
FORMALIZED MATHEMATICS

Volume 5, Number 4, 1996

Warsaw University - Bia lystok

Left and Right Component of the

Complement of a Special Closed Curve

Andrzej Trybulec
Warsaw University

Bia lystok

Summary. In the article the concept of the left and right compo-
nent are introduced. These are the auxiliary notions needed in the proof
of Jordan Curve Theorem.
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The articles [23], [26], [7], [25], [11], [2], [21], [18], [27], [6], [5], [3], [24], [12], [1],
[13], [20], [28], [19], [4], [9], [10], [14], [15], [16], [8], [22], and [17] provide the
notation and terminology for this paper.

For simplicity we adopt the following rules: f will denote a non constant
standard special circular sequence, i, j, k will denote natural numbers, p, q will
denote points of E2

T, and G will denote a Go-board.
The following propositions are true:

(1) i−′ i = 0.

(2) i−′ j ≤ i.
(3) Let G1 be a non empty topological space and let A1, A2, B be subsets of

the carrier of G1. Suppose A1 is a component of B and A2 is a component
of B. Then A1 = A2 or A1 misses A2.

(4) Let G1 be a non empty topological space, and let A, B be non empty
subsets of the carrier of G1, and let A3 be a subset of the carrier of G1

�
B.If

A = A3, then G1
�
A = G1

�
B

�
A3.

(5) Let G1 be a non empty topological space and let A, B be non empty
subsets of the carrier of G1. Suppose A ⊆ B and A is connected. Then
there exists a subset C of the carrier of G1 such that C is a component
of B and A ⊆ C.

(6) Let G1 be a non empty topological space and let A, B, C, D be subsets
of the carrier of G1. Suppose B is connected and C is a component of D
and A ⊆ C and A meets B and B ⊆ D. Then B ⊆ C.
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(7) L(p, q) is convex.

(8) L(p, q) is connected.

One can check that there exists a subset of the carrier of E 2
T which is convex.

One can prove the following three propositions:

(9) For all convex subsets P , Q of the carrier of E 2
T holds P ∩Q is convex.

(10) For every finite sequence f of elements of E 2
T holds Rev(X-coordinate(f)) =

X-coordinate(Rev(f)).

(11) For every finite sequence f of elements of E 2
T holds Rev(Y-coordinate(f)) =

Y-coordinate(Rev(f)).

Let us mention that there exists a finite sequence which is non constant.
Let f be a non constant finite sequence. Note that Rev(f) is non constant.
Let f be a standard special circular sequence. Then Rev(f) is a standard

special circular sequence.
We now state a number of propositions:

(12) If i ≥ 1 and j ≥ 1 and i + j = len f, then leftcell(f, i) =
rightcell(Rev(f), j).

(13) If i ≥ 1 and j ≥ 1 and i + j = len f, then leftcell(Rev(f), i) =
rightcell(f, j).

(14) Suppose 1 ≤ k and k + 1 ≤ len f. Then there exist i, j such that
i ≤ len the Go-board of f and j ≤ width the Go-board of f and cell(the
Go-board of f , i, j) = leftcell(f, k).

(15) If j ≤ widthG, then Int hstrip(G, j) is convex.

(16) If i ≤ lenG, then Int vstrip(G, i) is convex.

(17) If i ≤ lenG and j ≤ widthG, then Int cell(G, i, j) 6= ∅.
(18) If 1 ≤ k and k + 1 ≤ len f, then Int leftcell(f, k) 6= ∅.
(19) If 1 ≤ k and k + 1 ≤ len f, then Int rightcell(f, k) 6= ∅.
(20) If i ≤ lenG and j ≤ widthG, then Int cell(G, i, j) is convex.

(21) If i ≤ lenG and j ≤ widthG, then Int cell(G, i, j) is connected.

(22) If 1 ≤ k and k + 1 ≤ len f, then Int leftcell(f, k) is connected.

(23) If 1 ≤ k and k + 1 ≤ len f, then Int rightcell(f, k) is connected.

Let us consider f . The functor LeftComp(f) yields a subset of the carrier of
E2

T and is defined as follows:

(Def. 1) LeftComp(f) is a component of (L̃(f))c and Int leftcell(f, 1) ⊆
LeftComp(f).

The functor RightComp(f) yields a subset of the carrier of E 2
T and is defined

by:

(Def. 2) RightComp(f) is a component of (L̃(f))c and Int rightcell(f, 1) ⊆
RightComp(f).

One can prove the following propositions:

(24) For every k such that 1 ≤ k and k + 1 ≤ len f holds Int leftcell(f, k) ⊆
LeftComp(f).
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(25) The Go-board of Rev(f) = the Go-board of f .

(26) RightComp(f) = LeftComp(Rev(f)).

(27) RightComp(Rev(f)) = LeftComp(f).

(28) For every k such that 1 ≤ k and k+ 1 ≤ len f holds Int rightcell(f, k) ⊆
RightComp(f).
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Summary. The goal of the article is to start the formalization
of Knuth-Bendix completion method (see [2,11] or [1]; see also [12,10]),
i.e. to formalize the concept of the completion of a reduction relation.
The completion of a reduction relation R is a complete reduction rela-
tion equivalent to R such that convertible elements have the same normal
forms. The theory formalized in the article includes concepts and facts
concerning normal forms, terminating reductions, Church-Rosser prop-
erty, and equivalence of reduction relations.

MML Identifier: REWRITE1.

The terminology and notation used here are introduced in the following articles:
[16], [17], [9], [3], [6], [18], [19], [4], [13], [14], [5], [15], [7], and [8].

1. Forgetting concatenation and reduction sequence

Let p, q be finite sequences. The functor p $ � q yielding a finite sequence is
defined as follows:

(Def. 1) (i) p $ � q = p � q if p = ε or q = ε,
(ii) there exists a natural number i and there exists a finite sequence r

such that len p = i+ 1 and r = p
�
Seg i and p $ � q = r � q, otherwise.

In the sequel p, q are finite sequences and x, y are sets.
We now state several propositions:

(1) ε $ � p = p and p $ � ε = p.

(2) If q 6= ε, then (p � 〈x〉) $ � q = p � q.
(3) (p � 〈x〉) $ � (〈y〉 � q) = p � 〈y〉 � q.
(4) If q 6= ε, then 〈x〉 $ � q = q.

(5) If p 6= ε, then there exist x, q such that p = 〈x〉 � q and len p = len q+1.

469
c© 1996 Warsaw University - Bia lystok

ISSN 1426–2630



470 grzegorz bancerek

The scheme PathCatenation concerns finite sequences A, B and a binary
predicate P, and states that:

Let i be a natural number. Suppose i ∈ dom(A $ � B) and i + 1 ∈
dom(A $ � B). Let x, y be sets. If x = (A $ � B)(i) and y = (A $ �
B)(i+ 1), then P[x, y]

provided the parameters satisfy the following conditions:
• For every natural number i such that i ∈ domA and i+ 1 ∈ domA

holds P[A(i),A(i + 1)],
• For every natural number i such that i ∈ domB and i+ 1 ∈ domB

holds P[B(i),B(i + 1)],
• lenA > 0 and lenB > 0 and A(lenA) = B(1).
Let R be a binary relation. A finite sequence is said to be a reduction

sequence w.r.t. R if:

(Def. 2) len it > 0 and for every natural number i such that i ∈ dom it and
i+ 1 ∈ dom it holds 〈〈it(i), it(i+ 1)〉〉 ∈ R.

Next we state the proposition

(6) For every binary relation R and for every reduction sequence p w.r.t.
R holds 1 ∈ dom p and len p ∈ dom p.

Let R be a binary relation. Note that every reduction sequence w.r.t. R is
non empty.

One can prove the following propositions:

(7) For every binary relation R and for every set a holds 〈a〉 is a reduction
sequence w.r.t. R.

(8) For every binary relation R and for all sets a, b such that 〈〈a, b〉〉 ∈ R
holds 〈a, b〉 is a reduction sequence w.r.t. R.

(9) Let R be a binary relation and let p, q be reduction sequences w.r.t. R.
If p(len p) = q(1), then p $ � q is a reduction sequence w.r.t. R.

(10) Let R be a binary relation and let p be a reduction sequence w.r.t. R.
Then Rev(p) is a reduction sequence w.r.t. R � .

(11) For all binary relations R, Q such that R ⊆ Q holds every reduction
sequence w.r.t. R is a reduction sequence w.r.t. Q.

2. Reducibility, convertibility and normal forms

Let R be a binary relation and let a, b be sets. We say that R reduces a to
b if and only if:

(Def. 3) There exists a reduction sequence p w.r.t. R such that p(1) = a and
p(len p) = b.

Let R be a binary relation and let a, b be sets. We say that a and b are
convertible w.r.t. R if and only if:

(Def. 4) R ∪R � reduces a to b.
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One can prove the following propositions:

(12) Let R be a binary relation and let a, b be sets. Then R reduces a to b if
and only if there exists a finite sequence p such that len p > 0 and p(1) = a
and p(len p) = b and for every natural number i such that i ∈ dom p and
i+ 1 ∈ dom p holds 〈〈p(i), p(i+ 1)〉〉 ∈ R.

(13) For every binary relation R and for every set a holds R reduces a to a.

(14) For all sets a, b such that ∅ reduces a to b holds a = b.

(15) For every binary relation R and for all sets a, b such that R reduces a
to b and a /∈ fieldR holds a = b.

(16) For every binary relation R and for all sets a, b such that 〈〈a, b〉〉 ∈ R
holds R reduces a to b.

(17) Let R be a binary relation and let a, b, c be sets. Suppose R reduces a
to b and R reduces b to c. Then R reduces a to c.

(18) Let R be a binary relation, and let p be a reduction sequence w.r.t. R,
and let i, j be natural numbers. If i ∈ dom p and j ∈ dom p and i ≤ j,
then R reduces p(i) to p(j).

(19) For every binary relation R and for all sets a, b such that R reduces a
to b and a 6= b holds a ∈ fieldR and b ∈ fieldR.

(20) For every binary relation R and for all sets a, b such that R reduces a
to b holds a ∈ fieldR iff b ∈ fieldR.

(21) For every binary relation R and for all sets a, b holds R reduces a to b
iff a = b or 〈〈a, b〉〉 ∈ R∗.

(22) For every binary relation R and for all sets a, b holds R reduces a to b
iff R∗ reduces a to b.

(23) Let R, Q be binary relations. Suppose R ⊆ Q. Let a, b be sets. If R
reduces a to b, then Q reduces a to b.

(24) Let R be a binary relation, and let X be a set, and let a, b be sets.
Then R reduces a to b if and only if R ∪4X reduces a to b.

(25) For every binary relation R and for all sets a, b such that R reduces a
to b holds R � reduces b to a.

(26) Let R be a binary relation and let a, b be sets. Suppose R reduces a
to b. Then a and b are convertible w.r.t. R and b and a are convertible
w.r.t. R.

(27) For every binary relation R and for every set a holds a and a are con-
vertible w.r.t. R.

(28) For all sets a, b such that a and b are convertible w.r.t. ∅ holds a = b.

(29) Let R be a binary relation and let a, b be sets. If a and b are convertible
w.r.t. R and a /∈ fieldR, then a = b.

(30) For every binary relation R and for all sets a, b such that 〈〈a, b〉〉 ∈ R
holds a and b are convertible w.r.t. R.

(31) Let R be a binary relation and let a, b, c be sets. Suppose a and b are
convertible w.r.t. R and b and c are convertible w.r.t. R. Then a and c
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are convertible w.r.t. R.

(32) Let R be a binary relation and let a, b be sets. Suppose a and b are
convertible w.r.t. R. Then b and a are convertible w.r.t. R.

(33) Let R be a binary relation and let a, b be sets. If a and b are convertible
w.r.t. R and a 6= b, then a ∈ fieldR and b ∈ fieldR.

Let R be a binary relation and let a be a set. We say that a is a normal form
w.r.t. R if and only if:

(Def. 5) It is not true that there exists a set b such that 〈〈a, b〉〉 ∈ R.
The following propositions are true:

(34) Let R be a binary relation and let a, b be sets. If a is a normal form
w.r.t. R and R reduces a to b, then a = b.

(35) For every binary relation R and for every set a such that a /∈ fieldR
holds a is a normal form w.r.t. R.

Let R be a binary relation and let a, b be sets. We say that b is a normal
form of a w.r.t. R if and only if:

(Def. 6) b is a normal form w.r.t. R and R reduces a to b.

We say that a and b are convergent w.r.t. R if and only if:

(Def. 7) There exists a set c such that R reduces a to c and R reduces b to c.

We say that a and b are divergent w.r.t. R if and only if:

(Def. 8) There exists a set c such that R reduces c to a and R reduces c to b.

We say that a and b are convergent at most in 1 step w.r.t. R if and only if:

(Def. 9) There exists a set c such that 〈〈a, c〉〉 ∈ R or a = c but 〈〈b, c〉〉 ∈ R or
b = c.

We say that a and b are divergent at most in 1 step w.r.t. R if and only if:

(Def. 10) There exists a set c such that 〈〈c, a〉〉 ∈ R or a = c but 〈〈c, b〉〉 ∈ R or
b = c.

Next we state a number of propositions:

(36) For every binary relation R and for every set a such that a /∈ fieldR
holds a is a normal form of a w.r.t. R.

(37) Let R be a binary relation and let a, b be sets. Suppose R reduces a to
b. Then

(i) a and b are convergent w.r.t. R,

(ii) a and b are divergent w.r.t. R,

(iii) b and a are convergent w.r.t. R, and

(iv) b and a are divergent w.r.t. R.

(38) Let R be a binary relation and let a, b be sets. Suppose a and b are
convergent w.r.t. R or a and b are divergent w.r.t. R. Then a and b are
convertible w.r.t. R.

(39) Let R be a binary relation and let a be a set. Then a and a are
convergent w.r.t. R and a and a are divergent w.r.t. R.
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(40) For all sets a, b such that a and b are convergent w.r.t. ∅ or a and b are
divergent w.r.t. ∅ holds a = b.

(41) Let R be a binary relation and let a, b be sets. Suppose a and b are
convergent w.r.t. R. Then b and a are convergent w.r.t. R.

(42) Let R be a binary relation and let a, b be sets. Suppose a and b are
divergent w.r.t. R. Then b and a are divergent w.r.t. R.

(43) Let R be a binary relation and let a, b, c be sets. Suppose that
(i) R reduces a to b and b and c are convergent w.r.t. R, or

(ii) a and b are convergent w.r.t. R and R reduces c to b.
Then a and c are convergent w.r.t. R.

(44) Let R be a binary relation and let a, b, c be sets. Suppose that
(i) R reduces b to a and b and c are divergent w.r.t. R, or

(ii) a and b are divergent w.r.t. R and R reduces b to c.
Then a and c are divergent w.r.t. R.

(45) Let R be a binary relation and let a, b be sets. Suppose a and b are
convergent at most in 1 step w.r.t. R. Then a and b are convergent w.r.t.
R.

(46) Let R be a binary relation and let a, b be sets. Suppose a and b are
divergent at most in 1 step w.r.t. R. Then a and b are divergent w.r.t.
R.

Let R be a binary relation and let a be a set. We say that a has a normal
form w.r.t. R if and only if:

(Def. 11) There exists set which is a normal form of a w.r.t. R.

Next we state the proposition

(47) For every binary relation R and for every set a such that a /∈ fieldR
holds a has a normal form w.r.t. R.

Let R be a binary relation and let a be a set. Let us assume that a has a
normal form w.r.t. R and for all sets b, c such that b is a normal form of a
w.r.t. R and c is a normal form of a w.r.t. R holds b = c. The functor nfR(a)
is defined by:

(Def. 12) nfR(a) is a normal form of a w.r.t. R.

3. Terminating reductions

Let R be a binary relation. We say that R is reversely well founded if and
only if:

(Def. 13) R � is well founded.

We say that R is weakly-normalizing if and only if:

(Def. 14) For every set a such that a ∈ fieldR holds a has a normal form w.r.t.
R.

We say that R is strongly-normalizing if and only if:
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(Def. 15) For every many sorted set f indexed by � there exists a natural number
i such that 〈〈f(i), f(i+ 1)〉〉 /∈ R.

Let R be a binary relation. Let us observe that R is reversely well founded
if and only if the condition (Def. 16) is satisfied.

(Def. 16) Let Y be a set. Suppose Y ⊆ fieldR and Y 6= ∅. Then there exists a
set a such that a ∈ Y and for every set b such that b ∈ Y and a 6= b holds
〈〈a, b〉〉 /∈ R.

The scheme coNoetherianInduction deals with a binary relation A and a
unary predicate P, and states that:

For every set a such that a ∈ fieldA holds P[a]
provided the parameters meet the following conditions:
• A is reversely well founded,
• For every set a such that for every set b such that 〈〈a, b〉〉 ∈ A and
a 6= b holds P[b] holds P[a].

One can check that every binary relation which is strongly-normalizing is
also irreflexive and reversely well founded and every binary relation which is
reversely well founded and irreflexive is also strongly-normalizing.

Let us note that every binary relation which is empty is also weakly-normalizing
and strongly-normalizing.

Let us note that there exists a binary relation which is empty.
Next we state the proposition

(48) Let Q be a reversely well founded binary relation and let R be a binary
relation. If R ⊆ Q, then R is reversely well founded.

Let us observe that every binary relation which is strongly-normalizing is
also weakly-normalizing.

4. Church-Rosser property

Let R, Q be binary relations. We say that R commutes-weakly with Q if and
only if the condition (Def. 17) is satisfied.

(Def. 17) Let a, b, c be sets. Suppose 〈〈a, b〉〉 ∈ R and 〈〈a, c〉〉 ∈ Q. Then there
exists a set d such that Q reduces b to d and R reduces c to d.

Let us notice that the predicate defined above is symmetric. We say that R
commutes with Q if and only if the condition (Def. 18) is satisfied.

(Def. 18) Let a, b, c be sets. Suppose R reduces a to b and Q reduces a to c.
Then there exists a set d such that Q reduces b to d and R reduces c to d.

Let us notice that the predicate introduced above is symmetric.
We now state the proposition

(49) For all binary relations R, Q such that R commutes with Q holds R
commutes-weakly with Q.

Let R be a binary relation. We say that R has unique normal form property
if and only if the condition (Def. 19) is satisfied.
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(Def. 19) Let a, b be sets. Suppose a is a normal form w.r.t. R and b is a normal
form w.r.t. R and a and b are convertible w.r.t. R. Then a = b.

We say that R has normal form property if and only if the condition (Def. 20)
is satisfied.

(Def. 20) Let a, b be sets. Suppose a is a normal form w.r.t. R and a and b are
convertible w.r.t. R. Then R reduces b to a.

We say that R is subcommutative if and only if:

(Def. 21) For all sets a, b, c such that 〈〈a, b〉〉 ∈ R and 〈〈a, c〉〉 ∈ R holds b and c are
convergent at most in 1 step w.r.t. R.

We introduce R has diamond property as a synonym of R is subcommutative.
We say that R is confluent if and only if:

(Def. 22) For all sets a, b such that a and b are divergent w.r.t. R holds a and b
are convergent w.r.t. R.

We say that R has Church-Rosser property if and only if:

(Def. 23) For all sets a, b such that a and b are convertible w.r.t. R holds a and
b are convergent w.r.t. R.

We say that R is locally-confluent if and only if:

(Def. 24) For all sets a, b, c such that 〈〈a, b〉〉 ∈ R and 〈〈a, c〉〉 ∈ R holds b and c are
convergent w.r.t. R.

We introduce R has weak Church-Rosser property as a synonym of R is locally-
confluent.

Next we state four propositions:

(50) Let R be a binary relation. Suppose R is subcommutative. Let a, b,
c be sets. Suppose R reduces a to b and 〈〈a, c〉〉 ∈ R. Then b and c are
convergent w.r.t. R.

(51) For every binary relation R holds R is confluent iff R commutes with
R.

(52) Let R be a binary relation. Then R is confluent if and only if for all
sets a, b, c such that R reduces a to b and 〈〈a, c〉〉 ∈ R holds b and c are
convergent w.r.t. R

(53) For every binary relation R holds R is locally-confluent iff R commutes-
weakly with R.

One can verify the following observations:

∗ every binary relation which has Church-Rosser property is confluent,

∗ every binary relation which is confluent is also locally-confluent and has
Church-Rosser property,

∗ every binary relation which is subcommutative is also confluent,

∗ every binary relation which has Church-Rosser property has also normal
form property,

∗ every binary relation which has normal form property has also unique
normal form property, and
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∗ every binary relation which is weakly-normalizing and has unique nor-
mal form property has Church-Rosser property.

One can check that every binary relation which is empty is also subcommu-
tative.

One can verify that there exists a binary relation which is empty.
The following three propositions are true:

(54) Let R be a binary relation with unique normal form property and let
a, b, c be sets. Suppose b is a normal form of a w.r.t. R and c is a normal
form of a w.r.t. R. Then b = c.

(55) Let R be a weakly-normalizing binary relation with unique normal form
property and let a be a set. Then nfR(a) is a normal form of a w.r.t. R.

(56) Let R be a weakly-normalizing binary relation with unique normal form
property and let a, b be sets. If a and b are convertible w.r.t. R, then
nfR(a) = nfR(b).

Let us note that every binary relation which is strongly-normalizing and
locally-confluent is also confluent.

Let R be a binary relation. We say that R is complete if and only if:

(Def. 25) R is confluent and strongly-normalizing.

Let us note that every binary relation which is complete is also confluent and
strongly-normalizing and every binary relation which is confluent and strongly-
normalizing is also complete.

Let us mention that there exists a binary relation which is empty.

Let us note that there exists a non empty binary relation which is complete.
We now state three propositions:

(57) Let R, Q be binary relations with Church-Rosser property. If R com-
mutes with Q, then R ∪Q has Church-Rosser property.

(58) For every binary relation R holds R is confluent iff R∗ has weak Church-
Rosser property.

(59) For every binary relation R holds R is confluent iff R∗ is subcommuta-
tive.

5. Completion method

Let R, Q be binary relations. We say that R and Q are equivalent if and
only if the condition (Def. 26) is satisfied.

(Def. 26) Let a, b be sets. Then a and b are convertible w.r.t. R if and only if a
and b are convertible w.r.t. Q.

Let us observe that the predicate introduced above is symmetric.
Let R be a binary relation and let a, b be sets. We say that a and b are

critical w.r.t. R if and only if:
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(Def. 27) a and b are divergent at most in 1 step w.r.t. R and a and b are not
convergent w.r.t. R.

We now state four propositions:

(60) Let R be a binary relation and let a, b be sets. Suppose a and b are
critical w.r.t. R. Then a and b are convertible w.r.t. R.

(61) Let R be a binary relation. Suppose that it is not true that there exist
sets a, b such that a and b are critical w.r.t. R Then R is locally-confluent.

(62) Let R, Q be binary relations. Suppose that for all sets a, b such that
〈〈a, b〉〉 ∈ Q holds a and b are critical w.r.t. R. Then R and R ∪ Q are
equivalent.

(63) Let R be a binary relation. Then there exists a complete binary relation
Q such that

(i) fieldQ ⊆ fieldR, and
(ii) for all sets a, b holds a and b are convertible w.r.t. R iff a and b are

convergent w.r.t. Q.

Let R be a binary relation. A complete binary relation is said to be a
completion of R if it satisfies the condition (Def. 28).

(Def. 28) Let a, b be sets. Then a and b are convertible w.r.t. R if and only if a
and b are convergent w.r.t. it.

Next we state three propositions:

(64) For every binary relation R and for every completion C of R holds R
and C are equivalent.

(65) Let R be a binary relation and let Q be a complete binary relation. If
R and Q are equivalent, then Q is a completion of R.

(66) Let R be a binary relation, and let C be a completion of R, and let a, b be
sets. Then a and b are convertible w.r.t. R if and only if nfC(a) = nfC(b).
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1. More on Equivalence Relations

For simplicity we adopt the following convention: I, X denote sets, M de-
notes a many sorted set indexed by I, R1 denotes a binary relation on X, and
E1, E2, E3 denote equivalence relations of X.

We now state the proposition

(1) (E1 tE2) tE3 = E1 t (E2 tE3).

Let X be a set and let R be a binary relation on X. The functor EqCl(R)
yielding an equivalence relation of X is defined as follows:

(Def. 1) R ⊆ EqCl(R) and for every equivalence relation E2 of X such that
R ⊆ E2 holds EqCl(R) ⊆ E2.

One can prove the following propositions:

(2) E1 tE2 = EqCl(E1 ∪E2).

(3) EqCl(E1) = E1.

(4) ∇X ∪R1 = ∇X .
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2. Lattice of Equivalence Relations

Let X be a set. The functor EqRelLatt(X) yields a strict lattice and is
defined by the conditions (Def. 2).

(Def. 2) (i) The carrier of EqRelLatt(X) = {x : x ranges over relations between
X and X, x is an equivalence relation of X}, and

(ii) for all equivalence relations x, y of X holds (the meet operation of
EqRelLatt(X))(x, y) = x∩y and (the join operation of EqRelLatt(X))(x,
y) = x t y.

3. Many Sorted Equivalence Relations

Let us consider I, M . Note that there exists a many sorted relation of M
which is equivalence.

Let us consider I, M . An equivalence relation of M is an equivalence many
sorted relation of M .

We adopt the following convention: I will denote a non empty set, M will de-
note a many sorted set indexed by I, and E4, E1, E2, E3 will denote equivalence
relations of M .

Let I be a non empty set, let M be a many sorted set indexed by I, and let
R be a many sorted relation of M . The functor EqCl(R) yields an equivalence
relation of M and is defined as follows:

(Def. 3) For every element i of I holds (EqCl(R))(i) = EqCl(R(i)).

The following proposition is true

(5) EqCl(E4) = E4.

4. Lattice of Many Sorted Equivalence Relations

Let I be a non empty set, let M be a many sorted set indexed by I, and
let E1, E2 be equivalence relations of M . The functor E1 t E2 yielding an
equivalence relation of M is defined as follows:

(Def. 4) There exists a many sorted relation E3 of M such that E3 = E1 ∪ E2

and E1 tE2 = EqCl(E3).

Let us observe that the functor introduced above is commutative.
Next we state several propositions:

(6) E1 ∪E2 ⊆ E1 tE2.

(7) For every equivalence relation E4 of M such that E1 ∪ E2 ⊆ E4 holds
E1 tE2 ⊆ E4.
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(8) If E1 ∪ E2 ⊆ E3 and for every equivalence relation E4 of M such that
E1 ∪E2 ⊆ E4 holds E3 ⊆ E4, then E3 = E1 tE2.

(9) E4 tE4 = E4.

(10) (E1 tE2) tE3 = E1 t (E2 tE3).

(11) E1 ∩ (E1 tE2) = E1.

(12) For every equivalence relation E4 of M such that E4 = E1 ∩ E2 holds
E1 tE4 = E1.

(13) For all equivalence relations E1, E2 of M holds E1∩E2 is an equivalence
relation of M .

Let I be a non empty set and let M be a many sorted set indexed by I.
The functor EqRelLatt(M) yielding a strict lattice is defined by the conditions
(Def. 5).

(Def. 5) (i) For arbitrary x holds x ∈ the carrier of EqRelLatt(M) iff x is an
equivalence relation of M , and

(ii) for all equivalence relations x, y of M holds (the meet operation of
EqRelLatt(M))(x, y) = x∩y and (the join operation of EqRelLatt(M))(x,
y) = x t y.

5. Lattice of Congruences in Many Sorted Algebra

Let S be a non empty many sorted signature and let A be an algebra over
S Note that every many sorted relation of A which is equivalence is also equiv-
alence.

In the sequel S will denote a non void non empty many sorted signature and
A will denote a non-empty algebra over S.

Next we state several propositions:

(14) Let o be an operation symbol of S, and let C1, C2 be congruences of A,
and let x1, y1 be arbitrary, and let a1, b1 be finite sequences. Suppose 〈〈x1,
y1〉〉 ∈ C1(πlen a1+1 Arity(o)) ∪ C2(πlen a1+1 Arity(o)). Let x, y be elements
of Args(o,A). Suppose x = a1

� 〈x1〉 � b1 and y = a1
� 〈y1〉 � b1. Then

〈〈(Den(o,A))(x), (Den(o,A))(y)〉〉 ∈ C1(the result sort of o)∪C2(the result
sort of o).

(15) Let o be an operation symbol of S, and let C1, C2 be congruences
of A, and let C be an equivalence many sorted relation of A. Suppose
C = C1tC2. Let x1, y1 be arbitrary, and let n be a natural number, and let
a1, a2, b1 be finite sequences. Suppose len a1 = n and len a1 = len a2 and
for every natural number k such that k ∈ dom a1 holds 〈〈a1(k), a2(k)〉〉 ∈
C(πk Arity(o)). Suppose 〈〈(Den(o,A))(a1

� 〈x1〉 � b1), (Den(o,A))(a2
� 〈x1〉 �

b1)〉〉 ∈ C(the result sort of o) and 〈〈x1, y1〉〉 ∈ C(πn+1 Arity(o)). Let x be
an element of Args(o,A). If x = a1

� 〈x1〉 � b1, then 〈〈(Den(o,A))(x),
(Den(o,A))(a2

� 〈y1〉 � b1)〉〉 ∈ C(the result sort of o).
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(16) Let o be an operation symbol of S, and let C1, C2 be congruences of
A, and let C be an equivalence many sorted relation of A. Suppose C =
C1tC2. Let x, y be elements of Args(o,A). Suppose that for every natural
number n such that n ∈ domx holds 〈〈x(n), y(n)〉〉 ∈ C(πn Arity(o)). Then
〈〈(Den(o,A))(x), (Den(o,A))(y)〉〉 ∈ C(the result sort of o).

(17) For all congruences C1, C2 of A holds C1 t C2 is a congruence of A.

(18) For all congruences C1, C2 of A holds C1 ∩ C2 is a congruence of A.

Let us consider S and let A be a non-empty algebra over S. The functor
CongrLatt(A) yielding a strict sublattice of EqRelLatt(the sorts of A) is defined
by:

(Def. 6) For arbitrary x holds x ∈ the carrier of CongrLatt(A) iff x is a congru-
ence of A.

We now state four propositions:

(19) id(the sorts of A) is a congruence of A.

(20) [[the sorts of A, the sorts of A]] is a congruence of A.

(21) ⊥CongrLatt(A) = id(the sorts of A).

(22) >CongrLatt(A) = [[the sorts of A, the sorts of A]].

Let us consider S and let us consider A. One can check that CongrLatt(A)
is bounded.
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‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.
[24] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized

Mathematics, 1(1):85–89, 1990.
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1. Preliminaries

For simplicity we adopt the following rules: x is arbitrary, m, n are natural
numbers, f , g are functions, and A, B are sets.

We now state several propositions:

(1) For every function f and for every set X such that rng f ⊆ X holds
idX · f = f.

