an instruction of SCMFggy is defined by:
(Def. 20)  a;:=c = (10, {(c,a,1)).
Let ¢ be an integer location and let a be a finite sequence location. The
functor i:=lena yielding an instruction of SCMpgy is defined as follows:

(Def. 21)  d:=lena = (11, (i,a)).
The functor a:=(0,...,0) yields an instruction of SCMypga and is defined as
———

follows:
(Def. 22)  a:=(0,...,0) = (12, (i,a)).
;\',._/
7
We now state a number of propositions:

(40) haltSCM = haltSCMFSA‘

(41) InsCode(haltSCMFSA) = 0.

(42)  InsCode(a:=b) =

(43) InsCode(AddTo(a,b)) = 2.

(44)  InsCode(SubFrom(a,b)) =

(45)  InsCode(MultBy(a,b)) =

(46)  InsCode(Divide(a,b)) = 5.

(47)  InsCode(goto I3) = 6.

(48)  InsCode(if a =0 goto I3) = 7.

(49)  InsCode(if a >0 goto l3) =8.

(50)  InsCode(c:=f,) =

(51)  InsCode(f,:=c) = 10.

(52) InsCode(a:=lenf;) =

(563)  InsCode(f1:=(0, O>) =12.
NG

a
(54)  For every instruction is of SCMpga such that InsCode(iz) = 1 there
exist dy, dz such that io = di:=d3.

523
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(55)  For every instruction iy of SCMpga such that InsCode(ig) = 2 there
exist di, ds such that io = AddTo(dy,ds).

(56)  For every instruction iy of SCMpga such that InsCode(ig) = 3 there
exist dj, ds such that i = SubFrom(d;,d3).

(57)  For every instruction io of SCMpga such that InsCode(iy) = 4 there
exist dj, ds such that i = MultBy(d;,ds).

(58)  For every instruction iy of SCMpga such that InsCode(iz) = 5 there
exist di, d3 such that io = Divide(d, d3).

(59)  For every instruction io of SCMpga such that InsCode(is) = 6 there
exists [3 such that 75 = goto [3.

(60)  For every instruction iy of SCMpga such that InsCode(ig) = 7 there
exist I3, di such that i = if di =0 goto [3.

(61)  For every instruction ig of SCMpga such that InsCode(iy) = 8 there
exist I3, dy such that i3 = if d; > 0 goto [3.

(62)  For every instruction ig of SCMpga such that InsCode(iz) = 9 there
exist a, b, fi such that iy = b:=f,.

(63)  For every instruction is of SCMpga such that InsCode(iz) = 10 there
exist a, b, fi such that iy = f1,:=b.

(64)  For every instruction iy of SCMpga such that InsCode(iz) = 11 there
exist a, fi such that iy = a:=lenf;.

(65)  For every instruction is of SCMpga such that InsCode(iz) = 12 there
exist a, f1 such that io = f1:=(0,...,0).

——

a

5. RELATIONSHIP TO SCM

In the sequel S denotes a state of SCM and s, s1 denote states of SCMpgga .
We now state a number of propositions:

(66) For every state s of SCMpga and for every integer location d holds
d € doms.

(67) f e doms.

(68) f ¢ domS.

(69)  For every state s of SCMpga holds Int-Locations C dom s.

(70)  For every state s of SCMpga holds FinSeg-Locations C dom s.

(71)  For every state s of SCMpga holds dom(s | Int-Locations) =

Int-Locations .

(72)  For every state s of SCMpga holds dom(s | FinSeq-Locations) =
FinSeq-Locations.

(73)  For every state s of SCMpga and for every instruction ¢ of SCM holds

s | N+-(Instr-Locgonm — ) is a state of SCM.
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(74)  For every state s of SCMpga and for every state s’ of SCM holds
§54-8"4-s| Instr-Locsomypg, s a state of SCMpga.

(75) Let i be an instruction of SCM, and let i3 be an instruction of
SCMpsa, and let s be a state of SCM, and let sy be a state of
SCMrpga. If i@ = i3 and s = sy | N+-(Instr-Locgem —— i), then
Exec(i3, s2) = sp+-Exec(i, s)+-s2 | Instr-Locsomypg, -

Let s be a state of SCMpga and let d be an integer location. Then s(d) is
an integer.

Let s be a state of SCMpga and let d be a finite sequence location. Then
s(d) is a finite sequence of elements of 7.

Next we state several propositions:

(76)  If S = sIN+-(Instr-Locgcm —— I), then s = s+-S+-s[Instr-Locscomyg, -

(77)  For every element I of Instrscmgpg, such that I = ¢ and for
every SCMypga-state S such that S = s holds Exec(i,s) =
Exec-Resgcmpgy (£,9).

(78)  If s1 = s+-S+-5 | Instr-Locscmyg, » then s1(ICgaMyg,) = STCscm)-

(79) If s = s+-S+-s | Instr-Locscomyps, and A = a, then S(A) = s1(a).

(80) If S = s | N+-(Instr-Locgcm — I) and A = a, then S(A) = s(a).

Let us note that SCMpgpa is halting realistic von Neumann data-oriented
definite and steady-programmed.
The following propositions are true:

(81)  For every integer location dy holds dz # ICscMy, -

(82)  For every finite sequence location dy holds dy # ICscMys, -

(83)  For every integer location i; and for every finite sequence location ds
holds il 75 dg.

(84)  For every instruction-location i1 of SCMpga and for every integer lo-
cation do holds i1 # ds.

(85)  For every instruction-location i1 of SCMpgs and for every finite se-
quence location ds holds i1 # ds.

(86)  Let s1, s3 be states of SCMpga. Suppose that

) IC,) =IC,),

) for every integer location a holds sj(a) = s3(a),

) for every finite sequence location f holds s1(f) = s3(f), and

) for every instruction-location i of SCMpga holds s1(i) = s3(7).
Then s1 = s3.

(87) If S =s, then IC; = ICg.

(88) If S = s | N+-(Instr-Locgcm — I), then IC; = ICg.

6. USERS GUIDE

One can prove the following propositions:
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(89)  (Exec(a:=b,s))(ICscMys,) = Next(IC,) and (Exec(a:=b,s))(a) =
s(b) and for every ¢ such that ¢ # a holds (Exec(a:=b,s))(c) = s(c

and for every f holds (Exec(a:=b,s))(f) = s(f).

(90)  (Exec(AddTo(a,b),s))(ICscmM;s,) = Next(IC;) and (Exec(AddTo(a, b),
s))(a) = s(a) + s(b) and for every ¢ such that ¢ # «a
holds (Exec(AddTo(a,b),s))(¢c) = s(c) and for every f holds
(Exec(AddTo(a,b),s))(f) = s(f)-

(91)  (Exec(SubFrom(a,b), s))(ICscMyg,) = Next(IC;) and
(Exec(SubFrom(a,b),s))(a) = s(a) — s(b) and for every ¢ such that
¢ # a holds (Exec(SubFrom(a,b),s))(c) = s(c) and for every f holds
(Exec(SubFrom(a,b), s))(f) = s(f).

(92)  (Exec(MultBy(a,b),s))(ICscM;g,) = Next(ICy) and (Exec(MultBy/(a,
b),s))(a) = s(a) - s(b) and for every ¢ such that ¢ # a
holds (Exec(MultBy(a,b),s))(¢c) = s(¢) and for every [ holds
(Exec(MultBy (a, b), s))(f) = s(f).

(93)  Suppose a # b. Then

(i)  (Exec(Divide(a,b), s))(ICscMys, ) = Next(ICy),

(i)  (Exec(Divide(a,b), s))(a) = s(a) + s(b),

(iii)  (Exec(Divide(a,b), s))(b) = s(a) mod s(b),

(iv) for every ¢ such that ¢ # a and ¢ # b holds (Exec(Divide(a, b), s))(c) =
s(c), and
(v) for every f holds (Exec(Divide(a,b), s))(f) = s(f).
(94)  (Exec(Divide(a, a), s))(ICscMys, ) = Next(IC;) and (Exec(Divide(a,
a),s))(a) = s(a) mod s(a) and for every c¢ such that ¢ #
a holds (Exec(Divide(a,a),s))(c) = s(c) and for every f holds
(Exec(Divide(a, a), s))(f) = s(f).
(95)  (Exec(goto 1, 5))(ICscMys,) = ! and for every c holds (Exec(goto [, s))
(¢) = s(c) and for every f holds (Exec(goto I, s))(f) = s(f).
(96) (i) If s(a) =0, then (Exec(if a = 0 goto [, 5))(ICscMyg,) = I
(ii) if s(a) # 0, then (Exec(if a = 0 goto [, s))(ICscM,s, ) = Next(ICy),
(ili)  for every ¢ holds (Exec(if a = 0 goto [, s))(c) = s(c), and
(iv)  for every f holds (Exec(if a =0 goto [, s))(f) = s(f).

(97) i) If s(a) > 0, then (Exec(if a > 0 goto [, 5))(ICscMyg,) = I
(ii) if s(a) <0, then (Exec(if a > 0 goto [, s))(ICgcM,s, ) = Next(ICy),
(ili)  for every ¢ holds (Exec(if a > 0 goto [,s))(c) = s(c), and
(iv)  for every f holds (Exec(if a > 0 goto [, s))(f) = s(f).

(98) (i) (Exec(c:=ga,5))(ICscMyg,) = Next(ICs),

(ii)  there exists k such that k = |s(a)| and (Exec(c:=g4, $))(c) = ms(g),
(ili)  for every b such that b # ¢ holds (Exec(c:=gq,s))(b) = s(b), and
(iv)  for every f holds (Exec(c:=gq,5))(f) = s(f).

(99) (i) (Exec(ga:=c, 5))(ICgcMyg,) = Next(ICs),

(ii)  there exists k such that k = |s(a)| and (Exec(g,:=c, s))(g) = s(g) +-
(k,s(c)),
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(ili)  for every b holds (Exec(gq:=c, s))(b) = s(b), and
(iv) for every f such that f # g holds (Exec(g,:=c, s))(f) = s(f).
(100)  (Exec(c:=leng, s))(ICscMyg, ) = Next(ICy) and (Exec(c:=leng, s))(c)
len s(g) and for every b such that b # ¢ holds (Exec(c:=leng, s))(b) = s(b)
and for every f holds (Exec(c:=leng, s))(f) = s(f).

(101) (i)  (Exec(g:=(0,...,0),5))(ICscMys,) = Next(ICy),

(ii)  there exists k such that k& = |s(c)| and (Exec(g:=(0,...,0),s))(g) =

———
k+— 0,
(i)  for every b holds (Exec(g:=(0,...,0),s))(b) = s(b), and
———
(iv) for every f such that f # g holds (Exec(g:=(0,...,0),$))(f) = s(f).
———
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this paper.

1. PRELIMINARIES

For simplicity we follow a convention: [ is a set, i, x are arbitrary, A, M are
many sorted sets indexed by I, f is a function, and F is a many sorted function
of I.

The scheme MSSUBSET concerns a set A, a non-empty many sorted set B
indexed by A, a many sorted set C indexed by A, and a unary predicate P, and
states that:

If for every many sorted set X indexed by A holds X € Biff X € C
and P[X], then BCC
for all values of the parameters.

The following two propositions are true:

(1) Let X be a non empty set and let z, y be arbitrary. If x C y, then
{t : t ranges over elements of X, y C t} C {z : z ranges over elements of
X,z Cz}.

(2)  If there exists A such that A € M, then M is non-empty.

Let us consider I, F'; A. Then F «f A is a many sorted set indexed by I.

Let us consider I, let A, B be non-empty many sorted sets indexed by I,
let F' be a many sorted function from A into B, and let X be an element of A.
Then F' < X is an element of B.

One can prove the following propositions:
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(3) Let A, X be many sorted sets indexed by I, and let B be a non-empty
many sorted set indexed by I and let F' be a many sorted function from
Ainto B. If X € A, then F «¢ X € B.

(4) Let F, G be many sorted functions of I and let A be a many sorted set
indexed by I. If A € dom, G(k), then F' «p (G «¢ A) = (F o G) « A.

(5) If Fis “1-1”, then for all many sorted sets A, B indexed by I such that
A € domy, F(k) and B € dom,, F'(k) and F' «¢ A= F «f B holds A = B.

(6)  Suppose dom, F(x) is non-empty and for all many sorted sets A, B
indexed by I such that A € dom, F(x) and B € dom, F(k) and F «
A=F « B holds A= B. Then F is “1-1”.

(7) Let A, B be non-empty many sorted sets indexed by I and let F', G be
many sorted functions from A into B. If for every M such that M € A
holds FF «¢ M = G «¢ M, then F = G.

Let us consider I, M. One can verify that there exists an element of 2
which is empty yielding and locally-finite.

2. PROPERTIES OF MANY SORTED CLOSURE OPERATORS

Let us consider 1, M.

(Def. 1) A many sorted function from 2™ into 2™ is called a set many sorted
operation in M.

Let us consider I, M, let O be a set many sorted operation in M, and let X
be an element of 2", Then O « X is an element of 2.

Let us consider I, M and let I; be a set many sorted operation in M. We
say that Iy is reflexive if and only if:

(Def. 2)  For every element X of 2™ holds X C I} « X.
We say that I; is monotonic if and only if:
(Def. 3)  For all elements X, Y of 2/ such that X CY holds I} «¢ X C I <P Y.
We say that I; is idempotent if and only if:
(Def. 4)  For every element X of 2™ holds I} «p X = I} «p (I} < X).
We say that I is topological if and only if:
(Def. 5)  For all elements X, Y of 2M holds [} < (X UY) =1 «p X UL Y.
One can prove the following propositions:
(8) For every non-empty many sorted set M indexed by I and for every
element X of M holds X =idys «r X.
(9) Let M be a non-empty many sorted set indexed by I and let X, Y be
elements of M. If X CY, then idy; «¢ X Cidy; «P Y.
(10) Let M be a non-empty many sorted set indexed by I and let X, Y be
elements of M. If X UY is an element of M, then idy; <« (X UY) =
idy <P X Uidys «P Y.
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(11) Let X be an element of 2V and let i, 2 be arbitrary. Suppose i € I
and z € (idom «P X)(i). Then there exists a locally-finite element Y of
2M such that Y C X and 2 € (idonm <P Y) ().

Let us consider I, M. Note that there exists a set many sorted operation in
M which is reflexive monotonic idempotent and topological.

Next we state four propositions:
12)  idya is a reflexive set many sorted operation in A.
13)  idya is a monotonic set many sorted operation in A.
14)  idya is an idempotent set many sorted operation in A.
15)  id,a is a topological set many sorted operation in A.
In the sequel P, R will denote set many sorted operations in M and E, T
will denote elements of 2.
One can prove the following three propositions:

(16) If E= M and P is reflexive, then £ = P « E.

(17)  If P is reflexive and for every element X of 2/ holds P «¢ X C X, then
P is idempotent.
(18) If P is monotonic, then P «p (ENT)C P« ENP « T.
Let us consider I, M. Observe that every set many sorted operation in M
which is topological is also monotonic.
One can prove the following proposition
(19) If P is topological, then P «p E\ P« T C P «¢ (E\T).
Let us consider I, M, R, P. Then P o R is a set many sorted operation in
M.
One can prove the following propositions:
(20) If P is reflexive and R is reflexive, then P o R is reflexive.
(21) If P is monotonic and R is monotonic, then P o R is monotonic.

(22) If P is idempotent and R is idempotent and Po R = Ro P, then Po R
is idempotent.

(23) If P is topological and R is topological, then P o R is topological.

(24) If P is reflexive and ¢ € I and f = P(i), then for every element x of
2MG@) holds = C f(x).

(25) If P is monotonic and ¢ € I and f = P(i), then for all elements x, y of
2M() such that = C y holds f(x) C f(y).

(26) If P is idempotent and i € I and f = P(i), then for every element x of
2M0) holds f(z) = £(/(x).

(27)  If P is topological and i € I and f = P(i), then for all elements z, y of
2M) holds f(zUy) = f(z) U f(y).

931
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3. ON THE MANY SORTED CLOSURE OPERATOR AND THE MANY SORTED
CLOSURE SYSTEM

In the sequel S will be a 1-sorted structure.

Let us consider S. We consider many sorted closure system structures over
S as extensions of many-sorted structure over S as systems

( sorts, a family ),
where the sorts constitute a many sorted set indexed by the carrier of S and the
family is a subset family of the sorts.

In the sequel M; will be a many-sorted structure over S.

Let us consider S and let I; be a many sorted closure system structure over
S. We say that I is additive if and only if:

(Def. 6)  The family of I; is additive.
We say that I is absolutely-additive if and only if:
(Def. 7)  The family of I; is absolutely-additive.
We say that I is multiplicative if and only if:
(Def. 8)  The family of I; is multiplicative.
We say that I is absolutely-multiplicative if and only if:
(Def. 9)  The family of I; is absolutely-multiplicative.
We say that Iy is properly upper bound if and only if:
(Def. 10)  The family of I; is properly upper bound.
We say that I is properly lower bound if and only if:
(Def. 11)  The family of I; is properly lower bound.

Let us consider S, Mj. The functor MSFull(M;) yields a many sorted closure
system structure over S and is defined as follows:

(Def. 12)  MSFull(M;) = (the sorts of M, 2the sorts of My,

Let us consider S, M;. One can check that MSFull(M;) is strict addi-
tive absolutely-additive multiplicative absolutely-multiplicative properly upper
bound and properly lower bound.

Let us consider S and let M7 be a non-empty many-sorted structure over S.
One can check that MSFull(M;) is non-empty.

Let us consider S. Observe that there exists a many sorted closure system
structure over S which is strict non-empty additive absolutely-additive mul-
tiplicative absolutely-multiplicative properly upper bound and properly lower
bound.

Let us consider S and let C7 be an additive many sorted closure system
structure over S. Note that the family of C'; is additive.

Let us consider S and let C7 be an absolutely-additive many sorted closure
system structure over S. Observe that the family of C is absolutely-additive.

Let us consider S and let C'; be a multiplicative many sorted closure system
structure over S. One can verify that the family of C; is multiplicative.
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Let us consider S and let C; be an absolutely-multiplicative many sorted clo-
sure system structure over S. One can check that the family of C'; is absolutely-
multiplicative.

Let us consider S and let Cy be a properly upper bound many sorted closure
system structure over S. One can check that the family of C is properly upper
bound.

Let us consider S and let C be a properly lower bound many sorted closure
system structure over S. Note that the family of C; is properly lower bound.

Let us consider S, let M be a non-empty many sorted set indexed by the
carrier of S, and let F' be a subset family of M. Observe that (M, F') is non-
empty.

Let us consider S, M7 and let F' be an additive subset family of the sorts of
M. Observe that (the sorts of M7, F) is additive.

Let us consider S, M; and let F' be an absolutely-additive subset family of
the sorts of M;. One can check that (the sorts of M, F') is absolutely-additive.

Let us consider S, M7 and let F' be a multiplicative subset family of the sorts
of Mj. Note that (the sorts of M7, F') is multiplicative.

Let us consider S, M7 and let F' be an absolutely-multiplicative subset family
of the sorts of M;. Observe that (the sorts of M, F') is absolutely-multiplicative.

Let us consider S, M7 and let F' be a properly upper bound subset family
of the sorts of M;. One can verify that (the sorts of Mj, F') is properly upper
bound.

Let us consider S, M7 and let F' be a properly lower bound subset family of
the sorts of M;. Observe that (the sorts of M;, F') is properly lower bound.

Let us consider S. Observe that every many sorted closure system structure
over S which is absolutely-additive is also additive.

Let us consider S. One can check that every many sorted closure system
structure over S which is absolutely-multiplicative is also multiplicative.

Let us consider S. Observe that every many sorted closure system structure
over S which is absolutely-multiplicative is also properly upper bound.

Let us consider S. Omne can verify that every many sorted closure system
structure over S which is absolutely-additive is also properly lower bound.

Let us consider S. A many sorted closure system of S is an absolutely-
multiplicative many sorted closure system structure over S.

Let us consider I, M. A many sorted closure operator of M is a reflexive
monotonic idempotent set many sorted operation in M.

Let us consider I, M and let F' be a many sorted function from M into M.
The functor FixPoints(F') yielding a many sorted subset of M is defined by:

(Def. 13)  For every i such that i € I holds = € (FixPoints(F'))(i) iff there exists
a function f such that f = F(i) and z € dom f and f(z) = x.
Let us consider I, let M be an empty yielding many sorted set indexed by
I, and let F' be a many sorted function from M into M. One can verify that
FixPoints(F) is empty yielding.
Next we state a number of propositions:
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(28)  For every many sorted function F' from M into M holds A € M and
F ¢ A= Aiff A€ FixPoints(F).

(29) FixPoints(id4) = A.

(30)  Let A be a many sorted set indexed by the carrier of S, and let J be a
reflexive monotonic set many sorted operation in A, and let D be a subset
family of A. If D = FixPoints(J), then (A, D) is a many sorted closure
system of S.

(31) Let D be a properly upper bound subset family of M and let X be an
element of 2™, Then there exists a non-empty subset family S; of M
such that for every many sorted set Y indexed by I holds Y € S if and
only if the following conditions are satisfied:

(i) YeD,and
(i) X CY.

(32) Let D be a properly upper bound subset family of M, and let X be an
element of 2™ and let S; be a non-empty subset family of M. Suppose
that for every many sorted set Y indexed by I holds Y € S; iff Y € D
and X C Y. Let i be arbitrary and let D1 be a non empty set. If i € I and
Dy = D(i), then Si(i) = {z : z ranges over elements of Dy, X (i) C z}.