(2) Let X be a set, and let Y be a non empty set, and let f be a function
from X into Y . Suppose f is one-to-one. Let B be a subset of X and let
C be a subset of Y . If C ⊆ f ◦B, then f −1 C ⊆ B.

(3) Let X, Y be non empty sets and let f be a function from X into Y .
Suppose f is one-to-one. Let x be an element of X and let A be a subset
of X. If f(x) ∈ f ◦A, then x ∈ A.

(4) Let X, Y be non empty sets and let f be a function from X into Y .
Suppose f is one-to-one. Let x be an element of X, and let A be a subset
of X, and let B be a subset of Y . If f(x) ∈ f ◦A \B, then x ∈ A \ f −1 B.

(5) Let X, Y be non empty sets and let f be a function from X into Y .
Suppose f is one-to-one. Let y be an element of Y , and let A be a subset
of X, and let B be a subset of Y . If y ∈ f ◦A\B, then f−1(y) ∈ A\f −1B.

(6) For every function f and for arbitrary a such that a ∈ dom f holds
f

� {a} = a7−→. f(a).
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Let x, y be arbitrary. Observe that x7−→. y is non empty.
Let x, y, a, b be arbitrary. One can check that [x 7−→ a, y 7−→ b] is non

empty.
One can prove the following propositions:

(7) For every set I and for every many sorted set M indexed by I and for
arbitrary i such that i ∈ I holds i7−→. M(i) = M

� {i}.
(8) Let I, J be sets, and let M be a many sorted set indexed by [: I, J :], and

let i, j be arbitrary. If i ∈ I and j ∈ J, then [〈〈i, j〉〉 7→M(i, j)] = M
�
[: {i},

{j} :].

(9) If x ∈ dom f and x /∈ dom g, then (f+·g)(x) = f(x).

(10) For all functions f , g, h such that rng g ⊆ dom f and rng h ⊆ dom f
holds f · (g+·h) = f · g+·f · h.

(11) For all functions f , g, h holds (g+·h) · f = g · f+·h · f.
(12) For all functions f , g, h such that rng f misses dom g holds (h+·g) ·f =

h · f.
(13) For all sets A, B and for arbitrary y such that A meets rng(idB+·(A 7−→

y)) holds y ∈ A.
(14) For arbitrary x, y and for every set A such that x 6= y holds x /∈

rng(idA+·(x7−→. y)).

(15) For every set X and for arbitrary a and for every function f such that
dom f = X ∪ {a} holds f = f

�
X+·(a7−→. f(a)).

(16) For every function f and for all sets X, y, z holds f+·(X 7−→
y)+·(X 7−→ z) = f+·(X 7−→ z).

(17) If 0 < m and m ≤ n, then � m ⊆ � n.
(18) � 6= � ∗.
(19) ∅∗ = {∅}.
(20) 〈x〉 ∈ A∗ iff x ∈ A.
(21) A ⊆ B iff A∗ ⊆ B∗.
(22) For every subset A of � such that for all n, m such that n ∈ A and

m < n holds m ∈ A holds A is a cardinal number.

(23) Let A be a finite set and let X be a non empty family of subsets of A.
Then there exists an element C of X such that for every element B of X
such that B ⊆ C holds B = C.

(24) Let p, q be finite sequences. Suppose len p = len q + 1. Let i be a
natural number. Then i ∈ dom q if and only if the following conditions
are satisfied:

(i) i ∈ dom p, and
(ii) i+ 1 ∈ dom p.

Let us note that there exists a finite sequence which is function yielding non
empty and non-empty.

Note that ε is function yielding. Let f be a function. Observe that 〈f〉 is
function yielding. Let g be a function. One can check that 〈f, g〉 is function
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yielding. Let h be a function. Observe that 〈f, g, h〉 is function yielding.
Let n be a natural number and let f be a function. One can verify that

n 7→ f is function yielding.
Let p be a finite sequence and let q be a non empty finite sequence. One can

verify that p � q is non empty and q � p is non empty.
Let p, q be function yielding finite sequences. Note that p � q is function

yielding.
Next we state the proposition

(25) Let p, q be finite sequences. Suppose p � q is function yielding. Then p
is function yielding and q is function yielding.

2. Some useful schemes

In this article we present several logical schemes. The scheme KappaD con-
cerns non empty sets A, B and a unary functor F yielding arbitrary, and states
that:

There exists a function f from A into B such that for every element
x of A holds f(x) = F(x)

provided the parameters meet the following condition:
• For every element x of A holds F(x) ∈ B.
The scheme Kappa2D deals with non empty sets A, B, C and a binary functor

F yielding arbitrary, and states that:
There exists a function f from [:A, B :] into C such that for every
element x of A and for every element y of B holds f(〈〈x, y〉〉) =
F(x, y)

provided the parameters meet the following requirement:
• For every element x of A and for every element y of B holds
F(x, y) ∈ C.

The scheme FinMono concerns a set A, a non empty set B, and two unary
functors F and G yielding arbitrary, and states that:

{F(d) : d ranges over elements of B, G(d) ∈ A} is finite
provided the following conditions are satisfied:
• A is finite,
• For all elements d1, d2 of B such that G(d1) = G(d2) holds d1 = d2.
The scheme CardMono concerns a set A, a non empty set B, and a unary

functor F yielding arbitrary, and states that:
A ≈ {d : d ranges over elements of B, F(d) ∈ A}

provided the following requirements are met:
• For arbitrary x such that x ∈ A there exists an element d of B such

that x = F(d),
• For all elements d1, d2 of B such that F(d1) = F(d2) holds d1 = d2.
The scheme CardMono’ concerns a set A, a non empty set B, and a unary

functor F yielding arbitrary, and states that:
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A ≈ {F(d) : d ranges over elements of B, d ∈ A}
provided the following conditions are satisfied:
• A ⊆ B,
• For all elements d1, d2 of B such that F(d1) = F(d2) holds d1 = d2.
The scheme FuncSeqInd concerns a unary predicate P, and states that:

For every function yielding finite sequence p holds P[p]
provided the following conditions are satisfied:
• P[ε],
• For every function yielding finite sequence p such that P[p] and for

every function f holds P[p � 〈f〉].

3. Some auxiliary concepts

Let x be arbitrary and let y be a set. Let us assume that x ∈ y. The functor
x(∈ y) yielding an element of y is defined as follows:

(Def. 1) x(∈ y) = x.

One can prove the following proposition

(26) If x ∈ A ∩B, then x(∈ A) = x(∈ B).

Let f , g be functions and let A be a set. We say that f and g equal outside
A if and only if:

(Def. 2) f
�
(dom f \A) = g

�
(dom g \A).

Next we state several propositions:

(27) For every function f and for every set A holds f and f equal outside
A.

(28) For all functions f , g and for every set A such that f and g equal outside
A holds g and f equal outside A

(29) Let f , g, h be functions and let A be a set. Suppose f and g equal
outside A and g and h equal outside A. Then f and h equal outside A.

(30) For all functions f , g and for every set A such that f and g equal outside
A holds dom f \ A = dom g \ A.

(31) For all functions f , g and for every set A such that dom g ⊆ A holds f
and f+·g equal outside A

Let f be a function and let i, x be arbitrary. The functor f +· (i, x) yields a
function and is defined by:

(Def. 3) (i) f +· (i, x) = f+·(i7−→. x) if i ∈ dom f,
(ii) f +· (i, x) = f, otherwise.

Next we state several propositions:

(32) For every function f and for arbitrary d, i holds dom(f +· (i, d)) =
dom f.

(33) For every function f and for arbitrary d, i such that i ∈ dom f holds
(f +· (i, d))(i) = d.
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(34) For every function f and for arbitrary d, i, j such that i 6= j and
j ∈ dom f holds (f +· (i, d))(j) = f(j).

(35) For every function f and for arbitrary d, e, i, j such that i 6= j holds
f +· (i, d) +· (j, e) = f +· (j, e) +· (i, d).

(36) For every function f and for arbitrary d, e, i holds f +· (i, d) +· (i, e) =
f +· (i, e).

(37) For every function f and for arbitrary i holds f +· (i, f(i)) = f.

Let f be a finite sequence, let i be a natural number, and let x be arbitrary.
One can check that f +· (i, x) is finite sequence-like.

Let D be a set, let f be a finite sequence of elements of D, let i be a natural
number, and let d be an element of D. Then f +· (i, d) is a finite sequence of
elements of D.

The following three propositions are true:

(38) Let D be a non empty set, and let f be a finite sequence of elements
of D, and let d be an element of D, and let i be a natural number. If
i ∈ dom f, then πi(f +· (i, d)) = d.

(39) Let D be a non empty set, and let f be a finite sequence of elements of
D, and let d be an element of D, and let i, j be natural numbers. If i 6= j
and j ∈ dom f, then πj(f +· (i, d)) = πjf.

(40) Let D be a non empty set, and let f be a finite sequence of elements of
D, and let d, e be elements of D, and let i be a natural number. Then
f +· (i, πif) = f.

4. On the composition of a finite sequence of functions

Let X be a set and let p be a function yielding finite sequence. The functor
composeX p yielding a function is defined by the condition (Def. 4).

(Def. 4) There exists a many sorted function f of � such that
(i) composeX p = f(len p),

(ii) f(0) = idX , and
(iii) for every natural number i such that i+1 ∈ dom p and for all functions

g, h such that g = f(i) and h = p(i+ 1) holds f(i+ 1) = h · g.
Let p be a function yielding finite sequence and let x be a set. The functor

apply(p, x) yields a finite sequence and is defined by the conditions (Def. 5).

(Def. 5) (i) len apply(p, x) = len p+ 1,
(ii) (apply(p, x))(1) = x, and

(iii) for every natural number i and for every function f such that i ∈ dom p
and f = p(i) holds (apply(p, x))(i + 1) = f((apply(p, x))(i)).

We adopt the following convention: X, Y , x denote sets, p, q denote function
yielding finite sequences, and f , g, h denote functions.

The following propositions are true:
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(41) composeX ε = idX .

(42) apply(ε, x) = 〈x〉.
(43) composeX(p � 〈f〉) = f · composeX p.

(44) apply(p � 〈f〉, x) = (apply(p, x)) � 〈f((apply(p, x))(len p+ 1))〉.
(45) composeX(〈f〉 � p) = composef◦X p · (f

�
X).

(46) apply(〈f〉 � p, x) = 〈x〉 � apply(p, f(x)).

(47) composeX〈f〉 = f · idX .
(48) If dom f ⊆ X, then composeX〈f〉 = f.

(49) apply(〈f〉, x) = 〈x, f(x)〉.
(50) If rng composeX p ⊆ Y, then composeX(p � q) = composeY q ·

composeX p.

(51) (apply(p � q, x))(len(p � q) + 1) = (apply(q, (apply(p, x))(len p +
1)))(len q + 1).

(52) apply(p � q, x) = (apply(p, x)) $ � apply(q, (apply(p, x))(len p+ 1)).

(53) composeX〈f, g〉 = g · f · idX .
(54) If dom f ⊆ X or dom(g · f) ⊆ X, then composeX〈f, g〉 = g · f.
(55) apply(〈f, g〉, x) = 〈x, f(x), g(f(x))〉.
(56) composeX〈f, g, h〉 = h · g · f · idX .
(57) If dom f ⊆ X or dom(g ·f) ⊆ X or dom(h·g ·f) ⊆ X, then composeX〈f,

g, h〉 = h · g · f.
(58) apply(〈f, g, h〉, x) = 〈x〉 � 〈f(x), g(f(x)), h(g(f(x)))〉.

Let F be a finite sequence. The functor firstdom(F ) is defined as follows:

(Def. 6) (i) firstdom(F ) is empty if F is empty,
(ii) firstdom(F ) = π1(F (1)), otherwise.

The functor lastrng(F ) is defined by:

(Def. 7) (i) lastrng(F ) is empty if F is empty,
(ii) lastrng(F ) = π2(F (lenF )), otherwise.

Next we state three propositions:

(59) firstdom(ε) = ∅ and lastrng(ε) = ∅.
(60) For every finite sequence p holds firstdom(〈f〉 � p) = dom f and

lastrng(p � 〈f〉) = rng f.

(61) For every function yielding finite sequence p such that p 6= ε holds
rng composeX p ⊆ lastrng(p).

Let I1 be a finite sequence. We say that I1 is composable if and only if:

(Def. 8) There exists a finite sequence p such that len p = len I1 +1 and for every
natural number i such that i ∈ dom I1 holds I1(i) ∈ p(i+ 1)p(i).

We now state the proposition

(62) For all finite sequences p, q such that p � q is composable holds p is
composable and q is composable.
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One can verify that every finite sequence which is composable is also function
yielding.

Let us observe that every finite sequence which is empty is also composable.
Let f be a function. One can check that 〈f〉 is composable.
Let us observe that there exists a finite sequence which is composable non

empty and non-empty.
A composable sequence is a composable finite sequence.
Next we state several propositions:

(63) For every composable sequence p such that p 6= ε holds
dom composeX p = firstdom(p) ∩X.

(64) For every composable sequence p holds dom composefirstdom(p) p =
firstdom(p).

(65) For every composable sequence p and for every function f such that
rng f ⊆ firstdom(p) holds 〈f〉 � p is a composable sequence.

(66) For every composable sequence p and for every function f such that
lastrng(p) ⊆ dom f holds p � 〈f〉 is a composable sequence.

(67) For every composable sequence p such that x ∈ firstdom(p) and x ∈ X
holds (apply(p, x))(len p+ 1) = (composeX p)(x).

Let X, Y be sets. Let us assume that if Y is empty, then X is empty. A
composable sequence is called a composable sequence from X into Y if:

(Def. 9) firstdom(it) = X and lastrng(it) ⊆ Y.
Let Y be a non empty set, let X be a set, and let F be a composable sequence

from X into Y . Then composeX F is a function from X into Y .
Let q be a non-empty non empty finite sequence. A finite sequence is said to

be a composable sequence along q if:

(Def. 10) len it + 1 = len q and for every natural number i such that i ∈ dom it
holds it(i) ∈ q(i+ 1)q(i).

Let q be a non-empty non empty finite sequence. Observe that every com-
posable sequence along q is composable and non-empty.

One can prove the following three propositions:

(68) Let q be a non-empty non empty finite sequence and let p be a com-
posable sequence along q. If p 6= ε, then firstdom(p) = q(1) and
lastrng(p) ⊆ q(len q).

(69) Let q be a non-empty non empty finite sequence and let p be a
composable sequence along q. Then dom composeq(1) p = q(1) and
rng composeq(1) p ⊆ q(len q).

(70) For every function f and for every natural number n holds f n =
composedom f∪rng f (n 7→ f).
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Summary. We continue the formalization of the category theory.
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The notation and terminology used here are introduced in the following papers:
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[10], and [11].

1. Preliminaries

One can prove the following proposition

(1) For all sets X1, X2 and for arbitrary a1, a2 holds [:X1 7−→ a1, X2 7−→
a2 :] = [:X1, X2 :] 7−→ 〈〈a1, a2〉〉.

Let I be a set. Observe that ∅I is function yielding.
The following two propositions are true:

(2) For all functions f , g holds � (g · f) = g · � f.
(3) For all functions f , g, h holds � (f · [: g, h :]) = � f · [:h, g :].

Let f be a function yielding function. Observe that � f is function yielding.
One can prove the following proposition

(4) Let I be a set and let A, B, C be many sorted sets indexed by I.
Suppose A is transformable to B. Let F be a many sorted function from
A into B and let G be a many sorted function from B into C. Then G◦F
is a many sorted function from A into C.

Let I be a set and let A be a many sorted set indexed by [: I, I :]. Then � A
is a many sorted set indexed by [: I, I :].

We now state the proposition
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(5) Let I1 be a set, and let I2 be a non empty set, and let f be a function
from I1 into I2, and let B, C be many sorted sets indexed by I2, and let
G be a many sorted function from B into C. Then G · f is a many sorted
function from B · f into C · f.

Let I be a set, let A, B be many sorted sets indexed by [: I, I :], and let F
be a many sorted function from A into B. Then � F is a many sorted function
from � A into � B.

We now state the proposition

(6) Let I1, I2 be non empty sets, and let M be a many sorted set indexed
by [: I1, I2 :] and let o1 be an element of I1, and let o2 be an element of I2.
Then ( � M)(o2, o1) = M(o1, o2).

Let I1 be a set and let f , g be many sorted functions of I1 Then g ◦ f is a
many sorted function of I1.

2. An auxiliary notion

Let I, J be sets, let A be a many sorted set indexed by I, and let B be a
many sorted set indexed by J . The predicate A ⊆̇ B is defined as follows:

(Def. 1) I ⊆ J and for arbitrary i such that i ∈ I holds A(i) ⊆ B(i).

One can prove the following four propositions:

(7) For every set I and for every many sorted set A indexed by I holds
A ⊆̇ A.

(8) Let I, J be sets, and let A be a many sorted set indexed by I, and let
B be a many sorted set indexed by J . If A ⊆̇ B and B ⊆̇ A, then A = B.

(9) Let I, J , K be sets, and let A be a many sorted set indexed by I, and
let B be a many sorted set indexed by J , and let C be a many sorted set
indexed by K. If A ⊆̇ B and B ⊆̇ C, then A ⊆̇ C.

(10) Let I be a set, and let A be a many sorted set indexed by I, and let B
be a many sorted set indexed by I. Then A ⊆̇ B if and only if A ⊆ B.

3. A bit of lambda calculus

In this article we present several logical schemes. The scheme OnSingletons
deals with a non empty set A, a unary functor F yielding arbitrary, and a unary
predicate P, and states that:

{〈〈o, F(o)〉〉 : o ranges over elements of A, P[o]} is a function
for all values of the parameters.

The scheme DomOnSingletons deals with a non empty set A, a function B,
a unary functor F yielding arbitrary, and a unary predicate P, and states that:

domB = {o : o ranges over elements of A, P[o]}
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provided the following condition is satisfied:
• B = {〈〈o, F(o)〉〉 : o ranges over elements of A, P[o]}.
The scheme ValOnSingletons deals with a non empty set A, a function B, an

element C of A, a unary functor F yielding arbitrary, and a unary predicate P,
and states that:

B(C) = F(C)
provided the following requirements are met:
• B = {〈〈o, F(o)〉〉 : o ranges over elements of A, P[o]},
• P[C].

4. More on old categories

The following propositions are true:

(11) For every category C and for all objects i, j, k of C holds [: hom(j, k),
hom(i, j) :] ⊆ dom (the composition of C).

(12) For every category C and for all objects i, j, k of C holds (the compo-
sition of C)◦[: hom(j, k), hom(i, j) :] ⊆ hom(i, k).

Let C be a category structure. The functor HomSetsC yields a many sorted
set indexed by [: the objects of C, the objects of C :] and is defined as follows:

(Def. 2) For all objects i, j of C holds HomSetsC(i, j) = hom(i, j).

The following proposition is true

(13) For every category C and for every object i of C holds idi ∈ HomSetsC(i,
i).

Let C be a category. The functor CompositionC yielding a binary composi-
tion of HomSetsC is defined by:

(Def. 3) For all objects i, j, k of C holds CompositionC(i, j, k) = (the compo-
sition of C)

�
[: HomSetsC(j, k), HomSetsC(i, j) :].

Next we state three propositions:

(14) Let C be a category and let i, j, k be objects of C Suppose hom(i, j) 6= ∅
and hom(j, k) 6= ∅. Let f be a morphism from i to j and let g be a
morphism from j to k. Then CompositionC(i, j, k)(g, f) = g · f.

(15) For every category C holds CompositionC is associative.

(16) For every category C holds CompositionC has left units and right units.

5. Transforming an old category into a new one

Let C be a category. The functor Alter(C) yielding a strict non empty
category structure is defined as follows:

(Def. 4) Alter(C) = 〈the objects of C, HomSetsC ,CompositionC〉.
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We now state three propositions:

(17) For every category C holds Alter(C) is associative.

(18) For every category C holds Alter(C) has units.

(19) For every category C holds Alter(C) is transitive.

Let C be a category. Then Alter(C) is a strict category.

6. More on new categories

Let us note that there exists a graph which is non empty and strict.

Let C be a graph. We say that C is reflexive if and only if:

(Def. 5) For arbitrary x such that x ∈ the carrier of C holds (the arrows of C)(x,
x) 6= ∅.

Let C be a non empty graph. Let us observe that C is reflexive if and only
if:

(Def. 6) For every object o of C holds 〈o, o〉 6= ∅.
Let C be a non empty category structure. Observe that the carrier of C is

non empty.

Let C be a non empty transitive category structure. Let us observe that C
is associative if and only if the condition (Def. 7) is satisfied.

(Def. 7) Let o1, o2, o3, o4 be objects of C and let f be a morphism from o1

to o2, and let g be a morphism from o2 to o3, and let h be a morphism
from o3 to o4. If 〈o1, o2〉 6= ∅ and 〈o2, o3〉 6= ∅ and 〈o3, o4〉 6= ∅, then
(h · g) · f = h · (g · f).

Let C be a non empty category structure. Let us observe that C has units
if and only if the condition (Def. 8) is satisfied.

(Def. 8) Let o be an object of C. Then

(i) 〈o, o〉 6= ∅, and

(ii) there exists a morphism i from o to o such that for every object o′ of
C and for every morphism m′ from o′ to o and for every morphism m′′

from o to o′ holds if 〈o′, o〉 6= ∅, then i ·m′ = m′ and if 〈o, o′〉 6= ∅, then
m′′ · i = m′′.

Let us observe that every non empty category structure which has units is
reflexive.

One can check that there exists a graph which is non empty and reflexive.

One can verify that there exists a category structure which is non empty and
reflexive.
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7. The empty category

The strict category structure ∅CAT is defined by:

(Def. 9) The carrier of ∅CAT is empty.

Let us note that ∅CAT is empty.
Let us mention that there exists a category structure which is empty and

strict.
Next we state the proposition

(20) For every empty strict category structure E holds E = ∅CAT .

8. Subcategories

Let C be a category structure. A category structure is said to be a substruc-
ture of C if it satisfies the conditions (Def. 10).

(Def. 10) (i) The carrier of it ⊆ the carrier of C,
(ii) the arrows of it ⊆̇ the arrows of C, and

(iii) the composition of it ⊆̇ the composition of C.

In the sequel C, C1, C2, C3 denote category structures.
The following propositions are true:

(21) C is a substructure of C.

(22) If C1 is a substructure of C2 and C2 is a substructure of C3, then C1 is
a substructure of C3.

(23) Let C1, C2 be category structures. Suppose C1 is a substructure of C2

and C2 is a substructure of C1. Then the category structure of C1 = the
category structure of C2.

Let C be a category structure. One can check that there exists a substructure
of C which is strict.

Let C be a non empty category structure and let o be an object of C. The
functor �

�
o yielding a strict substructure of C is defined by the conditions

(Def. 11).

(Def. 11) (i) The carrier of �
�
o = {o},

(ii) the arrows of �
�
o = [〈〈o, o〉〉 7→ 〈o, o〉], and

(iii) the composition of �
�
o = 〈〈o, o, o〉〉7−→. (the composition of C)(o, o, o).

In the sequel C denotes a non empty category structure and o denotes an
object of C.

One can prove the following proposition

(24) For every object o′ of �
�
o holds o′ = o.

Let C be a non empty category structure and let o be an object of C. Observe
that �

�
o is transitive and non empty.
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Let C be a non empty category structure. One can verify that there exists a
substructure of C which is transitive non empty and strict.

We now state the proposition

(25) Let C be a transitive non empty category structure and let D1, D2 be
transitive non empty substructures of C. Suppose the carrier of D1 ⊆ the
carrier of D2 and the arrows of D1 ⊆̇ the arrows of D2. Then D1 is a
substructure of D2.

Let C be a category structure and let D be a substructure of C. We say that
D is full if and only if:

(Def. 12) The arrows of D = (the arrows of C)
�
[: the carrier of D, the carrier of

D :].

Let C be a non empty category structure with units and let D be a substruc-
ture of C. We say that D is id-inheriting if and only if:

(Def. 13) For every object o of D and for every object o′ of C such that o = o′

holds ido′ ∈ 〈o, o〉.
Let C be a category structure. One can verify that there exists a substructure

of C which is full and strict.

Let C be a non empty category structure. Observe that there exists a sub-
structure of C which is full non empty and strict.

Let C be a category and let o be an object of C. Note that �
�
o is full and

id-inheriting.

Let C be a category. One can verify that there exists a substructure of C
which is full id-inheriting non empty and strict.

In the sequel C is a non empty transitive category structure.

The following propositions are true:

(26) Let D be a substructure of C. Suppose the carrier of D = the carrier
of C and the arrows of D = the arrows of C. Then the category structure
of D = the category structure of C.

(27) Let D1, D2 be non empty transitive substructures of C. Suppose the
carrier of D1 = the carrier of D2 and the arrows of D1 = the arrows of
D2. Then the category structure of D1 = the category structure of D2.

(28) Let D be a full substructure of C. Suppose the carrier of D = the
carrier of C. Then the category structure of D = the category structure
of C.

(29) Let C be a non empty category structure, and let D be a full non empty
substructure of C, and let o1, o2 be objects of C and let p1, p2 be objects
of D If o1 = p1 and o2 = p2, then 〈o1, o2〉 = 〈p1, p2〉.

(30) For every non empty category structure C and for every non empty
substructure D of C holds every object of D is an object of C.

Let C be a transitive non empty category structure. Note that every sub-
structure of C which is full and non empty is also transitive.

The following propositions are true:
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(31) Let D1, D2 be full non empty substructures of C. Suppose the carrier
of D1 = the carrier of D2. Then the category structure of D1 = the
category structure of D2.

(32) Let C be a non empty category structure, and let D be a non empty
substructure of C, and let o1, o2 be objects of C and let p1, p2 be objects
of D If o1 = p1 and o2 = p2, then 〈p1, p2〉 ⊆ 〈o1, o2〉.

(33) Let C be a non empty transitive category structure, and let D be a
non empty transitive substructure of C, and let p1, p2, p3 be objects of
D Suppose 〈p1, p2〉 6= ∅ and 〈p2, p3〉 6= ∅. Let o1, o2, o3 be objects of C
Suppose o1 = p1 and o2 = p2 and o3 = p3. Let f be a morphism from o1

to o2, and let g be a morphism from o2 to o3, and let f1 be a morphism
from p1 to p2, and let g1 be a morphism from p2 to p3. If f = f1 and
g = g1, then g · f = g1 · f1.

Let C be an associative transitive non empty category structure. Note that
every non empty substructure of C which is transitive is also associative.

One can prove the following proposition

(34) Let C be a non empty category structure, and let D be a non empty
substructure of C, and let o1, o2 be objects of C and let p1, p2 be objects
of D If o1 = p1 and o2 = p2 and 〈p1, p2〉 6= ∅, then every morphism from
p1 to p2 is a morphism from o1 to o2.

Let C be a transitive non empty category structure with units. Note that
every non empty substructure of C which is id-inheriting and transitive has
units.

Let C be a category. Note that there exists a non empty substructure of C
which is id-inheriting and transitive.

Let C be a category. A subcategory of C is an id-inheriting transitive sub-
structure of C.

We now state the proposition

(35) Let C be a category, and let D be a non empty subcategory of C, and
let o be an object of D, and let o′ be an object of C. If o = o′, then
ido = ido′ .

References
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Summary. In the paper the construction of a category of partially
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1. Preliminaries

Let I1 be a relation structure. We say that I1 is discrete if and only if:

(Def. 1) The internal relation of I1 = 4the carrier of I1 .

Let us mention that there exists a poset which is strict discrete and non
empty and there exists a poset which is strict discrete and empty.

Let X be a set. Then 4X is an order in X.
Observe that 〈∅,4∅〉 is empty. Let P be an empty relation structure. One

can check that the internal relation of P is empty.
Let us mention that every relation structure which is empty is also discrete.
Let P be a relation structure and let I1 be a subset of P . We say that I1 is

disconnected if and only if the condition (Def. 2) is satisfied.

(Def. 2) There exist subsets A, B of P such that
(i) A 6= ∅,

(ii) B 6= ∅,
(iii) I1 = A ∪B,
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(iv) A misses B, and
(v) the internal relation of P = (the internal relation of P ) |2 (A) ∪ (the

internal relation of P ) |2 (B).

We introduce I1 is connected as an antonym of I1 is disconnected.
Let I1 be a non empty relation structure. We say that I1 is disconnected if

and only if:

(Def. 3) Ω(I1) is disconnected.

We introduce I1 is connected as an antonym of I1 is disconnected.
In the sequel T will denote a non empty relation structure and a will denote

an element of T .
One can prove the following propositions:

(1) For every discrete non empty relation structure D1 and for all elements
x, y of D1 holds x ≤ y iff x = y.

(2) For every binary relation R and for arbitrary a such that R is an order
in {a} holds R = 4{a}.

(3) If T is reflexive and ΩT = {a}, then T is discrete.

In the sequel a will be arbitrary.
One can prove the following two propositions:

(4) If ΩT = {a}, then T is connected.

(5) For every discrete non empty poset D1 such that there exist elements
a, b of D1 such that a 6= b holds D1 is disconnected.

One can check that there exists a non empty poset which is strict and con-
nected and there exists a non empty poset which is strict disconnected and
discrete.

2. On the Category of Posets

Let I1 be a set. We say that I1 is poset-membered if and only if:

(Def. 4) For arbitrary a such that a ∈ I1 holds a is a non empty poset.

One can check that there exists a set which is non empty and poset-membered.
A set of posets is a poset-membered set.
Let P be a non empty set of posets. We see that the element of P is a non

empty poset.
Let L1, L2 be relation structures and let f be a map from L1 into L2. We

say that f is monotone if and only if:

(Def. 5) For all elements x, y of L1 such that x ≤ y and for all elements a, b of
L2 such that a = f(x) and b = f(y) holds a ≤ b.

In the sequel P will denote a non empty set of posets and A, B will denote
elements of P .

Let A, B be relation structures. The functor BA
≤ is defined by the condition

(Def. 6).
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(Def. 6) a ∈ BA
≤ if and only if there exists a map f from A into B such that

a = f and f ∈ (the carrier of B)the carrier of A and f is monotone.

The following propositions are true:

(6) For all non empty relation structures A, B, C and for all functions f ,
g such that f ∈ BA

≤ and g ∈ CB
≤ holds g · f ∈ CA

≤ .

(7) id(the carrier of T ) ∈ T T≤ .
Let us consider T . Observe that T T≤ is non empty.
Let X be a set. The functor Carr(X) yields a set and is defined by:

(Def. 7) a ∈ Carr(X) iff there exists a 1-sorted structure s such that s ∈ X and
a = the carrier of s.

Let us consider P . Observe that Carr(P ) is non empty.
The following propositions are true:

(8) For every 1-sorted structure f holds Carr({f}) = {the carrier of f}.
(9) For all 1-sorted structures f , g holds Carr({f, g}) = {the carrier of f ,

the carrier of g}.
(10) BA

≤ ⊆ Funcs Carr(P ).

(11) For all relation structures A, B holds BA
≤ ⊆ (the carrier of

B)the carrier of A.

Let A, B be non empty poset. Observe that BA
≤ is functional.

Let P be a non empty set of posets. The functor POSCat(P ) yielding a strict
category with triple-like morphisms is defined by the conditions (Def. 8).

(Def. 8) (i) The objects of POSCat(P ) = P,
(ii) for all elements a, b of P and for every element f of Funcs Carr(P )

such that f ∈ ba≤ holds 〈〈〈〈a, b〉〉, f〉〉 is a morphism of POSCat(P ),
(iii) for every morphism m of POSCat(P ) there exist elements a, b of P

and there exists an element f of Funcs Carr(P ) such that m = 〈〈〈〈a, b〉〉, f〉〉
and f ∈ ba≤, and

(iv) for all morphisms m1, m2 of POSCat(P ) and for all elements a1, a2,
a3 of P and for all elements f1, f2 of Funcs Carr(P ) such that m1 = 〈〈〈〈a1,
a2〉〉, f1〉〉 and m2 = 〈〈〈〈a2, a3〉〉, f2〉〉 holds m2 ·m1 = 〈〈〈〈a1, a3〉〉, f2 · f1〉〉.

3. On the Alternative Category of Posets

In this article we present several logical schemes. The scheme AltCatEx
concerns a non empty set A and a binary functor F yielding a functional set,
and states that:

There exists a strict category structure C such that
(i) the carrier of C = A, and

(ii) for all elements i, j ofA holds (the arrows of C)(i, j) = F(i, j)
and for all elements i, j, k of A holds (the composition of C)(i, j,
k) = FuncComp(F(i, j),F(j, k))
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provided the following condition is met:
• For all elements i, j, k of A and for all functions f , g such that
f ∈ F(i, j) and g ∈ F(j, k) holds g · f ∈ F(i, k).

The scheme AltCatUniq deals with a non empty set A and a binary functor
F yielding a functional set, and states that:

Let C1, C2 be strict category structures. Suppose that
(i) the carrier of C1 = A,

(ii) for all elements i, j of A holds (the arrows of C1)(i, j) =
F(i, j) and for all elements i, j, k of A holds (the composition of
C1)(i, j, k) = FuncComp(F(i, j),F(j, k)),
(iii) the carrier of C2 = A, and
(iv) for all elements i, j of A holds (the arrows of C2)(i, j) =
F(i, j) and for all elements i, j, k of A holds (the composition of
C2)(i, j, k) = FuncComp(F(i, j),F(j, k)).

Then C1 = C2

for all values of the parameters.
Let P be a non empty set of posets. The functor POSAltCat(P ) yielding a

strict category structure is defined by the conditions (Def. 9).

(Def. 9) (i) The carrier of POSAltCat(P ) = P, and
(ii) for all elements i, j of P holds (the arrows of POSAltCat(P ))(i,

j) = ji≤ and for all elements i, j, k of P holds (the composition of

POSAltCat(P ))(i, j, k) = FuncComp(j i≤, k
j
≤).

Let P be a non empty set of posets. One can verify that POSAltCat(P ) is
transitive and non empty.

Let P be a non empty set of posets. Observe that POSAltCat(P ) is associa-
tive and has units.

One can prove the following proposition

(12) Let o1, o2 be objects of POSAltCat(P ) and let A, B be elements of P .
If o1 = A and o2 = B, then 〈o1, o2〉 ⊆ (the carrier of B)the carrier of A.
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The articles [19], [25], [9], [20], [11], [14], [2], [18], [26], [6], [7], [17], [16], [22],
[3], [8], [10], [23], [1], [15], [5], [24], [12], [13], [21], and [4] provide the notation
and terminology for this paper.

In this paper x will be arbitrary and k will denote a natural number.
The subset Data-LocSCMFSA

of � is defined as follows:

(Def. 1) Data-LocSCMFSA
= Data-LocSCM.

The subset Data∗-LocSCMFSA
of � is defined as follows:

(Def. 2) Data∗-LocSCMFSA
= � \ � .

The subset Instr-LocSCMFSA
of � is defined as follows:

(Def. 3) Instr-LocSCMFSA
= Instr-LocSCM.

One can check the following observations:

∗ Data∗-LocSCMFSA
is non empty,

∗ Data-LocSCMFSA
is non empty, and

∗ Instr-LocSCMFSA
is non empty.

For simplicity we adopt the following convention: J , K are elements of � 13,
a is an element of Instr-LocSCMFSA

, b, c, c1 are elements of Data-LocSCMFSA
,

and f , f1 are elements of Data∗-LocSCMFSA
.

The subset InstrSCMFSA
of [: � 13, (

⋃{ � , � ∗} ∪ � )∗:] is defined by:

(Def. 4) InstrSCMFSA
= InstrSCM ∪ {〈〈J, 〈c, f, b〉〉〉 : J ∈ {9, 10}} ∪ {〈〈K, 〈c1, f1〉〉〉 :

K ∈ {11, 12}}.
The following two propositions are true:

(1) InstrSCMFSA
= InstrSCM ∪ {〈〈J, 〈c, f, b〉〉〉 : J ∈ {9, 10}} ∪ {〈〈K, 〈c1, f1〉〉〉 :

K ∈ {11, 12}}.
(2) InstrSCM ⊆ InstrSCMFSA

.
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Let us observe that InstrSCMFSA
is non empty.

Let I be an element of InstrSCMFSA
. The functor InsCode(I) yielding a

natural number is defined by:

(Def. 5) InsCode(I) = I1.

The following two propositions are true:

(3) For every element I of InstrSCMFSA
such that InsCode(I) ≤ 8 holds

I ∈ InstrSCM.

(4) 〈〈0, ε〉〉 ∈ InstrSCMFSA
.

The function OKSCMFSA
from � into { � , � ∗}∪{InstrSCMFSA

, Instr-LocSCMFSA
}

is defined by:

(Def. 6) OKSCMFSA
= ( � 7−→ � ∗)+·OKSCM+·(InstrSCM 7−→. InstrSCMFSA

) ·
(OKSCM

�
Instr-LocSCM).

One can prove the following propositions:

(5) OKSCMFSA
= ( � 7−→ � ∗)+·OKSCM+·(InstrSCM 7−→. InstrSCMFSA

) ·
(OKSCM

�
Instr-LocSCM).

(6) If x ∈ {9, 10}, then 〈〈x, 〈c, f, b〉〉〉 ∈ InstrSCMFSA
.

(7) If x ∈ {11, 12}, then 〈〈x, 〈c, f〉〉〉 ∈ InstrSCMFSA
.

(8) � = {0} ∪Data-LocSCMFSA
∪Data∗-LocSCMFSA

∪ Instr-LocSCMFSA
.

(9) OKSCMFSA
(0) = Instr-LocSCMFSA

.

(10) OKSCMFSA
(b) = � .

(11) OKSCMFSA
(a) = InstrSCMFSA

.

(12) OKSCMFSA
(f) = � ∗.

(13) Instr-LocSCMFSA
6= � and InstrSCMFSA

6= � and Instr-LocSCMFSA
6=

InstrSCMFSA
and Instr-LocSCMFSA

6= � ∗ and InstrSCMFSA
6= � ∗.

(14) For every integer i such that OKSCMFSA
(i) = Instr-LocSCMFSA

holds
i = 0.

(15) For every integer i such that OKSCMFSA
(i) = � holds i ∈

Data-LocSCMFSA
.

(16) For every integer i such that OKSCMFSA
(i) = InstrSCMFSA

holds i ∈
Instr-LocSCMFSA

.

(17) For every integer i such that OKSCMFSA
(i) = � ∗ holds i ∈

Data∗-LocSCMFSA
.

An SCMFSA-state is an element of
∏

(OKSCMFSA
).

Next we state two propositions:

(18) For every SCMFSA-state s and for every element I of InstrSCM holds
s

�
� +·(Instr-LocSCM 7−→ I) is a state SCM .

(19) For every SCMFSA-state s and for every state SCM s′ holds s+·s′+·s �

Instr-LocSCMFSA
is an SCMFSA-state.

In the sequel s is an SCMFSA-state.
Let s be an SCMFSA-state and let u be an element of Instr-LocSCMFSA

. The
functor ChgSCMFSA

(s, u) yields an SCMFSA-state and is defined as follows:
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(Def. 7) ChgSCMFSA
(s, u) = s+·(07−→. u).

Let s be an SCMFSA-state, let t be an element of Data-LocSCMFSA
, and let

u be an integer. The functor ChgSCMFSA
(s, t, u) yielding an SCMFSA-state is

defined as follows:

(Def. 8) ChgSCMFSA
(s, t, u) = s+·(t7−→. u).

Let s be an SCMFSA-state, let t be an element of Data∗-LocSCMFSA
, and let

u be a finite sequence of elements of � The functor ChgSCMFSA
(s, t, u) yielding

an SCMFSA-state is defined as follows:

(Def. 9) ChgSCMFSA
(s, t, u) = s+·(t7−→. u).

Let s be an SCMFSA-state and let a be an element of Data-LocSCMFSA
. Then

s(a) is an integer.
Let s be an SCMFSA-state and let a be an element of Data∗-LocSCMFSA

.
Then s(a) is a finite sequence of elements of � .

Let x be an element of InstrSCMFSA
. Let us assume that there exist c, f , b,

J such that x = 〈〈J, 〈c, f, b〉〉〉. The functor x int-addr1 yielding an element of
Data-LocSCMFSA

is defined by:

(Def. 10) There exist c, f , b such that 〈c, f, b〉 = x2 and x int-addr1 = c.

The functor x int-addr2 yielding an element of Data-LocSCMFSA
is defined as

follows:

(Def. 11) There exist c, f , b such that 〈c, f, b〉 = x2 and x int-addr2 = b.

The functor x coll-addr1 yields an element of Data∗-LocSCMFSA
and is defined

as follows:

(Def. 12) There exist c, f , b such that 〈c, f, b〉 = x2 and x coll-addr1 = f.

Let x be an element of InstrSCMFSA
. Let us assume that there exist c, f ,

J such that x = 〈〈J, 〈c, f〉〉〉. The functor x int-addr3 yielding an element of
Data-LocSCMFSA

is defined as follows:

(Def. 13) There exist c, f such that 〈c, f〉 = x2 and x int-addr3 = c.

The functor x coll-addr2 yields an element of Data∗-LocSCMFSA
and is defined

as follows:

(Def. 14) There exist c, f such that 〈c, f〉 = x2 and x coll-addr2 = f.

Let l be an element of Instr-LocSCMFSA
. The functor Next(l) yielding an

element of Instr-LocSCMFSA
is defined as follows:

(Def. 15) There exists an element L of Instr-LocSCM such that L = l and
Next(l) = Next(L).

Let s be an SCMFSA-state. The functor ICs yielding an element of
Instr-LocSCMFSA

is defined by:

(Def. 16) ICs = s(0).

Let x be an element of InstrSCMFSA
and let s be an SCMFSA-state. The

functor Exec-ResSCMFSA
(x, s) yielding an SCMFSA-state is defined by:

(Def. 17) (i) There exists an element x′ of InstrSCM and there exists a state SCM

s′ such that x = x′ and s′ = s
�

� +·(Instr-LocSCM 7−→ x′) and
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Exec-ResSCMFSA
(x, s) = s+·Exec-ResSCM(x′, s′)+·s �

Instr-LocSCMFSA
if

InsCode(x) ≤ 8,
(ii) there exists an integer i and there exists k such that k =
|s(x int-addr2)| and i = πks(x coll-addr1) and Exec-ResSCMFSA

(x, s) =
ChgSCMFSA

(ChgSCMFSA
(s, x int-addr1, i),Next(ICs)) if InsCode(x) = 9,

(iii) there exists a finite sequence f of elements of � and
there exists k such that k = |s(x int-addr2)| and f =
s(x coll-addr1) +· (k, s(x int-addr1)) and Exec-ResSCMFSA

(x, s) =
ChgSCMFSA

(ChgSCMFSA
(s, x coll-addr1, f),Next(ICs)) if InsCode(x) =

10,
(iv) Exec-ResSCMFSA

(x, s) = ChgSCMFSA
(ChgSCMFSA

(s, x int-addr3,
len s(x coll-addr2)),Next(ICs)) if InsCode(x) = 11,

(v) there exists a finite sequence f of elements of � and there exists k such
that k = |s(x int-addr3)| and f = k 7→ 0 and Exec-ResSCMFSA

(x, s) =
ChgSCMFSA

(ChgSCMFSA
(s, x coll-addr2, f),Next(ICs)) if InsCode(x) =

12,
(vi) Exec-ResSCMFSA

(x, s) = s, otherwise.

The function ExecSCMFSA
from InstrSCMFSA

into (
∏

(OKSCMFSA
))
∏

(OKSCMFSA
)

is defined by:

(Def. 18) For every element x of InstrSCMFSA
and for every SCMFSA-state y

holds (ExecSCMFSA
(x) qua element of (

∏
(OKSCMFSA

))
∏

(OKSCMFSA
))(y) =

Exec-ResSCMFSA
(x, y).

One can prove the following propositions:

(20) For every SCMFSA-state s and for every element u of Instr-LocSCMFSA

holds (ChgSCMFSA
(s, u))(0) = u.

(21) For every SCMFSA-state s and for every element u of Instr-LocSCMFSA

and for every element m1 of Data-LocSCMFSA
holds (ChgSCMFSA

(s, u))(m1) =
s(m1).

(22) For every SCMFSA-state s and for every element u of Instr-LocSCMFSA

and for every element p of Data∗-LocSCMFSA
holds (ChgSCMFSA

(s, u))(p) =
s(p).

(23) For every SCMFSA-state s and for all elements u, v of Instr-LocSCMFSA

holds (ChgSCMFSA
(s, u))(v) = s(v).

(24) For every SCMFSA-state s and for every element t of Data-LocSCMFSA

and for every integer u holds (ChgSCMFSA
(s, t, u))(0) = s(0).

(25) For every SCMFSA-state s and for every element t of Data-LocSCMFSA

and for every integer u holds (ChgSCMFSA
(s, t, u))(t) = u.

(26) Let s be an SCMFSA-state, and let t be an element of Data-LocSCMFSA
,

and let u be an integer, and let m1 be an element of Data-LocSCMFSA
. If

m1 6= t, then (ChgSCMFSA
(s, t, u))(m1) = s(m1).

(27) Let s be an SCMFSA-state, and let t be an element of Data-LocSCMFSA
,

and let u be an integer, and let f be an element of Data∗-LocSCMFSA
. Then

(ChgSCMFSA
(s, t, u))(f) = s(f).



an extension of SCM 511

(28) Let s be an SCMFSA-state, and let t be an element of Data-LocSCMFSA
,

and let u be an integer, and let v be an element of Instr-LocSCMFSA
. Then

(ChgSCMFSA
(s, t, u))(v) = s(v).

(29) Let s be an SCMFSA-state, and let t be an element of
Data∗-LocSCMFSA

, and let u be a finite sequence of elements of � . Then
(ChgSCMFSA

(s, t, u))(t) = u.

(30) Let s be an SCMFSA-state, and let t be an element of Data∗-LocSCMFSA
,

and let u be a finite sequence of elements of � , and let m1 be an element
of Data∗-LocSCMFSA

. If m1 6= t, then (ChgSCMFSA
(s, t, u))(m1) = s(m1).

(31) Let s be an SCMFSA-state, and let t be an element of Data∗-LocSCMFSA
,

and let u be a finite sequence of elements of � , and let a be an element of
Data-LocSCMFSA

. Then (ChgSCMFSA
(s, t, u))(a) = s(a).

(32) Let s be an SCMFSA-state, and let t be an element of Data∗-LocSCMFSA
,

and let u be a finite sequence of elements of � , and let v be an element of
Instr-LocSCMFSA

. Then (ChgSCMFSA
(s, t, u))(v) = s(v).
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Summary. First, we generalized skl function for a subset of topo-
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The notation and terminology used in this paper are introduced in the following
articles: [8], [11], [3], [1], [10], [5], [9], [7], [2], [6], [12], and [4].

1. The Component of a Subset in a Topological Space

In this paper G1 will denote a non empty topological space and V , A will
denote subsets of the carrier of G1.

Let G1 be a non empty topological structure and let V be a subset of the
carrier of G1. The functor Component(V ) yields a subset of the carrier of G1

and is defined by the condition (Def. 1).

(Def. 1) There exists a family F of subsets of G1 such that for every subset
A of the carrier of G1 holds A ∈ F iff A is connected and V ⊆ A and⋃
F = Component(V ).

One can prove the following propositions:

(1) If there exists A such that A is connected and V ⊆ A, then V ⊆
Component(V ).

(2) If it is not true that there exists A such that A is connected and V ⊆ A,
then Component(V ) = ∅.

(3) Component(∅(G1)) = the carrier of G1.
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(4) For every subset V of the carrier of G1 such that V is connected holds
Component(V ) 6= ∅.

(5) For every subset V of the carrier of G1 such that V is connected and
V 6= ∅ holds Component(V ) is connected.

(6) For all subsets V , C of the carrier of G1 such that V is connected and
C is connected holds if Component(V ) ⊆ C, then C = Component(V ).

(7) For every subset A of the carrier of G1 such that A is a component of
G1 holds Component(A) = A.

(8) Let A be a subset of the carrier of G1. Then A is a component of G1

if and only if there exists a subset V of the carrier of G1 such that V is
connected and V 6= ∅ and A = Component(V ).

(9) For every subset V of the carrier of G1 such that V is connected and
V 6= ∅ holds Component(V ) is a component of G1.

(10) If A is a component of G1 and V is connected and V ⊆ A and V 6= ∅,
then A = Component(V ).

(11) For every subset V of the carrier of G1 such that V is connected and
V 6= ∅ holds Component(Component(V )) = Component(V ).

(12) Let A, B be subsets of the carrier of G1. If A is connected and B is
connected and A 6= ∅ and A ⊆ B, then Component(A) = Component(B).

(13) For all subsets A, B of the carrier of G1 such that A is connected and
B is connected and A 6= ∅ and A ⊆ B holds B ⊆ Component(A).

(14) For all subsets A, B of the carrier of G1 such that A is connected and
A ∪B is connected and A 6= ∅ holds A ∪B ⊆ Component(A).

(15) For every subset A of the carrier of G1 and for every point p of G1 such
that A is connected and p ∈ A holds Component(p) = Component(A).

(16) Let A, B be subsets of the carrier of G1. Suppose A is connected and B
is connected and A ∩B 6= ∅. Then A ∪B ⊆ Component(A) and A ∪B ⊆
Component(B) and A ⊆ Component(B) and B ⊆ Component(A).

(17) For every subset A of the carrier of G1 such that A is connected and
A 6= ∅ holds A ⊆ Component(A).

(18) Let A, B be subsets of the carrier ofG1. SupposeA is a component ofG1

and B is connected and B 6= ∅ and A∩B = ∅. Then A∩Component(B) =
∅.

2. On Unions of Components

Let G1 be a non empty topological structure. A subset of the carrier of G1

is called a union of components of G1 if it satisfies the condition (Def. 2).

(Def. 2) There exists a family F of subsets of G1 such that for every subset B
of the carrier of G1 such that B ∈ F holds B is a component of G1 and
it =

⋃
F.
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The following propositions are true:

(19) ∅(G1) is a union of components of G1.

(20) Let A be a subset of the carrier of G1. If A = the carrier of G1, then A
is a union of components of G1.

(21) Let A be a subset of the carrier of G1 and let p be a point of G1. If
p ∈ A and A is a union of components of G1, then Component(p) ⊆ A.

(22) Let A, B be subsets of the carrier of G1. Suppose A is a union of
components of G1 and B is a union of components of G1. Then A ∪B is
a union of components of G1 and A ∩B is a union of components of G1

(23) Let F1 be a family of subsets of G1. Suppose that for every subset A of
the carrier of G1 such that A ∈ F1 holds A is a union of components of
G1. Then

⋃
F1 is a union of components of G1.

(24) Let F1 be a family of subsets of G1. Suppose that for every subset A of
the carrier of G1 such that A ∈ F1 holds A is a union of components of
G1. Then

⋂
F1 is a union of components of G1.

(25) Let A, B be subsets of the carrier of G1. Suppose A is a union of
components of G1 and B is a union of components of G1. Then A \ B is
a union of components of G1.

3. Operations Down and Up

Let us consider G1, let B be a subset of the carrier of G1, and let p be a point
of G1. Let us assume that p ∈ B. The functor Down(p,B) yielding a point of
G1

�
B is defined by:

(Def. 3) Down(p,B) = p.

Let us consider G1, let B be a subset of the carrier of G1, and let p be a
point of G1

�
B. Let us assume that B 6= ∅. The functor Up(p) yielding a point

of G1 is defined as follows:

(Def. 4) Up(p) = p.

Let us consider G1 and let V , B be subsets of the carrier of G1. Let us
assume that B 6= ∅. The functor Down(V,B) yields a subset of the carrier of
G1

�
B and is defined by:

(Def. 5) Down(V,B) = V ∩B.
Let us consider G1, let B be a subset of the carrier of G1, and let V be a

subset of the carrier of G1
�
B. Let us assume that B 6= ∅. The functor Up(V )

yielding a subset of the carrier of G1 is defined as follows:

(Def. 6) Up(V ) = V.

Let us consider G1, let B be a subset of the carrier of G1, and let p be a
point of G1. Let us assume that p ∈ B. The functor skl(p,B) yields a subset of
the carrier of G1 and is defined as follows:
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(Def. 7) For every point q of G1
�
B such that q = p holds skl(p,B) =

Component(q).

The following propositions are true:

(26) For every subset B of the carrier of G1 and for every point p of G1 such
that p ∈ B holds skl(p,B) 6= ∅.

(27) For every subset B of the carrier of G1 and for every point p of G1 such
that p ∈ B holds skl(p,B) = Component(Down(p,B)).

(28) For all subsets V , B of the carrier of G1 such that B 6= ∅ and V ⊆ B
holds Down(V,B) = V.

(29) For all subsets V , B of the carrier of G1 such that B 6= ∅ and V is open
holds Down(V,B) is open.

(30) For all subsets V , B of the carrier of G1 such that B 6= ∅ and V ⊆ B
holds Down(V,B) = V ∩B.

(31) Let B be a subset of the carrier of G1 and let V be a subset of the
carrier of G1

�
B.If B 6= ∅, then V = Up(V ) ∩B.

(32) For all subsets V , B of the carrier of G1 such that B 6= ∅ and V ⊆ B
holds Down(V,B) ⊆ V .

(33) Let B be a subset of the carrier of G1 and let V be a subset of the
carrier of G1

�
B.If B 6= ∅ and V ⊆ B, then Down(Up(V ), B) = V.

(34) Let V , B be subsets of the carrier of G1 and let W be a subset of the
carrier of G1

�
B.If V = W and V 6= ∅ and B 6= ∅ and W is connected,

then V is connected.

(35) For every subset B of the carrier of G1 and for every point p of G1 such
that p ∈ B holds skl(p,B) is connected.
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The articles [20], [26], [11], [1], [24], [27], [21], [2], [14], [3], [15], [7], [17], [8], [19],
[18], [10], [5], [9], [6], [25], [4], [12], [13], [22], [16], and [23] provide the notation
and terminology for this paper.

1. Preliminaries

One can prove the following propositions:

(1) Let N be a non empty set with non empty elements and let S be a
von Neumann definite realistic AMI over N . Then ICS /∈ the instruction
locations of S.

(2) Let N be a non empty set with non empty elements, and let S be a
definite AMI over N , and let s be a state of S, and let i be an instruction-
location of S. Then s(i) is an instruction of S.

(3) Let N be a non empty set with non empty elements, and let S be an
AMI over N , and let s be a state of S. Then the instruction locations of
S ⊆ dom s.

(4) Let N be a non empty set with non empty elements, and let S be a von
Neumann AMI over N , and let s be a state of S. Then ICs ∈ dom s.

(5) Let N be a non empty set with non empty elements, and let S be an
AMI over N , and let s be a state of S, and let l be an instruction-location
of S. Then l ∈ dom s.
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2. The SCMFSA Computer

The strict AMI SCMFSA over { � , � ∗} is defined by:

(Def. 1) SCMFSA = 〈 � , 0(∈ � ), Instr-LocSCMFSA
, � 13, 0(∈ � 13), InstrSCMFSA

,
OKSCMFSA

,ExecSCMFSA
〉.

We now state two propositions:

(6) (i) The instruction locations of SCMFSA 6= � ,
(ii) the instructions of SCMFSA 6= � ,

(iii) the instruction locations of SCMFSA 6= the instructions of SCMFSA,
(iv) the instruction locations of SCMFSA 6= � ∗, and
(v) the instructions of SCMFSA 6= � ∗.

(7) ICSCMFSA
= 0.

3. The Memory Structure

In the sequel k, k1, k2 denote natural numbers.
The subset Int-Locations of the objects of SCMFSA is defined by:

(Def. 2) Int-Locations = Data-LocSCMFSA
.

The subset FinSeq-Locations of the objects of SCMFSA is defined by:

(Def. 3) FinSeq-Locations = Data∗-LocSCMFSA
.

The following proposition is true

(8) The objects of SCMFSA = Int-Locations∪FinSeq-Locations∪
{ICSCMFSA

} ∪ the instruction locations of SCMFSA.

An object of SCMFSA is called an integer location if:

(Def. 4) It ∈ Data-LocSCMFSA
.

An object of SCMFSA is said to be a finite sequence location if:

(Def. 5) It ∈ Data∗-LocSCMFSA
.

In the sequel d1 denotes an integer location, f1 denotes a finite sequence
location, and x is arbitrary.

We now state several propositions:

(9) d1 ∈ Int-Locations .

(10) f1 ∈ FinSeq-Locations .

(11) If x ∈ Int-Locations, then x is an integer location.

(12) If x ∈ FinSeq-Locations, then x is a finite sequence location.

(13) Int-Locations misses the instruction locations of SCMFSA.

(14) FinSeq-Locations misses the instruction locations of SCMFSA.

(15) Int-Locations misses FinSeq-Locations.

Let us consider k. The functor intloc(k) yields an integer location and is
defined as follows:
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(Def. 6) intloc(k) = dk.

The functor insloc(k) yields an instruction-location of SCMFSA and is defined
by:

(Def. 7) insloc(k) = ik.

The functor fsloc(k) yields a finite sequence location and is defined as follows:

(Def. 8) fsloc(k) = −(k + 1).

One can prove the following propositions:

(16) For all k1, k2 such that k1 6= k2 holds intloc(k1) 6= intloc(k2).

(17) For all k1, k2 such that k1 6= k2 holds fsloc(k1) 6= fsloc(k2).

(18) For all k1, k2 such that k1 6= k2 holds insloc(k1) 6= insloc(k2).

(19) For every integer location d2 there exists a natural number i such that
d2 = intloc(i).

(20) For every finite sequence location f2 there exists a natural number i
such that f2 = fsloc(i).

(21) For every instruction-location i1 of SCMFSA there exists a natural num-
ber i such that i1 = insloc(i).

(22) Int-Locations is infinite.

(23) FinSeq-Locations is infinite.

(24) The instruction locations of SCMFSA is infinite.

(25) Every integer location is a data-location.

(26) For every integer location l holds ObjectKind(l) = � .
(27) For every finite sequence location l holds ObjectKind(l) = � ∗.
(28) For arbitrary x such that x ∈ Data-LocSCMFSA

holds x is an integer
location.

(29) For arbitrary x such that x ∈ Data∗-LocSCMFSA
holds x is a finite

sequence location.

(30) For arbitrary x such that x ∈ Instr-LocSCMFSA
holds x is an instruction-

location of SCMFSA.

Let l1 be an instruction-location of SCMFSA. The functor Next(l1) yields
an instruction-location of SCMFSA and is defined by:

(Def. 9) There exists an element m1 of Instr-LocSCMFSA
such that m1 = l1 and

Next(l1) = Next(m1).

Next we state two propositions:

(31) For every instruction-location l1 of SCMFSA and for every element m1

of Instr-LocSCMFSA
such that m1 = l1 holds Next(m1) = Next(l1).

(32) Next(insloc(k)) = insloc(k + 1).

For simplicity we adopt the following convention: l2, l3 are instructions-
locations of SCMFSA, L1 is an instruction-location of SCM, i is an instruction
of SCMFSA, I is an instruction of SCM, l is an instruction-location of SCMFSA,
f , f1, g are finite sequence locations, A, B are data-locations, and a, b, c, d1,
d3 are integer locations.



522 andrzej trybulec et al.

We now state the proposition

(33) If l2 = L1, then Next(l2) = Next(L1).

4. The Instruction Structure

Let I be an instruction of SCMFSA. The functor InsCode(I) yielding a
natural number is defined as follows:

(Def. 10) InsCode(I) = I1.

The following propositions are true:

(34) For every instruction I of SCMFSA such that InsCode(I) ≤ 8 holds I
is an instruction of SCM.

(35) For every instruction I of SCMFSA holds InsCode(I) ≤ 12.

(36) For every instruction i of SCMFSA such that InsCode(i) = 0 holds
i = haltSCMFSA

.

(37) For every instruction i of SCMFSA and for every instruction I of SCM
such that i = I holds InsCode(i) = InsCode(I).

(38) Every instruction of SCM is an instruction of SCMFSA.

Let us consider a, b. The functor a:=b yields an instruction of SCMFSA and
is defined as follows:

(Def. 11) There exist A, B such that a = A and b = B and a:=b = A:=B.

The functor AddTo(a, b) yields an instruction of SCMFSA and is defined by:

(Def. 12) There exist A, B such that a = A and b = B and AddTo(a, b) =
AddTo(A,B).

The functor SubFrom(a, b) yields an instruction of SCMFSA and is defined as
follows:

(Def. 13) There exist A, B such that a = A and b = B and SubFrom(a, b) =
SubFrom(A,B).

The functor MultBy(a, b) yields an instruction of SCMFSA and is defined as
follows:

(Def. 14) There exist A, B such that a = A and b = B and MultBy(a, b) =
MultBy(A,B).

The functor Divide(a, b) yielding an instruction of SCMFSA is defined as follows:

(Def. 15) There exist A, B such that a = A and b = B and Divide(a, b) =
Divide(A,B).

We now state the proposition

(39) The instruction locations of SCM = the instruction locations of
SCMFSA.

Let us consider l2. The functor goto l2 yields an instruction of SCMFSA and
is defined as follows:

(Def. 16) There exists L1 such that l2 = L1 and goto l2 = goto L1.



the SCMFSA computer 523

Let us consider a. The functor if a = 0 goto l2 yields an instruction of
SCMFSA and is defined by:

(Def. 17) There exist A, L1 such that a = A and l2 = L1 and if a = 0 goto l2 =
if A = 0 goto L1.