(33) Let D be a properly upper bound subset family of M. Then there
exists a set many sorted operation J in M such that for every element X
of 2™ and for every non-empty subset family S; of M if for every many
sorted set Y indexed by I holds Y € S; iff Y € D and X C Y, then
J £ X =51

(34) Let D be a properly upper bound subset family of M, and let A be an
element of 2™ and let J be a set many sorted operation in M. Suppose
that

(i) AeD,and

(ii)  for every element X of 2/ and for every non-empty subset family S
of M such that for every many sorted set Y indexed by I holds Y € S
iff Y € Dand X CY holds J «¢ X =) 51.
Then J < A = A.

(35) Let D be an absolutely-multiplicative subset family of M, and let A
be an element of 2 and let J be a set many sorted operation in M.
Suppose that

(i) J« A=A, and

(i)  for every element X of 2M and for every non-empty subset family S;
of M such that for every many sorted set Y indexed by I holds Y € 53
iff Y e Dand X CY holds J «¢ X =()51.
Then A € D.

(36) Let D be a properly upper bound subset family of M and let J be a
set many sorted operation in M. Suppose that for every element X of
2M and for every non-empty subset family S; of M such that for every
many sorted set Y indexed by I holds Y € S;iff Y € D and X C Y holds
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J ¢ X = 5]. Then J is reflexive and monotonic.

(37)  Let D be an absolutely-multiplicative subset family of M and let J be
a set many sorted operation in M. Suppose that for every element X of
2M and for every non-empty subset family S; of M such that for every
many sorted set Y indexed by I holds Y € §1iff Y € D and X C Y holds
J «¢ X = S5;1. Then J is idempotent.

(38) Let D be a many sorted closure system of S and let J be a set many
sorted operation in the sorts of D. Suppose that for every element X of
gthe sorts of D an1q for every non-empty subset family S; of the sorts of D
such that for every many sorted set Y indexed by the carrier of S holds
Y € S;iff Y € the family of D and X C Y holds J «# X =()S1. Then J
is a many sorted closure operator of the sorts of D.

Let us consider S, let A be a many sorted set indexed by the carrier of S, and
let C' be a many sorted closure operator of A. The functor ClSys(C') yielding a
many sorted closure system of S is defined as follows:

(Def. 14)  There exists a subset family D of A such that D = FixPoints(C') and
ClSys(C) = (A, D).

Let us consider S, let A be a many sorted set indexed by the carrier of S,
and let C' be a many sorted closure operator of A. One can verify that ClSys(C')
is strict.

Let us consider S, let A be a non-empty many sorted set indexed by the
carrier of S, and let C' be a many sorted closure operator of A. Note that
ClSys(C) is non-empty.

Let us consider S and let D be a many sorted closure system of S. The

functor ClOp(D) yielding a many sorted closure operator of the sorts of D is
defined by the condition (Def. 15).

(Def. 15)  Let X be an element of 2th¢ sors of D and let S; be a non-empty subset
family of the sorts of D. Suppose that for every many sorted set Y indexed
by the carrier of S holds Y € S1 iff Y € the family of D and X C Y. Then
(ClOp(D)) «¢ X =N S1.

The following two propositions are true:

(39) Let A be a many sorted set indexed by the carrier of S and let J be a
many sorted closure operator of A. Then ClOp(ClSys(J)) = J.

(40)  For every many sorted closure system D of S holds CISys(ClOp(D)) =
the many sorted closure system structure of D.
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1. PRELIMINARIES

One can prove the following propositions:

(1) ICscmys, ¢ Int-Locations.

(2) ICscmys, ¢ FinSeg-Locations.

(3) Let i be an instruction of SCMpga and let I be an instruction of SCM.
Suppose i = I. Let s be a state of SCMpga and let S be a state of SCM.
Suppose S = s | (the objects of SCM)+-((the instruction locations of
SCM) +— (I)). Then Exec(i,s) = s+-Exec(I,S)+-s | (the instruction
locations of SCMpsy ).

(4) Let s1, so be states of SCMpga. Suppose s; | (Int-Locations U
FinSeq-Locations U{ICgcmM,, }) = s2l (Int-Locations U FinSeg-Locations
U{ICsCMy, })- Let I be an instruction of SCMpga. Then Exec(l, s1) [
(Int-Locations U FinSeq-Locations U{ICg oMy, }) =
Exec(l, s2) I (Int-Locations U FinSeq-Locations U{ICgcMyq, })-

(5) Let N be a non empty set with non empty elements, and let S be a
steady-programmed AMI over NV, and let 7 be an instruction of S, and let s

© 1996 Warsaw University - Bialystok
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be a state of S. Then Exec(i, s) | (the instruction locations of S) = s| (the
instruction locations of S).

2. FINITE PARTIAL STATES OF SCMpga

One can prove the following two propositions:

(6) For every finite partial state p of SCMpga holds DataPart(p) = p |
(Int-Locations U FinSeq-Locations).

(7)  For every finite partial state p of SCMpga holds p is data-only iff
dom p C Int-Locations U FinSeq-Locations .

Let us observe that there exists a finite partial state of SCMpga which is
data-only.
We now state two propositions:

(8)  For every finite partial state p of SCMpga holds dom DataPart(p) C
Int-Locations U FinSeq-Locations .

(9)  For every finite partial state p of SCMpga holds dom ProgramPart(p) C
the instruction locations of SCMFpga .

Let I; be a partial function from FinPartSt(SCMpga ) to FinPartSt(SCMgga ).
We say that I is data-only if and only if the condition (Def. 1) is satisfied.

(Def. 1)  Let p be a finite partial state of SCMgga. Suppose p € dom I;. Then
p is data-only and for every finite partial state ¢ of SCMpga such that
g = I (p) holds ¢ is data-only.
One can verify that there exists a partial function from FinPartSt(SCMpga )
to FinPartSt(SCMpga ) which is data-only.
One can prove the following four propositions:
(10)  Let i be an instruction of SCMpga, and let s be a state of SCMpga,

and let p be a programmed finite partial state of SCMpgga. Then
Exec(i, s+-p) = Exec(i, s)+-p.

(11) Let s be a state of SCMypga, and let i; be an instruction-location
of SCMpsa, and let a be an integer location. Then s(a) =
(s+- Start-At(i1))(a).

(12) Let s be a state of SCMpgp, and let i3 be an instruction-location
of SCMpsa, and let a be a finite sequence location. Then s(a) =
(s+- Start-At(i1))(a).

(13)  For all states s, t of SCMpga holds s+t | (Int-Locations U
FinSeq-Locations) is a state of SCMpga .
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3. AUTONOMIC FINITE PARTIAL STATES OF SCMpga

Let I; be an integer location and let a be an integer. Then [{——a is a finite
partial state of SCMpga .
The following proposition is true

(14) For every autonomic finite partial state p of SCMpgs such that
DataPart(p) # 0 holds ICgcm,,, € domp.

Let us observe that there exists a finite partial state of SCMpga which is
autonomic and non programmed.
We now state a number of propositions:

(15)  For every autonomic non programmed finite partial state p of SCMpga
holds ICscM,g, € dom p.

(16) For every autonomic finite partial state p of SCMpgs such that
ICscMyg, € domp holds IC, € domp.

(17)  Let p be an autonomic non programmed finite partial state of SCMpga
and let s be a state of SCMpga. If p C s, then for every natural number
i holds IC (computation(s))(i) € dom ProgramPart(p).

(18)  Let p be an autonomic non programmed finite partial state of SCMpga
and let sq1, so be states of SCMpga. Suppose p C s1 and p C so. Let i be
a natural number. Then IC(Computation(sl))(i) = IC(Computation(sg))(’i) and
Curlnstr((Computation(sy))(7)) = Curlnstr((Computation(ssy))(7)).

(19)  Let p be an autonomic non programmed finite partial state of SCMpga
and let sy, so be states of SCMpga. Suppose p C s; and p C
so. Let i be a natural number and let di, dy be integer locations.
If Curlnstr((Computation(sy))(i)) = di:=d2 and d; € domp, then
(Computation(sy))(i)(d2) = (Computation(ss))()(ds).

(20) Let p be an autonomic non programmed finite partial state of
SCMpsa and let s;, so be states of SCMpga. Suppose p C s
and p C s5. Let ¢ be a natural number and let d;, dy be inte-
ger locations. If Curlnstr((Computation(s;))(i)) = AddTo(d;,ds2) and
d; € domp, then (Computation(s))(i)(d;)+ (Computation(sy))(z)(d2) =
(Computation(sz))(#)(d1) + (Computation(sz))(4)(d2).

(21) Let p be an autonomic non programmed finite partial state of
SCMpsa and let s;, so be states of SCMpga. Suppose p C s
and p C s9. Let ¢ be a natural number and let di, ds be integer
locations. If Curlnstr((Computation(s;))(z)) = SubFrom(d;,ds2) and
d; € domp, then (Computation(sy))(i)(d;) — (Computation(s1))(z)(d2) =
(Computation(ss))(i)(d1) — (Computation(ss))()(ds).

(22) Let p be an autonomic non programmed finite partial state of
SCMpsa and let si, so be states of SCMpga. Suppose p C s
and p C s9. Let ¢ be a natural number and let dy, dy be inte-
ger locations. If Curlnstr((Computation(sy))(i)) = MultBy(dy,ds) and
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dy € dom p, then (Computation(sy))(i)(dy) - (Computation(sy))(i)(dy) =
(Computation(ss))(i)(dy1) - (Computation(ssy))(7)(ds).

(23)  Let p be an autonomic non programmed finite partial state of SCMpga
and let s1, so be states of SCMpga. Suppose p C s; and p C so.
Let ¢ be a natural number and let di, do be integer locations. If
CurInstr((Computation(sy))(i)) = Divide(d;,d2) and d; € domp and
di # dg, then (Computation(si))(i)(d;) + (Computation(si))(i)(dz2) =
(Computation(ssy))(i)(d;) + (Computation(ss))(7)(dz).

(24)  Let p be an autonomic non programmed finite partial state of SCMgga
and let s1, so be states of SCMpga. Suppose p C s; and p C so.
Let ¢ be a natural number and let di, do be integer locations. If
Curlnstr((Computation(sy))(i)) = Divide(d;,ds) and dy € domp and
dy # dg, then (Computation(s1))(¢)(d;) mod (Computation(sy))(i)(ds) =
(Computation(ss))(i)(d;) mod (Computation(ssz))(i)(dz).

(25) Let p be an autonomic non programmed finite partial state of
SCMpsa and let si, so be states of SCMpga. Suppose p C s
and p C s9. Let ¢ be a natural number, and let di; be an in-
teger location, and let lo be an instruction-location of SCMpgga.
If Curlnstr((Computation(s1))(i)) = if di = 0 goto ly and Iy #
Next(IC(computation(s1))@i))s then (Computation(s1))(i)(d1) = 0 iff
(Computation(sz))(z)(dy) = 0.

(26) Let p be an autonomic non programmed finite partial state of
SCMpsa and let s;, s be states of SCMpga. Suppose p C s
and p C s9. Let ¢ be a natural number, and let d; be an in-
teger location, and let I be an instruction-location of SCMpgga.
If Curlnstr((Computation(sy))(i)) = if dy > 0 gotoly and Iy #
Next (IC computation(s1))(i)), then (Computation(s1))(i)(di) > 0 iff
(Computation(sz))(2)(dy) > 0.

(27)  Let p be an autonomic non programmed finite partial state of SCMgga
and let s1, sy be states of SCMpgga. Suppose p C s1 and p C so. Let
i be a natural number, and let dy, dy be integer locations, and let f be
a finite sequence location. Suppose Curlnstr((Computation(sy))(i)) =
di:=fq, and di € domp. Let ki, k2 be natural numbers. If k1 =
|(Computation(s1))(¢)(d2)| and k2 = |(Computation(ss))(i)(dz)|, then
7, (Computation(s1))(2)(f) = mx, (Computation(sa))(7)(f).

(28) Let p be an autonomic non programmed finite partial state of
SCMpsa and let s;, so be states of SCMpga. Suppose p C
s1 and p C so. Let ¢ be a natural number, and let di, do be
integer locations, and let f be a finite sequence location.  Sup-
pose Curlnstr((Computation(s1))(i)) = f4,:=d1 and f € domp. Let
ki, ko be natural numbers. If k& = [(Computation(sy))(i)(ds)]
and ko = |(Computation(sy))(i)(d2)|, then (Computation(sy))(z)(f) +-
(k1, (Computation(sy))(i)(dy)) = (Computation(s2))(2)(f) +- (k2,
(Computation(sz))(i)(dy)).
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Let p be an autonomic non programmed finite partial state of SCMpga
and let s1, so be states of SCMpga. Suppose p C s; and p C so. Let i be a
natural number, and let d; be an integer location, and let f be a finite se-
quence location. If Curlnstr((Computation(sy))(i)) = di:=lenf and dy €
dom p, then len(Computation(sy))(7)(f) = len(Computation(sz))(i)(f)-

Let p be an autonomic non programmed finite partial state of SCMpga
and let s1, sy be states of SCMpga. Suppose p C s1 and p C so. Let
i be a natural number, and let d; be an integer location, and let f be
a finite sequence location. Suppose Curlnstr((Computation(sy))(i)) =
f:=(0,...,0) and f € domp. Let ki, ko be natural numbers. If kj =

——

dy
|(Computation(s;))(¢)(d1)| and k2 = |(Computation(ss))(i)(d1)|, then
ki—0=ky— 0.
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Summary. In this paper definitions of many sorted closure system
and many sorted closure operator are introduced. These notations are
also introduced in [11], but in another meaning. In this article closure sys-
tem is absolutely multiplicative subset family of many sorted sets and in
[11] is many sorted absolutely multiplicative subset family of many sorted
sets. Analogously, closure operator is function between many sorted sets
and in [11] is many sorted function from a many sorted set into a many
sorted set.

MML Identifier: CLOSURE2.

The terminology and notation used in this paper are introduced in the following
papers: [21], [22], [7], [16], [23], [4], [5], [3], [8], [18], [6], [1], [20], [19], [2], [12],
[13], [14], [15], [17], [10], and [9].

1. PRELIMINARIES

For simplicity we follow a convention: I will denote a set, ¢, x will be arbi-
trary, A, B, M will denote many sorted sets indexed by I, and f, f1 will denote
functions.
One can prove the following three propositions:
(1)  For every non empty set M and for all elements X, Y of M such that
X CY holds idy(X) Cidp (Y).

(2) If AC B, then A\ M C B.

(3) Let I be a non empty set, and let A be a many sorted set indexed by
I, and let B be a many sorted subset of A. Then rng B C [Jrng(24).
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One can check that every set which is empty is also functional.
One can verify that there exists a set which is empty and functional.
Let f, g be functions. Note that {f, g} is functional.

2. SET OF MANY SORTED SUBSETS OF A MANY SORTED SET

Let us consider I, M. The functor Bool(M) yields a set and is defined by:

(Def. 1)  z € Bool(M) iff x is a many sorted subset of M.
Let us consider I, M. One can verify that Bool(M) is non empty and func-
tional and has common domain.
Let us consider 1, M.

(Def. 2) A subset of Bool(M) is called a family of many sorted subsets of M.
Let us consider I, M. Then Bool(M) is a family of many sorted subsets of
M.

Let us consider I, M. One can check that there exists a family of many sorted
subsets of M which is non empty and functional and has common domain.

Let us consider I, M. One can check that there exists a family of many
sorted subsets of M which is empty and finite.

In the sequel S, Sy will denote families of many sorted subsets of M.

Let us consider I, M and let S be a non empty family of many sorted subsets
of M. We see that the element of S is a many sorted subset of M.

We now state several propositions:
4
)

S1 U Sy is a family of many sorted subsets of M.
S1 N Sy is a family of many sorted subsets of M.

(@)
NN NI 2N N N

Sp \ z is a family of many sorted subsets of M.
51853 is a family of many sorted subsets of M.
If AC M, then {A} is a family of many sorted subsets of M.

If AC M and B C M, then {A, B} is a family of many sorted subsets
of M.

In the sequel E, T are elements of Bool(M).

A~ N /N N N
~J

One can prove the following four propositions:
(10) ENT € Bool(M).
(11) EUT € Bool(M).
(12) E\ A € Bool(M).
(13) E-T € Bool(M).
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3. MANY SORTED OPERATOR CORRESPONDING TO THE OPERATOR ON
MANY SORTED SUBSETS

Let S be a functional set. The functor |S| yielding a function is defined as
follows:

(Def. 3) (i) There exists a non empty functional set A such that A = S and
dom |S| = N{domz : x ranges over elements of A} and for every i such
that ¢ € dom|S| holds |S|(i) = {x(i) : = ranges over elements of A} if
S #0,

(i) |S| =0, otherwise.
Next we state the proposition
(14) For every non empty family S; of many sorted subsets of M holds
dom |S;| = 1.
Let S be an empty functional set. Observe that |S| is empty.
Let us consider I, M and let S be a family of many sorted subsets of M.
The functor |:S:| yielding a many sorted set indexed by I is defined as follows:

(Def. 4) (i) |:S:| = |S] if S # 0,

(i)  [:S:] = 0r, otherwise.

Let us consider I, M and let S be an empty family of many sorted subsets
of M. Note that |:S:| is empty yielding.

The following proposition is true

(15)  If Sy is non empty, then for every i such that ¢ € I holds |:S1:|(i) =
{x(7) : x ranges over elements of Bool(M), z € S1}.

Let us consider I, M and let S be a non empty family of many sorted subsets
of M. Note that |:S7:| is non-empty.
One can prove the following propositions:
(16) dom|{f}| = dom f.
(17)  doml|{f, f1}| = dom f N dom f.
(18) 1fi e dom f, then [{f}|(5) = {£())}
(19) Ifieland Sy ={f}, then |:S1:|(3) = {f(i)}.
(20) 14 € dom|{f. fi}l then [{f, f1}(3) = {(0), Fr(0)}.
(21) Ifieland S = {f, fl}, then |51’(Z) = {f(l),fl(l)}
Let us consider I, M, S;. Then [:S;:] is a subset family of M.
We now state several propositions:

(22) If A€ Sy, then A € |:Sy:|.

(23) If Sy = {A, B}, then J|:S1:| = AU B.
(24) It Sy = {E,T}, then (|:S1:| = ENT.
(25)

25 Let Z be a many sorted subset of M. Suppose that for every many

sorted set Z; indexed by I such that Z; € S7 holds Z C Z;. Then Z C
N ]:51:].
(26)  |:Bool(M):| = 2M.
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Let us consider I, M and let I; be a family of many sorted subsets of M.
We say that I is additive if and only if:

(Def. 5)  For all A, B such that A € I} and B € I; holds AU B € I;.
We say that I is absolutely-additive if and only if:
(Def. 6)  For every family F' of many sorted subsets of M such that F' C I holds
UI:F:| € L.
We say that I is multiplicative if and only if:
(Def. 7)  For all A, B such that A € I} and B € I; holds AN B € I;.
We say that [ is absolutely-multiplicative if and only if:

(Def. 8)  For every family F' of many sorted subsets of M such that F' C I holds
N|:F:| € .
We say that Iy is properly upper bound if and only if:
(Def. 9) M € I.
We say that Iy is properly lower bound if and only if:
(Def. 10) 07 € 1.

Let us consider I, M. Observe that there exists a family of many sorted
subsets of M which is non empty functional additive absolutely-additive mul-
tiplicative absolutely-multiplicative properly upper bound and properly lower
bound and has common domain.

Let us consider I, M. Then Bool(M) is an additive absolutely-additive
multiplicative absolutely-multiplicative properly upper bound properly lower
bound family of many sorted subsets of M.

Let us consider I, M. Observe that every family of many sorted subsets of
M which is absolutely-additive is also additive.

Let us consider I, M. One can verify that every family of many sorted
subsets of M which is absolutely-multiplicative is also multiplicative.

Let us consider I, M. One can check that every family of many sorted subsets
of M which is absolutely-multiplicative is also properly upper bound.

Let us consider I, M. One can check that every family of many sorted subsets
of M which is properly upper bound is also non empty.

Let us consider I, M. One can check that every family of many sorted subsets
of M which is absolutely-additive is also properly lower bound.

Let us consider I, M. Note that every family of many sorted subsets of M
which is properly lower bound is also non empty.

4. PROPERTIES OF CLOSURE OPERATORS

Let us consider I, M.
(Def. 11) A function from Bool(M) into Bool(M) is called a set operation in M.

Let us consider I, M, let f be a set operation in M, and let x be an element
of Bool(M). Then f(x) is an element of Bool(M).
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Let us consider I, M and let I7 be a set operation in M. We say that I; is
reflexive if and only if:

(Def. 12)  For every element z of Bool(M) holds = C I (x).

We say that I; is monotonic if and only if:

(Def. 13)  For all elements z, y of Bool(M) such that z C y holds I1(x) C I1(y).
We say that I; is idempotent if and only if:

(Def. 14)  For every element z of Bool(M) holds I (x) = I (11 (z)).
We say that Iy is topological if and only if:

(Def. 15)  For all elements z, y of Bool(M) holds I1(z Uy) = I (x) U I (y).

Let us consider I, M. Observe that there exists a set operation in M which
is reflexive monotonic idempotent and topological.

Next we state four propositions:
27)  idpool(a) is a reflexive set operation in A.
28)  idpool(4) is @ monotonic set operation in A.
29)  idpool(4) is an idempotent set operation in A.
30)  idpgol(4) 1s a topological set operation in A.
In the sequel g, h are set operations in M.
One can prove the following three propositions:
(31) If E= M and g is reflexive, then E = g(E).
(32) If g is reflexive and for every element X of Bool(M) holds g(X) C X,
then ¢ is idempotent.
(33)  For every element A of Bool(M) such that A = ENT holds if g is
monotonic, then g(A) C g(E) N g(T).
Let us consider I, M. One can check that every set operation in M which is
topological is also monotonic.
Next we state the proposition
(34)  For every element A of Bool(M) such that A = E \ T holds if g is
topological, then g(E) \ g(T) C g(A).
Let us consider I, M, h, g. Then g - h is a set operation in M.
The following four propositions are true:
(35) If g is reflexive and h is reflexive, then g - h is reflexive.
(36) If g is monotonic and h is monotonic, then g - h is monotonic.

(37) 1If g is idempotent and h is idempotent and g-h = h - g, then g - h is
idempotent.

(38) If g is topological and h is topological, then g - h is topological.
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5. ON THE CLOSURE OPERATOR AND THE CLOSURE SYSTEM

In the sequel S will be a 1-sorted structure.

Let us consider S. We consider closure system structures over S as extensions
of many-sorted structure over S as systems

( sorts, a family ),
where the sorts constitute a many sorted set indexed by the carrier of S and the
family is a family of many sorted subsets of the sorts.

In the sequel M; is a many-sorted structure over S.

Let us consider S and let I; be a closure system structure over S. We say
that I is additive if and only if:

(Def. 16)  The family of I; is additive.
We say that I is absolutely-additive if and only if:
(Def. 17)  The family of I; is absolutely-additive.
We say that I; is multiplicative if and only if:
(Def. 18)  The family of I; is multiplicative.
We say that I is absolutely-multiplicative if and only if:
(Def. 19)  The family of I; is absolutely-multiplicative.
We say that Iy is properly upper bound if and only if:
(Def. 20)  The family of I; is properly upper bound.
We say that I is properly lower bound if and only if:
(Def. 21)  The family of I; is properly lower bound.

Let us consider S, Mj. The functor Full(M;) yielding a closure system
structure over S is defined as follows:

(Def. 22)  Full(M;) = (the sorts of M;, Bool(the sorts of M)).

Let us consider S, M;. Note that Full(M;) is strict additive absolutely-
additive multiplicative absolutely-multiplicative properly upper bound and
properly lower bound.

Let us consider S and let M; be a non-empty many-sorted structure over S.
Observe that Full(M;) is non-empty.

Let us consider S. Note that there exists a closure system structure over S
which is strict non-empty additive absolutely-additive multiplicative absolutely-
multiplicative properly upper bound and properly lower bound.

Let us consider S and let C7 be an additive closure system structure over S.
Note that the family of Cy is additive.

Let us consider S and let C'; be an absolutely-additive closure system struc-
ture over S. Note that the family of C'; is absolutely-additive.

Let us consider S and let C'; be a multiplicative closure system structure
over S. Note that the family of C; is multiplicative.

Let us consider S and let C; be an absolutely-multiplicative closure system
structure over S. Note that the family of C'; is absolutely-multiplicative.
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Let us consider S and let Cy be a properly upper bound closure system
structure over S. One can verify that the family of C'; is properly upper bound.

Let us consider S and let C'; be a properly lower bound closure system
structure over S. Observe that the family of C is properly lower bound.

Let us consider S, let M be a non-empty many sorted set indexed by the
carrier of S, and let F' be a family of many sorted subsets of M. Note that
(M, F) is non-empty.

Let us consider S, M7 and let F' be an additive family of many sorted subsets
of the sorts of M;. Note that (the sorts of M, F') is additive.

Let us consider S, M7 and let F' be an absolutely-additive family of many
sorted subsets of the sorts of M;. Note that (the sorts of M;, F') is absolutely-
additive.

Let us consider S, M; and let F' be a multiplicative family of many sorted
subsets of the sorts of M;. Observe that (the sorts of M, F') is multiplicative.

Let us consider S, M; and let F' be an absolutely-multiplicative family of
many sorted subsets of the sorts of M;. One can check that (the sorts of My,
F') is absolutely-multiplicative.

Let us consider S, M; and let F' be a properly upper bound family of many
sorted subsets of the sorts of M;. Note that (the sorts of Mj, F) is properly
upper bound.

Let us consider S, M7 and let F' be a properly lower bound family of many
sorted subsets of the sorts of M;. Note that (the sorts of Mj, F) is properly
lower bound.

Let us consider S. Observe that every closure system structure over S which
is absolutely-additive is also additive.

Let us consider S. Note that every closure system structure over S which is
absolutely-multiplicative is also multiplicative.

Let us consider S. Observe that every closure system structure over S which
is absolutely-multiplicative is also properly upper bound.

Let us consider S. One can check that every closure system structure over S
which is absolutely-additive is also properly lower bound.

Let us consider S. A closure system of S is an absolutely-multiplicative
closure system structure over S.

Let us consider I, M. A closure operator of M is a reflexive monotonic
idempotent set operation in M.

Next we state the proposition

(39) Let A be a many sorted set indexed by the carrier of S, and let f be
a reflexive monotonic set operation in A, and let D be a family of many
sorted subsets of A. Suppose D = {x : x ranges over elements of Bool(A),
f(z) = x}. Then (A, D) is a closure system of S.

Let us consider S, let A be a many sorted set indexed by the carrier of .S, and
let g be a closure operator of A. The functor ClSys(g) yielding a strict closure
system of S is defined by:
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(Def. 23)  The sorts of ClSys(g) = A and the family of ClSys(g) = {z : x ranges
over elements of Bool(4), g(x) = z}.

Let us consider S, let A be a closure system of S, and let C' be a many sorted
subset of the sorts of A. The functor C' yielding an element of Bool(the sorts of
A) is defined by the condition (Def. 24).

(Def. 24)  There exists a family F' of many sorted subsets of the sorts of A such
that C'=(|:F:| and F' = {X : X ranges over elements of Bool(the sorts
of A), C C X A X € the family of A}.

One can prove the following propositions:

(40)  Let D be a closure system of S, and let a be an element of Bool(the
sorts of D), and let f be a set operation in the sorts of D. Suppose
a € the family of D and for every element x of Bool(the sorts of D) holds
f(z) ==. Then f(a) = a.

(41)  Let D be a closure system of S, and let a be an element of Bool(the
sorts of D), and let f be a set operation in the sorts of D. Suppose
f(a) = a and for every element x of Bool(the sorts of D) holds f(z) = .
Then a € the family of D.

(42)  Let D be a closure system of S and let f be a set operation in the sorts
of D. Suppose that for every element x of Bool(the sorts of D) holds
f(z) ==. Then f is reflexive monotonic and idempotent.

Let us consider S and let D be a closure system of S. The functor ClOp(D)
yields a closure operator of the sorts of D and is defined by:

(Def. 25)  For every element x of Bool(the sorts of D) holds (ClOp(D))(z) = Z.
Next we state two propositions:

(43)  For every many sorted set A indexed by the carrier of S and for every
closure operator f of A holds ClOp(ClSys(f)) = f.

(44)  For every closure system D of S holds ClSys(ClOp(D)) = the closure
system structure of D.

REFERENCES

[1] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547—
552, 1991.

[2] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Formal-
ized Mathematics, 5(1):47-54, 1996.

[3] Czestaw Byliniski. A classical first order language. Formalized Mathematics, 1(4):669—
676, 1990.

[4] Czestaw Byliriski. Functions and their basic properties. Formalized Mathematics,
1(1):55-65, 1990.

[5] Czestaw Byliiiski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,
1990.

[6] Czestaw Byliriski. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(8):521-527, 1990.

[7] Czestaw Byliniski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53,
1990.

[8] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.



ON THE CLOSURE OPERATOR AND THE CLOSURE ... 551

[9] Artur Kornilowicz. Certain facts about families of subsets of many sorted sets. Formal-
ized Mathematics, 5(3):451-456, 1996.

[10] Artur Kornilowicz. Definitions and basic properties of boolean & union of many sorted
sets. Formalized Mathematics, 5(2):279-281, 1996.

[11] Artur Kornitowicz. On the many sorted closure operator and the many sorted closure
system. Formalized Mathematics, 5(4):529-536, 1996.

[12] Malgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Math-
ematics, 5(1):61-65, 1996.

[13] Beata Madras. Product of family of universal algebras. Formalized Mathematics,
4(1):103-108, 1993.

[14] Beata Madras. Products of many sorted algebras. Formalized Mathematics, 5(1):55-60,
1996.

[15] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Pre-
liminaries to circuits, I. Formalized Mathematics, 5(2):167-172, 1996.

16] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.

17]  Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathemat-

ics, 5(2):233-236, 1996.

[18] Andrzej Trybulec. Function domains and Freenkel operator. Formalized Mathematics,

1(3):495-500, 1990.

19] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37-42, 1996.

20] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.

21]  Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
1990.

[22] Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17-23, 1990.
[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Received February 7, 1996



552



FORMALIZED MATHEMATICS
Volume 5, Number 4, 1996
Warsaw University - Bialystok

Translations, Endomorphisms, and Stable
Equational Theories

Grzegorz Bancerek
Institute of Mathematics
Polish Academy of Sciences

Summary. Equational theories of an algebra, i.e. the equivalence
relation closed under translations and endomorphisms, are formalized.
The correspondence between equational theories and term rewriting sys-
tems is discussed in the paper. We get as the main result that any pair
of elements of an algebra belongs to the equational theory generated by
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1. ENDOMORPHISMS AND TRANSLATIONS

Let S be a non empty many sorted signature, let A be an algebra over S,
and let s be a sort symbol of S. An element of A, s is an element of (the sorts
of A)(s).

Let I be a set, let A be a many sorted set indexed by I, and let hy, hy be
many sorted functions from A into A. Then hs o hy is a many sorted function
from A into A.

The following two propositions are true:

(1) Let S be a non empty non void many sorted signature, and let A be an

algebra over S, and let o be an operation symbol of S, and let a be a set.
If a € Args(o, A), then a is a function.
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(2) Let S be a non empty non void many sorted signature, and let A be
an algebra over S, and let o be an operation symbol of S, and let a be
a function. Suppose a € Args(o, A). Then doma = dom Arity (o) and for
every natural number i such that ¢ € dom Arity (o) holds a(z) € (the sorts
of A)(m; Arity(o)).
Let S be a non empty non void many sorted signature and let A be an algebra
over S. We say that A is feasible if and only if:

(Def. 1)  For every operation symbol o of S such that Args(o, 4) # 0 holds
Result(o, A) # 0.

Next we state the proposition

(3) Let S be a non empty non void many sorted signature, and let o be an
operation symbol of S, and let A be an algebra over S. Then Args(o, A) #
() if and only if for every natural number i such that ¢ € dom Arity (o) holds
(the sorts of A)(m; Arity(0)) # 0.

Let S be a non empty non void many sorted signature. One can check that
every algebra over S which is non-empty is also feasible.

Let S be a non empty non void many sorted signature. One can check that
there exists an algebra over S which is non-empty.

Let S be a non empty non void many sorted signature and let A be an algebra
over S. A many sorted function from A into A is called an endomorphism of A
if:

(Def. 2) It is a homomorphism of A into A.

In the sequel S is a non empty non void many sorted signature and A is an
algebra over S.

Next we state three propositions:

(4)  id(the sorts of 4) is an endomorphism of A.

(5) Let hi, hy be many sorted functions from A into A, and let o be an
operation symbol of S, and let a be an element of Args(o,A). If a €
Args(o, A), then ho#(h1#a) = (hg o hy)#a.

(6) For all endomorphisms hy, hy of A holds hg o hy is an endomorphism of
A.

Let S be a non empty non void many sorted signature, let A be an algebra
over S, and let hy, ho be endomorphisms of A. Then hyoh; is an endomorphism
of A.

Let S be a non empty non void many sorted signature. The functor
TranslRel(S) is a binary relation on the carrier of S and is defined by the
condition (Def. 3).

(Def. 3)  Let s1, s2 be sort symbols of S. Then (s1, s2) € TranslRel(S) if and
only if there exists an operation symbol o of S such that the result sort
of 0 = sy and there exists a natural number 7 such that i € dom Arity (o)
and 7; Arity(o) = s1.
We now state three propositions:
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(7)  Let S be a non empty non void many sorted signature, and let o be an
operation symbol of S, and let A be an algebra over S, and let a be a
function. Suppose a € Args(o, A). Let ¢ be a natural number and let = be
an element of A, 7; Arity(o). Then a +- (i,z) € Args(o, A).

(8) Let Aj, Az be algebras over S, and let h be a many sorted func-
tion from Ay into A, and let o be an operation symbol of S. Suppose
Args(o, A1) # 0 and Args(o, A2) # 0. Let i be a natural number. Sup-
pose i € dom Arity(o). Let  be an element of Ay, m; Arity(o). Then
h(m; Arity(0))(z) € (the sorts of Ag)(m; Arity(0)).

(9) Let S be a non empty non void many sorted signature, and let o be
an operation symbol of S, and let i be a natural number. Suppose
i € dom Arity(o). Let Aj, Ao be algebras over S, and let A be a many
sorted function from A; into Ay, and let a, b be elements of Args(o, Aj).
Suppose a € Args(o, A1) and h#a € Args(o, A2). Let f, g1, g2 be func-
tions. Suppose f = a and g1 = h#a and go = h#b. Let x be an element
of Ay, m; Arity(o). If b = f +- (i,x), then go(i) = h(m; Arity(o))(z) and
h#tb = g1 + (i, g2(1)).

Let S be a non empty non void many sorted signature, let o be an operation
symbol of S, let ¢ be a natural number, let A be an algebra over S, and let
a be a function. The functor o}(a, —) yields a function and is defined by the
conditions (Def. 4).

(Def. 4) (i)  dom(of*(a, —)) = (the sorts of A)(m; Arity(0)), and
(ii) for every set x such that x € (the sorts of A)(m; Arity(o)) holds

o (a,—)(z) = (Den(o, A))(a +- (i,z)).

One can prove the following proposition

(10) Let S be a non empty non void many sorted signature, and let o be
an operation symbol of S, and let ¢ be a natural number. Suppose i €
dom Arity (o). Let A be a feasible algebra over S and let a be a function.
Suppose a € Args(o, A). Then of(a,—) is a function from (the sorts of
A)(m; Arity(0)) into (the sorts of A)(the result sort of o).

Let S be a non empty non void many sorted signature, let s1, so be sort
symbols of S, let A be an algebra over S, and let f be a function. We say that
f is an elementary translation in A from s; into so if and only if the condition
(Def. 5) is satisfied.

(Def. 5)  There exists an operation symbol o of S such that

(i)  the result sort of o = s9, and

(ii)  there exists a natural number i such that ¢ € dom Arity(o) and
m; Arity (o) = s1 and there exists a function a such that a € Args(o, A)
and f = of(a, —).

One can prove the following propositions:

(11) Let S be a non empty non void many sorted signature, and let s1, so

be sort symbols of S, and let A be a feasible algebra over S, and let f be
a function. Suppose f is an elementary translation in A from s; into so.
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Then
(i)  fis a function from (the sorts of A)(s1) into (the sorts of A)(s2),
(ii)  (the sorts of A)(s1) # 0, and
(iii)  (the sorts of A)(s2) # 0.

(12) Let S be a non empty non void many sorted signature, and let s1, so
be sort symbols of S, and let A be an algebra over S, and let f be a
function. If f is an elementary translation in A from s; into s, then (sq,
s2) € TranslRel(5).

(13) Let S be a non empty non void many sorted signature, and let s1, so
be sort symbols of S, and let A be a non-empty algebra over S. If (sq,
s9) € TranslRel(S), then there exists function which is an elementary
translation in A from s; into ss.

(14) Let S be a non empty non void many sorted signature, and let A be

a feasible algebra over S, and let sy, so be sort symbols of S. Sup-

pose TranslRel(S) reduces s; to se. Let g be a reduction sequence w.r.t.

TranslRel(S) and let p be a function yielding finite sequence. Suppose

that

) leng=lenp+1,

) s =a(l),

) s2=¢q(leng), and

) for every natural number ¢ and for every function f and for all sort

symbols si, s2 of S such that ¢ € domp and f = p(i) and s; = ¢(i) and

so = q(i+ 1) holds f is an elementary translation in A from s; into ss.

Then

(V) cOmpPOSe ge sorts of A)(s;) P is @ function from (the sorts of A)(s1) into
(the sorts of A)(s2), and

(vi) if p # 0, then (the sorts of A)(s1) # () and (the sorts of A)(s3) # 0.

Let S be a non empty non void many sorted signature, let A be a non-
empty algebra over S, and let s1, so be sort symbols of S. Let us assume that
TranslRel(S) reduces s1 to s3. A function from (the sorts of A)(s1) into (the
sorts of A)(s2) is called a translation in A from s; into so if it satisfies the
condition (Def. 6).

(Def. 6)  There exists a reduction sequence ¢ w.r.t. TranslRel(S) and there exists
a function yielding finite sequence p such that

1) it = Compose(thc sorts of A)(s1) p,
(i) leng=lenp+1,

(i) s1=4q(1),
(iv)  s2 =¢(leng), and

(v)  for every natural number i and for every function f and for all sort
symbols s1, so of S such that ¢ € domp and f = p(i) and s; = ¢(i) and
s2 = q(i+ 1) holds f is an elementary translation in A from s; into ss.
We now state the proposition

(15) Let S be a non empty non void many sorted signature, and let A be
a non-empty algebra over S, and let s1, sy be sort symbols of S. Sup-
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pose TranslRel(S) reduces s; to se. Let ¢ be a reduction sequence w.r.t.
TranslRel(S) and let p be a function yielding finite sequence. Suppose
that

(i) leng=lenp+1,

() s =a(l),

(iii)  s2 = ¢(leng), and

(iv)  for every natural number i and for every function f and for all sort
symbols s1, s9 of S such that i € domp and f = p(i) and s; = ¢(i) and
s2 = q(i+ 1) holds f is an elementary translation in A from s; into ss.
Then compose e sorts of A)(s;) P 18 @ translation in A from s; into ss.

In the sequel A is a non-empty algebra over S.
The following propositions are true:

(16)  For every sort symbol s of S holds id ghe sorts of 4)(s) 13 @ translation in
A from s into s

(17)  Let s1, s2 be sort symbols of S and let f be a function. Suppose f is an
elementary translation in A from s; into s. Then TranslRel(S) reduces
$1 to sy and f is a translation in A from s; into ss.

(18)  Let s1, s2, s3 be sort symbols of S. Suppose TranslRel(S) reduces s to
s9 and TranslRel(S) reduces sg to s3. Let ¢; be a translation in A from
s1 into s9 and let ¢5 be a translation in A from s9 into s3. Then ¢y - t7 is
a translation in A from sy into s3.

(19)  Let s1, s2, s3 be sort symbols of S. Suppose TranslRel(S) reduces s;
to s9. Let t be a translation in A from s; into sy and let f be a function.
Suppose f is an elementary translation in A from so into s3. Then f -t is
a translation in A from s; into ss.

(20)  Let s1, s2, s3 be sort symbols of S. Suppose TranslRel(S) reduces s
to s3. Let f be a function. Suppose f is an elementary translation in A
from s7 into sy. Let t be a translation in A from s, into s3. Then ¢ - f is
a translation in A from s; into s3

The scheme TranslationInd concerns a non empty non void many sorted
signature A, a non-empty algebra B over A, and a ternary predicate P, and
states that:

Let s1, so be sort symbols of A. Suppose TranslRel(.A) reduces s;
to sy. Let t be a translation in B from s; into s3. Then P[t, s1, S
provided the parameters meet the following requirements:

e For every sort symbol s of A holds P[id tne sorts of B)(s)s S» S5

e Let s1, 2, s3 be sort symbols of A. Suppose TranslRel(A) reduces

s1 to so. Let t be a translation in B from si into s3. Suppose
Plt,s1,s2]. Let f be a function. If f is an elementary translation
in B from sg into s3, then P[f - ¢, s1, s3].

The following propositions are true:

(21) Let Ay, Ay be non-empty algebras over S and let A be a many sorted
function from A; into As. Suppose h is a homomorphism of Ay into As
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Let o be an operation symbol of S and let i be a natural number. Suppose
i € dom Arity(o). Let a be an element of Args(o, A1). Then h(the result
sort of 0) - 0\ (a, —) = 02 (h#a, —) - h(m; Arity(0)).

(22) Let h be an endomorphism of A, and let o be an operation symbol
of S, and let i be a natural number. Suppose i € dom Arity(o). Let a
be an element of Args(o, A). Then h(the result sort of o) - 0f'(a,—) =
o (h#ta, —) - h(m; Arity(0)).

(23) Let Ay, Ay be non-empty algebras over S and let h be a many sorted
function from A; into As. Suppose h is a homomorphism of Ay into As
Let s1, s2 be sort symbols of S and let ¢ be a function. Suppose t is an
elementary translation in Ay from s; into s3. Then there exists a function
T from (the sorts of Ay)(s1) into (the sorts of As)(s2) such that 7' is an
elementary translation in Ay from s; into s9 and T"- h(s1) = h(s2) - t.

(24) Let h be an endomorphism of A, and let s, s2 be sort symbols of S,
and let ¢ be a function. Suppose t is an elementary translation in A from
s1 into sg. Then there exists a function 7' from (the sorts of A)(s1) into
(the sorts of A)(s2) such that T' is an elementary translation in A from
s1 into sg and T' - h(s1) = h(sq) - t.

(25) Let Ay, Az be non-empty algebras over S and let h be a many sorted
function from A; into As. Suppose h is a homomorphism of Ay into As
Let s1, s9 be sort symbols of S. Suppose TranslRel(S) reduces s1 to ss.
Let t be a translation in A; from s; into s9. Then there exists a translation
T in As from s into s such that T - h(sy) = h(s2) - t.