The functor if a > 0 goto l2 yields an instruction of SCMFSA and is defined
as follows:

(Def. 18) There exist A, L1 such that a = A and l2 = L1 and if a > 0 goto l2 =
if A > 0 goto L1.

Let c, i be integer locations and let a be a finite sequence location. The
functor c:=ai yielding an instruction of SCMFSA is defined by:

(Def. 19) c:=ai = 〈〈9, 〈c, a, i〉〉〉.
The functor ai:=c yielding an instruction of SCMFSA is defined by:

(Def. 20) ai:=c = 〈〈10, 〈c, a, i〉〉〉.
Let i be an integer location and let a be a finite sequence location. The

functor i:=lena yielding an instruction of SCMFSA is defined as follows:

(Def. 21) i:=lena = 〈〈11, 〈i, a〉〉〉.
The functor a:=〈0, . . . , 0︸ ︷︷ ︸

i

〉 yields an instruction of SCMFSA and is defined as

follows:

(Def. 22) a:=〈0, . . . , 0︸ ︷︷ ︸
i

〉 = 〈〈12, 〈i, a〉〉〉.

We now state a number of propositions:

(40) haltSCM = haltSCMFSA
.

(41) InsCode(haltSCMFSA
) = 0.

(42) InsCode(a:=b) = 1.

(43) InsCode(AddTo(a, b)) = 2.

(44) InsCode(SubFrom(a, b)) = 3.

(45) InsCode(MultBy(a, b)) = 4.

(46) InsCode(Divide(a, b)) = 5.

(47) InsCode(goto l3) = 6.

(48) InsCode(if a = 0 goto l3) = 7.

(49) InsCode(if a > 0 goto l3) = 8.

(50) InsCode(c:=fa) = 9.

(51) InsCode(fa:=c) = 10.

(52) InsCode(a:=lenf1) = 11.

(53) InsCode(f1:=〈0, . . . , 0︸ ︷︷ ︸
a

〉) = 12.

(54) For every instruction i2 of SCMFSA such that InsCode(i2) = 1 there
exist d1, d3 such that i2 = d1:=d3.
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(55) For every instruction i2 of SCMFSA such that InsCode(i2) = 2 there
exist d1, d3 such that i2 = AddTo(d1, d3).

(56) For every instruction i2 of SCMFSA such that InsCode(i2) = 3 there
exist d1, d3 such that i2 = SubFrom(d1, d3).

(57) For every instruction i2 of SCMFSA such that InsCode(i2) = 4 there
exist d1, d3 such that i2 = MultBy(d1, d3).

(58) For every instruction i2 of SCMFSA such that InsCode(i2) = 5 there
exist d1, d3 such that i2 = Divide(d1, d3).

(59) For every instruction i2 of SCMFSA such that InsCode(i2) = 6 there
exists l3 such that i2 = goto l3.

(60) For every instruction i2 of SCMFSA such that InsCode(i2) = 7 there
exist l3, d1 such that i2 = if d1 = 0 goto l3.

(61) For every instruction i2 of SCMFSA such that InsCode(i2) = 8 there
exist l3, d1 such that i2 = if d1 > 0 goto l3.

(62) For every instruction i2 of SCMFSA such that InsCode(i2) = 9 there
exist a, b, f1 such that i2 = b:=f1a.

(63) For every instruction i2 of SCMFSA such that InsCode(i2) = 10 there
exist a, b, f1 such that i2 = f1a:=b.

(64) For every instruction i2 of SCMFSA such that InsCode(i2) = 11 there
exist a, f1 such that i2 = a:=lenf1.

(65) For every instruction i2 of SCMFSA such that InsCode(i2) = 12 there
exist a, f1 such that i2 = f1:=〈0, . . . , 0︸ ︷︷ ︸

a

〉.

5. Relationship to SCM

In the sequel S denotes a state of SCM and s, s1 denote states of SCMFSA.
We now state a number of propositions:

(66) For every state s of SCMFSA and for every integer location d holds
d ∈ dom s.

(67) f ∈ dom s.

(68) f /∈ domS.

(69) For every state s of SCMFSA holds Int-Locations ⊆ dom s.

(70) For every state s of SCMFSA holds FinSeq-Locations ⊆ dom s.

(71) For every state s of SCMFSA holds dom(s
�

Int-Locations) =
Int-Locations .

(72) For every state s of SCMFSA holds dom(s
�

FinSeq-Locations) =
FinSeq-Locations .

(73) For every state s of SCMFSA and for every instruction i of SCM holds
s

�
� +·(Instr-LocSCM 7−→ i) is a state of SCM.
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(74) For every state s of SCMFSA and for every state s′ of SCM holds
s+·s′+·s �

Instr-LocSCMFSA
is a state of SCMFSA.

(75) Let i be an instruction of SCM, and let i3 be an instruction of
SCMFSA, and let s be a state of SCM, and let s2 be a state of
SCMFSA. If i = i3 and s = s2

�
� +·(Instr-LocSCM 7−→ i), then

Exec(i3, s2) = s2+·Exec(i, s)+·s2
�
Instr-LocSCMFSA

.

Let s be a state of SCMFSA and let d be an integer location. Then s(d) is
an integer.

Let s be a state of SCMFSA and let d be a finite sequence location. Then
s(d) is a finite sequence of elements of � .

Next we state several propositions:

(76) If S = s
�

� +·(Instr-LocSCM 7−→ I), then s = s+·S+·s �
Instr-LocSCMFSA

.

(77) For every element I of InstrSCMFSA
such that I = i and for

every SCMFSA-state S such that S = s holds Exec(i, s) =
Exec-ResSCMFSA

(I, S).

(78) If s1 = s+·S+·s �
Instr-LocSCMFSA

, then s1(ICSCMFSA
) = S(ICSCM).

(79) If s1 = s+·S+·s �
Instr-LocSCMFSA

and A = a, then S(A) = s1(a).

(80) If S = s
�

� +·(Instr-LocSCM 7−→ I) and A = a, then S(A) = s(a).

Let us note that SCMFSA is halting realistic von Neumann data-oriented
definite and steady-programmed.

The following propositions are true:

(81) For every integer location d2 holds d2 6= ICSCMFSA
.

(82) For every finite sequence location d2 holds d2 6= ICSCMFSA
.

(83) For every integer location i1 and for every finite sequence location d2

holds i1 6= d2.

(84) For every instruction-location i1 of SCMFSA and for every integer lo-
cation d2 holds i1 6= d2.

(85) For every instruction-location i1 of SCMFSA and for every finite se-
quence location d2 holds i1 6= d2.

(86) Let s1, s3 be states of SCMFSA. Suppose that
(i) IC(s1) = IC(s3),

(ii) for every integer location a holds s1(a) = s3(a),
(iii) for every finite sequence location f holds s1(f) = s3(f), and
(iv) for every instruction-location i of SCMFSA holds s1(i) = s3(i).

Then s1 = s3.

(87) If S = s, then ICs = ICS .

(88) If S = s
�

� +·(Instr-LocSCM 7−→ I), then ICs = ICS.

6. Users Guide

One can prove the following propositions:
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(89) (Exec(a:=b, s))(ICSCMFSA
) = Next(ICs) and (Exec(a:=b, s))(a) =

s(b) and for every c such that c 6= a holds (Exec(a:=b, s))(c) = s(c)
and for every f holds (Exec(a:=b, s))(f) = s(f).

(90) (Exec(AddTo(a, b), s))(ICSCMFSA
) = Next(ICs) and (Exec(AddTo(a, b),

s))(a) = s(a) + s(b) and for every c such that c 6= a
holds (Exec(AddTo(a, b), s))(c) = s(c) and for every f holds
(Exec(AddTo(a, b), s))(f) = s(f).

(91) (Exec(SubFrom(a, b), s))(ICSCMFSA
) = Next(ICs) and

(Exec(SubFrom(a, b), s))(a) = s(a) − s(b) and for every c such that
c 6= a holds (Exec(SubFrom(a, b), s))(c) = s(c) and for every f holds
(Exec(SubFrom(a, b), s))(f) = s(f).

(92) (Exec(MultBy(a, b), s))(ICSCMFSA
) = Next(ICs) and (Exec(MultBy(a,

b), s))(a) = s(a) · s(b) and for every c such that c 6= a
holds (Exec(MultBy(a, b), s))(c) = s(c) and for every f holds
(Exec(MultBy(a, b), s))(f) = s(f).

(93) Suppose a 6= b. Then
(i) (Exec(Divide(a, b), s))(ICSCMFSA

) = Next(ICs),
(ii) (Exec(Divide(a, b), s))(a) = s(a)÷ s(b),

(iii) (Exec(Divide(a, b), s))(b) = s(a) mod s(b),
(iv) for every c such that c 6= a and c 6= b holds (Exec(Divide(a, b), s))(c) =

s(c), and
(v) for every f holds (Exec(Divide(a, b), s))(f) = s(f).

(94) (Exec(Divide(a, a), s))(ICSCMFSA
) = Next(ICs) and (Exec(Divide(a,

a), s))(a) = s(a) mod s(a) and for every c such that c 6=
a holds (Exec(Divide(a, a), s))(c) = s(c) and for every f holds
(Exec(Divide(a, a), s))(f) = s(f).

(95) (Exec(goto l, s))(ICSCMFSA
) = l and for every c holds (Exec(goto l, s))

(c) = s(c) and for every f holds (Exec(goto l, s))(f) = s(f).

(96) (i) If s(a) = 0, then (Exec(if a = 0 goto l, s))(ICSCMFSA
) = l,

(ii) if s(a) 6= 0, then (Exec(if a = 0 goto l, s))(ICSCMFSA
) = Next(ICs),

(iii) for every c holds (Exec(if a = 0 goto l, s))(c) = s(c), and
(iv) for every f holds (Exec(if a = 0 goto l, s))(f) = s(f).

(97) (i) If s(a) > 0, then (Exec(if a > 0 goto l, s))(ICSCMFSA
) = l,

(ii) if s(a) ≤ 0, then (Exec(if a > 0 goto l, s))(ICSCMFSA
) = Next(ICs),

(iii) for every c holds (Exec(if a > 0 goto l, s))(c) = s(c), and
(iv) for every f holds (Exec(if a > 0 goto l, s))(f) = s(f).

(98) (i) (Exec(c:=ga, s))(ICSCMFSA
) = Next(ICs),

(ii) there exists k such that k = |s(a)| and (Exec(c:=ga, s))(c) = πks(g),
(iii) for every b such that b 6= c holds (Exec(c:=ga, s))(b) = s(b), and
(iv) for every f holds (Exec(c:=ga, s))(f) = s(f).

(99) (i) (Exec(ga:=c, s))(ICSCMFSA
) = Next(ICs),

(ii) there exists k such that k = |s(a)| and (Exec(ga:=c, s))(g) = s(g) +·
(k, s(c)),



the SCMFSA computer 527

(iii) for every b holds (Exec(ga:=c, s))(b) = s(b), and
(iv) for every f such that f 6= g holds (Exec(ga:=c, s))(f) = s(f).

(100) (Exec(c:=leng, s))(ICSCMFSA
) = Next(ICs) and (Exec(c:=leng, s))(c) =

len s(g) and for every b such that b 6= c holds (Exec(c:=leng, s))(b) = s(b)
and for every f holds (Exec(c:=leng, s))(f) = s(f).

(101) (i) (Exec(g:=〈0, . . . , 0︸ ︷︷ ︸
c

〉, s))(ICSCMFSA
) = Next(ICs),

(ii) there exists k such that k = |s(c)| and (Exec(g:=〈0, . . . , 0︸ ︷︷ ︸
c

〉, s))(g) =

k 7→ 0,
(iii) for every b holds (Exec(g:=〈0, . . . , 0︸ ︷︷ ︸

c

〉, s))(b) = s(b), and

(iv) for every f such that f 6= g holds (Exec(g:=〈0, . . . , 0︸ ︷︷ ︸
c

〉, s))(f) = s(f).
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this paper.

1. Preliminaries

For simplicity we follow a convention: I is a set, i, x are arbitrary, A, M are
many sorted sets indexed by I, f is a function, and F is a many sorted function
of I.

The scheme MSSUBSET concerns a set A, a non-empty many sorted set B
indexed by A, a many sorted set C indexed by A, and a unary predicate P, and
states that:

If for every many sorted set X indexed by A holds X ∈ B iff X ∈ C
and P[X], then B ⊆ C

for all values of the parameters.
The following two propositions are true:

(1) Let X be a non empty set and let x, y be arbitrary. If x ⊆ y, then
{t : t ranges over elements of X, y ⊆ t} ⊆ {z : z ranges over elements of
X, x ⊆ z}.

(2) If there exists A such that A ∈M, then M is non-empty.

Let us consider I, F , A. Then F � A is a many sorted set indexed by I.
Let us consider I, let A, B be non-empty many sorted sets indexed by I,

let F be a many sorted function from A into B, and let X be an element of A.
Then F � X is an element of B.

One can prove the following propositions:
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(3) Let A, X be many sorted sets indexed by I, and let B be a non-empty
many sorted set indexed by I and let F be a many sorted function from
A into B. If X ∈ A, then F � X ∈ B.

(4) Let F , G be many sorted functions of I and let A be a many sorted set
indexed by I. If A ∈ domκG(κ), then F � (G � A) = (F ◦G) � A.

(5) If F is “1-1”, then for all many sorted sets A, B indexed by I such that
A ∈ domκ F (κ) and B ∈ domκ F (κ) and F � A = F � B holds A = B.

(6) Suppose domκ F (κ) is non-empty and for all many sorted sets A, B
indexed by I such that A ∈ domκ F (κ) and B ∈ domκ F (κ) and F �
A = F � B holds A = B. Then F is “1-1”.

(7) Let A, B be non-empty many sorted sets indexed by I and let F , G be
many sorted functions from A into B. If for every M such that M ∈ A
holds F � M = G � M, then F = G.

Let us consider I, M . One can verify that there exists an element of 2M

which is empty yielding and locally-finite.

2. Properties of Many Sorted Closure Operators

Let us consider I, M .

(Def. 1) A many sorted function from 2M into 2M is called a set many sorted
operation in M .

Let us consider I, M , let O be a set many sorted operation in M , and let X
be an element of 2M . Then O � X is an element of 2M .

Let us consider I, M and let I1 be a set many sorted operation in M . We
say that I1 is reflexive if and only if:

(Def. 2) For every element X of 2M holds X ⊆ I1 � X.

We say that I1 is monotonic if and only if:

(Def. 3) For all elements X, Y of 2M such that X ⊆ Y holds I1 � X ⊆ I1 � Y.

We say that I1 is idempotent if and only if:

(Def. 4) For every element X of 2M holds I1 � X = I1 � (I1 � X).

We say that I1 is topological if and only if:

(Def. 5) For all elements X, Y of 2M holds I1 � (X ∪ Y ) = I1 � X ∪ I1 � Y.

One can prove the following propositions:

(8) For every non-empty many sorted set M indexed by I and for every
element X of M holds X = idM � X.

(9) Let M be a non-empty many sorted set indexed by I and let X, Y be
elements of M . If X ⊆ Y, then idM � X ⊆ idM � Y.

(10) Let M be a non-empty many sorted set indexed by I and let X, Y be
elements of M . If X ∪ Y is an element of M , then idM � (X ∪ Y ) =
idM � X ∪ idM � Y.
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(11) Let X be an element of 2M and let i, x be arbitrary. Suppose i ∈ I
and x ∈ (id2M � X)(i). Then there exists a locally-finite element Y of
2M such that Y ⊆ X and x ∈ (id2M � Y )(i).

Let us consider I, M . Note that there exists a set many sorted operation in
M which is reflexive monotonic idempotent and topological.

Next we state four propositions:

(12) id2A is a reflexive set many sorted operation in A.

(13) id2A is a monotonic set many sorted operation in A.

(14) id2A is an idempotent set many sorted operation in A.

(15) id2A is a topological set many sorted operation in A.

In the sequel P , R will denote set many sorted operations in M and E, T
will denote elements of 2M .

One can prove the following three propositions:

(16) If E = M and P is reflexive, then E = P � E.

(17) If P is reflexive and for every element X of 2M holds P � X ⊆ X, then
P is idempotent.

(18) If P is monotonic, then P � (E ∩ T ) ⊆ P � E ∩ P � T.

Let us consider I, M . Observe that every set many sorted operation in M
which is topological is also monotonic.

One can prove the following proposition

(19) If P is topological, then P � E \ P � T ⊆ P � (E \ T ).

Let us consider I, M , R, P . Then P ◦ R is a set many sorted operation in
M .

One can prove the following propositions:

(20) If P is reflexive and R is reflexive, then P ◦R is reflexive.

(21) If P is monotonic and R is monotonic, then P ◦ R is monotonic.

(22) If P is idempotent and R is idempotent and P ◦R = R ◦ P, then P ◦R
is idempotent.

(23) If P is topological and R is topological, then P ◦ R is topological.

(24) If P is reflexive and i ∈ I and f = P (i), then for every element x of
2M(i) holds x ⊆ f(x).

(25) If P is monotonic and i ∈ I and f = P (i), then for all elements x, y of
2M(i) such that x ⊆ y holds f(x) ⊆ f(y).

(26) If P is idempotent and i ∈ I and f = P (i), then for every element x of
2M(i) holds f(x) = f(f(x)).

(27) If P is topological and i ∈ I and f = P (i), then for all elements x, y of
2M(i) holds f(x ∪ y) = f(x) ∪ f(y).
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3. On the Many Sorted Closure Operator and the Many Sorted
Closure System

In the sequel S will be a 1-sorted structure.
Let us consider S. We consider many sorted closure system structures over

S as extensions of many-sorted structure over S as systems
〈 sorts, a family 〉,

where the sorts constitute a many sorted set indexed by the carrier of S and the
family is a subset family of the sorts.

In the sequel M1 will be a many-sorted structure over S.
Let us consider S and let I1 be a many sorted closure system structure over

S. We say that I1 is additive if and only if:

(Def. 6) The family of I1 is additive.

We say that I1 is absolutely-additive if and only if:

(Def. 7) The family of I1 is absolutely-additive.

We say that I1 is multiplicative if and only if:

(Def. 8) The family of I1 is multiplicative.

We say that I1 is absolutely-multiplicative if and only if:

(Def. 9) The family of I1 is absolutely-multiplicative.

We say that I1 is properly upper bound if and only if:

(Def. 10) The family of I1 is properly upper bound.

We say that I1 is properly lower bound if and only if:

(Def. 11) The family of I1 is properly lower bound.

Let us consider S, M1. The functor MSFull(M1) yields a many sorted closure
system structure over S and is defined as follows:

(Def. 12) MSFull(M1) = 〈the sorts of M1, 2the sorts of M1〉.
Let us consider S, M1. One can check that MSFull(M1) is strict addi-

tive absolutely-additive multiplicative absolutely-multiplicative properly upper
bound and properly lower bound.

Let us consider S and let M1 be a non-empty many-sorted structure over S.
One can check that MSFull(M1) is non-empty.

Let us consider S. Observe that there exists a many sorted closure system
structure over S which is strict non-empty additive absolutely-additive mul-
tiplicative absolutely-multiplicative properly upper bound and properly lower
bound.

Let us consider S and let C1 be an additive many sorted closure system
structure over S. Note that the family of C1 is additive.

Let us consider S and let C1 be an absolutely-additive many sorted closure
system structure over S. Observe that the family of C1 is absolutely-additive.

Let us consider S and let C1 be a multiplicative many sorted closure system
structure over S. One can verify that the family of C1 is multiplicative.
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Let us consider S and let C1 be an absolutely-multiplicative many sorted clo-
sure system structure over S. One can check that the family of C1 is absolutely-
multiplicative.

Let us consider S and let C1 be a properly upper bound many sorted closure
system structure over S. One can check that the family of C1 is properly upper
bound.

Let us consider S and let C1 be a properly lower bound many sorted closure
system structure over S. Note that the family of C1 is properly lower bound.

Let us consider S, let M be a non-empty many sorted set indexed by the
carrier of S, and let F be a subset family of M . Observe that 〈M,F 〉 is non-
empty.

Let us consider S, M1 and let F be an additive subset family of the sorts of
M1. Observe that 〈the sorts of M1, F 〉 is additive.

Let us consider S, M1 and let F be an absolutely-additive subset family of
the sorts of M1. One can check that 〈the sorts of M1, F 〉 is absolutely-additive.

Let us consider S, M1 and let F be a multiplicative subset family of the sorts
of M1. Note that 〈the sorts of M1, F 〉 is multiplicative.

Let us consider S, M1 and let F be an absolutely-multiplicative subset family
of the sorts of M1. Observe that 〈the sorts of M1, F 〉 is absolutely-multiplicative.

Let us consider S, M1 and let F be a properly upper bound subset family
of the sorts of M1. One can verify that 〈the sorts of M1, F 〉 is properly upper
bound.

Let us consider S, M1 and let F be a properly lower bound subset family of
the sorts of M1. Observe that 〈the sorts of M1, F 〉 is properly lower bound.

Let us consider S. Observe that every many sorted closure system structure
over S which is absolutely-additive is also additive.

Let us consider S. One can check that every many sorted closure system
structure over S which is absolutely-multiplicative is also multiplicative.

Let us consider S. Observe that every many sorted closure system structure
over S which is absolutely-multiplicative is also properly upper bound.

Let us consider S. One can verify that every many sorted closure system
structure over S which is absolutely-additive is also properly lower bound.

Let us consider S. A many sorted closure system of S is an absolutely-
multiplicative many sorted closure system structure over S.

Let us consider I, M . A many sorted closure operator of M is a reflexive
monotonic idempotent set many sorted operation in M .

Let us consider I, M and let F be a many sorted function from M into M .
The functor FixPoints(F ) yielding a many sorted subset of M is defined by:

(Def. 13) For every i such that i ∈ I holds x ∈ (FixPoints(F ))(i) iff there exists
a function f such that f = F (i) and x ∈ dom f and f(x) = x.

Let us consider I, let M be an empty yielding many sorted set indexed by
I, and let F be a many sorted function from M into M . One can verify that
FixPoints(F ) is empty yielding.

Next we state a number of propositions:



534 artur korni lowicz

(28) For every many sorted function F from M into M holds A ∈ M and
F � A = A iff A ∈ FixPoints(F ).

(29) FixPoints(idA) = A.

(30) Let A be a many sorted set indexed by the carrier of S, and let J be a
reflexive monotonic set many sorted operation in A, and let D be a subset
family of A. If D = FixPoints(J), then 〈A,D〉 is a many sorted closure
system of S.

(31) Let D be a properly upper bound subset family of M and let X be an
element of 2M . Then there exists a non-empty subset family S1 of M
such that for every many sorted set Y indexed by I holds Y ∈ S1 if and
only if the following conditions are satisfied:

(i) Y ∈ D, and

(ii) X ⊆ Y.
(32) Let D be a properly upper bound subset family of M , and let X be an

element of 2M , and let S1 be a non-empty subset family of M . Suppose
that for every many sorted set Y indexed by I holds Y ∈ S1 iff Y ∈ D
and X ⊆ Y. Let i be arbitrary and let D1 be a non empty set. If i ∈ I and
D1 = D(i), then S1(i) = {z : z ranges over elements of D1, X(i) ⊆ z}.

(33) Let D be a properly upper bound subset family of M . Then there
exists a set many sorted operation J in M such that for every element X
of 2M and for every non-empty subset family S1 of M if for every many
sorted set Y indexed by I holds Y ∈ S1 iff Y ∈ D and X ⊆ Y, then
J � X =

⋂
S1.

(34) Let D be a properly upper bound subset family of M , and let A be an
element of 2M , and let J be a set many sorted operation in M . Suppose
that

(i) A ∈ D, and

(ii) for every element X of 2M and for every non-empty subset family S1

of M such that for every many sorted set Y indexed by I holds Y ∈ S1

iff Y ∈ D and X ⊆ Y holds J � X =
⋂
S1.

Then J � A = A.

(35) Let D be an absolutely-multiplicative subset family of M , and let A
be an element of 2M , and let J be a set many sorted operation in M .
Suppose that

(i) J � A = A, and

(ii) for every element X of 2M and for every non-empty subset family S1

of M such that for every many sorted set Y indexed by I holds Y ∈ S1

iff Y ∈ D and X ⊆ Y holds J � X =
⋂
S1.

Then A ∈ D.
(36) Let D be a properly upper bound subset family of M and let J be a

set many sorted operation in M . Suppose that for every element X of
2M and for every non-empty subset family S1 of M such that for every
many sorted set Y indexed by I holds Y ∈ S1 iff Y ∈ D and X ⊆ Y holds
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J � X =
⋂
S1. Then J is reflexive and monotonic.

(37) Let D be an absolutely-multiplicative subset family of M and let J be
a set many sorted operation in M . Suppose that for every element X of
2M and for every non-empty subset family S1 of M such that for every
many sorted set Y indexed by I holds Y ∈ S1 iff Y ∈ D and X ⊆ Y holds
J � X =

⋂
S1. Then J is idempotent.

(38) Let D be a many sorted closure system of S and let J be a set many
sorted operation in the sorts of D. Suppose that for every element X of
2the sorts of D and for every non-empty subset family S1 of the sorts of D
such that for every many sorted set Y indexed by the carrier of S holds
Y ∈ S1 iff Y ∈ the family of D and X ⊆ Y holds J � X =

⋂
S1. Then J

is a many sorted closure operator of the sorts of D.

Let us consider S, let A be a many sorted set indexed by the carrier of S, and
let C be a many sorted closure operator of A. The functor ClSys(C) yielding a
many sorted closure system of S is defined as follows:

(Def. 14) There exists a subset family D of A such that D = FixPoints(C) and
ClSys(C) = 〈A,D〉.

Let us consider S, let A be a many sorted set indexed by the carrier of S,
and let C be a many sorted closure operator of A. One can verify that ClSys(C)
is strict.

Let us consider S, let A be a non-empty many sorted set indexed by the
carrier of S, and let C be a many sorted closure operator of A. Note that
ClSys(C) is non-empty.

Let us consider S and let D be a many sorted closure system of S. The
functor ClOp(D) yielding a many sorted closure operator of the sorts of D is
defined by the condition (Def. 15).

(Def. 15) Let X be an element of 2the sorts of D and let S1 be a non-empty subset
family of the sorts ofD. Suppose that for every many sorted set Y indexed
by the carrier of S holds Y ∈ S1 iff Y ∈ the family of D and X ⊆ Y. Then
(ClOp(D)) � X =

⋂
S1.

The following two propositions are true:

(39) Let A be a many sorted set indexed by the carrier of S and let J be a
many sorted closure operator of A. Then ClOp(ClSys(J)) = J.

(40) For every many sorted closure system D of S holds ClSys(ClOp(D)) =
the many sorted closure system structure of D.
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Summary. The properties of computations in SCMFSA are in-
vestigated.

MML Identifier: SCMFSA 3.

The notation and terminology used in this paper have been introduced in the
following articles: [23], [29], [2], [22], [13], [18], [21], [30], [7], [8], [9], [27], [14],
[1], [10], [19], [5], [12], [3], [6], [28], [11], [15], [16], [24], [20], [17], [25], [4], and
[26].

1. Preliminaries

One can prove the following propositions:

(1) ICSCMFSA
/∈ Int-Locations .

(2) ICSCMFSA
/∈ FinSeq-Locations .

(3) Let i be an instruction of SCMFSA and let I be an instruction of SCM.
Suppose i = I. Let s be a state of SCMFSA and let S be a state of SCM.
Suppose S = s

�
(the objects of SCM)+·((the instruction locations of

SCM) 7−→ (I)). Then Exec(i, s) = s+·Exec(I, S)+·s �
(the instruction

locations of SCMFSA).

(4) Let s1, s2 be states of SCMFSA. Suppose s1
�
(Int-Locations∪

FinSeq-Locations∪{ICSCMFSA
}) = s2

�
(Int-Locations∪FinSeq-Locations

∪{ICSCMFSA
}). Let l be an instruction of SCMFSA. Then Exec(l, s1)

�

(Int-Locations∪FinSeq-Locations∪{ICSCMFSA
}) =

Exec(l, s2)
�
(Int-Locations∪FinSeq-Locations∪{ICSCMFSA

}).
(5) Let N be a non empty set with non empty elements, and let S be a

steady-programmed AMI over N , and let i be an instruction of S, and let s
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be a state of S. Then Exec(i, s)
�
(the instruction locations of S) = s

�
(the

instruction locations of S).

2. Finite partial states of SCMFSA

One can prove the following two propositions:

(6) For every finite partial state p of SCMFSA holds DataPart(p) = p
�

(Int-Locations∪FinSeq-Locations).

(7) For every finite partial state p of SCMFSA holds p is data-only iff
dom p ⊆ Int-Locations∪FinSeq-Locations .

Let us observe that there exists a finite partial state of SCMFSA which is
data-only.

We now state two propositions:

(8) For every finite partial state p of SCMFSA holds dom DataPart(p) ⊆
Int-Locations∪FinSeq-Locations .

(9) For every finite partial state p of SCMFSA holds dom ProgramPart(p) ⊆
the instruction locations of SCMFSA.

Let I1 be a partial function from FinPartSt(SCMFSA) to FinPartSt(SCMFSA).
We say that I1 is data-only if and only if the condition (Def. 1) is satisfied.

(Def. 1) Let p be a finite partial state of SCMFSA. Suppose p ∈ dom I1. Then
p is data-only and for every finite partial state q of SCMFSA such that
q = I1(p) holds q is data-only.

One can verify that there exists a partial function from FinPartSt(SCMFSA)
to FinPartSt(SCMFSA) which is data-only.

One can prove the following four propositions:

(10) Let i be an instruction of SCMFSA, and let s be a state of SCMFSA,
and let p be a programmed finite partial state of SCMFSA. Then
Exec(i, s+·p) = Exec(i, s)+·p.

(11) Let s be a state of SCMFSA, and let i1 be an instruction-location
of SCMFSA, and let a be an integer location. Then s(a) =
(s+· Start-At(i1))(a).

(12) Let s be a state of SCMFSA, and let i1 be an instruction-location
of SCMFSA, and let a be a finite sequence location. Then s(a) =
(s+· Start-At(i1))(a).

(13) For all states s, t of SCMFSA holds s+·t �
(Int-Locations∪

FinSeq-Locations) is a state of SCMFSA.
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3. Autonomic finite partial states of SCMFSA

Let l1 be an integer location and let a be an integer. Then l1 7−→. a is a finite
partial state of SCMFSA.

The following proposition is true

(14) For every autonomic finite partial state p of SCMFSA such that
DataPart(p) 6= ∅ holds ICSCMFSA

∈ dom p.

Let us observe that there exists a finite partial state of SCMFSA which is
autonomic and non programmed.

We now state a number of propositions:

(15) For every autonomic non programmed finite partial state p of SCMFSA

holds ICSCMFSA
∈ dom p.