(26) Let h be an endomorphism of A and let s1, sy be sort symbols of S.
Suppose TranslRel(S) reduces s; to s2. Let ¢ be a translation in A from
s1 into so. Then there exists a translation T in A from s into sy such
that T"- h(s1) = h(s2) - t.

2. COMPATIBILITY, INVARIANTNESS, AND STABILITY

Let S be a non empty non void many sorted signature, let A be an algebra
over S, and let R be a many sorted relation of A. We say that R is compatible
if and only if the condition (Def. 7) is satisfied.

(Def. 7)  Let o be an operation symbol of S and let a, b be functions. Sup-
pose a € Args(o,A) and b € Args(o, A) and for every natural number
n such that n € dom Arity(o) holds (a(n), b(n)) € R(m, Arity(o)). Then
((Den(o, A))(a), (Den(o, A))(b)) € R(the result sort of o).
We say that R is invariant if and only if the condition (Def. 8) is satisfied.

(Def. 8)  Let s1, s2 be sort symbols of S and let ¢t be a function. Suppose ¢ is
an elementary translation in A from s; into se. Let a, b be sets. If {a,
b) € R(s1), then (t(a), t(b)) € R(s2).
We say that R is stable if and only if the condition (Def. 9) is satisfied.
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(Def. 9)  Let h be an endomorphism of A, and let s be a sort symbol of S, and
let a, b be sets. If {(a, b) € R(s), then (h(s)(a), h(s)(b)) € R(s).
The following propositions are true:

(27)  Let R be an equivalence many sorted relation of A. Then R is compat-
ible if and only if R is a congruence of A.

(28) Let R be a many sorted relation of A. Then R is invariant if and only
if for all sort symbols s1, so of S such that TranslRel(.S) reduces s1 to sg
and for every translation f in A from s; into so and for all sets a, b such
that (a, b) € R(s1) holds (f(a), f(b)) € R(s2).
Let S be a non empty non void many sorted signature and let A be a non-
empty algebra over S. Note that every equivalence many sorted relation of A
which is invariant is also compatible and every equivalence many sorted relation
of A which is compatible is also invariant.
Let X be a non empty set. Note that A x is non empty.
Now we present two schemes. The scheme MSRFEuzistence deals with a non
empty set A, a non-empty many sorted set B indexed by A, and a ternary
predicate P, and states that:
There exists a many sorted relation R of B such that for every
element i of A and for all elements a, b of B(i) holds (a, b) € R(7)
if and only if P[i, a, ]

for all values of the parameters.

The scheme MSRLambdaU deals with a set A, a many sorted set B indexed
by A, and a unary functor F yielding a set, and states that:

(i)  There exists a many sorted relation R of B such that for every
set ¢ such that i € A holds R(i) = F(i), and
(ii) for all many sorted relations R;, Ry of B such that for every
set i such that i € A holds R;(i) = F(i) and for every set ¢ such
that ¢ € A holds Rs(i) = F(i) holds Ry = Ry
provided the parameters meet the following requirement:

e For every set ¢ such that ¢ € A holds F(i) is a relation between
B(i) and B(i).

Let I be a set and let A be a many sorted set indexed by I. The functor A%
yielding a many sorted relation of A is defined by:

(Def. 10)  For every set i such that i € I holds (AL)(i) = A 4.

Let S be a non empty non void many sorted signature and let A be a non-
empty algebra over S. Ome can verify that every many sorted relation of A
which is equivalence is also non-empty.

Let S be a non empty non void many sorted signature and let A be a non-
empty algebra over S. Observe that there exists a many sorted relation of A
which is invariant stable and equivalence.



560 GRZEGORZ BANCEREK

3. INVARIANT, STABLE, AND INVARIANT STABLE CLOSURE

In the sequel S will denote a non empty non void many sorted signature,
A will denote a non-empty algebra over S, and R will denote a many sorted
relation of the sorts of A.

The scheme MSRelCl concerns a non empty non void many sorted signature
A, a non-empty algebra B over A, many sorted relations O, D of B, a unary
predicate Q, and a ternary predicate P, and states that:

Q[D] and Q C D and for every many sorted relation P of B such
that Q[P] and Q C P holds D C P
provided the following requirements are met:

e Let R be a many sorted relation of B. Then Q[R] if and only if for
all sort symbols s1, s9 of A and for every function f from (the sorts
of B)(s1) into (the sorts of B)(s3) such that P[f, s1, s3] and for all
sets a, b such that {a, b) € R(s1) holds (f(a), f(b)) € R(s2),

e Let 51, s9, s3 be sort symbols of A, and let f; be a function from
(the sorts of B)(s1) into (the sorts of B)(s2), and let fo be a function
from (the sorts of B)(s2) into (the sorts of B)(s3). If P[f1,s1,s2]
and P[fa, s2, s3], then P[fs - f1, 51, s3],

e For every sort symbol s of A holds P[id tne sorts of B)(s)s 5> 5]

e Let s be a sort symbol of A and let a, b be element of B, s. Then
(a, b) € D(s) if and only if there exists a sort symbol s’ of A and
there exists a function f from (the sorts of B)(s’) into (the sorts of
B)(s) and there exist element z, y of B, s’ such that P[f, s, s|] and
(z, y) € Q(s') and a = f(z) and b= f(y).

Let S be a non empty non void many sorted signature, let A be a non-empty
algebra over S, and let R be a many sorted relation of the sorts of A. The
functor InvCl(R) is an invariant many sorted relation of A and is defined as
follows:

(Def. 11) R C InvCl(R) and for every invariant many sorted relation @ of A such
that R C @ holds InvCl(R) C Q.
The following propositions are true:

(29) Let R be a many sorted relation of the sorts of A, and let s be a sort
symbol of S, and let a, b be element of A, s. Then (a, b) € (InvCl(R))(s)
if and only if there exists a sort symbol s’ of S and there exist element
x,y of A, s’ and there exists a translation ¢ in A from s’ into s such that
TranslRel(S) reduces s’ to s and (x, y) € R(s’) and a = t(x) and b = t(y).

(30)  For every stable many sorted relation R of A holds InvCl(R) is stable.

Let S be a non empty non void many sorted signature, let A be a non-empty
algebra over S, and let R be a many sorted relation of the sorts of A. The
functor StabCl(R) is a stable many sorted relation of A and is defined by:

(Def. 12) R C StabCl(R) and for every stable many sorted relation @ of A such
that R C @ holds StabCl(R) C Q.



TRANSLATIONS, ENDOMORPHISMS, AND STABLE ... 561

We now state two propositions:

(31) Let R be a many sorted relation of the sorts of A, and let s be a sort
symbol of S, and let a, b be element of A, s. Then (a, b) € (StabCl(R))(s)
if and only if there exist element x, y of A, s and there exists an endomor-
phism h of A such that (z, y) € R(s) and a = h(s)(x) and b = h(s)(y).

(32)  InvCl(StabCl(R)) is stable.

Let S be a non empty non void many sorted signature, let A be a non-empty
algebra over S, and let R be a many sorted relation of the sorts of A. The
functor TRS(R) is an invariant stable many sorted relation of A and is defined
by:

(Def. 13) R C TRS(R) and for every invariant stable many sorted relation @ of
A such that R C @ holds TRS(R) C Q.

Let S be a non empty non void many sorted signature, let A be a non-empty
algebra over S, and let R be a non-empty many sorted relation of A. One can
check the following observations:

*  InvCl(R) is non-empty,
x  StabCl(R) is non-empty, and
x  TRS(R) is non-empty.

We now state several propositions:

(33)  For every invariant many sorted relation R of A holds InvCl(R) = R.
(34)  For every stable many sorted relation R of A holds StabCl(R) = R.

(35)  For every invariant stable many sorted relation R of A holds TRS(R) =
R.

(36) StabCl(R) € TRS(R) and InvCI(R) € TRS(R) and StabCl(InvCl(R)) C
TRS(R).

(37)  InvCl(StabCl(R)) = TRS(R).

(38) Let R be a many sorted relation of the sorts of A, and let s be a sort
symbol of S, and let a, b be element of A, s. Then (a, b) € (TRS(R))(s)
if and only if there exists a sort symbol s’ of S such that TranslRel(S)
reduces s’ to s and there exist element [, » of A, s’ and there exists an

endomorphism h of A and there exists a translation ¢ in A from s’ into s
such that (I, r) € R(s") and a = t(h(s')(1)) and b = t(h(s")(r)).

4. EQUATIONAL THEORY

One can prove the following propositions:

(39) Let A be aset and let R, E be binary relations on A. Suppose that for
all sets a, b such that a € A and b € A holds (a, b) € E iff a and b are
convertible w.r.t. R. Then F is equivalence relation-like.
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(40) Let A be a set, and let R be a binary relation on A, and let E be an
equivalence relation of A. Suppose R C E. Let a, b be sets. If a € A and
b € A and a and b are convertible w.r.t. R, then (a, b) € E.

(41) Let A be a non empty set, and let R be a binary relation on A, and let
a, b be elements of A. Then (a, b) € EqCI(R) if and only if @ and b are
convertible w.r.t. R.

(42) Let S be a non empty set, and let A be a non-empty many sorted set
indexed by S and let R be a many sorted relation of A, and let s be an
element of S, and let a, b be elements of A(s). Then (a, b) € (EqCIL(R))(s)
if and only if a and b are convertible w.r.t. R(s).

Let S be a non empty non void many sorted signature and let A be a non-
empty algebra over S. An equational theory of A is a stable invariant equivalence
many sorted relation of A. Let R be a many sorted relation of A. The func-
tor EqCI(R, A) yielding an equivalence many sorted relation of A is defined as
follows:

(Def. 14)  EqCI(R, A) = EqCI(R).
We now state four propositions:
(43)  For every many sorted relation R of A holds R C EqCI(R, A).

(44)  Let R be a many sorted relation of A and let E be an equivalence many
sorted relation of A. If R C F, then EqCI(R, A) C E.

(45)  Let R be a stable many sorted relation of A, and let s be a sort symbol
of S, and let a, b be element of A, s. Suppose a and b are convertible
w.r.t. R(s). Let h be an endomorphism of A. Then h(s)(a) and h(s)(b)
are convertible w.r.t. R(s).

(46)  For every stable many sorted relation R of A holds EqCI(R, A) is stable.

Let us consider S, A and let R be a stable many sorted relation of A. Note
that EqCI(R, A) is stable.
We now state two propositions:

(47)  Let R be an invariant many sorted relation of A, and let s1, s2 be sort
symbols of S, and let a, b be element of A, sy. Suppose a and b are
convertible w.r.t. R(s1). Let ¢ be a function. Suppose ¢ is an elementary
translation in A from s; into s9. Then t(a) and ¢(b) are convertible w.r.t.
R(Sg).

(48)  For every invariant many sorted relation R of A holds EqCl(R, A) is
invariant.

Let us consider S, A and let R be an invariant many sorted relation of A.
One can check that EqCI(R, A) is invariant.
Next we state three propositions:

(49) Let S be a non empty set, and let A be a non-empty many sorted
set indexed by S, and let R, E be many sorted relations of A. Suppose
that for every element s of S and for all elements a, b of A(s) holds (a,
b) € E(s) iff a and b are convertible w.r.t. R(s). Then F is equivalence.



TRANSLATIONS, ENDOMORPHISMS, AND STABLE ... 563

(50) Let R, E be many sorted relations of A. Suppose that for every sort
symbol s of S and for all element a, b of A, s holds (a, b) € E(s) iff a and
b are convertible w.r.t. (TRS(R))(s). Then E is an equational theory of
A.

(51) Let S be a non empty set, and let A be a non-empty many sorted set
indexed by S and let R be a many sorted relation of A, and let E be
an equivalence many sorted relation of A. Suppose R C E. Let s be an
element of S and let a, b be elements of A(s). If a and b are convertible
w.r.t. R(s), then (a, b) € E(s).

Let S be a non empty non void many sorted signature, let A be a non-empty
algebra over S, and let R be a many sorted relation of the sorts of A. The
functor EqTh(R) is an equational theory of A and is defined by:

(Def. 15) R C EqTh(R) and for every equational theory @ of A such that R C @
holds EqTh(R) C Q.
Next we state three propositions:

(52)  For every many sorted relation R of A holds EqCI(R, A) C EqTh(R)
and InvCl(R) C EqTh(R) and StabCl(R) C EqTh(R) and TRS(R) C
EqTh(R).

(53) Let R be a many sorted relation of A, and let s be a sort symbol of S,
and let a, b be element of A, s. Then (a, b) € (EqTh(R))(s) if and only
if a and b are convertible w.r.t. (TRS(R))(s).

(54) For every many sorted relation R of A holds EqTh(R) =
EqCI(TRS(R), A).
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The notation and terminology used here are introduced in the following papers:
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1. LATTICE OF MANY SORTED EQUIVALENCE RELATIONS 1S COMPLETE

For simplicity we adopt the following convention: I will be a non empty set,
M will be a many sorted set indexed by I, x will be arbitrary, and rq, ro will
be real numbers.

We now state several propositions:

(1) For every set X holds x € the carrier of EqRelLatt(X) iff z is an
equivalence relation of X.

(2) idjs is an equivalence relation of M.

(3) [M,M] is an equivalence relation of M.
(4)  LiqReiLate(ar) = ida-

(5)  TeqRelLatt(m) = [M, M].

Let us consider I, M. Note that EqRelLatt(M/) is bounded.
One can prove the following propositions:

(6)  Every subset of the carrier of EqRelLatt(M) is a family of many sorted
subsets of [M, M].

(7)  Let a, b be elements of the carrier of EqRelLatt(M) and let A, B be
equivalence relations of M. If a = A and b = B, then a C b iff A C B.
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(8) Let X be a subset of the carrier of EqRelLatt(M) and let X; be a
family of many sorted subsets of [M, M]. Suppose X; = X. Let a, b be
equivalence relations of M. If a = (N ]:X1:| and b € X, then a C b.

(9)  Let X be asubset of the carrier of EqRelLatt(M) and let X; be a family
of many sorted subsets of [M, M]. If X; = X and X is non empty, then
N |:X1:| is an equivalence relation of M.

Let L be a non empty lattice structure. Let us observe that L is complete if
and only if the condition (Def. 1) is satisfied.

(Def. 1)  Let X be a subset of the carrier of L. Then there exists an element a
of the carrier of L such that X C a and for every element b of the carrier
of L such that X C b holds a C b.

Next we state the proposition
(10)  EqRelLatt(M) is complete.

Let us consider I, M. Observe that EqRelLatt(M) is complete.
We now state the proposition

(11) Let X be a subset of the carrier of EqRelLatt(M) and let X; be a
family of many sorted subsets of [M, M]. Suppose X; = X and X is
non empty. Let a, b be equivalence relations of M. If a = N |:X;:| and

b= [ lgqRelLate(a) X then a = b.

2. SUBLATTICES INHERITING SUP’s AND INF’s

Let L be a lattice and let I; be a sublattice of L. We say that I is [ }
inheriting if and only if:
(Def. 2)  For every subset X of the carrier of I; holds [ |, X € the carrier of I;.
We say that I is | J-inheriting if and only if:
(Def. 3)  For every subset X of the carrier of I; holds | |;, X € the carrier of [;.
The following propositions are true:

(12) Let L be a lattice, and let L’ be a sublattice of L, and let a, b be
elements of the carrier of L, and let a’, b’ be elements of the carrier of L’.
Ifa=ad and b=V, thenalb=d UV andalb=ad N¥.

(13)  Let L be a lattice, and let L’ be a sublattice of L, and let X be a subset
of the carrier of L', and let a be an element of the carrier of L, and let a’
be an element of the carrier of L. If a = d/, then a C X iff o’ C X.

(14)  Let L be a lattice, and let L’ be a sublattice of L, and let X be a subset
of the carrier of L', and let a be an element of the carrier of L, and let a’
be an element of the carrier of L. If a = a/, then X C a iff X C d’.

(15) Let L be a complete lattice and let L’ be a sublattice of L. If L is
[ Finheriting, then L’ is complete.

(16) Let L be a complete lattice and let L’ be a sublattice of L. If L’ is
| Finheriting, then L’ is complete.
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Let L be a complete lattice. Note that there exists a sublattice of L which
is complete.

Let L be a complete lattice. One can verify that every sublattice of L which
is [ Hnheriting is also complete and every sublattice of L which is | J-inheriting
is also complete.

Next we state four propositions:

(17)  Let L be a complete lattice and let L’ be a sublattice of L. Suppose L’ is
[ Hinheriting. Let A’ be a subset of the carrier of L. Then [ A" = [ ]/ A’.

(18)  Let L be a complete lattice and let L’ be a sublattice of L. Suppose L' is
| Finheriting. Let A’ be a subset of the carrier of L. Then | |; A" =|];, A’

(19) Let L be a complete lattice and let L’ be a sublattice of L. Suppose
L’ is [ Finheriting. Let A be a subset of the carrier of L and let A" be a
subset of the carrier of L'. If A = A’, then [ ]A = [ ]A’.

(20) Let L be a complete lattice and let L’ be a sublattice of L. Suppose
L’ is | |-inheriting. Let A be a subset of the carrier of L and let A’ be a
subset of the carrier of L'. If A= A’, then | |A =[] A’

3. SEGMENT OF REAL NUMBERS AS A COMPLETE LATTICE

Let us consider 71, ro. Let us assume that r; < r9. The functor
RealSubLatt(rq,r2) yields a strict lattice and is defined by the conditions
(Def. 4).

(Def. 4) (i)  The carrier of RealSubLatt(ry,r2) = [r1,72],
(i)  the join operation of RealSubLatt(ri,re) = maxg [(f[r1, 2],
[r1,72] ] qua set), and
(ili))  the meet operation of RealSubLatt(ri,r2) = ming [(}[r1,r2],
[r1,72] ] qua set).

One can prove the following propositions:

(21)  For all r1, ro such that r; < 7y holds RealSubLatt(ry,72) is complete.

(22)  There exists sublattice of RealSubLatt(0,1) which is | J-inheriting and
non [ [inheriting.

(23)  There exists a complete lattice L such that there exists sublattice of L
which is | |-inheriting and non [ Finheriting.

(24)  There exists sublattice of RealSubLatt(0, 1) which is [ Finheriting and
non | |-inheriting.

(25)  There exists a complete lattice L such that there exists sublattice of L
which is [ FHnheriting and non | J-inheriting.
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1. PRELIMINARIES

Let N be a non empty set with non empty elements and let S be an AMI
over N. One can check that every finite partial state of S is finite.

Let N be a non empty set with non empty elements and let S be an AMI
over N. One can verify that there exists a finite partial state of S which is
programmed.

Next we state the proposition

(1) Let N be a non empty set with non empty elements, and let S be a
definite AMI over N, and let p be a programmed finite partial state of S.
Then rng p C the instructions of S.

Let NV be a non empty set with non empty elements, let S be a definite AMI
over N, and let I, J be programmed finite partial states of S. Then I+-J is a
programmed finite partial state of S.

Next we state the proposition

(2) Let N be a non empty set with non empty elements, and let S be a

definite AMI over N, and let f be a function from the instructions of S
into the instructions of S, and let s be a programmed finite partial state
of S. Then dom(f - s) = doms.
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2. INCREMENTING AND DECREMENTING THE INSTRUCTION LOCATIONS

In the sequel i, k, I, m, n, p will denote natural numbers.
Let [1 be an instruction-location of SCMpga and let k be a natural number.
The functor I; + k yielding an instruction-location of SCMpgya is defined by:
(Def. 1)  There exists a natural number m such that {; = insloc(m) and [; +k =
insloc(m + k).
The functor I, — k yields an instruction-location of SCMrgga and is defined by:
(Def. 2)  There exists a natural number m such that {; = insloc(m) and l; ="k =
insloc(m —' k).

We now state two propositions:

(3) For every instruction-location [ of SCMpga and for all m, n holds
(l+m)+n=1014(m+n).

(4)  For every instruction-location I; of SCMpga and for every natural num-
ber k holds (I + k) —" k =1;.

In the sequel L will be an instruction-location of SCM and I will be an

instruction of SCM.

The following three propositions are true:

(5)  For every instruction-location [ of SCMpga and for every L such that
L=1[lholdsl+k=L+k.

(6) For all instructions-locations [y, I3 of SCMpga and for every natural
number k holds Start-At(lo + k) = Start-At(l3 + k) iff Start-At(ly) =
Start-At(l3).

(7)  For all instructions-locations [z, I3 of SCMpga and for every natural
number k such that Start-At(ly) = Start-At(l3) holds Start-At(ly —" k) =
Start-At(ls =" k).

3. INCREMENTING ADDRESSES

Let i be an instruction of SCMpgga and let k£ be a natural number. The
functor IncAddr(i, k) yielding an instruction of SCMpgy is defined as follows:
(Def. 3) (i)  There exists an instruction I of SCM such that I = ¢ and
IncAddr(i, k) = IncAddr(I, k) if InsCode(i) € {6,7, 8},
(ii)  IncAddr(i, k) = i, otherwise.
We now state a number of propositions:
(8) For every natural number k holds IncAddr(haltgcm,g,,k) =
haltSCMpg A"

(9) For every natural number k and for all integer locations a, b holds
IncAddr(a:=b, k) = a:=b.
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(10)  For every natural number k and for all integer locations a, b holds
IncAddr(AddTo(a,b), k) = AddTo(a,b).

(11)  For every natural number k and for all integer locations a, b holds
IncAddr(SubFrom(a,b), k) = SubFrom(a, b).

(12)  For every natural number k and for all integer locations a, b holds
IncAddr(MultBy(a,b), k) = MultBy(a, b).

(13)  For every natural number k and for all integer locations a, b holds
IncAddr(Divide(a, b), k) = Divide(a, b).