(16) For every autonomic finite partial state p of SCMFSA such that
ICSCMFSA

∈ dom p holds ICp ∈ dom p.

(17) Let p be an autonomic non programmed finite partial state of SCMFSA

and let s be a state of SCMFSA. If p ⊆ s, then for every natural number
i holds IC(Computation(s))(i) ∈ dom ProgramPart(p).

(18) Let p be an autonomic non programmed finite partial state of SCMFSA

and let s1, s2 be states of SCMFSA. Suppose p ⊆ s1 and p ⊆ s2. Let i be
a natural number. Then IC(Computation(s1))(i) = IC(Computation(s2))(i) and
CurInstr((Computation(s1))(i)) = CurInstr((Computation(s2))(i)).

(19) Let p be an autonomic non programmed finite partial state of SCMFSA

and let s1, s2 be states of SCMFSA. Suppose p ⊆ s1 and p ⊆
s2. Let i be a natural number and let d1, d2 be integer locations.
If CurInstr((Computation(s1))(i)) = d1:=d2 and d1 ∈ dom p, then
(Computation(s1))(i)(d2) = (Computation(s2))(i)(d2).

(20) Let p be an autonomic non programmed finite partial state of
SCMFSA and let s1, s2 be states of SCMFSA. Suppose p ⊆ s1

and p ⊆ s2. Let i be a natural number and let d1, d2 be inte-
ger locations. If CurInstr((Computation(s1))(i)) = AddTo(d1, d2) and
d1 ∈ dom p, then (Computation(s1))(i)(d1)+(Computation(s1))(i)(d2) =
(Computation(s2))(i)(d1) + (Computation(s2))(i)(d2).

(21) Let p be an autonomic non programmed finite partial state of
SCMFSA and let s1, s2 be states of SCMFSA. Suppose p ⊆ s1

and p ⊆ s2. Let i be a natural number and let d1, d2 be integer
locations. If CurInstr((Computation(s1))(i)) = SubFrom(d1, d2) and
d1 ∈ dom p, then (Computation(s1))(i)(d1)− (Computation(s1))(i)(d2) =
(Computation(s2))(i)(d1)− (Computation(s2))(i)(d2).

(22) Let p be an autonomic non programmed finite partial state of
SCMFSA and let s1, s2 be states of SCMFSA. Suppose p ⊆ s1

and p ⊆ s2. Let i be a natural number and let d1, d2 be inte-
ger locations. If CurInstr((Computation(s1))(i)) = MultBy(d1, d2) and
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d1 ∈ dom p, then (Computation(s1))(i)(d1) · (Computation(s1))(i)(d2) =
(Computation(s2))(i)(d1) · (Computation(s2))(i)(d2).

(23) Let p be an autonomic non programmed finite partial state of SCMFSA

and let s1, s2 be states of SCMFSA. Suppose p ⊆ s1 and p ⊆ s2.
Let i be a natural number and let d1, d2 be integer locations. If
CurInstr((Computation(s1))(i)) = Divide(d1, d2) and d1 ∈ dom p and
d1 6= d2, then (Computation(s1))(i)(d1) ÷ (Computation(s1))(i)(d2) =
(Computation(s2))(i)(d1)÷ (Computation(s2))(i)(d2).

(24) Let p be an autonomic non programmed finite partial state of SCMFSA

and let s1, s2 be states of SCMFSA. Suppose p ⊆ s1 and p ⊆ s2.
Let i be a natural number and let d1, d2 be integer locations. If
CurInstr((Computation(s1))(i)) = Divide(d1, d2) and d2 ∈ dom p and
d1 6= d2, then (Computation(s1))(i)(d1) mod (Computation(s1))(i)(d2) =
(Computation(s2))(i)(d1) mod (Computation(s2))(i)(d2).

(25) Let p be an autonomic non programmed finite partial state of
SCMFSA and let s1, s2 be states of SCMFSA. Suppose p ⊆ s1

and p ⊆ s2. Let i be a natural number, and let d1 be an in-
teger location, and let l2 be an instruction-location of SCMFSA.
If CurInstr((Computation(s1))(i)) = if d1 = 0 goto l2 and l2 6=
Next(IC(Computation(s1))(i)), then (Computation(s1))(i)(d1) = 0 iff
(Computation(s2))(i)(d1) = 0.

(26) Let p be an autonomic non programmed finite partial state of
SCMFSA and let s1, s2 be states of SCMFSA. Suppose p ⊆ s1

and p ⊆ s2. Let i be a natural number, and let d1 be an in-
teger location, and let l2 be an instruction-location of SCMFSA.
If CurInstr((Computation(s1))(i)) = if d1 > 0 goto l2 and l2 6=
Next(IC(Computation(s1))(i)), then (Computation(s1))(i)(d1) > 0 iff
(Computation(s2))(i)(d1) > 0.

(27) Let p be an autonomic non programmed finite partial state of SCMFSA

and let s1, s2 be states of SCMFSA. Suppose p ⊆ s1 and p ⊆ s2. Let
i be a natural number, and let d1, d2 be integer locations, and let f be
a finite sequence location. Suppose CurInstr((Computation(s1))(i)) =
d1:=fd2 and d1 ∈ dom p. Let k1, k2 be natural numbers. If k1 =
|(Computation(s1))(i)(d2)| and k2 = |(Computation(s2))(i)(d2)|, then
πk1(Computation(s1))(i)(f) = πk2(Computation(s2))(i)(f).

(28) Let p be an autonomic non programmed finite partial state of
SCMFSA and let s1, s2 be states of SCMFSA. Suppose p ⊆
s1 and p ⊆ s2. Let i be a natural number, and let d1, d2 be
integer locations, and let f be a finite sequence location. Sup-
pose CurInstr((Computation(s1))(i)) = fd2 :=d1 and f ∈ dom p. Let
k1, k2 be natural numbers. If k1 = |(Computation(s1))(i)(d2)|
and k2 = |(Computation(s2))(i)(d2)|, then (Computation(s1))(i)(f) +·
(k1, (Computation(s1))(i)(d1)) = (Computation(s2))(i)(f) +· (k2,
(Computation(s2))(i)(d1)).
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(29) Let p be an autonomic non programmed finite partial state of SCMFSA

and let s1, s2 be states of SCMFSA. Suppose p ⊆ s1 and p ⊆ s2. Let i be a
natural number, and let d1 be an integer location, and let f be a finite se-
quence location. If CurInstr((Computation(s1))(i)) = d1:=lenf and d1 ∈
dom p, then len(Computation(s1))(i)(f) = len(Computation(s2))(i)(f).

(30) Let p be an autonomic non programmed finite partial state of SCMFSA

and let s1, s2 be states of SCMFSA. Suppose p ⊆ s1 and p ⊆ s2. Let
i be a natural number, and let d1 be an integer location, and let f be
a finite sequence location. Suppose CurInstr((Computation(s1))(i)) =
f :=〈0, . . . , 0︸ ︷︷ ︸

d1

〉 and f ∈ dom p. Let k1, k2 be natural numbers. If k1 =

|(Computation(s1))(i)(d1)| and k2 = |(Computation(s2))(i)(d1)|, then
k1 7→ 0 = k2 7→ 0.
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Summary. In this paper definitions of many sorted closure system
and many sorted closure operator are introduced. These notations are
also introduced in [11], but in another meaning. In this article closure sys-
tem is absolutely multiplicative subset family of many sorted sets and in
[11] is many sorted absolutely multiplicative subset family of many sorted
sets. Analogously, closure operator is function between many sorted sets
and in [11] is many sorted function from a many sorted set into a many
sorted set.
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The terminology and notation used in this paper are introduced in the following
papers: [21], [22], [7], [16], [23], [4], [5], [3], [8], [18], [6], [1], [20], [19], [2], [12],
[13], [14], [15], [17], [10], and [9].

1. Preliminaries

For simplicity we follow a convention: I will denote a set, i, x will be arbi-
trary, A, B, M will denote many sorted sets indexed by I, and f , f1 will denote
functions.

One can prove the following three propositions:

(1) For every non empty set M and for all elements X, Y of M such that
X ⊆ Y holds idM (X) ⊆ idM (Y ).

(2) If A ⊆ B, then A \M ⊆ B.
(3) Let I be a non empty set, and let A be a many sorted set indexed by

I, and let B be a many sorted subset of A. Then rngB ⊆ ⋃ rng(2A).
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One can check that every set which is empty is also functional.

One can verify that there exists a set which is empty and functional.

Let f , g be functions. Note that {f, g} is functional.

2. Set of Many Sorted Subsets of a Many Sorted Set

Let us consider I, M . The functor Bool(M) yields a set and is defined by:

(Def. 1) x ∈ Bool(M) iff x is a many sorted subset of M .

Let us consider I, M . One can verify that Bool(M) is non empty and func-
tional and has common domain.

Let us consider I, M .

(Def. 2) A subset of Bool(M) is called a family of many sorted subsets of M .

Let us consider I, M . Then Bool(M) is a family of many sorted subsets of
M .

Let us consider I, M . One can check that there exists a family of many sorted
subsets of M which is non empty and functional and has common domain.

Let us consider I, M . One can check that there exists a family of many
sorted subsets of M which is empty and finite.

In the sequel S1, S2 will denote families of many sorted subsets of M .

Let us consider I, M and let S be a non empty family of many sorted subsets
of M . We see that the element of S is a many sorted subset of M .

We now state several propositions:

(4) S1 ∪ S2 is a family of many sorted subsets of M .

(5) S1 ∩ S2 is a family of many sorted subsets of M .

(6) S1 \ x is a family of many sorted subsets of M .

(7) S1−. S2 is a family of many sorted subsets of M .

(8) If A ⊆M, then {A} is a family of many sorted subsets of M .

(9) If A ⊆ M and B ⊆M, then {A,B} is a family of many sorted subsets
of M .

In the sequel E, T are elements of Bool(M).

One can prove the following four propositions:

(10) E ∩ T ∈ Bool(M).

(11) E ∪ T ∈ Bool(M).

(12) E \ A ∈ Bool(M).

(13) E−. T ∈ Bool(M).
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3. Many Sorted Operator corresponding to the Operator on
Many Sorted Subsets

Let S be a functional set. The functor |S| yielding a function is defined as
follows:

(Def. 3) (i) There exists a non empty functional set A such that A = S and
dom |S| =

⋂{domx : x ranges over elements of A} and for every i such
that i ∈ dom |S| holds |S|(i) = {x(i) : x ranges over elements of A} if
S 6= ∅,

(ii) |S| = ∅, otherwise.

Next we state the proposition

(14) For every non empty family S1 of many sorted subsets of M holds
dom |S1| = I.

Let S be an empty functional set. Observe that |S| is empty.
Let us consider I, M and let S be a family of many sorted subsets of M .

The functor |:S:| yielding a many sorted set indexed by I is defined as follows:

(Def. 4) (i) |:S:| = |S| if S 6= ∅,
(ii) |:S:| = ∅I , otherwise.

Let us consider I, M and let S be an empty family of many sorted subsets
of M . Note that |:S:| is empty yielding.

The following proposition is true

(15) If S1 is non empty, then for every i such that i ∈ I holds |:S1:|(i) =
{x(i) : x ranges over elements of Bool(M), x ∈ S1}.

Let us consider I, M and let S1 be a non empty family of many sorted subsets
of M . Note that |:S1:| is non-empty.

One can prove the following propositions:

(16) dom |{f}| = dom f.

(17) dom |{f, f1}| = dom f ∩ dom f1.

(18) If i ∈ dom f, then |{f}|(i) = {f(i)}.
(19) If i ∈ I and S1 = {f}, then |:S1:|(i) = {f(i)}.
(20) If i ∈ dom |{f, f1}|, then |{f, f1}|(i) = {f(i), f1(i)}.
(21) If i ∈ I and S1 = {f, f1}, then |:S1:|(i) = {f(i), f1(i)}.

Let us consider I, M , S1. Then |:S1:| is a subset family of M .
We now state several propositions:

(22) If A ∈ S1, then A ∈ |:S1:|.
(23) If S1 = {A,B}, then

⋃ |:S1:| = A ∪B.
(24) If S1 = {E, T}, then

⋂ |:S1:| = E ∩ T.
(25) Let Z be a many sorted subset of M . Suppose that for every many

sorted set Z1 indexed by I such that Z1 ∈ S1 holds Z ⊆ Z1. Then Z ⊆⋂ |:S1:|.
(26) |: Bool(M):| = 2M .
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Let us consider I, M and let I1 be a family of many sorted subsets of M .
We say that I1 is additive if and only if:

(Def. 5) For all A, B such that A ∈ I1 and B ∈ I1 holds A ∪B ∈ I1.

We say that I1 is absolutely-additive if and only if:

(Def. 6) For every family F of many sorted subsets of M such that F ⊆ I1 holds⋃ |:F :| ∈ I1.

We say that I1 is multiplicative if and only if:

(Def. 7) For all A, B such that A ∈ I1 and B ∈ I1 holds A ∩B ∈ I1.

We say that I1 is absolutely-multiplicative if and only if:

(Def. 8) For every family F of many sorted subsets of M such that F ⊆ I1 holds⋂ |:F :| ∈ I1.

We say that I1 is properly upper bound if and only if:

(Def. 9) M ∈ I1.

We say that I1 is properly lower bound if and only if:

(Def. 10) ∅I ∈ I1.

Let us consider I, M . Observe that there exists a family of many sorted
subsets of M which is non empty functional additive absolutely-additive mul-
tiplicative absolutely-multiplicative properly upper bound and properly lower
bound and has common domain.

Let us consider I, M . Then Bool(M) is an additive absolutely-additive
multiplicative absolutely-multiplicative properly upper bound properly lower
bound family of many sorted subsets of M .

Let us consider I, M . Observe that every family of many sorted subsets of
M which is absolutely-additive is also additive.

Let us consider I, M . One can verify that every family of many sorted
subsets of M which is absolutely-multiplicative is also multiplicative.

Let us consider I, M . One can check that every family of many sorted subsets
of M which is absolutely-multiplicative is also properly upper bound.

Let us consider I, M . One can check that every family of many sorted subsets
of M which is properly upper bound is also non empty.

Let us consider I, M . One can check that every family of many sorted subsets
of M which is absolutely-additive is also properly lower bound.

Let us consider I, M . Note that every family of many sorted subsets of M
which is properly lower bound is also non empty.

4. Properties of Closure Operators

Let us consider I, M .

(Def. 11) A function from Bool(M) into Bool(M) is called a set operation in M .

Let us consider I, M , let f be a set operation in M , and let x be an element
of Bool(M). Then f(x) is an element of Bool(M).
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Let us consider I, M and let I1 be a set operation in M . We say that I1 is
reflexive if and only if:

(Def. 12) For every element x of Bool(M) holds x ⊆ I1(x).

We say that I1 is monotonic if and only if:

(Def. 13) For all elements x, y of Bool(M) such that x ⊆ y holds I1(x) ⊆ I1(y).

We say that I1 is idempotent if and only if:

(Def. 14) For every element x of Bool(M) holds I1(x) = I1(I1(x)).

We say that I1 is topological if and only if:

(Def. 15) For all elements x, y of Bool(M) holds I1(x ∪ y) = I1(x) ∪ I1(y).

Let us consider I, M . Observe that there exists a set operation in M which
is reflexive monotonic idempotent and topological.

Next we state four propositions:

(27) idBool(A) is a reflexive set operation in A.

(28) idBool(A) is a monotonic set operation in A.

(29) idBool(A) is an idempotent set operation in A.

(30) idBool(A) is a topological set operation in A.

In the sequel g, h are set operations in M .

One can prove the following three propositions:

(31) If E = M and g is reflexive, then E = g(E).

(32) If g is reflexive and for every element X of Bool(M) holds g(X) ⊆ X,
then g is idempotent.

(33) For every element A of Bool(M) such that A = E ∩ T holds if g is
monotonic, then g(A) ⊆ g(E) ∩ g(T ).

Let us consider I, M . One can check that every set operation in M which is
topological is also monotonic.

Next we state the proposition

(34) For every element A of Bool(M) such that A = E \ T holds if g is
topological, then g(E) \ g(T ) ⊆ g(A).

Let us consider I, M , h, g. Then g · h is a set operation in M .

The following four propositions are true:

(35) If g is reflexive and h is reflexive, then g · h is reflexive.

(36) If g is monotonic and h is monotonic, then g · h is monotonic.

(37) If g is idempotent and h is idempotent and g · h = h · g, then g · h is
idempotent.

(38) If g is topological and h is topological, then g · h is topological.
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5. On the Closure Operator and the Closure System

In the sequel S will be a 1-sorted structure.
Let us consider S. We consider closure system structures over S as extensions

of many-sorted structure over S as systems
〈 sorts, a family 〉,

where the sorts constitute a many sorted set indexed by the carrier of S and the
family is a family of many sorted subsets of the sorts.

In the sequel M1 is a many-sorted structure over S.
Let us consider S and let I1 be a closure system structure over S. We say

that I1 is additive if and only if:

(Def. 16) The family of I1 is additive.

We say that I1 is absolutely-additive if and only if:

(Def. 17) The family of I1 is absolutely-additive.

We say that I1 is multiplicative if and only if:

(Def. 18) The family of I1 is multiplicative.

We say that I1 is absolutely-multiplicative if and only if:

(Def. 19) The family of I1 is absolutely-multiplicative.

We say that I1 is properly upper bound if and only if:

(Def. 20) The family of I1 is properly upper bound.

We say that I1 is properly lower bound if and only if:

(Def. 21) The family of I1 is properly lower bound.

Let us consider S, M1. The functor Full(M1) yielding a closure system
structure over S is defined as follows:

(Def. 22) Full(M1) = 〈the sorts of M1, Bool(the sorts of M1)〉.
Let us consider S, M1. Note that Full(M1) is strict additive absolutely-

additive multiplicative absolutely-multiplicative properly upper bound and
properly lower bound.

Let us consider S and let M1 be a non-empty many-sorted structure over S.
Observe that Full(M1) is non-empty.

Let us consider S. Note that there exists a closure system structure over S
which is strict non-empty additive absolutely-additive multiplicative absolutely-
multiplicative properly upper bound and properly lower bound.

Let us consider S and let C1 be an additive closure system structure over S.
Note that the family of C1 is additive.

Let us consider S and let C1 be an absolutely-additive closure system struc-
ture over S. Note that the family of C1 is absolutely-additive.

Let us consider S and let C1 be a multiplicative closure system structure
over S. Note that the family of C1 is multiplicative.

Let us consider S and let C1 be an absolutely-multiplicative closure system
structure over S. Note that the family of C1 is absolutely-multiplicative.
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Let us consider S and let C1 be a properly upper bound closure system
structure over S. One can verify that the family of C1 is properly upper bound.

Let us consider S and let C1 be a properly lower bound closure system
structure over S. Observe that the family of C1 is properly lower bound.

Let us consider S, let M be a non-empty many sorted set indexed by the
carrier of S, and let F be a family of many sorted subsets of M . Note that
〈M,F 〉 is non-empty.

Let us consider S, M1 and let F be an additive family of many sorted subsets
of the sorts of M1. Note that 〈the sorts of M1, F 〉 is additive.

Let us consider S, M1 and let F be an absolutely-additive family of many
sorted subsets of the sorts of M1. Note that 〈the sorts of M1, F 〉 is absolutely-
additive.

Let us consider S, M1 and let F be a multiplicative family of many sorted
subsets of the sorts of M1. Observe that 〈the sorts of M1, F 〉 is multiplicative.

Let us consider S, M1 and let F be an absolutely-multiplicative family of
many sorted subsets of the sorts of M1. One can check that 〈the sorts of M1,
F 〉 is absolutely-multiplicative.

Let us consider S, M1 and let F be a properly upper bound family of many
sorted subsets of the sorts of M1. Note that 〈the sorts of M1, F 〉 is properly
upper bound.

Let us consider S, M1 and let F be a properly lower bound family of many
sorted subsets of the sorts of M1. Note that 〈the sorts of M1, F 〉 is properly
lower bound.

Let us consider S. Observe that every closure system structure over S which
is absolutely-additive is also additive.

Let us consider S. Note that every closure system structure over S which is
absolutely-multiplicative is also multiplicative.

Let us consider S. Observe that every closure system structure over S which
is absolutely-multiplicative is also properly upper bound.

Let us consider S. One can check that every closure system structure over S
which is absolutely-additive is also properly lower bound.

Let us consider S. A closure system of S is an absolutely-multiplicative
closure system structure over S.

Let us consider I, M . A closure operator of M is a reflexive monotonic
idempotent set operation in M .

Next we state the proposition

(39) Let A be a many sorted set indexed by the carrier of S, and let f be
a reflexive monotonic set operation in A, and let D be a family of many
sorted subsets of A. Suppose D = {x : x ranges over elements of Bool(A),
f(x) = x}. Then 〈A,D〉 is a closure system of S.

Let us consider S, let A be a many sorted set indexed by the carrier of S, and
let g be a closure operator of A. The functor ClSys(g) yielding a strict closure
system of S is defined by:
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(Def. 23) The sorts of ClSys(g) = A and the family of ClSys(g) = {x : x ranges
over elements of Bool(A), g(x) = x}.

Let us consider S, let A be a closure system of S, and let C be a many sorted
subset of the sorts of A. The functor C yielding an element of Bool(the sorts of
A) is defined by the condition (Def. 24).

(Def. 24) There exists a family F of many sorted subsets of the sorts of A such
that C =

⋂ |:F :| and F = {X : X ranges over elements of Bool(the sorts
of A), C ⊆ X ∧ X ∈ the family of A}.

One can prove the following propositions:

(40) Let D be a closure system of S, and let a be an element of Bool(the
sorts of D), and let f be a set operation in the sorts of D. Suppose
a ∈ the family of D and for every element x of Bool(the sorts of D) holds
f(x) = x. Then f(a) = a.

(41) Let D be a closure system of S, and let a be an element of Bool(the
sorts of D), and let f be a set operation in the sorts of D. Suppose
f(a) = a and for every element x of Bool(the sorts of D) holds f(x) = x.
Then a ∈ the family of D.

(42) Let D be a closure system of S and let f be a set operation in the sorts
of D. Suppose that for every element x of Bool(the sorts of D) holds
f(x) = x. Then f is reflexive monotonic and idempotent.

Let us consider S and let D be a closure system of S. The functor ClOp(D)
yields a closure operator of the sorts of D and is defined by:

(Def. 25) For every element x of Bool(the sorts of D) holds (ClOp(D))(x) = x.

Next we state two propositions:

(43) For every many sorted set A indexed by the carrier of S and for every
closure operator f of A holds ClOp(ClSys(f)) = f.

(44) For every closure system D of S holds ClSys(ClOp(D)) = the closure
system structure of D.
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Summary. Equational theories of an algebra, i.e. the equivalence
relation closed under translations and endomorphisms, are formalized.
The correspondence between equational theories and term rewriting sys-
tems is discussed in the paper. We get as the main result that any pair
of elements of an algebra belongs to the equational theory generated by
a set A of axioms iff the elements are convertible w.r.t. term rewriting
reduction determined by A.

The theory is developed according to [24].
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1. Endomorphisms and translations

Let S be a non empty many sorted signature, let A be an algebra over S,
and let s be a sort symbol of S. An element of A, s is an element of (the sorts
of A)(s).

Let I be a set, let A be a many sorted set indexed by I, and let h1, h2 be
many sorted functions from A into A. Then h2 ◦ h1 is a many sorted function
from A into A.

The following two propositions are true:

(1) Let S be a non empty non void many sorted signature, and let A be an
algebra over S, and let o be an operation symbol of S, and let a be a set.
If a ∈ Args(o,A), then a is a function.
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(2) Let S be a non empty non void many sorted signature, and let A be
an algebra over S, and let o be an operation symbol of S, and let a be
a function. Suppose a ∈ Args(o,A). Then dom a = dom Arity(o) and for
every natural number i such that i ∈ dom Arity(o) holds a(i) ∈ (the sorts
of A)(πi Arity(o)).

Let S be a non empty non void many sorted signature and let A be an algebra
over S. We say that A is feasible if and only if:

(Def. 1) For every operation symbol o of S such that Args(o,A) 6= ∅ holds
Result(o,A) 6= ∅.

Next we state the proposition

(3) Let S be a non empty non void many sorted signature, and let o be an
operation symbol of S, and let A be an algebra over S. Then Args(o,A) 6=
∅ if and only if for every natural number i such that i ∈ dom Arity(o) holds
(the sorts of A)(πi Arity(o)) 6= ∅.

Let S be a non empty non void many sorted signature. One can check that
every algebra over S which is non-empty is also feasible.

Let S be a non empty non void many sorted signature. One can check that
there exists an algebra over S which is non-empty.

Let S be a non empty non void many sorted signature and let A be an algebra
over S. A many sorted function from A into A is called an endomorphism of A
if:

(Def. 2) It is a homomorphism of A into A.

In the sequel S is a non empty non void many sorted signature and A is an
algebra over S.

Next we state three propositions:

(4) id(the sorts of A) is an endomorphism of A.

(5) Let h1, h2 be many sorted functions from A into A, and let o be an
operation symbol of S, and let a be an element of Args(o,A). If a ∈
Args(o,A), then h2#(h1#a) = (h2 ◦ h1)#a.

(6) For all endomorphisms h1, h2 of A holds h2 ◦h1 is an endomorphism of
A.

Let S be a non empty non void many sorted signature, let A be an algebra
over S, and let h1, h2 be endomorphisms of A. Then h2 ◦h1 is an endomorphism
of A.

Let S be a non empty non void many sorted signature. The functor
TranslRel(S) is a binary relation on the carrier of S and is defined by the
condition (Def. 3).

(Def. 3) Let s1, s2 be sort symbols of S. Then 〈〈s1, s2〉〉 ∈ TranslRel(S) if and
only if there exists an operation symbol o of S such that the result sort
of o = s2 and there exists a natural number i such that i ∈ dom Arity(o)
and πi Arity(o) = s1.

We now state three propositions:
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(7) Let S be a non empty non void many sorted signature, and let o be an
operation symbol of S, and let A be an algebra over S, and let a be a
function. Suppose a ∈ Args(o,A). Let i be a natural number and let x be
an element of A, πi Arity(o). Then a+· (i, x) ∈ Args(o,A).

(8) Let A1, A2 be algebras over S, and let h be a many sorted func-
tion from A1 into A2, and let o be an operation symbol of S. Suppose
Args(o,A1) 6= ∅ and Args(o,A2) 6= ∅. Let i be a natural number. Sup-
pose i ∈ dom Arity(o). Let x be an element of A1, πi Arity(o). Then
h(πi Arity(o))(x) ∈ (the sorts of A2)(πi Arity(o)).

(9) Let S be a non empty non void many sorted signature, and let o be
an operation symbol of S, and let i be a natural number. Suppose
i ∈ dom Arity(o). Let A1, A2 be algebras over S, and let h be a many
sorted function from A1 into A2, and let a, b be elements of Args(o,A1).
Suppose a ∈ Args(o,A1) and h#a ∈ Args(o,A2). Let f , g1, g2 be func-
tions. Suppose f = a and g1 = h#a and g2 = h#b. Let x be an element
of A1, πi Arity(o). If b = f +· (i, x), then g2(i) = h(πi Arity(o))(x) and
h#b = g1 +· (i, g2(i)).

Let S be a non empty non void many sorted signature, let o be an operation
symbol of S, let i be a natural number, let A be an algebra over S, and let
a be a function. The functor oAi (a,−) yields a function and is defined by the
conditions (Def. 4).

(Def. 4) (i) dom(oAi (a,−)) = (the sorts of A)(πi Arity(o)), and
(ii) for every set x such that x ∈ (the sorts of A)(πi Arity(o)) holds

oAi (a,−)(x) = (Den(o,A))(a +· (i, x)).

One can prove the following proposition

(10) Let S be a non empty non void many sorted signature, and let o be
an operation symbol of S, and let i be a natural number. Suppose i ∈
dom Arity(o). Let A be a feasible algebra over S and let a be a function.
Suppose a ∈ Args(o,A). Then oAi (a,−) is a function from (the sorts of
A)(πi Arity(o)) into (the sorts of A)(the result sort of o).

Let S be a non empty non void many sorted signature, let s1, s2 be sort
symbols of S, let A be an algebra over S, and let f be a function. We say that
f is an elementary translation in A from s1 into s2 if and only if the condition
(Def. 5) is satisfied.

(Def. 5) There exists an operation symbol o of S such that
(i) the result sort of o = s2, and

(ii) there exists a natural number i such that i ∈ dom Arity(o) and
πi Arity(o) = s1 and there exists a function a such that a ∈ Args(o,A)
and f = oAi (a,−).

One can prove the following propositions:

(11) Let S be a non empty non void many sorted signature, and let s1, s2

be sort symbols of S, and let A be a feasible algebra over S, and let f be
a function. Suppose f is an elementary translation in A from s1 into s2.
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Then
(i) f is a function from (the sorts of A)(s1) into (the sorts of A)(s2),

(ii) (the sorts of A)(s1) 6= ∅, and
(iii) (the sorts of A)(s2) 6= ∅.

(12) Let S be a non empty non void many sorted signature, and let s1, s2

be sort symbols of S, and let A be an algebra over S, and let f be a
function. If f is an elementary translation in A from s1 into s2, then 〈〈s1,
s2〉〉 ∈ TranslRel(S).

(13) Let S be a non empty non void many sorted signature, and let s1, s2

be sort symbols of S, and let A be a non-empty algebra over S. If 〈〈s1,
s2〉〉 ∈ TranslRel(S), then there exists function which is an elementary
translation in A from s1 into s2.

(14) Let S be a non empty non void many sorted signature, and let A be
a feasible algebra over S, and let s1, s2 be sort symbols of S. Sup-
pose TranslRel(S) reduces s1 to s2. Let q be a reduction sequence w.r.t.
TranslRel(S) and let p be a function yielding finite sequence. Suppose
that

(i) len q = len p+ 1,
(ii) s1 = q(1),

(iii) s2 = q(len q), and
(iv) for every natural number i and for every function f and for all sort

symbols s1, s2 of S such that i ∈ dom p and f = p(i) and s1 = q(i) and
s2 = q(i+ 1) holds f is an elementary translation in A from s1 into s2.
Then

(v) compose(the sorts of A)(s1) p is a function from (the sorts of A)(s1) into
(the sorts of A)(s2), and

(vi) if p 6= ∅, then (the sorts of A)(s1) 6= ∅ and (the sorts of A)(s2) 6= ∅.
Let S be a non empty non void many sorted signature, let A be a non-

empty algebra over S, and let s1, s2 be sort symbols of S. Let us assume that
TranslRel(S) reduces s1 to s2. A function from (the sorts of A)(s1) into (the
sorts of A)(s2) is called a translation in A from s1 into s2 if it satisfies the
condition (Def. 6).