(14)  For every natural number k and for every instruction-location I; of
SCMpsa holds IncAddr(goto I1, k) = goto (I1 + k).

(15) Let k be a natural number, and let /3 be an instruction-location of
SCMprga, and let a be an integer location. Then IncAddr(if a =
0 goto l1,k) =if a =0 goto 1} + k.

(16) Let k be a natural number, and let /3 be an instruction-location of
SCMprga, and let a be an integer location. Then IncAddr(if a >
0 goto [1,k) =if a > 0 goto [ + k.

(17)  Let k be a natural number, and let a, b be integer locations, and let f
be a finite sequence location. Then IncAddr(b:=f,, k) = b:=f,.

(18) Let k be a natural number, and let a, b be integer locations, and let f
be a finite sequence location. Then IncAddr(f,:=b,k) = fq:=b.

(19) Let k be a natural number, and let a be an integer location, and let f
be a finite sequence location. Then IncAddr(a:=lenf, k) = a:=lenf.

(20) Let k be a natural number, and let a be an integer location, and
let f be a finite sequence location. Then IncAddr(f:=(0,...,0),k) =
—

a

(21)  For every instruction ¢ of SCMypga and for every I such that i = I
holds IncAddr(i, k) = IncAddr (I, k).

(22)  For every instruction I of SCMpga and for every natural number k
holds InsCode(IncAddr (7, k)) = InsCode([).

Let I; be a finite partial state of SCMpgs. We say that Iy is initial if and
only if:
(Def. 4)  For all m, n such that insloc(n) € dom I; and m < n holds insloc(m) €
dom Il.
The finite partial state Stopgop,g, of SCMrsa is defined as follows:
(Def. 5)  Stopscnyg, = insloc(0)——haltgcmyg, -

Let us note that Stopgcp,, 18 non empty initial and programmed.

One can verify that there exists a finite partial state of SCMpga which is
initial programmed and non empty.

Let f be a function and let g be a finite function. Note that f - g is finite.
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Let NV be a non empty set with non empty elements, let S be a definite AMI
over N, let s be a programmed finite partial state of S, and let f be a function
from the instructions of S into the instructions of S. Then f-s is a programmed
finite partial state of S.

In the sequel 7 will denote an instruction of SCMpga .

The following proposition is true

(23)  IncAddr(IncAddr(i,m),n) = IncAddr(i,m + n).

4. INCREMETING ADDRESSES IN A FINITE PARTIAL STATE

Let p be a programmed finite partial state of SCMFpga and let k& be a natural
number. The functor IncAddr(p, k) yielding a programmed finite partial state
of SCMFpgy is defined by:

(Def. 6) domIncAddr(p,k) = domp and for every m such that insloc(m) €
dom p holds (IncAddr(p, k))(insloc(m)) = IncAddr(mingoc(m)P; k)-

The following propositions are true:

(24) Let p be a programmed finite partial state of SCMpga, and let k be
a natural number, and let [ be an instruction-location of SCMppga. If
[ € domp, then (IncAddr(p, k))(l) = IncAddr(m;p, k).

(25)  For all programmed finite partial states I, J of SCMpga holds
IncAddr(/+-J,n) = IncAddr(I,n)+- IncAddr(J, n).

(26) Let f be a function from the instructions of SCMpgy into the instruc-
tions Of SCMFSA' Suppose f = id‘(thc instructions of SCMFSA)—i—'(haltSCMFSA
——i). Let s be a programmed finite partial state of SCMpga. Then
InCAddI'(f " S, n) = (id(the instructions of SCMFSA)—i_(haltSCMFSA'—)
IncAddr(i,n))) - IncAddr(s,n).

(27)  For every programmed finite partial state I of SCMpga holds
IncAddr(IncAddr(I,m),n) = IncAddr(Z, m + n).

(28)  For every state s of SCMpga holds Exec(IncAddr(Curlnstr(s), k), s+-
Start-At(IC + k)) = Following(s)+- Start- At (ICrouowing(s) + K)-

(29) Let Is be an instruction of SCMpgp, and let s be a state of SCMpga,
and let p be a finite partial state of SCMyga, and let ¢, j, k be natural
numbers. If IC; = insloc(j + k), then Exec(Is, s+- Start-At(IC; —' k)) =
Exec(IncAddr (I3, k), s)+- Start-At (ICEXCC(IncAddr(Ig,k),s) -~/ k).

5. SHIFTING THE FINITE PARTIAL STATE

Let p be a programmed finite partial state of SCMpga and let k£ be a natural
number. The functor Shift(p, k) yields a programmed finite partial state of
SCMypga and is defined as follows:
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(Def. 7)  dom Shift(p, k) = {insloc(m + k) : insloc(m) € domp} and for ev-
ery m such that insloc(m) € domp holds (Shift(p, k))(insloc(m + k)) =
p(insloc(m)).

The following propositions are true:

(30) Let [ be an instruction-location of SCMpga, and let k be a natural
number, and let p be a programmed finite partial state of SCMpga. If
l € dom p, then (Shift(p, k))(l + k) = p(l).

(31) Let p be a programmed finite partial state of SCMpgs and let &k be
a natural number. Then dom Shift(p,k) = {i1 + k : ¢; ranges over
instructions-locations of SCMpga, i1 € dom p}.

(32) For every programmed finite partial state I of SCMpga holds
Shift(Shift(I, m),n) = Shift(I,m + n).

(33) Let s be a programmed finite partial state of SCMpga, and let f
be a function from the instructions of SCMpg into the instructions of
SCMF g4, and given n. Then Shift(f - s,n) = f - Shift(s, n).

(34) For all programmed finite partial states I, J of SCMpga holds
Shift(I+4-J,n) = Shift(I, n)+- Shift(J, n).

(35)  For all natural numbers 4, j and for every programmed finite partial
state p of SCMpga holds Shift(IncAddr(p, 7), j) = IncAddr(Shift(p, 5), 7).
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1. SOME PROPERTIES OF GRAPHS

The following proposition is true
(1)  For every finite function f such that for every set x such that z € dom f
holds f(x) is finite holds [] f is finite.
In the sequel G will denote a graph and m, n will denote natural numbers.
Let G be a graph. Let us note that the chain of G can be characterized by
the following (equivalent) condition:
(Def. 1) It is a finite sequence of elements of the edges of G and there exists
finite sequence of elements of the vertices of G which is vertex sequence
of it.
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One can prove the following proposition
(2) For all finite sequences p, ¢ such that 1 < n and n < lenp holds
(p(1),...,p(n)) ={(p~a)1),....(p " q)(n)).
Let G be a graph and let I; be a chain of G. We introduce I; is directed as
a synonym of I is oriented.
Let G be a graph and let I; be a chain of G. We say that I is cyclic if and
only if:
(Def. 2)  There exists a finite sequence p of elements of the vertices of G such
that p is vertex sequence of I; and p(1) = p(lenp).
Let I be a graph. We say that I; is empty if and only if:
(Def. 3)  The edges of I; is empty.

One can verify that there exists a graph which is empty.

Next we state the proposition

(3)  For every graph G holds rng (the source of G) Urng (the target of G) C

the vertices of G.

Let us observe that there exists a graph which is finite simple connected non
empty and strict.

Let G be a non empty graph. Note that the edges of G is non empty.

We now state two propositions:

(4)  Let e be arbitrary. Suppose e € the edges of G. Let s, t be elements of
the vertices of G. Suppose s = (the source of G)(e) and ¢t = (the target
of G)(e). Then (s,t) is vertex sequence of (e).

(5)  For arbitrary e such that e € the edges of G holds (e) is a directed chain
of G.

In the sequel G is a non empty graph.

Let us consider GG. Observe that there exists a chain of G which is directed

non empty and path-like.

The following propositions are true:

(6) Let ¢ be a chain of G and let p be a finite sequence of elements of the
vertices of G. If ¢ is cyclic and p is vertex sequence of ¢, then p(1) =
p(lenp).

(7)  Let G be a graph and let e be arbitrary. Suppose e € the edges of G.
Let f1 be a directed chain of G. If f; = (e), then vertex-seq(f1) = ((the
source of G)(e), (the target of G)(e)).

(8)  For every finite sequence f holds len(f(m),..., f(n)) <len f.

(9) For every directed chain ¢ of G such that 1 < m and m < n and

n <lenc holds (c(m),...,c(n)) is a directed chain of G.
(10)  For every non empty directed chain o; of G holds len vertex-seq(o1) =
lenoy + 1.

Let us consider GG and let 01 be a directed non empty chain of G. Observe
that vertex-seq(o1) is non empty.
One can prove the following propositions:
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(11)  Let o1 be a directed non empty chain of G and given n. Suppose 1 < n
and n < leno;. Then (vertex-seq(o1))(n) = (the source of G)(01(n)) and
(vertex-seq(o1))(n + 1) = (the target of G)(01(n)).

(12)  For every non empty finite sequence f such that 1 < m and m < n and
n <len f holds (f(m),..., f(n)) is non empty.

(13)  For all directed chains ¢, ¢; of G such that 1 < m and m <
n and n < lenc and ¢; = (¢(m),...,c(n)) holds vertex-seq(c;) =
((vertex-seq(c))(m), ..., (vertex-seq(c))(n + 1)).

(14)  For every directed non empty chain 0; of G holds (vertex-seq(o1))(len o1+
1) = (the target of G)(o1(lenoy)).

(15)  For all directed non empty chains ¢, co of G holds (vertex-seq(cy))(len ¢1+
1) = (vertex-seq(c2))(1) iff ¢ ™ ¢o is a directed non empty chain of G.

(16)  For all directed non empty chains ¢, ¢1, co of G such that ¢ = ¢ ¢y holds
(vertex-seq(c))(1) = (vertex-seq(c1))(1) and (vertex-seq(c))(lenc + 1) =
(vertex-seq(cz))(lency + 1).

(17)  For every directed non empty chain o of G such that o; is cyclic holds
(vertex-seq(01))(1) = (vertex-seq(o1))(leno; + 1).

(18)  Let ¢ be a directed non empty chain of G. Suppose c is cyclic. Given n.
Then there exists a directed chain c3 of G such that lencs =n and ¢3 "¢
is a directed non empty chain of G.

Let I; be a graph. We say that I is directed cycle-less if and only if:
(Def. 4)  For every directed chain dy of I; such that d; is non empty holds d; is
non cyclic.
We introduce I; has directed cycle as an antonym of I; is directed cycle-less.
Let us mention that every graph which is empty is also directed cycle-less.

Let I1 be a graph. We say that I; is well-founded if and only if the condition
(Def. 5) is satisfied.

(Def. 5)  Let v be an element of the vertices of I;. Then there exists n such that

for every directed chain c of I if ¢ is non empty and (vertex-seq(c))(len c+
1) = v, then lenc < n.
Let G be an empty graph. Note that every chain of G is empty.
One can check that every graph which is empty is also well-founded.
Let us observe that every graph which is non well-founded is also non empty.
One can check that there exists a graph which is well-founded.
Let us note that every graph which is well-founded is also directed cycle-less.
Let us note that there exists a graph which is non well-founded.
One can verify that there exists a graph which is directed cycle-less.
We now state the proposition

(19)  For every decorated tree ¢ and for every node p of ¢ and for every natural
number k£ holds p | k£ is a node of ¢.
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2. SOME PROPERTIES OF MANY SORTED ALGEBRAS

Next we state two propositions:

(20) Let S be a non void non empty many sorted signature, and let X be
a non-empty many sorted set indexed by the carrier of S, and let ¢ be a
term of S over X. Suppose t is not root. Then there exists an operation
symbol o of S such that ¢(g) = (o, the carrier of S).

(21)  Let S be a non void non empty many sorted signature, and let A be an

algebra over S, and let GG be a generator set of A, and let B be a subset
of A. If G C B, then B is a generator set of A.

Let S be a non void non empty many sorted signature and let A be a finitely-
generated non-empty algebra over S. Note that there exists a generator set of
A which is non-empty and locally-finite.

One can prove the following two propositions:

(22) Let S be a non void non empty many sorted signature, and let A be a
non-empty algebra over S, and let X be a non-empty generator set of A.
Then there exists many sorted function from Free(X) into A which is an
epimorphism of Free(X) onto A

(23)  Let S be a non void non empty many sorted signature, and let A be a
non-empty algebra over S, and let X be a non-empty generator set of A.
If A is non locally-finite, then Free(X) is non locally-finite.

Let S be a non void non empty many sorted signature, let X be a non-empty
locally-finite many sorted set indexed by the carrier of S, and let v be a sort
symbol of S. One can check that FreeGenerator (v, X) is finite.

One can prove the following propositions:

(24) Let S be a non void non empty many sorted signature, and let X be a
non-empty locally-finite many sorted set indexed by the carrier of S, and
let v be a sort symbol of S. Then FreeGenerator(v, X) is finite.

(25) Let S be a non void non empty many sorted signature, and let A be a
non-empty algebra over S, and let o be an operation symbol of S. If (the
arity of S)(o) = ¢, then dom Den(o, A) = {e}.

Let I; be a non void non empty many sorted signature. We say that I is
finitely operated if and only if:
(Def. 6)  For every sort symbol s of I1 holds {o : o ranges over operation symbols
of I, the result sort of o = s} is finite.
Next we state three propositions:

(26) Let S be a non void non empty many sorted signature, and let A be a
non-empty algebra over S, and let v be a sort symbol of S. If S is finitely
operated, then Constants(A,v) is finite.

(27)  Let S be a non void non empty many sorted signature, and let X be a
non-empty many sorted set indexed by the carrier of .S, and let v be a sort
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symbol of S Then {¢ : t ranges over elements of (the sorts of Free(X))(v),
depth(t) = 0} = FreeGenerator (v, X) U Constants(Free(X),v).

(28) Let S be a non void non empty many sorted signature, and let X be
a non-empty many sorted set indexed by the carrier of S, and let v, v
be sort symbols of S, and let 0o be an operation symbol of S, and let
t be an element of (the sorts of Free(X))(v), and let a be an argument
sequence of Sym(o, X), and let k£ be a natural number, and let a; be an
element of (the sorts of Free(X))(vy). If t = (o, the carrier of S)-tree(a)
and k € doma and a; = a(k), then depth(a;) < depth(t).
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The terminology and notation used in this paper are introduced in the following
articles: [12], [15], [1], [24], [14], [19], [26], [18], [2], [10], [5], [27], [7], [3], [6], [25],
[11], [8], [9], [4], [13], [22], [16], [17], [23], [20], and [21].

1. RELOCABILITY

In this paper j, k will denote natural numbers.

Let p be a finite partial state of SCMpga and let k£ be a natural number. The
functor Relocated(p, k) yields a finite partial state of SCMpga and is defined
as follows:

(Def. 1) Relocated(p, k) = Start-At(IC, + k)+- IncAddr(Shift(ProgramPart(p),
k), k)+- DataPart(p).
We now state a number of propositions:

(1)  For every finite partial state p of SCMpga and for every natural number
k holds DataPart(Relocated(p, k)) = DataPart(p).

(2)  For every finite partial state p of SCMpga and for every natural number
k holds ProgramPart(Relocated(p, k)) = IncAddr(Shift(ProgramPart(p),
k), k).

(3)  For every finite partial state p of SCMpga holds dom ProgramPart
(Relocated(p, k)) = {insloc(j + k) : insloc(j) € dom ProgramPart(p)}.

(4)  Let p be a finite partial state of SCMyga, and let k be a natural number,
and let [ be an instruction-location of SCMpgs. Then | € domp if and
only if [ + k € dom Relocated(p, k).

(5)  For every finite partial state p of SCMpga and for every natural number
k holds ICscM,, € dom Relocated(p, k).

© 1996 Warsaw University - Bialystok
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(6)  For every finite partial state p of SCMpga and for every natural number
k holds ICRelocated(p,k:) = ICp + k.

(7) Let p be a finite partial state of SCMpga, and let k be a natural
number, and let /1 be an instruction-location of SCMpgga, and let I be

an instruction of SCMpga. If I3 € dom ProgramPart(p) and I = p(ly),
then IncAddr(7, k) = (Relocated(p, k))(l1 + k).

(8)  For every finite partial state p of SCMpga and for every natural number
k holds Start-At(IC, + k) C Relocated(p, k).

(9) Let s be a data-only finite partial state of SCMFpga, and let p be a finite
partial state of SCMFga, and let k be a natural number. If ICscm,, €
domp, then Relocated(p+-s, k) = Relocated(p, k)+-s.

(10) Let k be a natural number, and let p be an autonomic finite
partial state of SCMpga, and let s1, s be states of SCMpga.
If p C s; and Relocated(p,k) C s2, then p C  s1+-s9 |
(Int-Locations U FinSeq-Locations).

2. MAIN THEOREMS OF RELOCABILITY

We now state several propositions:

(11) Let k£ be a natural number and let p be an autonomic fi-
nite partial state of SCMpga. Suppose ICscm,s, € domp.
Let s be a state of SCMgpga. Suppose p C s. Let i be
a natural number. Then (Computation(s+- Relocated(p,k)))(i) =
(Computation(s))(i)—l—- Start‘At(IC(Computation(s))(i) + k)"' ProgramPart
(Relocated(p, k)).

(12) Let k be a natural number, and let p be an autonomic finite par-
tial state of SCMpsga, and let sq, s, s3 be states of SCMpgga.
Suppose ICgcm,s, € domp and p C s; and Relocated(p, k) C
s9 and s3 = s1+-s2 | (Int-Locations U FinSeq-Locations). Let
i be a mnatural number. Then ICcomputation(si))i) + k =
IC (Computation(ss))(i) and IncAddr(Curlnstr((Computation(sy))(i)), k) =
Curlnstr((Computation(ss))(i)) and (Computation(sy)) (i) dom DataPart
(p) = (Computation(ss2))(i) | dom DataPart(Relocated(p,k)) and
(Computation(ss))(i) I (Int-Locations U FinSeq-Locations) =
(Computation(s2))(7) I (Int-Locations U FinSeqg-Locations).

(13)  Let p be an autonomic finite partial state of SCMrga and let k be a nat-
ural number. If ICgcp,, € domp, then p is halting iff Relocated(p, k)
is halting.

(14) Let k be a natural number and let p be an autonomic fi-
nite partial state of SCMpga. Suppose ICscm,s, € domp.
Let s be a state of SCMpgga. Suppose Relocated(p, k) C
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s. Let i be a natural number. Then (Computation(s))(i) =
(Computation(s+-p))(i)+- Start-At (IC computation(s+-p))(i) T k)+5 [ dom
ProgramPart(p)+- ProgramPart(Relocated (p, k)).

(15) Let k be a natural number and let p be a finite partial state
of SCMpga.  Suppose ICscmys, € domp. Let s be a state
of SCMygga. Suppose p C s and Relocated(p,k) is auto-
nomic. Let ¢ be a natural number. Then (Computation(s))(i) =
(Computation(s+- Relocated(p, k)))(i)+- Start-At
(IC(Computation(s+- Relocated(p,k)))(2) _/k)+‘s [dom ProgramPart(Relocated (p7
k))+- ProgramPart(p).

(16) Let p be a finite partial state of SCMpsa. Suppose ICscm,s, €
dom p. Let k be a natural number. Then p is autonomic if and only if
Relocated(p, k) is autonomic.

(17)  Let p be a halting autonomic finite partial state of SCMyga.
If ICscm,s, € domp, then for every natural number k holds
DataPart(Result(p)) = DataPart(Result(Relocated(p, k))).

(18) Let F be a data-only partial function from FinPartSt(SCMrpga) to
FinPartSt(SCMpga ) and let p be a finite partial state of SCMpga. Sup-
pose ICscM,s, € domp. Let k be a natural number. Then p computes
F if and only if Relocated(p, k) computes F.
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1. MORE ON THE LATTICE OF EQUIVALENCE RELATIONS

For simplicity we follow a convention: Y denotes a set, I denotes a non empty
set, M denotes a many sorted set indexed by I, x, y are arbitrary, k denotes a
natural number, p denotes a finite sequence, S denotes a non void non empty
many sorted signature, and A denotes a non-empty algebra over S.

The following proposition is true

(1)  For every natural number n and for every finite sequence p holds 1 < n

and n < lenp iff n € domp and n+ 1 € dom p.

The scheme NonUnigSeqEx concerns a natural number A and a binary pred-
icate P, and states that:

There exists p such that domp = Seg. A and for every k such that
k € Seg A holds Pk, p(k)]
provided the following requirement is met:

e For every k such that k € Seg A there exists x such that P[k, z].

The following three propositions are true:

(2) Let a, b be elements of the carrier of EqRelLatt(Y") and let A, B be

equivalence relations of Y. If a = A and b= B, then a C b iff A C B.

(3)  LleqRelLatt(y) = Dy
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(4)  TEqRelLatt(y) = Vy-

Let us consider Y. Note that EqRelLatt(Y") is bounded.

Next we state the proposition

(5) EqRelLatt(Y) is complete.

Let us consider Y. One can check that EqRelLatt(Y") is complete.

The following propositions are true:

(6)  For every set Y and for every subset X of the carrier of EqRelLatt(Y)
holds |J X is a binary relation on Y.

(7)  For every set Y and for every subset X of the carrier of EqRelLatt(Y)
holds U X C || X.

(8) Let Y be a set, and let X be a subset of the carrier of EqRelLatt(Y),
and let R be a binary relation on Y. If R = (J X, then | | X = EqCI(R).

(9) Let Y be a set, and let X be a subset of the carrier of EqRelLatt(Y),
and let R be a binary relation. If R = |J X, then R = R~.

(10) Let Y be a set and let X be a subset of the carrier of EqRelLatt(Y").