(Def. 6) There exists a reduction sequence q w.r.t. TranslRel(S) and there exists
a function yielding finite sequence p such that

(i) it = compose(the sorts of A)(s1) p,
(ii) len q = len p+ 1,

(iii) s1 = q(1),
(iv) s2 = q(len q), and
(v) for every natural number i and for every function f and for all sort

symbols s1, s2 of S such that i ∈ dom p and f = p(i) and s1 = q(i) and
s2 = q(i+ 1) holds f is an elementary translation in A from s1 into s2.

We now state the proposition

(15) Let S be a non empty non void many sorted signature, and let A be
a non-empty algebra over S, and let s1, s2 be sort symbols of S. Sup-
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pose TranslRel(S) reduces s1 to s2. Let q be a reduction sequence w.r.t.
TranslRel(S) and let p be a function yielding finite sequence. Suppose
that

(i) len q = len p+ 1,
(ii) s1 = q(1),

(iii) s2 = q(len q), and
(iv) for every natural number i and for every function f and for all sort

symbols s1, s2 of S such that i ∈ dom p and f = p(i) and s1 = q(i) and
s2 = q(i+ 1) holds f is an elementary translation in A from s1 into s2.
Then compose(the sorts of A)(s1) p is a translation in A from s1 into s2.

In the sequel A is a non-empty algebra over S.
The following propositions are true:

(16) For every sort symbol s of S holds id(the sorts of A)(s) is a translation in
A from s into s

(17) Let s1, s2 be sort symbols of S and let f be a function. Suppose f is an
elementary translation in A from s1 into s2. Then TranslRel(S) reduces
s1 to s2 and f is a translation in A from s1 into s2.

(18) Let s1, s2, s3 be sort symbols of S. Suppose TranslRel(S) reduces s1 to
s2 and TranslRel(S) reduces s2 to s3. Let t1 be a translation in A from
s1 into s2 and let t2 be a translation in A from s2 into s3. Then t2 · t1 is
a translation in A from s1 into s3.

(19) Let s1, s2, s3 be sort symbols of S. Suppose TranslRel(S) reduces s1

to s2. Let t be a translation in A from s1 into s2 and let f be a function.
Suppose f is an elementary translation in A from s2 into s3. Then f · t is
a translation in A from s1 into s3.

(20) Let s1, s2, s3 be sort symbols of S. Suppose TranslRel(S) reduces s2

to s3. Let f be a function. Suppose f is an elementary translation in A
from s1 into s2. Let t be a translation in A from s2 into s3. Then t · f is
a translation in A from s1 into s3

The scheme TranslationInd concerns a non empty non void many sorted
signature A, a non-empty algebra B over A, and a ternary predicate P, and
states that:

Let s1, s2 be sort symbols of A. Suppose TranslRel(A) reduces s1

to s2. Let t be a translation in B from s1 into s2. Then P[t, s1, s2]
provided the parameters meet the following requirements:
• For every sort symbol s of A holds P[id(the sorts of B)(s), s, s],
• Let s1, s2, s3 be sort symbols of A. Suppose TranslRel(A) reduces
s1 to s2. Let t be a translation in B from s1 into s2. Suppose
P[t, s1, s2]. Let f be a function. If f is an elementary translation
in B from s2 into s3, then P[f · t, s1, s3].

The following propositions are true:

(21) Let A1, A2 be non-empty algebras over S and let h be a many sorted
function from A1 into A2. Suppose h is a homomorphism of A1 into A2
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Let o be an operation symbol of S and let i be a natural number. Suppose
i ∈ dom Arity(o). Let a be an element of Args(o,A1). Then h(the result

sort of o) · oA1
i (a,−) = oA2

i (h#a,−) · h(πi Arity(o)).

(22) Let h be an endomorphism of A, and let o be an operation symbol
of S, and let i be a natural number. Suppose i ∈ dom Arity(o). Let a
be an element of Args(o,A). Then h(the result sort of o) · oAi (a,−) =
oAi (h#a,−) · h(πi Arity(o)).

(23) Let A1, A2 be non-empty algebras over S and let h be a many sorted
function from A1 into A2. Suppose h is a homomorphism of A1 into A2

Let s1, s2 be sort symbols of S and let t be a function. Suppose t is an
elementary translation in A1 from s1 into s2. Then there exists a function
T from (the sorts of A2)(s1) into (the sorts of A2)(s2) such that T is an
elementary translation in A2 from s1 into s2 and T · h(s1) = h(s2) · t.

(24) Let h be an endomorphism of A, and let s1, s2 be sort symbols of S,
and let t be a function. Suppose t is an elementary translation in A from
s1 into s2. Then there exists a function T from (the sorts of A)(s1) into
(the sorts of A)(s2) such that T is an elementary translation in A from
s1 into s2 and T · h(s1) = h(s2) · t.

(25) Let A1, A2 be non-empty algebras over S and let h be a many sorted
function from A1 into A2. Suppose h is a homomorphism of A1 into A2

Let s1, s2 be sort symbols of S. Suppose TranslRel(S) reduces s1 to s2.
Let t be a translation in A1 from s1 into s2. Then there exists a translation
T in A2 from s1 into s2 such that T · h(s1) = h(s2) · t.

(26) Let h be an endomorphism of A and let s1, s2 be sort symbols of S.
Suppose TranslRel(S) reduces s1 to s2. Let t be a translation in A from
s1 into s2. Then there exists a translation T in A from s1 into s2 such
that T · h(s1) = h(s2) · t.

2. Compatibility, invariantness, and stability

Let S be a non empty non void many sorted signature, let A be an algebra
over S, and let R be a many sorted relation of A. We say that R is compatible
if and only if the condition (Def. 7) is satisfied.

(Def. 7) Let o be an operation symbol of S and let a, b be functions. Sup-
pose a ∈ Args(o,A) and b ∈ Args(o,A) and for every natural number
n such that n ∈ dom Arity(o) holds 〈〈a(n), b(n)〉〉 ∈ R(πn Arity(o)). Then
〈〈(Den(o,A))(a), (Den(o,A))(b)〉〉 ∈ R(the result sort of o).

We say that R is invariant if and only if the condition (Def. 8) is satisfied.

(Def. 8) Let s1, s2 be sort symbols of S and let t be a function. Suppose t is
an elementary translation in A from s1 into s2. Let a, b be sets. If 〈〈a,
b〉〉 ∈ R(s1), then 〈〈t(a), t(b)〉〉 ∈ R(s2).

We say that R is stable if and only if the condition (Def. 9) is satisfied.
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(Def. 9) Let h be an endomorphism of A, and let s be a sort symbol of S, and
let a, b be sets. If 〈〈a, b〉〉 ∈ R(s), then 〈〈h(s)(a), h(s)(b)〉〉 ∈ R(s).

The following propositions are true:

(27) Let R be an equivalence many sorted relation of A. Then R is compat-
ible if and only if R is a congruence of A.

(28) Let R be a many sorted relation of A. Then R is invariant if and only
if for all sort symbols s1, s2 of S such that TranslRel(S) reduces s1 to s2

and for every translation f in A from s1 into s2 and for all sets a, b such
that 〈〈a, b〉〉 ∈ R(s1) holds 〈〈f(a), f(b)〉〉 ∈ R(s2).

Let S be a non empty non void many sorted signature and let A be a non-
empty algebra over S. Note that every equivalence many sorted relation of A
which is invariant is also compatible and every equivalence many sorted relation
of A which is compatible is also invariant.

Let X be a non empty set. Note that 4X is non empty.
Now we present two schemes. The scheme MSRExistence deals with a non

empty set A, a non-empty many sorted set B indexed by A, and a ternary
predicate P, and states that:

There exists a many sorted relation R of B such that for every
element i of A and for all elements a, b of B(i) holds 〈〈a, b〉〉 ∈ R(i)
if and only if P[i, a, b]

for all values of the parameters.
The scheme MSRLambdaU deals with a set A, a many sorted set B indexed

by A, and a unary functor F yielding a set, and states that:
(i) There exists a many sorted relation R of B such that for every

set i such that i ∈ A holds R(i) = F(i), and
(ii) for all many sorted relations R1, R2 of B such that for every
set i such that i ∈ A holds R1(i) = F(i) and for every set i such
that i ∈ A holds R2(i) = F(i) holds R1 = R2

provided the parameters meet the following requirement:
• For every set i such that i ∈ A holds F(i) is a relation between
B(i) and B(i).

Let I be a set and let A be a many sorted set indexed by I. The functor 4I
A

yielding a many sorted relation of A is defined by:

(Def. 10) For every set i such that i ∈ I holds (4I
A)(i) = 4A(i).

Let S be a non empty non void many sorted signature and let A be a non-
empty algebra over S. One can verify that every many sorted relation of A
which is equivalence is also non-empty.

Let S be a non empty non void many sorted signature and let A be a non-
empty algebra over S. Observe that there exists a many sorted relation of A
which is invariant stable and equivalence.
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3. Invariant, stable, and invariant stable closure

In the sequel S will denote a non empty non void many sorted signature,
A will denote a non-empty algebra over S, and R will denote a many sorted
relation of the sorts of A.

The scheme MSRelCl concerns a non empty non void many sorted signature
A, a non-empty algebra B over A, many sorted relations Q, D of B, a unary
predicate Q, and a ternary predicate P, and states that:

Q[D] and Q ⊆ D and for every many sorted relation P of B such
that Q[P ] and Q ⊆ P holds D ⊆ P

provided the following requirements are met:
• Let R be a many sorted relation of B. Then Q[R] if and only if for

all sort symbols s1, s2 of A and for every function f from (the sorts
of B)(s1) into (the sorts of B)(s2) such that P[f, s1, s2] and for all
sets a, b such that 〈〈a, b〉〉 ∈ R(s1) holds 〈〈f(a), f(b)〉〉 ∈ R(s2),

• Let s1, s2, s3 be sort symbols of A, and let f1 be a function from
(the sorts of B)(s1) into (the sorts of B)(s2), and let f2 be a function
from (the sorts of B)(s2) into (the sorts of B)(s3). If P[f1, s1, s2]
and P[f2, s2, s3], then P[f2 · f1, s1, s3],

• For every sort symbol s of A holds P[id(the sorts of B)(s), s, s],
• Let s be a sort symbol of A and let a, b be element of B, s. Then
〈〈a, b〉〉 ∈ D(s) if and only if there exists a sort symbol s′ of A and
there exists a function f from (the sorts of B)(s′) into (the sorts of
B)(s) and there exist element x, y of B, s′ such that P[f, s′, s] and
〈〈x, y〉〉 ∈ Q(s′) and a = f(x) and b = f(y).

Let S be a non empty non void many sorted signature, let A be a non-empty
algebra over S, and let R be a many sorted relation of the sorts of A. The
functor InvCl(R) is an invariant many sorted relation of A and is defined as
follows:

(Def. 11) R ⊆ InvCl(R) and for every invariant many sorted relation Q of A such
that R ⊆ Q holds InvCl(R) ⊆ Q.

The following propositions are true:

(29) Let R be a many sorted relation of the sorts of A, and let s be a sort
symbol of S, and let a, b be element of A, s. Then 〈〈a, b〉〉 ∈ (InvCl(R))(s)
if and only if there exists a sort symbol s′ of S and there exist element
x, y of A, s′ and there exists a translation t in A from s′ into s such that
TranslRel(S) reduces s′ to s and 〈〈x, y〉〉 ∈ R(s′) and a = t(x) and b = t(y).

(30) For every stable many sorted relation R of A holds InvCl(R) is stable.

Let S be a non empty non void many sorted signature, let A be a non-empty
algebra over S, and let R be a many sorted relation of the sorts of A. The
functor StabCl(R) is a stable many sorted relation of A and is defined by:

(Def. 12) R ⊆ StabCl(R) and for every stable many sorted relation Q of A such
that R ⊆ Q holds StabCl(R) ⊆ Q.
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We now state two propositions:

(31) Let R be a many sorted relation of the sorts of A, and let s be a sort
symbol of S, and let a, b be element of A, s. Then 〈〈a, b〉〉 ∈ (StabCl(R))(s)
if and only if there exist element x, y of A, s and there exists an endomor-
phism h of A such that 〈〈x, y〉〉 ∈ R(s) and a = h(s)(x) and b = h(s)(y).

(32) InvCl(StabCl(R)) is stable.

Let S be a non empty non void many sorted signature, let A be a non-empty
algebra over S, and let R be a many sorted relation of the sorts of A. The
functor TRS(R) is an invariant stable many sorted relation of A and is defined
by:

(Def. 13) R ⊆ TRS(R) and for every invariant stable many sorted relation Q of
A such that R ⊆ Q holds TRS(R) ⊆ Q.

Let S be a non empty non void many sorted signature, let A be a non-empty
algebra over S, and let R be a non-empty many sorted relation of A. One can
check the following observations:

∗ InvCl(R) is non-empty,

∗ StabCl(R) is non-empty, and

∗ TRS(R) is non-empty.

We now state several propositions:

(33) For every invariant many sorted relation R of A holds InvCl(R) = R.

(34) For every stable many sorted relation R of A holds StabCl(R) = R.

(35) For every invariant stable many sorted relation R of A holds TRS(R) =
R.

(36) StabCl(R) ⊆ TRS(R) and InvCl(R) ⊆ TRS(R) and StabCl(InvCl(R)) ⊆
TRS(R).

(37) InvCl(StabCl(R)) = TRS(R).

(38) Let R be a many sorted relation of the sorts of A, and let s be a sort
symbol of S, and let a, b be element of A, s. Then 〈〈a, b〉〉 ∈ (TRS(R))(s)
if and only if there exists a sort symbol s′ of S such that TranslRel(S)
reduces s′ to s and there exist element l, r of A, s′ and there exists an
endomorphism h of A and there exists a translation t in A from s′ into s
such that 〈〈l, r〉〉 ∈ R(s′) and a = t(h(s′)(l)) and b = t(h(s′)(r)).

4. Equational theory

One can prove the following propositions:

(39) Let A be a set and let R, E be binary relations on A. Suppose that for
all sets a, b such that a ∈ A and b ∈ A holds 〈〈a, b〉〉 ∈ E iff a and b are
convertible w.r.t. R. Then E is equivalence relation-like.



562 grzegorz bancerek

(40) Let A be a set, and let R be a binary relation on A, and let E be an
equivalence relation of A. Suppose R ⊆ E. Let a, b be sets. If a ∈ A and
b ∈ A and a and b are convertible w.r.t. R, then 〈〈a, b〉〉 ∈ E.

(41) Let A be a non empty set, and let R be a binary relation on A, and let
a, b be elements of A. Then 〈〈a, b〉〉 ∈ EqCl(R) if and only if a and b are
convertible w.r.t. R.

(42) Let S be a non empty set, and let A be a non-empty many sorted set
indexed by S and let R be a many sorted relation of A, and let s be an
element of S, and let a, b be elements of A(s). Then 〈〈a, b〉〉 ∈ (EqCl(R))(s)
if and only if a and b are convertible w.r.t. R(s).

Let S be a non empty non void many sorted signature and let A be a non-
empty algebra over S. An equational theory of A is a stable invariant equivalence
many sorted relation of A. Let R be a many sorted relation of A. The func-
tor EqCl(R,A) yielding an equivalence many sorted relation of A is defined as
follows:

(Def. 14) EqCl(R,A) = EqCl(R).

We now state four propositions:

(43) For every many sorted relation R of A holds R ⊆ EqCl(R,A).

(44) Let R be a many sorted relation of A and let E be an equivalence many
sorted relation of A. If R ⊆ E, then EqCl(R,A) ⊆ E.

(45) Let R be a stable many sorted relation of A, and let s be a sort symbol
of S, and let a, b be element of A, s. Suppose a and b are convertible
w.r.t. R(s). Let h be an endomorphism of A. Then h(s)(a) and h(s)(b)
are convertible w.r.t. R(s).

(46) For every stable many sorted relation R of A holds EqCl(R,A) is stable.

Let us consider S, A and let R be a stable many sorted relation of A. Note
that EqCl(R,A) is stable.

We now state two propositions:

(47) Let R be an invariant many sorted relation of A, and let s1, s2 be sort
symbols of S, and let a, b be element of A, s1. Suppose a and b are
convertible w.r.t. R(s1). Let t be a function. Suppose t is an elementary
translation in A from s1 into s2. Then t(a) and t(b) are convertible w.r.t.
R(s2).

(48) For every invariant many sorted relation R of A holds EqCl(R,A) is
invariant.

Let us consider S, A and let R be an invariant many sorted relation of A.
One can check that EqCl(R,A) is invariant.

Next we state three propositions:

(49) Let S be a non empty set, and let A be a non-empty many sorted
set indexed by S, and let R, E be many sorted relations of A. Suppose
that for every element s of S and for all elements a, b of A(s) holds 〈〈a,
b〉〉 ∈ E(s) iff a and b are convertible w.r.t. R(s). Then E is equivalence.
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(50) Let R, E be many sorted relations of A. Suppose that for every sort
symbol s of S and for all element a, b of A, s holds 〈〈a, b〉〉 ∈ E(s) iff a and
b are convertible w.r.t. (TRS(R))(s). Then E is an equational theory of
A.

(51) Let S be a non empty set, and let A be a non-empty many sorted set
indexed by S and let R be a many sorted relation of A, and let E be
an equivalence many sorted relation of A. Suppose R ⊆ E. Let s be an
element of S and let a, b be elements of A(s). If a and b are convertible
w.r.t. R(s), then 〈〈a, b〉〉 ∈ E(s).

Let S be a non empty non void many sorted signature, let A be a non-empty
algebra over S, and let R be a many sorted relation of the sorts of A. The
functor EqTh(R) is an equational theory of A and is defined by:

(Def. 15) R ⊆ EqTh(R) and for every equational theory Q of A such that R ⊆ Q
holds EqTh(R) ⊆ Q.

Next we state three propositions:

(52) For every many sorted relation R of A holds EqCl(R,A) ⊆ EqTh(R)
and InvCl(R) ⊆ EqTh(R) and StabCl(R) ⊆ EqTh(R) and TRS(R) ⊆
EqTh(R).

(53) Let R be a many sorted relation of A, and let s be a sort symbol of S,
and let a, b be element of A, s. Then 〈〈a, b〉〉 ∈ (EqTh(R))(s) if and only
if a and b are convertible w.r.t. (TRS(R))(s).

(54) For every many sorted relation R of A holds EqTh(R) =
EqCl(TRS(R), A).
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[8] Czes law Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
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1. Lattice of Many Sorted Equivalence Relations is Complete

For simplicity we adopt the following convention: I will be a non empty set,
M will be a many sorted set indexed by I, x will be arbitrary, and r1, r2 will
be real numbers.

We now state several propositions:

(1) For every set X holds x ∈ the carrier of EqRelLatt(X) iff x is an
equivalence relation of X.

(2) idM is an equivalence relation of M .

(3) [[M,M ]] is an equivalence relation of M .

(4) ⊥EqRelLatt(M) = idM .

(5) >EqRelLatt(M) = [[M,M ]].

Let us consider I, M . Note that EqRelLatt(M) is bounded.
One can prove the following propositions:

(6) Every subset of the carrier of EqRelLatt(M) is a family of many sorted
subsets of [[M,M ]].

(7) Let a, b be elements of the carrier of EqRelLatt(M) and let A, B be
equivalence relations of M . If a = A and b = B, then a v b iff A ⊆ B.
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(8) Let X be a subset of the carrier of EqRelLatt(M) and let X1 be a
family of many sorted subsets of [[M,M ]]. Suppose X1 = X. Let a, b be
equivalence relations of M . If a =

⋂ |:X1:| and b ∈ X, then a ⊆ b.
(9) Let X be a subset of the carrier of EqRelLatt(M) and let X1 be a family

of many sorted subsets of [[M,M ]]. If X1 = X and X is non empty, then⋂ |:X1:| is an equivalence relation of M .

Let L be a non empty lattice structure. Let us observe that L is complete if
and only if the condition (Def. 1) is satisfied.

(Def. 1) Let X be a subset of the carrier of L. Then there exists an element a
of the carrier of L such that X v a and for every element b of the carrier
of L such that X v b holds a v b.

Next we state the proposition

(10) EqRelLatt(M) is complete.

Let us consider I, M . Observe that EqRelLatt(M) is complete.
We now state the proposition

(11) Let X be a subset of the carrier of EqRelLatt(M) and let X1 be a
family of many sorted subsets of [[M,M ]]. Suppose X1 = X and X is
non empty. Let a, b be equivalence relations of M . If a =

⋂ |:X1:| and
b = d−eEqRelLatt(M)X, then a = b.

2. Sublattices inheriting SUP’s and INF’s

Let L be a lattice and let I1 be a sublattice of L. We say that I1 is d−e-
inheriting if and only if:

(Def. 2) For every subset X of the carrier of I1 holds d−eLX ∈ the carrier of I1.

We say that I1 is
⊔

-inheriting if and only if:

(Def. 3) For every subset X of the carrier of I1 holds
⊔
LX ∈ the carrier of I1.

The following propositions are true:

(12) Let L be a lattice, and let L′ be a sublattice of L, and let a, b be
elements of the carrier of L, and let a′, b′ be elements of the carrier of L′.
If a = a′ and b = b′, then a t b = a′ t b′ and a u b = a′ u b′.

(13) Let L be a lattice, and let L′ be a sublattice of L, and let X be a subset
of the carrier of L′, and let a be an element of the carrier of L, and let a′

be an element of the carrier of L′. If a = a′, then a v X iff a′ v X.
(14) Let L be a lattice, and let L′ be a sublattice of L, and let X be a subset

of the carrier of L′, and let a be an element of the carrier of L, and let a′

be an element of the carrier of L′. If a = a′, then X v a iff X v a′.
(15) Let L be a complete lattice and let L′ be a sublattice of L. If L′ is

d−e-inheriting, then L′ is complete.

(16) Let L be a complete lattice and let L′ be a sublattice of L. If L′ is⊔
-inheriting, then L′ is complete.
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Let L be a complete lattice. Note that there exists a sublattice of L which
is complete.

Let L be a complete lattice. One can verify that every sublattice of L which
is d−e-inheriting is also complete and every sublattice of L which is

⊔
-inheriting

is also complete.

Next we state four propositions:

(17) Let L be a complete lattice and let L′ be a sublattice of L. Suppose L′ is
d−e-inheriting. Let A′ be a subset of the carrier of L′. Then d−eLA′ = d−eL′A′.

(18) Let L be a complete lattice and let L′ be a sublattice of L. Suppose L′ is⊔
-inheriting. Let A′ be a subset of the carrier of L′. Then

⊔
LA
′ =

⊔
L′ A

′.

(19) Let L be a complete lattice and let L′ be a sublattice of L. Suppose
L′ is d−e-inheriting. Let A be a subset of the carrier of L and let A′ be a
subset of the carrier of L′. If A = A′, then d−eA = d−eA′.

(20) Let L be a complete lattice and let L′ be a sublattice of L. Suppose
L′ is

⊔
-inheriting. Let A be a subset of the carrier of L and let A′ be a

subset of the carrier of L′. If A = A′, then
⊔
A =

⊔
A′.

3. Segment of Real Numbers as a Complete Lattice

Let us consider r1, r2. Let us assume that r1 ≤ r2. The functor
RealSubLatt(r1, r2) yields a strict lattice and is defined by the conditions
(Def. 4).

(Def. 4) (i) The carrier of RealSubLatt(r1, r2) = [r1, r2],

(ii) the join operation of RealSubLatt(r1, r2) = max �
�
([: [r1, r2],

[r1, r2] :] qua set), and

(iii) the meet operation of RealSubLatt(r1, r2) = min �
�
([: [r1, r2],

[r1, r2] :] qua set).

One can prove the following propositions:

(21) For all r1, r2 such that r1 ≤ r2 holds RealSubLatt(r1, r2) is complete.

(22) There exists sublattice of RealSubLatt(0, 1) which is
⊔

-inheriting and
non d−e-inheriting.

(23) There exists a complete lattice L such that there exists sublattice of L
which is

⊔
-inheriting and non d−e-inheriting.

(24) There exists sublattice of RealSubLatt(0, 1) which is d−e-inheriting and
non

⊔
-inheriting.

(25) There exists a complete lattice L such that there exists sublattice of L
which is d−e-inheriting and non

⊔
-inheriting.
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[6] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
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1. Preliminaries

Let N be a non empty set with non empty elements and let S be an AMI
over N . One can check that every finite partial state of S is finite.

Let N be a non empty set with non empty elements and let S be an AMI
over N . One can verify that there exists a finite partial state of S which is
programmed.

Next we state the proposition

(1) Let N be a non empty set with non empty elements, and let S be a
definite AMI over N , and let p be a programmed finite partial state of S.
Then rng p ⊆ the instructions of S.

Let N be a non empty set with non empty elements, let S be a definite AMI
over N , and let I, J be programmed finite partial states of S. Then I+·J is a
programmed finite partial state of S.

Next we state the proposition

(2) Let N be a non empty set with non empty elements, and let S be a
definite AMI over N , and let f be a function from the instructions of S
into the instructions of S, and let s be a programmed finite partial state
of S. Then dom(f · s) = dom s.
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2. Incrementing and decrementing the instruction locations

In the sequel i, k, l, m, n, p will denote natural numbers.
Let l1 be an instruction-location of SCMFSA and let k be a natural number.

The functor l1 + k yielding an instruction-location of SCMFSA is defined by:

(Def. 1) There exists a natural number m such that l1 = insloc(m) and l1 + k =
insloc(m+ k).

The functor l1−′ k yields an instruction-location of SCMFSA and is defined by:

(Def. 2) There exists a natural number m such that l1 = insloc(m) and l1−′ k =
insloc(m−′ k).

We now state two propositions:

(3) For every instruction-location l of SCMFSA and for all m, n holds
(l +m) + n = l + (m+ n).

(4) For every instruction-location l1 of SCMFSA and for every natural num-
ber k holds (l1 + k)−′ k = l1.

In the sequel L will be an instruction-location of SCM and I will be an
instruction of SCM.

The following three propositions are true:

(5) For every instruction-location l of SCMFSA and for every L such that
L = l holds l + k = L+ k.

(6) For all instructions-locations l2, l3 of SCMFSA and for every natural
number k holds Start-At(l2 + k) = Start-At(l3 + k) iff Start-At(l2) =
Start-At(l3).

(7) For all instructions-locations l2, l3 of SCMFSA and for every natural
number k such that Start-At(l2) = Start-At(l3) holds Start-At(l2 −′ k) =
Start-At(l3 −′ k).

3. Incrementing addresses

Let i be an instruction of SCMFSA and let k be a natural number. The
functor IncAddr(i, k) yielding an instruction of SCMFSA is defined as follows:

(Def. 3) (i) There exists an instruction I of SCM such that I = i and
IncAddr(i, k) = IncAddr(I, k) if InsCode(i) ∈ {6, 7, 8},

(ii) IncAddr(i, k) = i, otherwise.

We now state a number of propositions:

(8) For every natural number k holds IncAddr(haltSCMFSA
, k) =

haltSCMFSA
.

(9) For every natural number k and for all integer locations a, b holds
IncAddr(a:=b, k) = a:=b.
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(10) For every natural number k and for all integer locations a, b holds
IncAddr(AddTo(a, b), k) = AddTo(a, b).

(11) For every natural number k and for all integer locations a, b holds
IncAddr(SubFrom(a, b), k) = SubFrom(a, b).

(12) For every natural number k and for all integer locations a, b holds
IncAddr(MultBy(a, b), k) = MultBy(a, b).

(13) For every natural number k and for all integer locations a, b holds
IncAddr(Divide(a, b), k) = Divide(a, b).

(14) For every natural number k and for every instruction-location l1 of
SCMFSA holds IncAddr(goto l1, k) = goto (l1 + k).

(15) Let k be a natural number, and let l1 be an instruction-location of
SCMFSA, and let a be an integer location. Then IncAddr(if a =
0 goto l1, k) = if a = 0 goto l1 + k.

(16) Let k be a natural number, and let l1 be an instruction-location of
SCMFSA, and let a be an integer location. Then IncAddr(if a >
0 goto l1, k) = if a > 0 goto l1 + k.

(17) Let k be a natural number, and let a, b be integer locations, and let f
be a finite sequence location. Then IncAddr(b:=fa, k) = b:=fa.

(18) Let k be a natural number, and let a, b be integer locations, and let f
be a finite sequence location. Then IncAddr(fa:=b, k) = fa:=b.

(19) Let k be a natural number, and let a be an integer location, and let f
be a finite sequence location. Then IncAddr(a:=lenf, k) = a:=lenf.

(20) Let k be a natural number, and let a be an integer location, and
let f be a finite sequence location. Then IncAddr(f :=〈0, . . . , 0︸ ︷︷ ︸

a

〉, k) =

f :=〈0, . . . , 0︸ ︷︷ ︸
a

〉.

(21) For every instruction i of SCMFSA and for every I such that i = I
holds IncAddr(i, k) = IncAddr(I, k).

(22) For every instruction I of SCMFSA and for every natural number k
holds InsCode(IncAddr(I, k)) = InsCode(I).

Let I1 be a finite partial state of SCMFSA. We say that I1 is initial if and
only if:

(Def. 4) For all m, n such that insloc(n) ∈ dom I1 and m < n holds insloc(m) ∈
dom I1.

The finite partial state StopSCMFSA
of SCMFSA is defined as follows:

(Def. 5) StopSCMFSA
= insloc(0) 7−→. haltSCMFSA

.

Let us note that StopSCMFSA
is non empty initial and programmed.

One can verify that there exists a finite partial state of SCMFSA which is
initial programmed and non empty.

Let f be a function and let g be a finite function. Note that f · g is finite.
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Let N be a non empty set with non empty elements, let S be a definite AMI
over N , let s be a programmed finite partial state of S, and let f be a function
from the instructions of S into the instructions of S. Then f ·s is a programmed
finite partial state of S.

In the sequel i will denote an instruction of SCMFSA.
The following proposition is true

(23) IncAddr(IncAddr(i,m), n) = IncAddr(i,m+ n).

4. Incremeting addresses in a finite partial state

Let p be a programmed finite partial state of SCMFSA and let k be a natural
number. The functor IncAddr(p, k) yielding a programmed finite partial state
of SCMFSA is defined by:

(Def. 6) dom IncAddr(p, k) = dom p and for every m such that insloc(m) ∈
dom p holds (IncAddr(p, k))(insloc(m)) = IncAddr(πinsloc(m)p, k).

The following propositions are true:

(24) Let p be a programmed finite partial state of SCMFSA, and let k be
a natural number, and let l be an instruction-location of SCMFSA. If
l ∈ dom p, then (IncAddr(p, k))(l) = IncAddr(πlp, k).

(25) For all programmed finite partial states I, J of SCMFSA holds
IncAddr(I+·J, n) = IncAddr(I, n)+· IncAddr(J, n).

(26) Let f be a function from the instructions of SCMFSA into the instruc-
tions of SCMFSA. Suppose f = id(the instructions of SCMFSA)+·(haltSCMFSA

7−→. i). Let s be a programmed finite partial state of SCMFSA. Then
IncAddr(f · s, n) = (id(the instructions of SCMFSA)+·(haltSCMFSA

7−→.
IncAddr(i, n))) · IncAddr(s, n).

(27) For every programmed finite partial state I of SCMFSA holds
IncAddr(IncAddr(I,m), n) = IncAddr(I,m+ n).

(28) For every state s of SCMFSA holds Exec(IncAddr(CurInstr(s), k), s+·
Start-At(ICs + k)) = Following(s)+·Start-At(ICFollowing(s) + k).

(29) Let I2 be an instruction of SCMFSA, and let s be a state of SCMFSA,
and let p be a finite partial state of SCMFSA, and let i, j, k be natural
numbers. If ICs = insloc(j + k), then Exec(I2, s+·Start-At(ICs −′ k)) =
Exec(IncAddr(I2, k), s)+·Start-At(ICExec(IncAddr(I2,k),s) −′ k).

5. Shifting the finite partial state

Let p be a programmed finite partial state of SCMFSA and let k be a natural
number. The functor Shift(p, k) yields a programmed finite partial state of
SCMFSA and is defined as follows:
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(Def. 7) dom Shift(p, k) = {insloc(m + k) : insloc(m) ∈ dom p} and for ev-
ery m such that insloc(m) ∈ dom p holds (Shift(p, k))(insloc(m + k)) =
p(insloc(m)).

The following propositions are true:

(30) Let l be an instruction-location of SCMFSA, and let k be a natural
number, and let p be a programmed finite partial state of SCMFSA. If
l ∈ dom p, then (Shift(p, k))(l + k) = p(l).

(31) Let p be a programmed finite partial state of SCMFSA and let k be
a natural number. Then dom Shift(p, k) = {i1 + k : i1 ranges over
instructions-locations of SCMFSA, i1 ∈ dom p}.

(32) For every programmed finite partial state I of SCMFSA holds
Shift(Shift(I,m), n) = Shift(I,m+ n).

(33) Let s be a programmed finite partial state of SCMFSA, and let f
be a function from the instructions of SCMFSA into the instructions of
SCMFSA, and given n. Then Shift(f · s, n) = f · Shift(s, n).

(34) For all programmed finite partial states I, J of SCMFSA holds
Shift(I+·J, n) = Shift(I, n)+·Shift(J, n).

(35) For all natural numbers i, j and for every programmed finite partial
state p of SCMFSA holds Shift(IncAddr(p, i), j) = IncAddr(Shift(p, j), i).
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Summary. We prove a number of auxiliary facts about graphs,
mainly about vertex sequences of chains and oriented chains. Then we
define a graph to be well-founded if for each vertex in the graph the length
of oriented chains ending at the vertex is bounded. A well-founded graph
does not have directed cycles or infinite descending chains. In the second
part of the article we prove some auxiliary facts about free algebras and
locally-finite algebras.

MML Identifier: MSSCYC 1.

The papers [32], [34], [17], [21], [3], [1], [27], [7], [35], [14], [16], [15], [29], [19],
[11], [33], [22], [24], [20], [4], [6], [8], [2], [5], [18], [12], [31], [30], [13], [23], [28],
[26], [25], [9], and [10] provide the notation and terminology for this paper.

1. Some properties of graphs

The following proposition is true

(1) For every finite function f such that for every set x such that x ∈ dom f
holds f(x) is finite holds

∏
f is finite.

In the sequel G will denote a graph and m, n will denote natural numbers.
Let G be a graph. Let us note that the chain of G can be characterized by

the following (equivalent) condition:

(Def. 1) It is a finite sequence of elements of the edges of G and there exists
finite sequence of elements of the vertices of G which is vertex sequence
of it.

1This work was partially supported by NSERC Grant OGP9207.
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One can prove the following proposition

(2) For all finite sequences p, q such that 1 ≤ n and n ≤ len p holds
〈p(1), . . . , p(n)〉 = 〈(p � q)(1), . . . , (p � q)(n)〉.

Let G be a graph and let I1 be a chain of G. We introduce I1 is directed as
a synonym of I1 is oriented.

Let G be a graph and let I1 be a chain of G. We say that I1 is cyclic if and
only if:

(Def. 2) There exists a finite sequence p of elements of the vertices of G such
that p is vertex sequence of I1 and p(1) = p(len p).

Let I1 be a graph. We say that I1 is empty if and only if:

(Def. 3) The edges of I1 is empty.

One can verify that there exists a graph which is empty.
Next we state the proposition

(3) For every graph G holds rng (the source of G)∪ rng (the target of G) ⊆
the vertices of G.

Let us observe that there exists a graph which is finite simple connected non
empty and strict.

Let G be a non empty graph. Note that the edges of G is non empty.
We now state two propositions:

(4) Let e be arbitrary. Suppose e ∈ the edges of G. Let s, t be elements of
the vertices of G. Suppose s = (the source of G)(e) and t = (the target
of G)(e). Then 〈s, t〉 is vertex sequence of 〈e〉.

(5) For arbitrary e such that e ∈ the edges of G holds 〈e〉 is a directed chain
of G.

In the sequel G is a non empty graph.
Let us consider G. Observe that there exists a chain of G which is directed

non empty and path-like.
The following propositions are true:

(6) Let c be a chain of G and let p be a finite sequence of elements of the
vertices of G. If c is cyclic and p is vertex sequence of c, then p(1) =
p(len p).

(7) Let G be a graph and let e be arbitrary. Suppose e ∈ the edges of G.
Let f1 be a directed chain of G. If f1 = 〈e〉, then vertex-seq(f1) = 〈(the
source of G)(e), (the target of G)(e)〉.

(8) For every finite sequence f holds len〈f(m), . . . , f(n)〉 ≤ len f.

(9) For every directed chain c of G such that 1 ≤ m and m ≤ n and
n ≤ len c holds 〈c(m), . . . , c(n)〉 is a directed chain of G.

(10) For every non empty directed chain o1 of G holds len vertex-seq(o1) =
len o1 + 1.

Let us consider G and let o1 be a directed non empty chain of G. Observe
that vertex-seq(o1) is non empty.

One can prove the following propositions:
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(11) Let o1 be a directed non empty chain of G and given n. Suppose 1 ≤ n
and n ≤ len o1. Then (vertex-seq(o1))(n) = (the source of G)(o1(n)) and
(vertex-seq(o1))(n+ 1) = (the target of G)(o1(n)).

(12) For every non empty finite sequence f such that 1 ≤ m and m ≤ n and
n ≤ len f holds 〈f(m), . . . , f(n)〉 is non empty.

(13) For all directed chains c, c1 of G such that 1 ≤ m and m ≤
n and n ≤ len c and c1 = 〈c(m), . . . , c(n)〉 holds vertex-seq(c1) =
〈(vertex-seq(c))(m), . . . , (vertex-seq(c))(n + 1)〉.

(14) For every directed non empty chain o1 ofG holds (vertex-seq(o1))(len o1+
1) = (the target of G)(o1(len o1)).

(15) For all directed non empty chains c1, c2 ofG holds (vertex-seq(c1))(len c1+
1) = (vertex-seq(c2))(1) iff c1

� c2 is a directed non empty chain of G.

(16) For all directed non empty chains c, c1, c2 of G such that c = c1
� c2 holds

(vertex-seq(c))(1) = (vertex-seq(c1))(1) and (vertex-seq(c))(len c + 1) =
(vertex-seq(c2))(len c2 + 1).

(17) For every directed non empty chain o1 of G such that o1 is cyclic holds
(vertex-seq(o1))(1) = (vertex-seq(o1))(len o1 + 1).

(18) Let c be a directed non empty chain of G. Suppose c is cyclic. Given n.
Then there exists a directed chain c3 of G such that len c3 = n and c3

� c
is a directed non empty chain of G.

Let I1 be a graph. We say that I1 is directed cycle-less if and only if:

(Def. 4) For every directed chain d1 of I1 such that d1 is non empty holds d1 is
non cyclic.

We introduce I1 has directed cycle as an antonym of I1 is directed cycle-less.

Let us mention that every graph which is empty is also directed cycle-less.

Let I1 be a graph. We say that I1 is well-founded if and only if the condition
(Def. 5) is satisfied.

(Def. 5) Let v be an element of the vertices of I1. Then there exists n such that
for every directed chain c of I1 if c is non empty and (vertex-seq(c))(len c+
1) = v, then len c ≤ n.

Let G be an empty graph. Note that every chain of G is empty.

One can check that every graph which is empty is also well-founded.

Let us observe that every graph which is non well-founded is also non empty.

One can check that there exists a graph which is well-founded.

Let us note that every graph which is well-founded is also directed cycle-less.

Let us note that there exists a graph which is non well-founded.

One can verify that there exists a graph which is directed cycle-less.

We now state the proposition

(19) For every decorated tree t and for every node p of t and for every natural
number k holds p

�
k is a node of t.
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2. Some properties of many sorted algebras

Next we state two propositions:

(20) Let S be a non void non empty many sorted signature, and let X be
a non-empty many sorted set indexed by the carrier of S, and let t be a
term of S over X. Suppose t is not root. Then there exists an operation
symbol o of S such that t(ε) = 〈〈o, the carrier of S〉〉.

(21) Let S be a non void non empty many sorted signature, and let A be an
algebra over S, and let G be a generator set of A, and let B be a subset
of A. If G ⊆ B, then B is a generator set of A.

Let S be a non void non empty many sorted signature and let A be a finitely-
generated non-empty algebra over S. Note that there exists a generator set of
A which is non-empty and locally-finite.

One can prove the following two propositions:

(22) Let S be a non void non empty many sorted signature, and let A be a
non-empty algebra over S, and let X be a non-empty generator set of A.
Then there exists many sorted function from Free(X) into A which is an
epimorphism of Free(X) onto A

(23) Let S be a non void non empty many sorted signature, and let A be a
non-empty algebra over S, and let X be a non-empty generator set of A.
If A is non locally-finite, then Free(X) is non locally-finite.

Let S be a non void non empty many sorted signature, let X be a non-empty
locally-finite many sorted set indexed by the carrier of S, and let v be a sort
symbol of S. One can check that FreeGenerator(v,X) is finite.

One can prove the following propositions:

(24) Let S be a non void non empty many sorted signature, and let X be a
non-empty locally-finite many sorted set indexed by the carrier of S, and
let v be a sort symbol of S. Then FreeGenerator(v,X) is finite.

(25) Let S be a non void non empty many sorted signature, and let A be a
non-empty algebra over S, and let o be an operation symbol of S. If (the
arity of S)(o) = ε, then dom Den(o,A) = {ε}.

Let I1 be a non void non empty many sorted signature. We say that I1 is
finitely operated if and only if:

(Def. 6) For every sort symbol s of I1 holds {o : o ranges over operation symbols
of I1, the result sort of o = s} is finite.

Next we state three propositions:

(26) Let S be a non void non empty many sorted signature, and let A be a
non-empty algebra over S, and let v be a sort symbol of S. If S is finitely
operated, then Constants(A, v) is finite.

(27) Let S be a non void non empty many sorted signature, and let X be a
non-empty many sorted set indexed by the carrier of S, and let v be a sort



the correspondence between monotonic many . . . 581

symbol of S Then {t : t ranges over elements of (the sorts of Free(X))(v),
depth(t) = 0} = FreeGenerator(v,X) ∪ Constants(Free(X), v).

(28) Let S be a non void non empty many sorted signature, and let X be
a non-empty many sorted set indexed by the carrier of S, and let v, v1

be sort symbols of S, and let o be an operation symbol of S, and let
t be an element of (the sorts of Free(X))(v), and let a be an argument
sequence of Sym(o,X), and let k be a natural number, and let a1 be an
element of (the sorts of Free(X))(v1). If t = 〈〈o, the carrier of S〉〉-tree(a)
and k ∈ dom a and a1 = a(k), then depth(a1) < depth(t).
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The terminology and notation used in this paper are introduced in the following
articles: [12], [15], [1], [24], [14], [19], [26], [18], [2], [10], [5], [27], [7], [3], [6], [25],
[11], [8], [9], [4], [13], [22], [16], [17], [23], [20], and [21].

1. Relocability

In this paper j, k will denote natural numbers.
Let p be a finite partial state of SCMFSA and let k be a natural number. The

functor Relocated(p, k) yields a finite partial state of SCMFSA and is defined
as follows:

(Def. 1) Relocated(p, k) = Start-At(ICp + k)+· IncAddr(Shift(ProgramPart(p),
k), k)+·DataPart(p).

We now state a number of propositions:

(1) For every finite partial state p of SCMFSA and for every natural number
k holds DataPart(Relocated(p, k)) = DataPart(p).

(2) For every finite partial state p of SCMFSA and for every natural number
k holds ProgramPart(Relocated(p, k)) = IncAddr(Shift(ProgramPart(p),
k), k).

(3) For every finite partial state p of SCMFSA holds dom ProgramPart
(Relocated(p, k)) = {insloc(j + k) : insloc(j) ∈ dom ProgramPart(p)}.

(4) Let p be a finite partial state of SCMFSA, and let k be a natural number,
and let l be an instruction-location of SCMFSA. Then l ∈ dom p if and
only if l + k ∈ dom Relocated(p, k).

(5) For every finite partial state p of SCMFSA and for every natural number
k holds ICSCMFSA

∈ dom Relocated(p, k).
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(6) For every finite partial state p of SCMFSA and for every natural number
k holds ICRelocated(p,k) = ICp + k.

(7) Let p be a finite partial state of SCMFSA, and let k be a natural
number, and let l1 be an instruction-location of SCMFSA, and let I be
an instruction of SCMFSA. If l1 ∈ dom ProgramPart(p) and I = p(l1),
then IncAddr(I, k) = (Relocated(p, k))(l1 + k).

(8) For every finite partial state p of SCMFSA and for every natural number
k holds Start-At(ICp + k) ⊆ Relocated(p, k).

(9) Let s be a data-only finite partial state of SCMFSA, and let p be a finite
partial state of SCMFSA, and let k be a natural number. If ICSCMFSA

∈
dom p, then Relocated(p+·s, k) = Relocated(p, k)+·s.

(10) Let k be a natural number, and let p be an autonomic finite
partial state of SCMFSA, and let s1, s2 be states of SCMFSA.
If p ⊆ s1 and Relocated(p, k) ⊆ s2, then p ⊆ s1+·s2

�

(Int-Locations∪FinSeq-Locations).

2. Main Theorems of Relocability

We now state several propositions:

(11) Let k be a natural number and let p be an autonomic fi-
nite partial state of SCMFSA. Suppose ICSCMFSA

∈ dom p.
Let s be a state of SCMFSA. Suppose p ⊆ s. Let i be
a natural number. Then (Computation(s+·Relocated(p, k)))(i) =
(Computation(s))(i)+·Start-At(IC(Computation(s))(i) + k)+·ProgramPart

(Relocated(p, k)).

(12) Let k be a natural number, and let p be an autonomic finite par-
tial state of SCMFSA, and let s1, s2, s3 be states of SCMFSA.
Suppose ICSCMFSA

∈ dom p and p ⊆ s1 and Relocated(p, k) ⊆
s2 and s3 = s1+·s2

�
(Int-Locations∪FinSeq-Locations). Let

i be a natural number. Then IC(Computation(s1))(i) + k =
IC(Computation(s2))(i) and IncAddr(CurInstr((Computation(s1))(i)), k) =
CurInstr((Computation(s2))(i)) and (Computation(s1))(i)

�
dom DataPart

(p) = (Computation(s2))(i)
�

dom DataPart(Relocated(p, k)) and
(Computation(s3))(i)

�
(Int-Locations∪FinSeq-Locations) =

(Computation(s2))(i)
�
(Int-Locations∪FinSeq-Locations).

(13) Let p be an autonomic finite partial state of SCMFSA and let k be a nat-
ural number. If ICSCMFSA

∈ dom p, then p is halting iff Relocated(p, k)
is halting.

(14) Let k be a natural number and let p be an autonomic fi-
nite partial state of SCMFSA. Suppose ICSCMFSA

∈ dom p.
Let s be a state of SCMFSA. Suppose Relocated(p, k) ⊆
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s. Let i be a natural number. Then (Computation(s))(i) =
(Computation(s+·p))(i)+·Start-At(IC(Computation(s+·p))(i) + k)+·s �

dom
ProgramPart(p)+·ProgramPart(Relocated(p, k)).

(15) Let k be a natural number and let p be a finite partial state
of SCMFSA. Suppose ICSCMFSA

∈ dom p. Let s be a state
of SCMFSA. Suppose p ⊆ s and Relocated(p, k) is auto-
nomic. Let i be a natural number. Then (Computation(s))(i) =
(Computation(s+·Relocated(p, k)))(i)+·Start-At
(IC(Computation(s+·Relocated(p,k)))(i)−′k)+·s �

dom ProgramPart(Relocated(p,
k))+·ProgramPart(p).

(16) Let p be a finite partial state of SCMFSA. Suppose ICSCMFSA
∈

dom p. Let k be a natural number. Then p is autonomic if and only if
Relocated(p, k) is autonomic.

(17) Let p be a halting autonomic finite partial state of SCMFSA.
If ICSCMFSA

∈ dom p, then for every natural number k holds
DataPart(Result(p)) = DataPart(Result(Relocated(p, k))).

(18) Let F be a data-only partial function from FinPartSt(SCMFSA) to
FinPartSt(SCMFSA) and let p be a finite partial state of SCMFSA. Sup-
pose ICSCMFSA

∈ dom p. Let k be a natural number. Then p computes
F if and only if Relocated(p, k) computes F .
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[7] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
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[4], [26], [5], [20], [30], [1], [2], [24], [13], [21], [16], [23], [15], [17], [14], [6], and
[18].

1. More on the Lattice of Equivalence Relations

For simplicity we follow a convention: Y denotes a set, I denotes a non empty
set, M denotes a many sorted set indexed by I, x, y are arbitrary, k denotes a
natural number, p denotes a finite sequence, S denotes a non void non empty
many sorted signature, and A denotes a non-empty algebra over S.

The following proposition is true

(1) For every natural number n and for every finite sequence p holds 1 ≤ n
and n < len p iff n ∈ dom p and n+ 1 ∈ dom p.

The scheme NonUniqSeqEx concerns a natural number A and a binary pred-
icate P, and states that:

There exists p such that dom p = SegA and for every k such that
k ∈ SegA holds P[k, p(k)]

provided the following requirement is met:
• For every k such that k ∈ SegA there exists x such that P[k, x].
The following three propositions are true:

(2) Let a, b be elements of the carrier of EqRelLatt(Y ) and let A, B be
equivalence relations of Y . If a = A and b = B, then a v b iff A ⊆ B.

(3) ⊥EqRelLatt(Y ) = 4Y .
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(4) >EqRelLatt(Y ) = ∇Y .
Let us consider Y . Note that EqRelLatt(Y ) is bounded.
Next we state the proposition

(5) EqRelLatt(Y ) is complete.

Let us consider Y . One can check that EqRelLatt(Y ) is complete.
The following propositions are true:

(6) For every set Y and for every subset X of the carrier of EqRelLatt(Y )
holds

⋃
X is a binary relation on Y .

(7) For every set Y and for every subset X of the carrier of EqRelLatt(Y )
holds

⋃
X ⊆ ⊔X.

(8) Let Y be a set, and let X be a subset of the carrier of EqRelLatt(Y ),
and let R be a binary relation on Y . If R =

⋃
X, then

⊔
X = EqCl(R).

(9) Let Y be a set, and let X be a subset of the carrier of EqRelLatt(Y ),
and let R be a binary relation. If R =

⋃
X, then R = R � .

(10) Let Y be a set and let X be a subset of the carrier of EqRelLatt(Y ).
Suppose x ∈ Y and y ∈ Y. Then 〈〈x, y〉〉 ∈ ⊔X if and only if there exists
a finite sequence f such that 1 ≤ len f and x = f(1) and y = f(len f)
and for every natural number i such that 1 ≤ i and i < len f holds 〈〈f(i),
f(i+ 1)〉〉 ∈ ⋃X.

2. Lattice of Congruences in Many Sorted Algebra as Sublattice
of Lattice of Many Sorted Equivalence Relations Inherited Sup’s

and Inf’s

The following proposition is true

(11) For every subset B of the carrier of CongrLatt(A) holds
d−eEqRelLatt(the sorts of A)B is a congruence of A.

Let us consider S, A and let E be an element of the carrier of EqRelLatt(the
sorts of A). The functor CongrCl(E) yields a congruence of A and is defined by
the condition (Def. 1).

(Def. 1) CongrCl(E) = d−eEqRelLatt(the sorts of A){x : x ranges over elements of the
carrier of EqRelLatt(the sorts of A), x is a congruence of A ∧ E v x}.

Let us consider S, A and let X be a subset of the carrier of EqRelLatt(the
sorts of A). The functor CongrCl(X) yields a congruence of A and is defined
by the condition (Def. 2).

(Def. 2) CongrCl(X) = d−eEqRelLatt(the sorts of A){x : x ranges over elements of the
carrier of EqRelLatt(the sorts of A), x is a congruence of A ∧ X v x}.

The following propositions are true:

(12) For every element C of the carrier of EqRelLatt(the sorts of A) such
that C is a congruence of A holds CongrCl(C) = C.
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(13) For every subset X of the carrier of EqRelLatt(the sorts of A) holds
CongrCl(

⊔
EqRelLatt(the sorts of A) X) = CongrCl(X).

(14) Let B1, B2 be subsets of the carrier of CongrLatt(A) and let C1, C2

be congruences of A. Suppose C1 =
⊔

EqRelLatt(the sorts of A) B1 and C2 =⊔
EqRelLatt(the sorts of A) B2. Then C1 t C2 =

⊔
EqRelLatt(the sorts of A)(B1 ∪

B2).

(15) Let X be a subset of the carrier of CongrLatt(A). Then⊔
EqRelLatt(the sorts of A) X =

⊔
EqRelLatt(the sorts of A){

⊔
EqRelLatt(the sorts of A)

X0 : X0 ranges over subsets of the carrier of EqRelLatt(the sorts of A),
X0 is a finite subset of X}.

(16) Let i be an element of I and let e be an equivalence relation of M(i).
Then there exists an equivalence relation E of M such that E(i) = e and
for every element j of I such that j 6= i holds E(j) = ∇M(j).

Let I be a non empty set, let M be a many sorted set indexed by I, let i be
an element of I, and let X be a subset of the carrier of EqRelLatt(M). Then
πiX is a subset of the carrier of EqRelLatt(M(i)) and it can be characterized
by the condition:

(Def. 3) x ∈ πiX iff there exists an equivalence relation E1 of M such that
x = E1(i) and E1 ∈ X.

We introduce EqRelSet(X, i) as a synonym of πiX.
Next we state four propositions:

(17) Let i be an element of the carrier of S, and let X be a sub-
set of the carrier of EqRelLatt(the sorts of A), and let B be an
equivalence relation of the sorts of A. If B =

⊔
X, then B(i) =⊔

EqRelLatt((the sorts of A)(i)) EqRelSet(X, i).

(18) For every subset X of the carrier of CongrLatt(A) holds⊔
EqRelLatt(the sorts of A) X is a congruence of A.

(19) CongrLatt(A) is d−e-inheriting.

(20) CongrLatt(A) is
⊔

-inheriting.

Let us consider S, A. Observe that CongrLatt(A) is d−e-inheriting and
⊔

-
inheriting.
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Summary. The graph induced by a many sorted signature is de-
fined as follows: the vertices are the symbols of sorts, and if a sort s is
an argument of an operation with result sort t, then a directed edge [s, t]
is in the graph. The key lemma states relationship between the depth of
elements of a free many sorted algebra over a signature and the length
of directed chains in the graph induced by the signature. Then we prove
that a monotonic many sorted signature (every finitely-generated algebra
over it is locally-finite) induces a well-founded graph. The converse holds
with an additional assumption that the signature is finitely operated, i.e.
there is only a finite number of operations with the given result sort.

MML Identifier: MSSCYC 2.

The articles [30], [33], [19], [2], [15], [31], [34], [12], [14], [13], [18], [21], [17], [10],
[3], [5], [7], [1], [4], [26], [6], [32], [20], [22], [29], [28], [11], [27], [25], [24], [23],
[8], [9], and [16] provide the terminology and notation for this paper.

In this paper n will be a natural number.
Let S be a many sorted signature. The functor InducedEdges(S) yields a set

and is defined by the condition (Def. 1).

(Def. 1) Let x be a set. Then x ∈ InducedEdges(S) if and only if there exist
sets o1, v such that x = 〈〈o1, v〉〉 and o1 ∈ the operation symbols of S and
v ∈ the carrier of S and there exists a natural number n and there exists
an element a1 of (the carrier of S)∗ such that (the arity of S)(o1) = a1

and n ∈ dom a1 and a1(n) = v.

Next we state the proposition

1This work was partially supported by NSERC Grant OGP9207.
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(1) For every many sorted signature S holds InducedEdges(S) ⊆ [: the op-
eration symbols of S, the carrier of S :].

Let S be a many sorted signature. The functor InducedSource(S) yields a
function from InducedEdges(S) into the carrier of S and is defined as follows:

(Def. 2) For every set e such that e ∈ InducedEdges(S) holds (InducedSource(S))
(e) = e2.

The functor InducedTarget(S) yielding a function from InducedEdges(S) into
the carrier of S is defined by:

(Def. 3) For every set e such that e ∈ InducedEdges(S) holds (InducedTarget(S))
(e) = (the result sort of S)(e1).

Let S be a non empty many sorted signature. The functor InducedGraph(S)
yields a graph and is defined by:

(Def. 4) InducedGraph(S) = 〈the carrier of S, InducedEdges(S), InducedSource
(S), InducedTarget(S)〉.

One can prove the following propositions:

(2) Let S be a non void non empty many sorted signature, and let X be
a non-empty many sorted set indexed by the carrier of S, and let v be
a sort symbol of S, and given n. Suppose 1 ≤ n. Then there exists an
element t of (the sorts of Free(X))(v) such that depth(t) = n if and only
if there exists a directed chain c of InducedGraph(S) such that len c = n
and (vertex-seq(c))(len c+ 1) = v.

(3) For every void non empty many sorted signature S holds S is monotonic
iff InducedGraph(S) is well-founded.

(4) For every non void non empty many sorted signature S such that S is
monotonic holds InducedGraph(S) is well-founded.

(5) Let S be a non void non empty many sorted signature and let X be
a non-empty locally-finite many sorted set indexed by the carrier of S.
Suppose S is finitely operated. Let n be a natural number and let v be
a sort symbol of S. Then {t : t ranges over elements of (the sorts of
Free(X))(v), depth(t) ≤ n} is finite.

(6) Let S be a non void non empty many sorted signature. If S is finitely
operated and InducedGraph(S) is well-founded, then S is monotonic.
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Summary. An attempt to define the concept of a functor covering
both cases (covariant and contravariant) resulted in a structure consist-
ing of two fields: the object map and the morphism map, the first one
mapping the Cartesian squares of the set of objects rather than the set of
objects. We start with an auxiliary notion of bifunction, i.e. a function
mapping the Cartesian square of a set A into the Cartesian square of a
set B. A bifunction f is said to be covariant if there is a function g from
A into B that f is the Cartesian square of g and f is contravariant if there
is a function g such that f(o1, o2) = 〈g(o2), g(o1)〉. The term transfor-
mation, another auxiliary notion, might be misleading. It is not related
to natural transformations. A transformation from a many sorted set A
indexed by I into a many sorted set B indexed by J w.r.t. a function f
from I into J is a (many sorted) function from A into B · f . Eventually,
the morphism map of a functor from C1 into C2 is a transformation from
the arrows of the category C1 into the composition of the object map of
the functor and the arrows of C2.

Several kinds of functor structures have been defined: one-to-one,
faithful, onto, full and id-preserving. We were pressed to split property
that the composition be preserved into two: comp-preserving (for covari-
ant functors) and comp-reversing (for contravariant functors). We defined
also some operation on functors, e.g. the composition, the inverse func-
tor. In the last section it is defined what is meant that two categories are
isomorphic (anti-isomorphic).

MML Identifier: FUNCTOR0.

The articles [15], [17], [6], [18], [16], [3], [4], [2], [10], [1], [5], [14], [9], [8], [13],
[7], [11], and [12] provide the terminology and notation for this paper.

1. Preliminaries

The scheme ValOnPair concerns a non empty set A, a function B, elements
C, D of A, a binary functor F yielding arbitrary, and a binary predicate P, and
states that:
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B(C, D) = F(C,D)

provided the following conditions are met:

• B = {〈〈〈〈o, o′〉〉, F(o, o′)〉〉 : o ranges over elements of A, o′ ranges over
elements of A, P[o, o′]},

• P[C,D].

One can prove the following propositions:

(1) For every set A holds ∅ is a function from A into ∅.
(2) For every set A and for every function f from A into ∅ holds f = ∅.
(3) For every set I and for every many sorted set M indexed by I holds

M · idI = M.

Let f be an empty function. Note that � f is empty. Let g be a function.
One can verify that [: f, g :] is empty and [: g, f :] is empty.

The following propositions are true:

(4) For every set A and for every function f holds f ◦(idA) = ( � f)◦(idA).

(5) For all sets X, Y and for every function f from X into Y holds f is
onto iff [: f, f :] is onto.

Let I1 be a set and let f , g be many sorted functions of I1. Then g ◦ f is a
many sorted function of I1.

Let f be a function yielding function. One can verify that � f is function
yielding.

One can prove the following propositions:

(6) For all sets A, B and for arbitrary a holds � ([:A, B :] 7−→ a) = [:B,
A :] 7−→ a.

(7) For all functions f , g such that f is one-to-one and g is one-to-one holds
[: f, g :]−1 = [: f−1, g−1 :].

(8) For every function f such that [: f, f :] is one-to-one holds f is one-to-
one.

(9) For every function f such that f is one-to-one holds � f is one-to-one.

(10) For all functions f , g such that � [: f, g :] is one-to-one holds [: g, f :] is
one-to-one.

(11) For all functions f , g such that f is one-to-one and g is one-to-one holds
( � [: f, g :])−1 = � ([: g, f :]−1).

(12) For all sets A, B and for every function f from A into B such that f is
onto holds idB ⊆ [: f, f :]◦(idA).

(13) For all function yielding functions F , G and for every function f holds
(G ◦ F ) · f = (G · f) ◦ (F · f).

Let A, B, C be sets and let f be a function from [:A, B :] into C. Then � f
is a function from [:B, A :] into C.

Next we state two propositions:

(14) For all sets A, B, C and for every function f from [:A, B :] into C such
that � f is onto holds f is onto.
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(15) For every set A and for every non empty set B and for every function
f from A into B holds [: f, f :]◦(idA) ⊆ idB.

2. Functions Between Cartesian Squares

Let A, B be sets.