Suppose € Y and y € Y. Then (x, y) € || X if and only if there exists
a finite sequence f such that 1 < len f and x = f(1) and y = f(len f)
and for every natural number i such that 1 <i and ¢ < len f holds (f(7),

fa+1)eUX.

2. LATTICE OF CONGRUENCES IN MANY SORTED ALGEBRA AS SUBLATTICE
OF LATTICE OF MANY SORTED EQUIVALENCE RELATIONS INHERITED SUP’S
AND INF’S

The following proposition is true
(11) For every subset B of the carrier of CongrLatt(A) holds
[ TEqRelLatt(the sorts of 4)B 1 a congruence of A.

Let us consider S, A and let E be an element of the carrier of EqRelLatt(the
sorts of A). The functor CongrCl(FE) yields a congruence of A and is defined by
the condition (Def. 1).

(Def. 1) CongrCl(E) = [ lgqRelLatt (the sorts of 4)17 : @ Tanges over elements of the
carrier of EqRelLatt(the sorts of A), x is a congruence of A A E C x}.

Let us consider S, A and let X be a subset of the carrier of EqRelLatt(the
sorts of A). The functor CongrCl(X) yields a congruence of A and is defined
by the condition (Def. 2).

(Def. 2)  CongrCl(X) = [ lgqRelLatt(the sorts of 4)17 : @ ranges over elements of the
carrier of EqRelLatt(the sorts of A), x is a congruence of A A X C z}.
The following propositions are true:

(12)  For every element C of the carrier of EqRelLatt(the sorts of A) such
that C' is a congruence of A holds CongrCl(C) = C.
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(13)  For every subset X of the carrier of EqRelLatt(the sorts of A) holds
COngCl(quRelLatt(the sorts of A) X) = CongrCl(X).

(14) Let Bj, By be subsets of the carrier of CongrLatt(A) and let Cq, Co
be congruences of A. Suppose C; = UEqRelLatt(the sorts of A) B1 and Cy =
%E)qRelLatt(the sorts of A) By. Then €1 UCy = l_lEqRelLatt(the sorts of A) (B1 U

2/

(15)  Let X be a subset of the carrier of CongrLatt(A). Then
l_lEqRelLatt(the sorts of A) X = l_lEqRelLatt(the sorts of A){UEqRelLatt(the sorts of A)
X : Xo ranges over subsets of the carrier of EqRelLatt(the sorts of A),
Xy is a finite subset of X}.

(16) Let ¢ be an element of I and let e be an equivalence relation of M (7).
Then there exists an equivalence relation F of M such that E(i) = e and
for every element j of I such that j # i holds E(j) = V ;).

Let I be a non empty set, let M be a many sorted set indexed by I, let 7 be
an element of I, and let X be a subset of the carrier of EqRelLatt(A). Then
m;X is a subset of the carrier of EqRelLatt(M (7)) and it can be characterized
by the condition:

(Def. 3) =z € mX iff there exists an equivalence relation E; of M such that
xr = El(Z) and F; € X.
We introduce EqRelSet(X,7) as a synonym of 7; X.
Next we state four propositions:

(17)  Let ¢ be an element of the carrier of S, and let X be a sub-
set of the carrier of EqRelLatt(the sorts of A), and let B be an
equivalence relation of the sorts of A. If B = |]X, then B(i) =

LlEqRelLatt((the sorts of 4)()) EaRelSet(X, ).
(18) For every subset X of the carrier of CongrLatt(A) holds
LIEqRelLatt (the sorts of 4) X 18 & congruence of A.
(19)  CongrLatt(A) is [ Finheriting.
(20)  CongrLatt(A) is | -inheriting.
Let us consider S, A. Observe that CongrLatt(A) is [ Finheriting and | |-
inheriting.
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Summary. The graph induced by a many sorted signature is de-
fined as follows: the vertices are the symbols of sorts, and if a sort s is
an argument of an operation with result sort ¢, then a directed edge s, ¢]
is in the graph. The key lemma states relationship between the depth of
elements of a free many sorted algebra over a signature and the length
of directed chains in the graph induced by the signature. Then we prove
that a monotonic many sorted signature (every finitely-generated algebra
over it is locally-finite) induces a well-founded graph. The converse holds
with an additional assumption that the signature is finitely operated, i.e.
there is only a finite number of operations with the given result sort.

MML Identifier: MSSCYC_2.

The articles [30], [33], [19], [2], [15], [31], [34], [12], [14], [13], (18], [21], [17], [10],
3), 5], 17, (1], [4], [26], [6], [32], [20], [22], [29], 28], [11], [27], [25], [24], [23]
[8], [9], and [16] provide the terminology and notation for this paper.
In this paper n will be a natural number.
Let S be a many sorted signature. The functor InducedEdges(5) yields a set
and is defined by the condition (Def. 1).
(Def. 1)  Let x be a set. Then z € InducedEdges(S) if and only if there exist
sets o1, v such that z = (01, v) and 07 € the operation symbols of S and
v € the carrier of S and there exists a natural number n and there exists
an element aj of (the carrier of S)* such that (the arity of S)(01) = a3
and n € doma; and a;(n) = v.

Next we state the proposition

IThis work was partially supported by NSERC Grant OGP9207.

@ 1996 Warsaw University - Bialystok
591 ISSN 1426-2630



592

(1)

CZESLAW BYLINSKI AND PIOTR RUDNICKI

For every many sorted signature S holds InducedEdges(S) C | the op-
eration symbols of S, the carrier of S .

Let S be a many sorted signature. The functor InducedSource(S) yields a

funct
(Def. 2)

ion from InducedEdges(S) into the carrier of S and is defined as follows:
For every set e such that e € InducedEdges(.S) holds (InducedSource(S))
(e) = ea.

The functor InducedTarget(.S) yielding a function from InducedEdges(S) into
the carrier of S is defined by:

(Def. 3)

For every set e such that e € InducedEdges(.S) holds (InducedTarget(.S))
(e) = (the result sort of S)(eq).

Let S be a non empty many sorted signature. The functor InducedGraph(.S)
yields a graph and is defined by:

(Def. 4)

InducedGraph(S) = (the carrier of S, InducedEdges(S), InducedSource
(5), InducedTarget(S)).

One can prove the following propositions:

(2)

(4)

(6)

1]
2]

3]
[4]

[5]
(6]

Let S be a non void non empty many sorted signature, and let X be
a non-empty many sorted set indexed by the carrier of S, and let v be
a sort symbol of S, and given n. Suppose 1 < n. Then there exists an
element ¢ of (the sorts of Free(X))(v) such that depth(¢) = n if and only
if there exists a directed chain ¢ of InducedGraph(S) such that lenc =n
and (vertex-seq(c))(lenc+ 1) = v.

For every void non empty many sorted signature S holds .S is monotonic
iff InducedGraph(S) is well-founded.

For every non void non empty many sorted signature S such that S is
monotonic holds InducedGraph(S) is well-founded.

Let S be a non void non empty many sorted signature and let X be
a non-empty locally-finite many sorted set indexed by the carrier of S.
Suppose S is finitely operated. Let n be a natural number and let v be
a sort symbol of S. Then {t : t ranges over elements of (the sorts of
Free(X))(v), depth(t) < n} is finite.

Let S be a non void non empty many sorted signature. If S is finitely
operated and InducedGraph(S) is well-founded, then S is monotonic.
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Summary. An attempt to define the concept of a functor covering
both cases (covariant and contravariant) resulted in a structure consist-
ing of two fields: the object map and the morphism map, the first one
mapping the Cartesian squares of the set of objects rather than the set of
objects. We start with an auxiliary notion of bifunction, i.e. a function
mapping the Cartesian square of a set A into the Cartesian square of a
set B. A bifunction f is said to be covariant if there is a function g from
A into B that f is the Cartesian square of g and f is contravariant if there
is a function g such that f(o1,02) = (g(02),9(01)). The term transfor-
mation, another auxiliary notion, might be misleading. It is not related
to natural transformations. A transformation from a many sorted set A
indexed by I into a many sorted set B indexed by J w.r.t. a function f
from [ into J is a (many sorted) function from A into B - f. Eventually,
the morphism map of a functor from C; into Cs is a transformation from
the arrows of the category C into the composition of the object map of
the functor and the arrows of Cs.

Several kinds of functor structures have been defined: one-to-one,
faithful, onto, full and id-preserving. We were pressed to split property
that the composition be preserved into two: comp-preserving (for covari-
ant functors) and comp-reversing (for contravariant functors). We defined
also some operation on functors, e.g. the composition, the inverse func-
tor. In the last section it is defined what is meant that two categories are
isomorphic (anti-isomorphic).

MML Identifier: FUNCTORO.

The articles [15], [17], [6], [18], [16], [3], [4], [2], [10], [1], [5], [14], [9], [8], [13],
[7], [11], and [12] provide the terminology and notation for this paper.

1. PRELIMINARIES

The scheme ValOnPair concerns a non empty set A, a function B, elements
C, D of A, a binary functor F yielding arbitrary, and a binary predicate P, and
states that:

© 1996 Warsaw University - Bialystok
595 ISSN 1426-2630
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B(C, D) =F(C,D)
provided the following conditions are met:
o B={{{(o, 0, F(0,0")) : o ranges over elements of A, o’ ranges over
elements of A, Plo,0']},
e P[C,D].
One can prove the following propositions:
(1)  For every set A holds () is a function from A into 0.
(2)  For every set A and for every function f from A into () holds f = 0.
(3)  For every set I and for every many sorted set M indexed by I holds
M -id; = M.
Let f be an empty function. Note that ~f is empty. Let g be a function.
One can verify that [ f, g ] is empty and [ g, f] is empty.
The following propositions are true:
(4)  For every set A and for every function f holds f°(ida) = (v«f)°(ida).
(5)  For all sets X, Y and for every function f from X into Y holds f is
onto iff [ f, f] is onto.
Let I7 be a set and let f, g be many sorted functions of I1. Then go f is a
many sorted function of I.
Let f be a function yielding function. One can verify that ~f is function
yielding.
One can prove the following propositions:
(6) For all sets A, B and for arbitrary a holds ~(} A, B] — a) = [ B,
Al r— a.
(7)  For all functions f, g such that f is one-to-one and g is one-to-one holds
Ffogit =t gt
(8)  For every function f such that [ f, f] is one-to-one holds f is one-to-
one.
(9) For every function f such that f is one-to-one holds ~f is one-to-one.
(10)  For all functions f, g such that «\} f, g is one-to-one holds g, f ] is
one-to-one.

(11)  For all functions f, g such that f is one-to-one and g is one-to-one holds
(AEf gt =a(kg, FI7D).
(12)  For all sets A, B and for every function f from A into B such that f is
onto holds idg C [ f, f1°(id4).
(13)  For all function yielding functions F', G and for every function f holds
(GoF)-f=(G-f)o(F-])
Let A, B, C be sets and let f be a function from [ A, B] into C. Then ~f
is a function from [ B, A] into C.
Next we state two propositions:
(14)  For all sets A, B, C and for every function f from [ A, B] into C such
that ~f is onto holds f is onto.
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(15)  For every set A and for every non empty set B and for every function
f from A into B holds [ f, f1°(id4) C idp.

2. FUNCTIONS BETWEEN CARTESIAN SQUARES

Let A, B be sets.
(Def. 1) A function from [ A, A] into [ B, B] is called a bifunction from A into
B.
Let A, B be sets and let f be a bifunction from A into B. We say that f is
precovariant if and only if:
(Def. 2)  There exists a function g from A into B such that f =[g, g].
We say that f is precontravariant if and only if:
(Def. 3)  There exists a function g from A into B such that f =~ g, g].
The following proposition is true

(16) Let A be a set, and let B be a non empty set, and let b be an element
of B, and let f be a bifunction from A into B. If f =} A, A]+—— (b, ),
then f is precovariant and precontravariant.

Let A, B be sets. Note that there exists a bifunction from A into B which
is precovariant and precontravariant.
Next we state the proposition

(17)  Let A, B be non empty sets and let f be a precovariant precontravariant
bifunction from A into B. Then there exists an element b of B such that
f=FA, A]— (b, b).

3. UNARY TRANSFORMATIONS

Let Iy, I be sets, let f be a function from [ into I, let A be a many sorted
set indexed by I, and let B be a many sorted set indexed by I5. A many sorted
set indexed by I is called a f-transformation from A to B if:

(Def. 4) (i)  There exists a non empty set I} and there exists a many sorted set
B’ indexed by I} and there exists a function f’ from I; into I} such that
f=f"and B = B’ and it is a many sorted function from A into B’ - f’ if
I # 0,

(ii) it = @(Il), otherwise.

Let I; be a set, let Iy be a non empty set, let f be a function from I into I,
let A be a many sorted set indexed by I, and let B be a many sorted set indexed
by I5. Let us note that the f-transformation from A to B can be characterized
by the following (equivalent) condition:

(Def. 5) It is a many sorted function from A into B - f.
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Let I, I be sets, let f be a function from I into Io, let A be a many sorted
set indexed by [I7, and let B be a many sorted set indexed by I3. Note that
every f-transformation from A to B is function yielding.

We now state the proposition

(18)  Let I be a set, and let I5, I3 be non empty sets, and let f be a function
from Iy into Is, and let g be a function from Iy into I3, and let B be a
many sorted set indexed by Is and let C' be a many sorted set indexed
by I3 and let G be a g-transformation from B to C. Then G - f is a
g - f-transformation from B - f to C.

Let I; be a set, let Iy be a non empty set, let f be a function from I into
I, let A be a many sorted set indexed by [ I1, I1 ], let B be a many sorted set
indexed by [ Iz, I3 ], and let F be a [ f, f ]-transformation from A to B. Then
AF is a [ f, fJ-transformation from A to ~B.

One can prove the following two propositions:

(19) Let Iy, I be non empty sets, and let A be a many sorted set indexed
by I; and let B be a many sorted set indexed by I and let o be an
element of I5. Suppose B(o) # (. Let m be an element of B(o) and
let f be a function from I into I5. Suppose f = I; — o. Then {(0/,
A(0') — m) : o' ranges over elements of I} is a f-transformation from
A to B.

(20)  Let I be a set, and let I5, I3 be non empty sets, and let f be a function
from Iy into Is, and let g be a function from I, into I3, and let A be a
many sorted set indexed by I; and let B be a many sorted set indexed
by I and let C' be a many sorted set indexed by I3 and let F' be a f-
transformation from A to B, and let G be a g- f-transformation from B- f
to C. Suppose that for arbitrary ¢; such that iy € I; and (B - f)(i1) = 0
holds A(i1) =0 or (C-(g- f))(i1) = 0. Then G o (F qua function yielding
function) is a ¢ - f-transformation from A to C.

4. FUNCTORS

Let C1, Cs be 1-sorted structures. We introduce bimap structures from C4
into Cy which are systems

( an object map ),
where the object map is a bifunction from the carrier of C into the carrier of
Cs.

Let C7, Cy be non empty graphs, let ' be a bimap structure from C; into
C5, and let o be an object of C7. The functor F(o) yields an object of Cy and
is defined as follows:

ef. 6) F(o) = (the object map of F)(o, 0)1.
Let A, B be 1-sorted structures and let F' be a bimap structure from A into
B. We say that F' is one-to-one if and only if:
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(Def. 7)  The object map of F' is one-to-one.
We say that F' is onto if and only if:
(Def. 8)  The object map of F' is onto.
We say that F' is reflexive if and only if:
(Def 9) (The ObjeCt map of F)O(id(the carrier of A)) - id(the carrier of B)*
We say that F' is coreflexive if and only if:
(Def 10) id(the carrier of B) - (the Ob.jeCt map of F)O(id(the carrier of A))
Let A, B be non empty graphs and let F' be a bimap structure from A into
B. Let us observe that F' is reflexive if and only if:
(Def. 11)  For every object o of A holds (the object map of F')(o, 0) = (F(o),
F(0)).
We now state the proposition
(21) Let A, B be reflexive non empty graphs and let F' be a bimap structure
from A into B. Suppose I is coreflexive. Let o be an object of B. Then
there exists an object o’ of A such that F'(o’) = o.
Let Cy, Cs be non empty graphs and let F' be a bimap structure from Cj
into Co. We say that F is feasible if and only if:
(Def. 12)  For all objects o1, 0g of C such that (01,02) # 0 holds (the arrows of
C5)((the object map of F')(01, 02)) # 0.
Let Cq, Cy be graphs. We introduce functor structures from Cy to Cs which
are extensions of bimap structure from C; into Cs and are systems
( an object map, a morphism map ),
where the object map is a bifunction from the carrier of C into the carrier of
(5 and the morphism map is a the object map-transformation from the arrows
of C7 to the arrows of Cs.
Let Cy, Cy be 1-sorted structures and let I4 be a bimap structure from Cy
into Cy. We say that I is precovariant if and only if:
(Def. 13)  The object map of I, is precovariant.
We say that I, is precontravariant if and only if:
(Def. 14)  The object map of I, is precontravariant.
Let C1, Cy be graphs. One can verify that there exists a functor structure
from C; to Cy which is precovariant and there exists a functor structure from
C; to Cy which is precontravariant.
Let Ci, C5 be graphs, let F' be a functor structure from C7 to Cy, and let
01, 02 be objects of Cy. The functor Morph-Map (01, 02) is defined as follows:
(Def. 15)  Morph-Map (01, 02) = (the morphism map of F')(01, 02).
Let Cy, C5 be graphs, let F' be a functor structure from C7 to Cs, and let
01, 02 be objects of C1. Observe that Morph-Map (01, 02) is relation-like and
function-like.
Let C1, Co be non empty graphs, let F' be a precovariant functor structure
from C; to Cy, and let 01, 02 be objects of C;. Then Morph-Map (01, 02) is a
function from (01, 02) into (F(01), F'(02)).
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Let C1, Cs be non empty graphs, let F' be a precovariant functor structure
from Cy to Cq, and let 01, 0 be objects of Cy. Let us assume that (01, 09) # )
and (F(o01), F(02)) # 0. Let m be a morphism from o7 to 0o. The functor F'(m)
yielding a morphism from F'(01) to F'(03) is defined as follows:

(Def. 16)  F(m) = (Morph-Map (o1, 02))(m).

Let C1, Cy be non empty graphs, let F' be a precontravariant functor struc-
ture from C; to Co, and let 01, 02 be objects of Cy. Then Morph-Map (01, 02)
is a function from (o1, 02) into (F'(02), F'(01)).

Let C1, C5 be non empty graphs, let F' be a precontravariant functor struc-
ture from C; to Cy, and let 01, 02 be objects of Ci. Let us assume that
(01,02) # 0 and (F(02), F(01)) # (. Let m be a morphism from o1 to og. The
functor F'(m) yielding a morphism from F'(02) to F(o;) is defined as follows:

(Def. 17)  F(m) = (Morph-Map (o1, 02))(m).

Let C1, C5 be non empty graphs and let o be an object of Cy. Let us assume

that (0,0) # 0. Let m be a morphism from o to o. The functor C; — m

yields a strict functor structure from C7 to Co and is defined by the conditions
(Def. 18).

(Def. 18) (i)  The object map of Cy — m = [the carrier of Cy, the carrier of
Cy ]+ (o, 0), and
(i) the morphism map of C; —— m = {{{o01, 02), ({01,02)) —> m) : 01
ranges over objects of C, 0o ranges over objects of C1}.
We now state the proposition

(22) Let Cy, Cy be non empty graphs and let 02 be an object of Cy. Suppose
(09,09) # (). Let m be a morphism from o2 to 0y and let 01 be an object
of C;. Then (Cy — m)(01) = 09.

Let C7 be a non empty graph, let Cs be a non empty reflexive graph, let o
be an object of Cy, and let m be a morphism from o to 0. One can verify that
C7 —— m is precovariant precontravariant and feasible.

Let C} be a non empty graph and let C5 be a non empty reflexive graph. One
can check that there exists a functor structure from C' to Cy which is feasible
precovariant and precontravariant.

The following proposition is true

(23) Let Cq, Co be non empty graphs, and let F' be a precovariant functor
structure from C7 to Cy, and let 01, 02 be objects of C; Then (the object
map of F')(o1, 02) = (F(01), F(02)).

Let C1, C5 be non empty graphs and let F' be a precovariant functor structure

from C7 to Cy. Let us observe that F' is feasible if and only if:

(Def. 19)  For all objects 01, 02 of C; such that (01, 02) # () holds (F'(o01), F'(02)) #

One can prove the following proposition

(24)  Let C1, C3 be non empty graphs, and let F' be a precontravariant functor
structure from C7 to Cy, and let 01, 02 be objects of C; Then (the object
map of F)(o1, 02) = (F(02), F(01)).



FUNCTORS FOR ALTERNATIVE CATEGORIES 601

Let Cq, C5 be non empty graphs and let F' be a precontravariant functor
structure from C7 to Cy. Let us observe that F' is feasible if and only if:

(Def. 20)  For all objects 01, 02 of C; such that (01, 02) # 0 holds (F'(02), F'(01)) #
0

Let C, C5 be graphs and let F' be a functor structure from C4 to Cy. Observe
that the morphism map of F' is function yielding.

Let us note that there exists a category structure which is non empty and
reflexive.

Let C7, C5 be non empty category structures with units and let F' be a
functor structure from Cy to Cy. We say that F' is id-preserving if and only if:

(Def. 21)  For every object o of Cy holds (Morph-Mapz(0,0))(ido) = idp(o) -
We now state the proposition

(25) Let Cp, Co be non empty graphs and let o2 be an object of Cy. Sup-
pose (09,02) # (). Let m be a morphism from o0y to 0z, and let o, o’ be
objects of Cy and let f be a morphism from o to o’. If {(0,0’) # (), then
(Morph-Mapg,, ., (0,0"))(f) = m.

One can check that every non empty category structure which has units is
reflexive.

Let Cq, Cy be non empty category structures with units and let oo be an
object of Cy. Note that € — id(,,) is id-preserving.

Let C1 be a non empty graph, let Cy be a non empty reflexive graph, let
09 be an object of Cy, and let m be a morphism from os to 0o. Observe that
C1 —— m is reflexive.

Let (1 be a non empty graph and let C's be a non empty reflexive graph.
Observe that there exists a functor structure from C7 to Cy which is feasible
and reflexive.

Let Cq, C5 be non empty category structures with units. Note that there
exists a functor structure from C7 to Cy which is id-preserving feasible reflexive
and strict.

Let C1, C5 be non empty category structures and let F' be a functor structure
from C; to Cy. We say that F' is comp-preserving if and only if the condition
(Def. 22) is satisfied.

(Def. 22)  Let 01, 09, 03 be objects of Cy Suppose (01,02) # 0 and (02, 03) # 0. Let
f be a morphism from o; to 09 and let g be a morphism from o9 to os.
Then there exists a morphism f’ from F'(01) to F/(02) and there exists a
morphism ¢’ from F(02) to F(03) such that f' = (Morph-Map (01, 02))(f)
afld lg’ = (Morph-Map (02, 03))(g9) and (Morph-Mapp(01,03))(g - f) =

g-f.
Let C, C2 be non empty category structures and let F' be a functor structure

from C; to Cy. We say that F' is comp-reversing if and only if the condition
(Def. 23) is satisfied.

(Def. 23)  Let 01, 09, 03 be objects of C7 Suppose (01, 02) # 0 and (09, 03) # 0. Let
f be a morphism from 07 to 09 and let g be a morphism from o5 to os.
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Then there exists a morphism f’ from F(03) to F(01) and there exists a
morphism ¢’ from F'(03) to F(02) such that f' = (Morph-Map (01, 02))(f)
and ¢’ = (Morph-Mapj (02, 0))(g) and (Morph-Map(o1,01))(g - f) =
g
Let C7 be a non empty transitive category structure, let Cy be a non empty
reflexive category structure, and let £’ be a precovariant feasible functor struc-
ture from C7 to C5. Let us observe that F' is comp-preserving if and only if the
condition (Def. 24) is satisfied.

(Def. 24)  Let o1, 02, 03 be objects of C; Suppose (01,09) # () and (02, 03) # 0.
Let f be a morphism from 07 to 09 and let g be a morphism from oy to
o3. Then F(g- f) = F(g) - F(f).

Let Ci be a non empty transitive category structure, let Cy be a non empty
reflexive category structure, and let [’ be a precontravariant feasible functor
structure from C7 to Ca. Let us observe that F' is comp-reversing if and only if
the condition (Def. 25) is satisfied.

(Def. 25)  Let o1, 02, 03 be objects of C; Suppose (01,09) # () and (09, 03) # 0.
Let f be a morphism from 07 to 09 and let g be a morphism from oy to
o3. Then F(g- f) = F(f) F(g).
The following two propositions are true:

(26) Let C; be a non empty graph, and let Co be a non empty reflexive
graph, and let 05 be an object of (s, and let m be a morphism from os
to 09, and let F' be a precovariant feasible functor structure from C; to
Cy. Suppose F' = C7 — m. Let o, o’ be objects of C; and let f be a
morphism from o to o’. If {0,0') # (), then F(f) =m.

(27) Let C; be a non empty graph, and let Cy be a non empty reflexive
graph, and let 0o be an object of C5, and let m be a morphism from o9
to 09, and let o, o’ be objects of C and let f be a morphism from o to o'.
If (0,0") # 0, then (C1 — m)(f) = m.

Let C7 be a non empty transitive category structure, let Cy be a non empty
category structure with units, and let o be an object of Cy. Note that C; — id,
is comp-preserving and comp-reversing.

Let C1 be a transitive non empty category structure with units and let Co
be a non empty category structure with units. A functor structure from C'; to
Cj is said to be a functor from Cp to Cs if:

(Def. 26) It is feasible and id-preserving but it is precovariant and comp-
preserving or it is precontravariant and comp-reversing.

Let C7 be a transitive non empty category structure with units, let Cy be a
non empty category structure with units, and let F' be a functor from C7 to Cs.
We say that F'is covariant if and only if:

(Def. 27)  F' is precovariant and comp-preserving.
We say that F'is contravariant if and only if:

(Def. 28)  F is precontravariant and comp-reversing.
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Let A be a category structure and let B be a substructure of A. The functor
ﬁ yields a strict functor structure from B to A and is defined by the conditions
(Def. 29).

(Def 29) (1) The ObjeCt map of i = id[:thc carrier of B, the carrier of B> and

(ii)  the morphism map of i = id(the arrows of B)-

Let A be a graph. The functor id4 yielding a strict functor structure from
A to A is defined by the conditions (Def. 30).

(Def 30) (1) The ObjeCt map Of ldA = ld[ the carrier of A, the carrier of A :}7 and

(ii)  the morphism map of id4 = id (tne arvows of A)-
Let A be a category structure and let B be a substructure of A. Note that

E is precovariant.

One can prove the following propositions:

(28) Let A be a non empty category structure, and let B be a non empty
substructure of A, and let o be an object of B. Then (Z)(0) = o.

(29) Let A be a non empty category structure, and let B be a non empty
substructure of A, and let o1, o2 be objects of B Then (01,09) C
((Z)(01), (£)(02)).

Let A be a non empty category structure and let B be a non empty sub-
structure of A. Observe that 7 is feasible.

Let A, B be graphs and let F' be a functor structure from A to B. We say
that F' is faithful if and only if:

(Def. 31)  The morphism map of F'is “1-17.

Let A, B be graphs and let F' be a functor structure from A to B. We say
that F'is full if and only if the condition (Def. 32) is satisfied.

(Def. 32)  There exists a many sorted set B’ indexed by [the carrier of A, the
carrier of A and there exists a many sorted function f from the arrows
of A into B’ such that B’ = (the arrows of B) - (the object map of F') and
f = the morphism map of F and f is onto.

Let A be a graph, let B be a non empty graph, and let F' be a functor
structure from A to B. Let us observe that F' is full if and only if the condition
(Def. 33) is satisfied.

(Def. 33)  There exists a many sorted function f from the arrows of A into (the
arrows of B) - (the object map of F’) such that f = the morphism map of
F and f is onto.

Let A, B be graphs and let F' be a functor structure from A to B. We say
that F' is injective if and only if:

(Def. 34)  F is one-to-one and faithful.

We say that F' is surjective if and only if:

(Def. 35)  F is full and onto.

Let A, B be graphs and let F' be a functor structure from A to B. We say
that F' is bijective if and only if:

(Def. 36)  F is injective and surjective.
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Let A, B be transitive non empty category structures with units. One can
check that there exists a functor from A to B which is strict covariant con-
travariant and feasible.

The following two propositions are true:

(30)  For every non empty graph A and for every object o of A holds id 4(0) =
0

(31) Let A be a non empty graph and let o1, o2 be objects of A
If (01,02) # 0, then for every morphism m from o; to oy holds
(Morph—MapidA(ol, 02))(m) = m.

Let A be a non empty graph. Note that id 4 is feasible and precovariant.

Let A be a non empty graph. Note that there exists a functor structure from
A to A which is precovariant and feasible.

One can prove the following proposition

(32) Let A be a non empty graph and let o1, 02 be objects of A Suppose
(01,09) # 0. Let F be a precovariant feasible functor structure from A to
A. If F =idy, then for every morphism m from o to oy holds F/(m) = m.
Let A be a transitive non empty category structure with units. One can
check that id 4 is id-preserving and comp-preserving.
Let A be a transitive non empty category structure with units. Then id 4 is
a strict covariant functor from A to A.
Let A be a graph. One can verify that id 4 is bijective.

5. THE COMPOSITION OF FUNCTORS

Let C7 be a non empty graph, let C'9, C'3 be non empty reflexive graphs, let
F be a feasible functor structure from C; to Cs, and let G be a functor structure
from Cy to C3. The functor G - F yielding a strict functor structure from C; to
(3 is defined by the conditions (Def. 37).

(Def. 37) (i)  The object map of G - F' = (the object map of G) - (the object map
of F'), and

(ii)  the morphism map of G - F' = ((the morphism map of G) - (the object

map of F')) o (the morphism map of F).

Let C7 be a non empty graph, let Cy, C3 be non empty reflexive graphs, let
F be a precovariant feasible functor structure from Cy to Cs, and let G be a
precovariant functor structure from C5 to C3. Observe that G- F' is precovariant.

Let C7 be a non empty graph, let Cy, C3 be non empty reflexive graphs,
let F' be a precontravariant feasible functor structure from C to C5, and let
G be a precovariant functor structure from Cy to C'5. Observe that G - F' is
precontravariant.

Let C7 be a non empty graph, let Cy, C3 be non empty reflexive graphs,
let F' be a precovariant feasible functor structure from C7 to Cs, and let G
be a precontravariant functor structure from Cs to C3. Observe that G - F is
precontravariant.
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Let C7 be a non empty graph, let Cy, C3 be non empty reflexive graphs,
let F' be a precontravariant feasible functor structure from C7 to Cs, and let G
be a precontravariant functor structure from Cs to C3. Observe that G - F is
precovariant.

Let C7 be a non empty graph, let Cy, C3 be non empty reflexive graphs, let
F be a feasible functor structure from C7 to Co, and let G be a feasible functor
structure from Cy to (3. Note that G - F' is feasible.

The following three propositions are true:

(33) Let C; be anon empty graph, and let Cy, C3, Cy be non empty reflexive
graphs, and let F' be a feasible functor structure from C; to Cs, and let
G be a feasible functor structure from Cy to C3, and let H be a functor
structure from Cs to Cy. Then (H-G)-F =H - (G- F).

(34) Let C1 be a non empty category structure, and let Cy, C3 be non empty
reflexive category structures, and let F' be a feasible reflexive functor

structure from C; to Cy, and let G be a functor structure from Cy to Cs,
and let o be an object of C1. Then (G - F)(0) = G(F(0)).

(35) Let Cj be a non empty graph, and let Co, C5 be non empty reflexive
graphs, and let F' be a feasible reflexive functor structure from C; to
C5, and let G be a functor structure from Cy to C3, and let o be an
object of C;j. Then Morph-Mapg.r(0,0) = Morph-Map(F' (o), F(0)) -
Morph-Map (o, 0).

Let C1, Cy, C5 be non empty category structures with units, let F' be an
id-preserving feasible reflexive functor structure from C; to Cs, and let G be an
id-preserving functor structure from Cy to C3. Note that G - F' is id-preserving.

Let A, C be non empty reflexive category structures, let B be a non empty
substructure of A, and let F' be a functor structure from A to C'. The functor
F'| B yielding a functor structure from B to C is defined as follows:

(Def. 38) F|B=F-(5).

6. THE INVERSE FUNCTOR

Let A, B be non empty graphs and let F' be a functor structure from A to
B. Let us assume that F is bijective. The functor F~! yielding a strict functor
structure from B to A is defined by the conditions (Def. 39).

(Def. 39) (i)  The object map of F~! = (the object map of F)~!, and
(ii)  there exists a many sorted function f from the arrows of A into (the
arrows of B) - (the object map of F’) such that f = the morphism map of
F and the morphism map of F~! = f~! . (the object map of F)~!.

One can prove the following propositions:

(36) Let A, B be transitive non empty category structures with units and
let F' be a feasible functor structure from A to B. If F is bijective, then
F~1 is bijective and feasible.



606

ANDRZEJ TRYBULEC

(37) Let A, B be transitive non empty category structures with units and
let F' be a feasible reflexive functor structure from A to B If F' is bijective
and coreflexive, then F~! is reflexive.

(38) Let A, B be transitive non empty category structures with units and
let F' be a feasible reflexive id-preserving functor structure from A to B
If F is bijective and coreflexive, then F~! is id-preserving.

(39) Let A, B be transitive non empty category structures with units and
let ' be a feasible functor structure from A to B If F' is bijective and
precovariant, then F~! is precovariant.

(40) Let A, B be transitive non empty category structures with units and
let ' be a feasible functor structure from A to B If F' is bijective and
precontravariant, then F~! is precontravariant.

(41) Let A, B be transitive non empty category structures with units and
let F' be a feasible reflexive functor structure from A to B Suppose
F' is bijective coreflexive and precovariant. Let o1, 02 be objects of
B and let m be a morphism from o7 to og. If (01,02) # (), then
(Morph-Map (F~%(01), F~(02)))((Morph-Map -1 (01, 02))(m)) = m.

(42) Let A, B be transitive non empty category structures with units and
let F' be a feasible reflexive functor structure from A to B Suppose
F' is Dbijective coreflexive and precontravariant. Let o1, 02 be objects
of B and let m be a morphism from o7 to o2. If (01,02) # 0, then
(Morph-Map (£~ (02), F~"(01)))((Morph-Map -1 (01, 02)) (m)) = m.

(43) Let A, B be transitive non empty category structures with units and
let ' be a feasible reflexive functor structure from A to B Suppose F
is bijective comp-preserving precovariant and coreflexive. Then F~! is
comp-preserving.

(44) Let A, B be transitive non empty category structures with units and
let F' be a feasible reflexive functor structure from A to B Suppose F' is
bijective comp-reversing precontravariant and coreflexive. Then F~! is
comp-reversing.

Let Cy be a 1-sorted structure and let C5 be a non empty 1-sorted structure.
One can verify that every bimap structure from C'; into Cy which is precovariant
is also reflexive.

Let C7 be a 1-sorted structure and let C'y be a non empty 1-sorted structure.
One can verify that every bimap structure from 4 into Cy which is precon-
travariant is also reflexive.

Next we state two propositions:

(45)  Let Cq, Cy be 1-sorted structures and let M be a bimap structure from
C4 into Cy. If M is precovariant and onto, then M is coreflexive.

(46)  Let Cq, Cy be 1-sorted structures and let M be a bimap structure from
C4 into Cy. If M is precontravariant and onto, then M is coreflexive.

Let C7 be a transitive non empty category structure with units and let Cy
be a non empty category structure with units. Note that every functor from C'y
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to Cy which is covariant is also reflexive.

Let C7 be a transitive non empty category structure with units and let C be
a non empty category structure with units. One can verify that every functor
from Cy to Cy which is contravariant is also reflexive.

The following propositions are true:

(47)  Let Cy be a transitive non empty category structure with units, and let
C5 be a non empty category structure with units, and let F’ be a functor
from C7 to Cy. If F'is covariant and onto, then F' is coreflexive.

(48)  Let C be a transitive non empty category structure with units, and let
C5 be a non empty category structure with units, and let F’ be a functor
from C7 to Cy. If F'is contravariant and onto, then F' is coreflexive.

(49) Let A, B be transitive non empty category structures with units and let
F be a covariant functor from A to B. Suppose F' is bijective. Then there
exists a functor G from B to A such that G = F~! and G is bijective and
covariant.

(50) Let A, B be transitive non empty category structures with units and
let ' be a contravariant functor from A to B. Suppose F' is bijective.
Then there exists a functor G from B to A such that G = F~! and G is
bijective and contravariant.

Let A, B be transitive non empty category structures with units. We say
that A and B are isomorphic if and only if:

(Def. 40)  There exists functor from A to B which is bijective and covariant.

Let us observe that this predicate is reflexive and symmetric. We say that A,
B are anti-isomorphic if and only if:

(Def. 41)  There exists functor from A to B which is bijective and contravariant.
Let us note that the predicate introduced above is symmetric.
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Summary. This article presents some theorems about functor
structures. We start with some basic lemmata concerning the composition
of functor structures. Then, two theorems about the restriction operator
are formulated. Later, we show two theorems stating that the properties
full” and *faithful’” of functor structures which are equivalent to the ’onto’
and ’one-to-one’ properties of their morphmaps, respectively. Further-
more, we prove some theorems about the inversion of functor structures.

MML Identifier: FUNCTOR1.

The terminology and notation used here are introduced in the following articles:
{1]7], [16], [6], [18], [4], [5], [3], [15], [14], [9], [8], [11], [12], 2], [13], [10], [7], and
1].

1. DEFINITIONS

In this paper X, Y denote sets and Z denotes a non empty set.

Let us mention that there exists a non empty category structure which is
transitive and reflexive and has units.

Let A be a non empty reflexive category structure. One can verify that there
exists a substructure of A which is non empty and reflexive.

Let C1, C2 be non empty reflexive category structures, let F' be a feasible
functor structure from C; to Cs, and let A be a non empty reflexive substructure
of C7. Observe that F' | A is feasible.

2. THEOREMS ABOUT SETS AND FUNCTIONS

We now state four propositions:

© 1996 Warsaw University - Bialystok
609 ISSN 1426-2630
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(1)  For every set X holds idx is onto.

(2) Let A be a non empty set, and let B, C' be non empty subsets of A and
let D be a non empty subset of B. If C = D, then = (5B). (D).

[N [N s

(3)  For every function f from X into Y such that f is bijective holds f~1
is a function from Y into X.

(4) Let f be a function from X into Y and let g be a function from Y into
Z. Suppose f is bijective and g is bijective. Then there exists a function
h from X into Z such that h = ¢ - f and h is bijective.

3. THEOREMS ABOUT THE COMPOSITION OF FUNCTOR STRUCTURES

The following propositions are true:

(5) Let A be a non empty reflexive category structure, and let B be a non
empty reflexive substructure of A, and let C' be a non empty substructure
of A, and let D be a non empty substructure of B. If C' = D, then
C _ (B D

(6) Let A, B be non empty category structures and let F' be a functor
structure from A to B. Suppose F' is bijective. Then the object map of
F is bijective and the morphism map of F'is “1-17.

(7)  Let Cy be a non empty graph, and let Co, C5 be non empty reflexive
graphs, and let F' be a feasible functor structure from C'; to Cs, and let
G be a functor structure from Cy to C3. If F' is one-to-one and G is
one-to-one, then G - F' is one-to-one.

(8) Let Cy be a non empty graph, and let Co, C5 be non empty reflexive
graphs, and let F' be a feasible functor structure from C'; to Cs, and let
G be a functor structure from Cs to C5 If F is faithful and G is faithful,
then G - F' is faithful.

(9) Let Cy be a non empty graph, and let Co, C3 be non empty reflexive
graphs, and let F' be a feasible functor structure from C; to Cs, and let
G be a functor structure from Cs to C3 If F' is onto and G is onto, then
G - F is onto.

(10) Let Cy be a non empty graph, and let Co, C3 be non empty reflexive
graphs, and let F' be a feasible functor structure from C; to Cs, and let G
be a functor structure from Cy to C3 If I is full and G is full, then G - F
is full.

(11) Let C be a non empty graph, and let Co, C3 be non empty reflexive
graphs, and let F' be a feasible functor structure from C; to Cs, and let G
be a functor structure from Cy to C5 If F' is injective and G is injective,
then G - F' is injective.

(12)  Let Cy be a non empty graph, and let C3, C3 be non empty reflexive
graphs, and let F' be a feasible functor structure from C; to Cs, and let G
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be a functor structure from Cs to C5 If F' is surjective and G is surjective,
then G - F' is surjective.

(13) Let Cy be a non empty graph, and let Co, C5 be non empty reflexive
graphs, and let F' be a feasible functor structure from C to Cs, and let G
be a functor structure from Cy to C5 If F is bijective and G is bijective,
then G - F' is bijective.

4. THEOREMS ABOUT THE RESTRICTION AND INCLUSION OPERATOR

We now state three propositions:

(14) Let A, I be non empty reflexive category structures, and let B be a non
empty reflexive substructure of A, and let C' be a non empty substructure
of A, and let D be a non empty substructure of B. Suppose C = D. Let
I be a functor structure from A to I. Then F | C =F | B| D.

(15)  Let Cy, C9, C3 be non empty reflexive category structures, and let F’
be a feasible functor structure from C7 to Cs, and let G be a functor
structure from Cs to C3 and let A be a non empty reflexive substructure
of C;. Then (G-F)1A=G-(F1A).

(17)' Let A be a non empty category structure and let B be a non empty
substructure of A. Then B is full if and only if E is full.

5. THEOREMS ABOUT ’'FULL’ AND 'FAITHFUL’ FUNCTOR STRUCTURES

Next we state two propositions:

(18)  Let C1, Co be non empty category structures and let F' be a precovariant
functor structure from C'1 to Co. Then F is full if and only if for all objects
o1, 0 of C7 holds Morph-Map (01, 02) is onto.

(19)  Let C1, Co be non empty category structures and let F' be a precovariant
functor structure from Cy to Cy. Then F is faithful if and only if for all
objects 01, 0y of C7 holds Morph-Map (01, 02) is one-to-one.

6. THEOREMS ABOUT THE INVERSION OF FUNCTOR STRUCTURES

One can prove the following propositions:

(20)  For every transitive non empty category structure A with units holds
(idA)_l =idy4.

!The proposition (16) has been removed.
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Let A, B be transitive reflexive non empty category structures with
units. Suppose A and B are isomorphic. Let F be a strict feasible functor
structure from A to B. Suppose F' is bijective. Let G be a strict feasible
functor structure from B to A. If G = F~!, then F -G = idp.

Let A, B be transitive reflexive non empty category structures with
units. Suppose A and B are isomorphic. Let F' be a strict feasible functor
structure from A to B. If F is bijective, then F~1 . F = idy4.

Let A, B be transitive reflexive non empty category structures with
units. Suppose A and B are isomorphic. Let F' be a strict feasible functor
structure from A to B. If F is bijective, then (F~1)~! = F.

Let A, B, C be transitive reflexive non empty category structures with
units, and let G be a strict feasible functor structure from A to B, and
let F' be a strict feasible functor structure from B to C, and let G be a
strict feasible functor structure from B to A, and let F; be a strict feasible
functor structure from C' to B. Suppose F' is bijective and G is bijective
and F is bijective and G is bijective and G; = G~! and F; = F~!. Then
(F . G)_l =Gp- .
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The terminology and notation used in this paper are introduced in the following
papers: [10], [2], [14], [13], [18], [22], [6], [16], [21], [1], [15], [3], [9], [7], [20], [4],
[19], [8], [5], [11], [12], and [17].
In this paper m will be a natural number.
Let us note that every finite partial state of SCMpga is finite.
Let p be a finite sequence and let x, y be arbitrary. Note that p +- (z,y) is
finite sequence-like.
Let i be an integer. Then [i| is a natural number.
Let D be a set. Note that D* is non empty.
The following four propositions are true:
(1)  For every natural number k holds |k| = k.
(2)  For all natural numbers a, b, ¢ such that a > cand b > cand a —' ¢ =
b—'c holds a = b.
(3)  For all natural numbers a, b such that @ > b holds a —' b =a — b.
(4) For all integers a, b such that a < b holds a < b — 1.
The scheme CardMono” concerns a set A, a non empty set 13, and a unary
functor F yielding arbitrary, and states that:
A~ {F(d) : d ranges over elements of B, d € A}
provided the parameters satisfy the following conditions:
L4 A g B?
e For all elements dq, ds of B such that d; € A and dy € A and
F(d1) = F(dz2) holds dy = ds.
One can prove the following propositions:
(5) For all finite sequences p1, p2, ¢ such that p; C ¢ and p2 C ¢ and
len p; = len po holds p1 = po.
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(6)  For all finite sequences p, ¢ such that p ~ ¢ = p holds ¢ = e.
(7)  For every finite sequence p and for arbitrary = holds len(p ~ (z)) =
lenp + 1.
(8)  For all finite sequences p, g such that p C ¢ holds lenp < leng.
(9) For all finite sequences p, ¢ and for every natural number ¢ such that
1 <iand i <lenp holds (p ~ q)(i) = p(i).
(10)  For all finite sequences p, ¢ and for every natural number i such that
1<iandi<lenqgholds (p~ q)(lenp+1i) = q(i).
(11)  For every finite sequence p and for every natural number ¢ holds i €
domp iff 1 <4 and ¢ < lenp.
(12)  For every finite sequence p such that p # ¢ holds lenp € dom p.
(13)  For every set D holds Flat(ep-) = ep.
(14)  For every set D and for all finite sequences F', G of elements of D* holds
Flat(F ~ G) = Flat(F) ~ Flat(G).
(15)  For every set D and for all elements p, ¢ of D* holds Flat({p,q)) = p~q.
(16)  For every set D and for all elements p, ¢, r of D* holds Flat({p, ¢,
r)=p-q-r
(17)  Let D be a non empty set and let p, ¢ be finite sequences of elements
of D. If p C g, then there exists a finite sequence p’ of elements of D such
that p~p' = q.
(18) Let D be a non empty set, and let p, ¢ be finite sequences of elements
of D, and let ¢ be a natural number. If p C ¢ and 1 <4 and ¢ < lenp,

then q(i) = p(7).

(19)  For every set D and for all finite sequences F', G of elements of D* such
that F' C G holds Flat(F') C Flat(G).

(20)  For every finite sequence p holds p | Seg0 = e.

(21)  For all finite sequences f, g holds f | Seg0 = g | Seg0.

(22)  For every non empty set D and for every element x of D holds (z) is a
finite sequence of elements of D.

(23) Let D be a set and let p, ¢ be finite sequences of elements of D. Then
P~ q is a finite sequence of elements of D.

Let f be a finite sequence of elements of the instructions of SCMpgga. The
functor Load(f) yielding a finite partial state of SCMpgp is defined by:

ef. 1) dom Load(f) = {insloc(m—'1) : m € dom f} and for every natural num-
ber k such that insloc(k) € dom Load(f) holds (Load(f))(insloc(k)) =
Th+1.f-
The following propositions are true:

(24) Let f be a finite sequence of elements of the instructions of SCMgga
and let k be a natural number. Then dom Load(f) = {insloc(m —'1) :
m € dom f}.
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(25)  For every finite sequence f of elements of the instructions of SCMpsa
holds card Load(f) = len f.

(26) Let p be a finite sequence of elements of the instructions of SCMpga
and let £ be a natural number. Then insloc(k) € dom Load(p) if and only
if k+1 € domp.

(27)  For all natural numbers k, n holds k < n iff 0 < k+ 1 and k + 1 < n.

(28)  For all natural numbers k, n holds k < niff 1 <k+1and k+1 < n.

(29) Let p be a finite sequence of elements of the instructions of SCMpga
and let & be a natural number. Then insloc(k) € dom Load(p) if and only
if £ <lenp.

(30) For every non empty finite sequence f of elements of the instructions
of SCMFpsa holds 1 € dom f and insloc(0) € dom Load(f).

(31)  For all finite sequences p, g of elements of the instructions of SCMpga
holds Load(p) C Load(p ~ q).

(32)  For all finite sequences p, g of elements of the instructions of SCMpga
such that p C ¢ holds Load(p) C Load(q).

Let a be an integer location and let k be an integer. The functor a:=k yields
a finite partial state of SCMpga and is defined as follows:

(Def. 2) (i) There exists a natural number k; such that k1 + 1 = k and a:=k =
Load((a:= intloc(0)) ~ (k1 + AddTo(a, intloc(0))) ~ (haltgcny, ) if £ >
0,

(ii)  there exists a natural number k; such that k; + %k = 1 and a:=k =
Load((a:= intloc(0))~ (k1 = SubFrom(a, intloc(0)))~ (haltgcmy, ), oth-
erwise.

Let a be an integer location and let k be an integer. The functor aSeq(a, k)
yielding a finite sequence of elements of the instructions of SCMpga is defined
by:

(Def. 3) (i)  There exists a natural number k; such that k&, + 1 = k and
aSeq(a, k) = (a:=intloc(0)) ~ (k1 — AddTo(a,intloc(0))) if & > 0,

(ii)  there exists a natural number k; such that k1 +%k = 1 and aSeq(a, k) =
(a:=intloc(0)) ~ (k1 — SubFrom(a, intloc(0))), otherwise.

One can prove the following proposition

(33) For every integer location a and for every integer k holds a:=k =
Load((aSeq(a, k)) ~ (haltgcmyg, )

Let f be a finite sequence location and let p be a finite sequence of elements of
Z. The functor aSeq(f,p) yields a finite sequence of elements of the instructions
of SCMpga and is defined by the condition (Def. 4).
(Def. 4)  There exists a finite sequence ps3 of elements of
(the instructions of SCMpga )* such that
(i) lenps =lenp,
(ii)  for every natural number k such that 1 < k and k& < lenp there
exists an integer ¢ such that ¢ = p(k) and ps(k) = (aSeq(intloc(1),k)) ~
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aSeq(intloc(2),7) ™ (fintloc(1):= intloc(2)), and
(iii)  aSeq(f,p) = Flat(ps).
Let f be a finite sequence location and let p be a finite sequence of elements
of Z The functor f:=p yielding a finite partial state of SCMFpgy is defined by:

(Def. 5)  f:=p = Load((aSeq(intloc(1),lenp)) = (f:=(0,...,0)) ~ aSeq(f,p) ~
——
intloc(1)
(haltgcMyg, ))-
Next we state several propositions:

(34) For every integer location a holds a:=1 = Load({a:=intloc(0)) ~

(haltgcmyg, ))-
(35) For every integer location a holds a:=0 = Load({a:=intloc(0)) ~
(SubFrom(a, intloc(0))) ~ (haltgcMyg, )

(36) Let s be a state of SCMpga. Suppose s(intloc(0)) = 1. Let ¢y be a nat-
ural number. Suppose IC; = insloc(cy). Let a be an integer location and
let k& be an integer. Suppose a # intloc(0) and for every natural number ¢
such that ¢ € dom aSeq(a, k) holds (aSeq(a, k))(c) = s(insloc((co+c)—'1)).
Then

(i)  for every natural number ¢ such that ¢ < lenaSeq(a,k) holds
IC Computation(s))(i) = insloc(cg + 7) and for every integer location b such
that b # a holds (Computation(s))(i)(b) = s(b) and for every finite se-
quence location f holds (Computation(s))(7)(f) = s(f), and

(ii)  (Computation(s))(len aSeq(a, k))(a) = k.

(37) Let s be a state of SCMpgs. Suppose IC; = insloc(0) and
s(intloc(0)) = 1. Let a be an integer location and let k be an integer.
Suppose Load(aSeq(a, k)) C s and a # intloc(0). Then

(i)  for every natural number ¢ such that ¢ < lenaSeq(a,k) holds
IC (Computation(s))(i) = insloc(i) and for every integer location b such that
b # a holds (Computation(s))(i)(b) = s(b) and for every finite sequence
location f holds (Computation(s))(i)(f) = s(f), and

(ii))  (Computation(s))(len aSeq(a, k))(a) = k.

(38) Let s be a state of SCMpga. Suppose IC; = insloc(0) and
s(intloc(0)) = 1. Let a be an integer location and let k& be an integer.
Suppose a:=k C s and a # intloc(0). Then

(i) s is halting,

(ii)  (Result(s))(a) =k,

(ili)  for every integer location b such that b # a holds (Result(s))(b) = s(b),
and
(iv)  for every finite sequence location f holds (Result(s))(f) = s(f).

(39) Let s be a state of SCMpgs. Suppose IC; = insloc(0) and
s(intloc(0)) = 1. Let f be a finite sequence location and let p be a fi-
nite sequence of elements of Z. Suppose f:=p C s. Then

(i) s is halting,

(ii)  (Result(s))(f) = p,
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(ili)  for every integer location b such that b # intloc(1) and b # intloc(2)
holds (Result(s))(b) = s(b), and

(iv) for every finite sequence location g such that g # f holds
(Result(s))(g) = s(g)-

REFERENCES

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-
ematics, 1(1):41-46, 1990.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

[4] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized
Mathematics, 4(1):91-101, 1993.

[6] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formal-
ized Mathematics, 5(4):485-492, 1996.

[6] Cgzestaw Byliriski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.

[7] Cgzestaw Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formal-
ized Mathematics, 1(3):529-536, 1990.

[8] Czestaw Byliriski. Functions and their basic properties. Formalized Mathematics,
1(1):55-65, 1990.

[9] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.

[11] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151-160, 1992.

[12] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241-250, 1992.

[13] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83-86, 1993.

[14] Jan Popiotek. Some properties of functions modul and signum. Formalized Mathematics,
1(2):263-264, 1990.

[15] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics,
1(2):369-376, 1990.

[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
1990.

[17] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMpgga computer.
Formalized Mathematics, 5(4):519-528, 1996.

[18] Michat J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

[19] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics,
1(5):979-981, 1990.

[20] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(8):575-579,
1990.

[21] Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17-23, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Received April 24, 1996



620



FORMALIZED MATHEMATICS

Volume 5, Number 4, 1996
Warsaw University - Bialystok

More on Products of Many Sorted
Algebras

Mariusz Giero
Warsaw University
Biatystok

Summary. This article is continuation of an article defining prod-
ucts of many sorted algebras [12]. Some properties of notions such as
commute, Frege, Args() are shown in this article. Notions of constant of
operations in many sorted algebras and projection of products of family
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of class of family of many sorted algebras. The main theorem states that
product of family of many sorted algebras and product of class of family
of many sorted algebras are isomorphic.
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The terminology and notation used in this paper have been introduced in the
following articles: [20], [22], [14], [23], [7], 8], [16], 9], [17], [6], [15], [4], [2], [1],
3], [19], (18], [10], [12], [13], [24], [21], [11], and [5].

1. PRELIMINARIES

For simplicity we adopt the following convention: I denotes a non empty set,
J denotes a many sorted set indexed by I, S denotes a non void non empty
many sorted signature, ¢ denotes an element of I, ¢ denotes a set, A denotes an
algebra family of I over S, E| denotes an equivalence relation of I, Uy, Uy, Us
denote algebras over S, s denotes a sort symbol of S, o denotes an operation
symbol of S, and f denotes a function.

Let I be a set, let us consider S, and let A7 be an algebra family of I over
S. One can verify that [] A; is non-empty.

Let I be a non empty set and let £ be an equivalence relation of I. Note
that Classes E is non empty.

Let I be a set. Then id; is a many sorted set indexed by 1.
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Let us consider I, F;. Note that Classes F/; has non empty elements.
Let X be a set with non empty elements. Then idx is a non-empty many
sorted set indexed by X.

Next we state several propositions:

(1)  For all functions f, F' and for every set A such that f € []F holds
fTAe]l(FTA).

(2) Let A be an algebra family of I over S, and let s be a sort symbol of
S, and let a be a non empty subset of I, and let A5 be an algebra family
of a over S. If A| a = Ay, then Carrier(Asq, s) = Carrier(A4, s) | a.

(3) Let i beaset, and let I be a non empty set, and let F; be an equivalence
relation of I, and let c¢1, co be elements of Classes E1. If ¢ € ¢; and 7 € c¢o,
then ¢; = ¢o.

(4) For all sets X, Y and for every function f such that f € Y* holds
dom f =X and rng f C Y.

(5) Let D be a non empty set, and let F' be a many sorted function of D,
and let C be a functional non empty set with common domain. Suppose
C =rngF. Let d be an element of D and let e be a set. If d € dom F’ and
e € DOM(C), then F(d)(e) = (commute(F))(e)(d).

2. CONSTANTS OF MANY SORTED ALGEBRAS

Let us consider S, Uy and let o be an operation symbol of S. The functor
const (o, Up) is defined by:
(Def. 1) const(o,Uy) = (Den(o,Up))(e).
Next we state four propositions:
(6)  If Arity (o) = € and Result(o, Up) # 0, then const(o, Uy) € Result(o, Up).
(7)  Suppose (the sorts of Uy)(s) # 0. Then Constants(Up,s)

{const(o,Uy) : o ranges over elements of the operation symbols of S,
the result sort of o = s A Arity(o) = €}.
(8)  If Arity(o) = &, then (commute(OPER(A)))(0) € ((U{Result(o, A(7)) :
i’ ranges over elements of I}){EFH!,
(9) If Arity (o) = ¢, then const(o, [[ 4) € (U{Result(o, A(i")) : ¢’ ranges over
elements of I})7.
Let us consider S, I, o, A. Observe that const(o, [[ A) is relation-like and
function-like.
One can prove the following three propositions:
(10) For every operation symbol o of S such that Arity(o) = e holds
(const(o, [T A))(i) = const(o, A(7)).
(11)  If Arity(o) = € and dom f = I and for every element i of I holds
f(i) = const(o, A(i)), then f = const(o, [T A).
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(12)  Let e be an element of Args(o,U;). Suppose e = ¢ and Arity (o) = € and
Args(o,Ur) # 0 and Args(o,Us) # 0. Let F be a many sorted function
from Uy into Us. Then F#e = €.

3. PROPERTIES OF ARGUMENTS OF OPERATIONS IN MANY SORTED
ALGEBRAS

Next we state a number of propositions:

(13)  Let Uy, Uy be non-empty algebras over S, and let F' be a many sorted
function from Uj into Us, and let x be an element of Args(o,U;). Then
x € [[(dom, (F - Arity(0))(k)).

(14)  Let Uy, Uy be non-empty algebras over S, and let F' be a many sorted
function from U into Uy, and let x be an element of Args(o,U;), and let
n be a set. If n € dom Arity(o0), then (F#z)(n) = F(m, Arity(0))(z(n)).

(15) Let z be an element of Args(o,[[A). Then z € ((U{(the sorts of
A(i"))(s") : i ranges over elements of I, s’ ranges over elements of the
carrier of S})!)dom Arity(o),

(16)  For every element x of Args(o,[][ A) and for every set n such that n €
dom Arity (o) holds z(n) € [] Carrier(A, m, Arity(0)).

(17)  Let i be an element of I and let n be a set. Suppose n € dom Arity(o).
Let s be a sort symbol of S. Suppose s = Arity(o)(n). Let y be an element
of Args(o, [T A) and let g be a function. If g = y(n), then g(i) € (the sorts
of A(7))(s).

(18)  For every element y of Args(o,]]A) such that Arity(o) # e holds
commute(y) € [[(dom, A(0)(k)).

(19)  For every element y of Args(o,[] A) such that Arity(o) # ¢ holds y €
dom Mcommute(Frege(A(0))).

(20) Given I, S, A, o and let s be a sort symbol of S. Suppose s = the result
sort of 0. Let « be an element of Args(o,[[ A). Then (Den(o,[]A))(x) €
[I Carrier(A, s).

(21) Given I, S, A, i and let o be an operation symbol of S. Suppose
Arity (o) # e. Let Uy be a non-empty algebra over S, and let x be an
element of Args(o,[[ A), and let F' be a many sorted function from [] A
into Uy. Then (commute(z))(7) is an element of Args(o, A(7)).

(22) Given I, S, A, i, 0, and let = be an element of Args(o, [[ A), and let n be
a set. If n € dom Arity (o), then for every function f such that f = x(n)
holds (commute(z))(i)(n) = f(i).

(23) Let o be an operation symbol of S. Suppose Arity(o) # 0. Let
y be an element of Args(o,[[A), and let i/ be an element of I,
and let g be a function. If ¢ = (Den(o,[]A))(y), then g(i') =
(Den(o, A(i'))) ((commute(y)) (i)
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4. THE PROJECTION OF FAMILY OF MANY SORTED ALGEBRAS

Let f be a function and let x be a set. The functor proj(f,x) yields a function
and is defined as follows:

ef. 2) domproj(f,xz) = [If and for every function y such that y €
dom proj(f,x) holds (proj(f,z))(y) = y(x).

Let us consider I, S, let A be an algebra family of I over S, and let 7 be an
element of I. The functor proj(A,i) yielding a many sorted function from [] A
into A(7) is defined by:
ef. 3) For every element s of the carrier of S holds (proj(A4,i))(s) =

proj(Carrier(A4, s), ).

Next we state several propositions:

(24) For every element x of Args(o,[]A) such that Args(o,[]A) #
and Arity(o) # 0 and for every element i of I holds proj(A,i)#z
(commute(x))(7).

[Res

(25)  For every element i of I and for every algebra family A of I over S holds
proj(A4,i) is a homomorphism of [] A into A(3).

(26) Let U; be a non-empty algebra over S and let F' be a many sorted
function of I. Suppose that for every element ¢ of I there exists a many
sorted function F; from U; into A(i) such that Fy = F(i) and F} is
a homomorphism of U; into A(i) Then F € ({F(i')(s1) : s1 ranges
over sort symbols of S, i’ ranges over elements of I}the carier of SYI'apq
(commute(F))(s)(i) = F(i)(s).

(27) Let Uy be a non-empty algebra over S and let F' be a many sorted
function of I. Suppose that for every element ¢ of I there exists a many
sorted function Fi from U into A(i) such that Fy = F(i) and F} is a
homomorphism of Uy into A(7) Then (commute(F))(s) € ((U{(the sorts

of A(i"))(s1) : ¢’ ranges over elements of I, s; ranges over sort symbols of
S})(the sorts of Ul)(s))I'

(28) Let U; be a non-empty algebra over S and let F' be a many sorted
function of I. Suppose that for every element ¢ of I there exists a many
sorted function Fj from U into A(i) such that Fy = F(i) and F} is a
homomorphism of U; into A(i) Let F’ be a many sorted function from
Uy into A(i). Suppose F' = F(i). Let x be a set. Suppose x € (the sorts
of Uy)(s). Let f be a function. If f = (commute((commute(F))(s)))(x),
then f(i) = F'(s)(x).

(29) Let Uy be a non-empty algebra over S and let F' be a many sorted
function of I. Suppose that for every element ¢ of I there exists a many
sorted function Fj from U into A(i) such that Fy = F(i) and F} is a
homomorphism of U; into A(i) Let z be a set. If 2 € (the sorts of Uy)(s),
then (commute((commute(F))(s)))(z) € [] Carrier(A, s).
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(30) Let Uy be a non-empty algebra over S and let F' be a many sorted
function of I. Suppose that for every element ¢ of I there exists a many
sorted function Fj from Uj into A(i) such that Fy = F(i) and F} is a
homomorphism of U; into A(i) Then there exists a many sorted function
H from Uj into [] A such that H is a homomorphism of U; into [[ A and
for every element i of I holds proj(A,i) o H = F(7).

5. THE CLASS OF FAMILY OF MANY SORTED ALGEBRAS

Let us consider I, J, S. A many sorted set indexed by [ is said to be a
MSAlgebra-Class of S, J if:

(Def. 4)  For every set i such that i € I holds it(i) is an algebra family of J(z)
over S.

Let us consider I, S, A, F1. The functor Eil yields a MSAlgebra-Class of S,
idClasses B, and is defined by:

(Def. 5)  For every c such that ¢ € Classes E; holds (E%)(c) =Alec

Let us consider I, S, let J be a non-empty many sorted set indexed by I,

and let C' be a MSAlgebra-Class of S, J. The functor [[C yields an algebra
family of I over S and is defined by the condition (Def. 6).

(Def. 6)  Given i. Suppose i € I. Then there exists a non empty set J; and
there exists an algebra family Cy of J; over S such that J; = J(i) and
Cy=C(i) and (ITC)(z) =] Ch.

We now state the proposition

(31) Let A be an algebra family of I over S and let E; be an equivalence
relation of I. Then [] A and [] H(EAI) are isomorphic.
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