(Def. 1) A function from [:A, A :] into [:B, B :] is called a bifunction from A into
B.

Let A, B be sets and let f be a bifunction from A into B. We say that f is
precovariant if and only if:

(Def. 2) There exists a function g from A into B such that f = [: g, g :].

We say that f is precontravariant if and only if:

(Def. 3) There exists a function g from A into B such that f = � [: g, g :].

The following proposition is true

(16) Let A be a set, and let B be a non empty set, and let b be an element
of B, and let f be a bifunction from A into B. If f = [:A, A :] 7−→ 〈〈b, b〉〉,
then f is precovariant and precontravariant.

Let A, B be sets. Note that there exists a bifunction from A into B which
is precovariant and precontravariant.

Next we state the proposition

(17) Let A, B be non empty sets and let f be a precovariant precontravariant
bifunction from A into B. Then there exists an element b of B such that
f = [:A, A :] 7−→ 〈〈b, b〉〉.

3. Unary Transformations

Let I1, I2 be sets, let f be a function from I1 into I2, let A be a many sorted
set indexed by I1, and let B be a many sorted set indexed by I2. A many sorted
set indexed by I1 is called a f -transformation from A to B if:

(Def. 4) (i) There exists a non empty set I ′2 and there exists a many sorted set
B′ indexed by I ′2 and there exists a function f ′ from I1 into I ′2 such that
f = f ′ and B = B′ and it is a many sorted function from A into B ′ · f ′ if
I2 6= ∅,

(ii) it = ∅(I1), otherwise.

Let I1 be a set, let I2 be a non empty set, let f be a function from I1 into I2,
let A be a many sorted set indexed by I1, and let B be a many sorted set indexed
by I2. Let us note that the f -transformation from A to B can be characterized
by the following (equivalent) condition:

(Def. 5) It is a many sorted function from A into B · f.
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Let I1, I2 be sets, let f be a function from I1 into I2, let A be a many sorted
set indexed by I1, and let B be a many sorted set indexed by I2. Note that
every f -transformation from A to B is function yielding.

We now state the proposition

(18) Let I1 be a set, and let I2, I3 be non empty sets, and let f be a function
from I1 into I2, and let g be a function from I2 into I3, and let B be a
many sorted set indexed by I2 and let C be a many sorted set indexed
by I3 and let G be a g-transformation from B to C. Then G · f is a
g · f -transformation from B · f to C.

Let I1 be a set, let I2 be a non empty set, let f be a function from I1 into
I2, let A be a many sorted set indexed by [: I1, I1 :], let B be a many sorted set
indexed by [: I2, I2 :], and let F be a [: f, f :]-transformation from A to B. Then
� F is a [: f, f :]-transformation from � A to � B.

One can prove the following two propositions:

(19) Let I1, I2 be non empty sets, and let A be a many sorted set indexed
by I1 and let B be a many sorted set indexed by I2 and let o be an
element of I2. Suppose B(o) 6= ∅. Let m be an element of B(o) and
let f be a function from I1 into I2. Suppose f = I1 7−→ o. Then {〈〈o′,
A(o′) 7−→ m〉〉 : o′ ranges over elements of I1} is a f -transformation from
A to B.

(20) Let I1 be a set, and let I2, I3 be non empty sets, and let f be a function
from I1 into I2, and let g be a function from I2 into I3, and let A be a
many sorted set indexed by I1 and let B be a many sorted set indexed
by I2 and let C be a many sorted set indexed by I3 and let F be a f -
transformation from A to B, and let G be a g ·f -transformation from B ·f
to C. Suppose that for arbitrary i1 such that i1 ∈ I1 and (B · f)(i1) = ∅
holds A(i1) = ∅ or (C · (g ·f))(i1) = ∅. Then G◦ (F qua function yielding
function) is a g · f -transformation from A to C.

4. Functors

Let C1, C2 be 1-sorted structures. We introduce bimap structures from C1

into C2 which are systems
〈 an object map 〉,

where the object map is a bifunction from the carrier of C1 into the carrier of
C2.

Let C1, C2 be non empty graphs, let F be a bimap structure from C1 into
C2, and let o be an object of C1. The functor F (o) yields an object of C2 and
is defined as follows:

(Def. 6) F (o) = (the object map of F )(o, o)1.

Let A, B be 1-sorted structures and let F be a bimap structure from A into
B. We say that F is one-to-one if and only if:
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(Def. 7) The object map of F is one-to-one.

We say that F is onto if and only if:

(Def. 8) The object map of F is onto.

We say that F is reflexive if and only if:

(Def. 9) (The object map of F )◦(id(the carrier of A)) ⊆ id(the carrier of B).

We say that F is coreflexive if and only if:

(Def. 10) id(the carrier of B) ⊆ (the object map of F )◦(id(the carrier of A)).

Let A, B be non empty graphs and let F be a bimap structure from A into
B. Let us observe that F is reflexive if and only if:

(Def. 11) For every object o of A holds (the object map of F )(o, o) = 〈〈F (o),
F (o)〉〉.

We now state the proposition

(21) Let A, B be reflexive non empty graphs and let F be a bimap structure
from A into B. Suppose F is coreflexive. Let o be an object of B. Then
there exists an object o′ of A such that F (o′) = o.

Let C1, C2 be non empty graphs and let F be a bimap structure from C1

into C2. We say that F is feasible if and only if:

(Def. 12) For all objects o1, o2 of C1 such that 〈o1, o2〉 6= ∅ holds (the arrows of
C2)((the object map of F )(o1, o2)) 6= ∅.

Let C1, C2 be graphs. We introduce functor structures from C1 to C2 which
are extensions of bimap structure from C1 into C2 and are systems
〈 an object map, a morphism map 〉,

where the object map is a bifunction from the carrier of C1 into the carrier of
C2 and the morphism map is a the object map-transformation from the arrows
of C1 to the arrows of C2.

Let C1, C2 be 1-sorted structures and let I4 be a bimap structure from C1

into C2. We say that I4 is precovariant if and only if:

(Def. 13) The object map of I4 is precovariant.

We say that I4 is precontravariant if and only if:

(Def. 14) The object map of I4 is precontravariant.

Let C1, C2 be graphs. One can verify that there exists a functor structure
from C1 to C2 which is precovariant and there exists a functor structure from
C1 to C2 which is precontravariant.

Let C1, C2 be graphs, let F be a functor structure from C1 to C2, and let
o1, o2 be objects of C1. The functor Morph-MapF (o1, o2) is defined as follows:

(Def. 15) Morph-MapF (o1, o2) = (the morphism map of F )(o1, o2).

Let C1, C2 be graphs, let F be a functor structure from C1 to C2, and let
o1, o2 be objects of C1. Observe that Morph-MapF (o1, o2) is relation-like and
function-like.

Let C1, C2 be non empty graphs, let F be a precovariant functor structure
from C1 to C2, and let o1, o2 be objects of C1. Then Morph-MapF (o1, o2) is a
function from 〈o1, o2〉 into 〈F (o1), F (o2)〉.
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Let C1, C2 be non empty graphs, let F be a precovariant functor structure
from C1 to C2, and let o1, o2 be objects of C1. Let us assume that 〈o1, o2〉 6= ∅
and 〈F (o1), F (o2)〉 6= ∅. Let m be a morphism from o1 to o2. The functor F (m)
yielding a morphism from F (o1) to F (o2) is defined as follows:

(Def. 16) F (m) = (Morph-MapF (o1, o2))(m).

Let C1, C2 be non empty graphs, let F be a precontravariant functor struc-
ture from C1 to C2, and let o1, o2 be objects of C1. Then Morph-MapF (o1, o2)
is a function from 〈o1, o2〉 into 〈F (o2), F (o1)〉.

Let C1, C2 be non empty graphs, let F be a precontravariant functor struc-
ture from C1 to C2, and let o1, o2 be objects of C1. Let us assume that
〈o1, o2〉 6= ∅ and 〈F (o2), F (o1)〉 6= ∅. Let m be a morphism from o1 to o2. The
functor F (m) yielding a morphism from F (o2) to F (o1) is defined as follows:

(Def. 17) F (m) = (Morph-MapF (o1, o2))(m).

Let C1, C2 be non empty graphs and let o be an object of C2. Let us assume
that 〈o, o〉 6= ∅. Let m be a morphism from o to o. The functor C1 7−→ m
yields a strict functor structure from C1 to C2 and is defined by the conditions
(Def. 18).

(Def. 18) (i) The object map of C1 7−→ m = [: the carrier of C1, the carrier of
C1 :] 7−→ 〈〈o, o〉〉, and

(ii) the morphism map of C1 7−→ m = {〈〈〈〈o1, o2〉〉, (〈o1, o2〉) 7−→ m〉〉 : o1

ranges over objects of C1, o2 ranges over objects of C1}.
We now state the proposition

(22) Let C1, C2 be non empty graphs and let o2 be an object of C2. Suppose
〈o2, o2〉 6= ∅. Let m be a morphism from o2 to o2 and let o1 be an object
of C1. Then (C1 7−→ m)(o1) = o2.

Let C1 be a non empty graph, let C2 be a non empty reflexive graph, let o
be an object of C2, and let m be a morphism from o to o. One can verify that
C1 7−→ m is precovariant precontravariant and feasible.

Let C1 be a non empty graph and let C2 be a non empty reflexive graph. One
can check that there exists a functor structure from C1 to C2 which is feasible
precovariant and precontravariant.

The following proposition is true

(23) Let C1, C2 be non empty graphs, and let F be a precovariant functor
structure from C1 to C2, and let o1, o2 be objects of C1 Then (the object
map of F )(o1, o2) = 〈〈F (o1), F (o2)〉〉.

Let C1, C2 be non empty graphs and let F be a precovariant functor structure
from C1 to C2. Let us observe that F is feasible if and only if:

(Def. 19) For all objects o1, o2 of C1 such that 〈o1, o2〉 6= ∅ holds 〈F (o1), F (o2)〉 6=
∅.

One can prove the following proposition

(24) Let C1, C2 be non empty graphs, and let F be a precontravariant functor
structure from C1 to C2, and let o1, o2 be objects of C1 Then (the object
map of F )(o1, o2) = 〈〈F (o2), F (o1)〉〉.
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Let C1, C2 be non empty graphs and let F be a precontravariant functor
structure from C1 to C2. Let us observe that F is feasible if and only if:

(Def. 20) For all objects o1, o2 of C1 such that 〈o1, o2〉 6= ∅ holds 〈F (o2), F (o1)〉 6=
∅.

Let C1, C2 be graphs and let F be a functor structure from C1 to C2. Observe
that the morphism map of F is function yielding.

Let us note that there exists a category structure which is non empty and
reflexive.

Let C1, C2 be non empty category structures with units and let F be a
functor structure from C1 to C2. We say that F is id-preserving if and only if:

(Def. 21) For every object o of C1 holds (Morph-MapF (o, o))(ido) = idF (o) .

We now state the proposition

(25) Let C1, C2 be non empty graphs and let o2 be an object of C2. Sup-
pose 〈o2, o2〉 6= ∅. Let m be a morphism from o2 to o2, and let o, o′ be
objects of C1 and let f be a morphism from o to o′. If 〈o, o′〉 6= ∅, then
(Morph-MapC1 7−→m(o, o′))(f) = m.

One can check that every non empty category structure which has units is
reflexive.

Let C1, C2 be non empty category structures with units and let o2 be an
object of C2. Note that C1 7−→ id(o2) is id-preserving.

Let C1 be a non empty graph, let C2 be a non empty reflexive graph, let
o2 be an object of C2, and let m be a morphism from o2 to o2. Observe that
C1 7−→ m is reflexive.

Let C1 be a non empty graph and let C2 be a non empty reflexive graph.
Observe that there exists a functor structure from C1 to C2 which is feasible
and reflexive.

Let C1, C2 be non empty category structures with units. Note that there
exists a functor structure from C1 to C2 which is id-preserving feasible reflexive
and strict.

Let C1, C2 be non empty category structures and let F be a functor structure
from C1 to C2. We say that F is comp-preserving if and only if the condition
(Def. 22) is satisfied.

(Def. 22) Let o1, o2, o3 be objects of C1 Suppose 〈o1, o2〉 6= ∅ and 〈o2, o3〉 6= ∅. Let
f be a morphism from o1 to o2 and let g be a morphism from o2 to o3.
Then there exists a morphism f ′ from F (o1) to F (o2) and there exists a
morphism g′ from F (o2) to F (o3) such that f ′ = (Morph-MapF (o1, o2))(f)
and g′ = (Morph-MapF (o2, o3))(g) and (Morph-MapF (o1, o3))(g · f) =
g′ · f ′.

Let C1, C2 be non empty category structures and let F be a functor structure
from C1 to C2. We say that F is comp-reversing if and only if the condition
(Def. 23) is satisfied.

(Def. 23) Let o1, o2, o3 be objects of C1 Suppose 〈o1, o2〉 6= ∅ and 〈o2, o3〉 6= ∅. Let
f be a morphism from o1 to o2 and let g be a morphism from o2 to o3.
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Then there exists a morphism f ′ from F (o2) to F (o1) and there exists a
morphism g′ from F (o3) to F (o2) such that f ′ = (Morph-MapF (o1, o2))(f)
and g′ = (Morph-MapF (o2, o3))(g) and (Morph-MapF (o1, o3))(g · f) =
f ′ · g′.

Let C1 be a non empty transitive category structure, let C2 be a non empty
reflexive category structure, and let F be a precovariant feasible functor struc-
ture from C1 to C2. Let us observe that F is comp-preserving if and only if the
condition (Def. 24) is satisfied.

(Def. 24) Let o1, o2, o3 be objects of C1 Suppose 〈o1, o2〉 6= ∅ and 〈o2, o3〉 6= ∅.
Let f be a morphism from o1 to o2 and let g be a morphism from o2 to
o3. Then F (g · f) = F (g) · F (f).

Let C1 be a non empty transitive category structure, let C2 be a non empty
reflexive category structure, and let F be a precontravariant feasible functor
structure from C1 to C2. Let us observe that F is comp-reversing if and only if
the condition (Def. 25) is satisfied.

(Def. 25) Let o1, o2, o3 be objects of C1 Suppose 〈o1, o2〉 6= ∅ and 〈o2, o3〉 6= ∅.
Let f be a morphism from o1 to o2 and let g be a morphism from o2 to
o3. Then F (g · f) = F (f) · F (g).

The following two propositions are true:

(26) Let C1 be a non empty graph, and let C2 be a non empty reflexive
graph, and let o2 be an object of C2, and let m be a morphism from o2

to o2, and let F be a precovariant feasible functor structure from C1 to
C2. Suppose F = C1 7−→ m. Let o, o′ be objects of C1 and let f be a
morphism from o to o′. If 〈o, o′〉 6= ∅, then F (f) = m.

(27) Let C1 be a non empty graph, and let C2 be a non empty reflexive
graph, and let o2 be an object of C2, and let m be a morphism from o2

to o2, and let o, o′ be objects of C1 and let f be a morphism from o to o′.
If 〈o, o′〉 6= ∅, then (C1 7−→ m)(f) = m.

Let C1 be a non empty transitive category structure, let C2 be a non empty
category structure with units, and let o be an object of C2. Note that C1 7−→ ido
is comp-preserving and comp-reversing.

Let C1 be a transitive non empty category structure with units and let C2

be a non empty category structure with units. A functor structure from C1 to
C2 is said to be a functor from C1 to C2 if:

(Def. 26) It is feasible and id-preserving but it is precovariant and comp-
preserving or it is precontravariant and comp-reversing.

Let C1 be a transitive non empty category structure with units, let C2 be a
non empty category structure with units, and let F be a functor from C1 to C2.
We say that F is covariant if and only if:

(Def. 27) F is precovariant and comp-preserving.

We say that F is contravariant if and only if:

(Def. 28) F is precontravariant and comp-reversing.
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Let A be a category structure and let B be a substructure of A. The functor
B
↪→ yields a strict functor structure from B to A and is defined by the conditions
(Def. 29).

(Def. 29) (i) The object map of B
↪→ = id[: the carrier of B, the carrier of B :], and

(ii) the morphism map of B
↪→ = id(the arrows of B).

Let A be a graph. The functor idA yielding a strict functor structure from
A to A is defined by the conditions (Def. 30).

(Def. 30) (i) The object map of idA = id[: the carrier of A, the carrier of A :], and
(ii) the morphism map of idA = id(the arrows of A).

Let A be a category structure and let B be a substructure of A. Note that
B
↪→ is precovariant.

One can prove the following propositions:

(28) Let A be a non empty category structure, and let B be a non empty

substructure of A, and let o be an object of B. Then ( B↪→)(o) = o.

(29) Let A be a non empty category structure, and let B be a non empty
substructure of A, and let o1, o2 be objects of B Then 〈o1, o2〉 ⊆
〈( B↪→)(o1), ( B↪→ )(o2)〉.

Let A be a non empty category structure and let B be a non empty sub-
structure of A. Observe that B

↪→ is feasible.
Let A, B be graphs and let F be a functor structure from A to B. We say

that F is faithful if and only if:

(Def. 31) The morphism map of F is “1-1”.

Let A, B be graphs and let F be a functor structure from A to B. We say
that F is full if and only if the condition (Def. 32) is satisfied.

(Def. 32) There exists a many sorted set B ′ indexed by [: the carrier of A, the
carrier of A :] and there exists a many sorted function f from the arrows
of A into B ′ such that B ′ = (the arrows of B) · (the object map of F ) and
f = the morphism map of F and f is onto.

Let A be a graph, let B be a non empty graph, and let F be a functor
structure from A to B. Let us observe that F is full if and only if the condition
(Def. 33) is satisfied.

(Def. 33) There exists a many sorted function f from the arrows of A into (the
arrows of B) · (the object map of F ) such that f = the morphism map of
F and f is onto.

Let A, B be graphs and let F be a functor structure from A to B. We say
that F is injective if and only if:

(Def. 34) F is one-to-one and faithful.

We say that F is surjective if and only if:

(Def. 35) F is full and onto.

Let A, B be graphs and let F be a functor structure from A to B. We say
that F is bijective if and only if:

(Def. 36) F is injective and surjective.
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Let A, B be transitive non empty category structures with units. One can
check that there exists a functor from A to B which is strict covariant con-
travariant and feasible.

The following two propositions are true:

(30) For every non empty graph A and for every object o of A holds idA(o) =
o.

(31) Let A be a non empty graph and let o1, o2 be objects of A
If 〈o1, o2〉 6= ∅, then for every morphism m from o1 to o2 holds
(Morph-MapidA(o1, o2))(m) = m.

Let A be a non empty graph. Note that idA is feasible and precovariant.
Let A be a non empty graph. Note that there exists a functor structure from

A to A which is precovariant and feasible.
One can prove the following proposition

(32) Let A be a non empty graph and let o1, o2 be objects of A Suppose
〈o1, o2〉 6= ∅. Let F be a precovariant feasible functor structure from A to
A. If F = idA, then for every morphism m from o1 to o2 holds F (m) = m.

Let A be a transitive non empty category structure with units. One can
check that idA is id-preserving and comp-preserving.

Let A be a transitive non empty category structure with units. Then idA is
a strict covariant functor from A to A.

Let A be a graph. One can verify that idA is bijective.

5. The Composition of Functors

Let C1 be a non empty graph, let C2, C3 be non empty reflexive graphs, let
F be a feasible functor structure from C1 to C2, and let G be a functor structure
from C2 to C3. The functor G · F yielding a strict functor structure from C1 to
C3 is defined by the conditions (Def. 37).

(Def. 37) (i) The object map of G · F = (the object map of G) · (the object map
of F ), and

(ii) the morphism map of G · F = ((the morphism map of G) · (the object
map of F )) ◦ (the morphism map of F ).

Let C1 be a non empty graph, let C2, C3 be non empty reflexive graphs, let
F be a precovariant feasible functor structure from C1 to C2, and let G be a
precovariant functor structure from C2 to C3. Observe that G·F is precovariant.

Let C1 be a non empty graph, let C2, C3 be non empty reflexive graphs,
let F be a precontravariant feasible functor structure from C1 to C2, and let
G be a precovariant functor structure from C2 to C3. Observe that G · F is
precontravariant.

Let C1 be a non empty graph, let C2, C3 be non empty reflexive graphs,
let F be a precovariant feasible functor structure from C1 to C2, and let G
be a precontravariant functor structure from C2 to C3. Observe that G · F is
precontravariant.
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Let C1 be a non empty graph, let C2, C3 be non empty reflexive graphs,
let F be a precontravariant feasible functor structure from C1 to C2, and let G
be a precontravariant functor structure from C2 to C3. Observe that G · F is
precovariant.

Let C1 be a non empty graph, let C2, C3 be non empty reflexive graphs, let
F be a feasible functor structure from C1 to C2, and let G be a feasible functor
structure from C2 to C3. Note that G · F is feasible.

The following three propositions are true:

(33) Let C1 be a non empty graph, and let C2, C3, C4 be non empty reflexive
graphs, and let F be a feasible functor structure from C1 to C2, and let
G be a feasible functor structure from C2 to C3, and let H be a functor
structure from C3 to C4. Then (H ·G) · F = H · (G · F ).

(34) Let C1 be a non empty category structure, and let C2, C3 be non empty
reflexive category structures, and let F be a feasible reflexive functor
structure from C1 to C2, and let G be a functor structure from C2 to C3,
and let o be an object of C1. Then (G · F )(o) = G(F (o)).

(35) Let C1 be a non empty graph, and let C2, C3 be non empty reflexive
graphs, and let F be a feasible reflexive functor structure from C1 to
C2, and let G be a functor structure from C2 to C3, and let o be an
object of C1. Then Morph-MapG·F (o, o) = Morph-MapG(F (o), F (o)) ·
Morph-MapF (o, o).

Let C1, C2, C3 be non empty category structures with units, let F be an
id-preserving feasible reflexive functor structure from C1 to C2, and let G be an
id-preserving functor structure from C2 to C3. Note that G ·F is id-preserving.

Let A, C be non empty reflexive category structures, let B be a non empty
substructure of A, and let F be a functor structure from A to C. The functor
F

�
B yielding a functor structure from B to C is defined as follows:

(Def. 38) F
�
B = F · ( B↪→).

6. The Inverse Functor

Let A, B be non empty graphs and let F be a functor structure from A to
B. Let us assume that F is bijective. The functor F −1 yielding a strict functor
structure from B to A is defined by the conditions (Def. 39).

(Def. 39) (i) The object map of F−1 = (the object map of F )−1, and
(ii) there exists a many sorted function f from the arrows of A into (the

arrows of B) · (the object map of F ) such that f = the morphism map of
F and the morphism map of F−1 = f−1 · (the object map of F )−1.

One can prove the following propositions:

(36) Let A, B be transitive non empty category structures with units and
let F be a feasible functor structure from A to B. If F is bijective, then
F−1 is bijective and feasible.
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(37) Let A, B be transitive non empty category structures with units and
let F be a feasible reflexive functor structure from A to B If F is bijective
and coreflexive, then F−1 is reflexive.

(38) Let A, B be transitive non empty category structures with units and
let F be a feasible reflexive id-preserving functor structure from A to B
If F is bijective and coreflexive, then F−1 is id-preserving.

(39) Let A, B be transitive non empty category structures with units and
let F be a feasible functor structure from A to B If F is bijective and
precovariant, then F−1 is precovariant.

(40) Let A, B be transitive non empty category structures with units and
let F be a feasible functor structure from A to B If F is bijective and
precontravariant, then F−1 is precontravariant.

(41) Let A, B be transitive non empty category structures with units and
let F be a feasible reflexive functor structure from A to B Suppose
F is bijective coreflexive and precovariant. Let o1, o2 be objects of
B and let m be a morphism from o1 to o2. If 〈o1, o2〉 6= ∅, then
(Morph-MapF (F−1(o1), F−1(o2)))((Morph-MapF−1(o1, o2))(m)) = m.

(42) Let A, B be transitive non empty category structures with units and
let F be a feasible reflexive functor structure from A to B Suppose
F is bijective coreflexive and precontravariant. Let o1, o2 be objects
of B and let m be a morphism from o1 to o2. If 〈o1, o2〉 6= ∅, then
(Morph-MapF (F−1(o2), F−1(o1)))((Morph-MapF−1(o1, o2))(m)) = m.

(43) Let A, B be transitive non empty category structures with units and
let F be a feasible reflexive functor structure from A to B Suppose F
is bijective comp-preserving precovariant and coreflexive. Then F −1 is
comp-preserving.

(44) Let A, B be transitive non empty category structures with units and
let F be a feasible reflexive functor structure from A to B Suppose F is
bijective comp-reversing precontravariant and coreflexive. Then F −1 is
comp-reversing.

Let C1 be a 1-sorted structure and let C2 be a non empty 1-sorted structure.
One can verify that every bimap structure from C1 into C2 which is precovariant
is also reflexive.

Let C1 be a 1-sorted structure and let C2 be a non empty 1-sorted structure.
One can verify that every bimap structure from C1 into C2 which is precon-
travariant is also reflexive.

Next we state two propositions:

(45) Let C1, C2 be 1-sorted structures and let M be a bimap structure from
C1 into C2. If M is precovariant and onto, then M is coreflexive.

(46) Let C1, C2 be 1-sorted structures and let M be a bimap structure from
C1 into C2. If M is precontravariant and onto, then M is coreflexive.

Let C1 be a transitive non empty category structure with units and let C2

be a non empty category structure with units. Note that every functor from C1
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to C2 which is covariant is also reflexive.
Let C1 be a transitive non empty category structure with units and let C2 be

a non empty category structure with units. One can verify that every functor
from C1 to C2 which is contravariant is also reflexive.

The following propositions are true:

(47) Let C1 be a transitive non empty category structure with units, and let
C2 be a non empty category structure with units, and let F be a functor
from C1 to C2. If F is covariant and onto, then F is coreflexive.

(48) Let C1 be a transitive non empty category structure with units, and let
C2 be a non empty category structure with units, and let F be a functor
from C1 to C2. If F is contravariant and onto, then F is coreflexive.

(49) Let A, B be transitive non empty category structures with units and let
F be a covariant functor from A to B. Suppose F is bijective. Then there
exists a functor G from B to A such that G = F−1 and G is bijective and
covariant.

(50) Let A, B be transitive non empty category structures with units and
let F be a contravariant functor from A to B. Suppose F is bijective.
Then there exists a functor G from B to A such that G = F −1 and G is
bijective and contravariant.

Let A, B be transitive non empty category structures with units. We say
that A and B are isomorphic if and only if:

(Def. 40) There exists functor from A to B which is bijective and covariant.

Let us observe that this predicate is reflexive and symmetric. We say that A,
B are anti-isomorphic if and only if:

(Def. 41) There exists functor from A to B which is bijective and contravariant.

Let us note that the predicate introduced above is symmetric.
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[5] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
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Summary. This article presents some theorems about functor
structures. We start with some basic lemmata concerning the composition
of functor structures. Then, two theorems about the restriction operator
are formulated. Later, we show two theorems stating that the properties
’full’ and ’faithful’ of functor structures which are equivalent to the ’onto’
and ’one-to-one’ properties of their morphmaps, respectively. Further-
more, we prove some theorems about the inversion of functor structures.

MML Identifier: FUNCTOR1.

The terminology and notation used here are introduced in the following articles:
[17], [16], [6], [18], [4], [5], [3], [15], [14], [9], [8], [11], [12], [2], [13], [10], [7], and
[1].

1. Definitions

In this paper X, Y denote sets and Z denotes a non empty set.
Let us mention that there exists a non empty category structure which is

transitive and reflexive and has units.
Let A be a non empty reflexive category structure. One can verify that there

exists a substructure of A which is non empty and reflexive.
Let C1, C2 be non empty reflexive category structures, let F be a feasible

functor structure from C1 to C2, and let A be a non empty reflexive substructure
of C1. Observe that F

�
A is feasible.

2. Theorems about sets and functions

We now state four propositions:
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(1) For every set X holds idX is onto.

(2) Let A be a non empty set, and let B, C be non empty subsets of A and

let D be a non empty subset of B. If C = D, then C
↪→ = ( B↪→) · ( D↪→).

(3) For every function f from X into Y such that f is bijective holds f−1

is a function from Y into X.

(4) Let f be a function from X into Y and let g be a function from Y into
Z. Suppose f is bijective and g is bijective. Then there exists a function
h from X into Z such that h = g · f and h is bijective.

3. Theorems about the composition of functor structures

The following propositions are true:

(5) Let A be a non empty reflexive category structure, and let B be a non
empty reflexive substructure of A, and let C be a non empty substructure
of A, and let D be a non empty substructure of B. If C = D, then
C
↪→ = ( B↪→) · ( D↪→).

(6) Let A, B be non empty category structures and let F be a functor
structure from A to B. Suppose F is bijective. Then the object map of
F is bijective and the morphism map of F is “1-1”.

(7) Let C1 be a non empty graph, and let C2, C3 be non empty reflexive
graphs, and let F be a feasible functor structure from C1 to C2, and let
G be a functor structure from C2 to C3. If F is one-to-one and G is
one-to-one, then G · F is one-to-one.

(8) Let C1 be a non empty graph, and let C2, C3 be non empty reflexive
graphs, and let F be a feasible functor structure from C1 to C2, and let
G be a functor structure from C2 to C3 If F is faithful and G is faithful,
then G · F is faithful.

(9) Let C1 be a non empty graph, and let C2, C3 be non empty reflexive
graphs, and let F be a feasible functor structure from C1 to C2, and let
G be a functor structure from C2 to C3 If F is onto and G is onto, then
G · F is onto.

(10) Let C1 be a non empty graph, and let C2, C3 be non empty reflexive
graphs, and let F be a feasible functor structure from C1 to C2, and let G
be a functor structure from C2 to C3 If F is full and G is full, then G · F
is full.

(11) Let C1 be a non empty graph, and let C2, C3 be non empty reflexive
graphs, and let F be a feasible functor structure from C1 to C2, and let G
be a functor structure from C2 to C3 If F is injective and G is injective,
then G · F is injective.

(12) Let C1 be a non empty graph, and let C2, C3 be non empty reflexive
graphs, and let F be a feasible functor structure from C1 to C2, and let G
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be a functor structure from C2 to C3 If F is surjective and G is surjective,
then G · F is surjective.

(13) Let C1 be a non empty graph, and let C2, C3 be non empty reflexive
graphs, and let F be a feasible functor structure from C1 to C2, and let G
be a functor structure from C2 to C3 If F is bijective and G is bijective,
then G · F is bijective.

4. Theorems about the restriction and inclusion operator

We now state three propositions:

(14) Let A, I be non empty reflexive category structures, and let B be a non
empty reflexive substructure of A, and let C be a non empty substructure
of A, and let D be a non empty substructure of B. Suppose C = D. Let
F be a functor structure from A to I. Then F

�
C = F

�
B

�
D.

(15) Let C1, C2, C3 be non empty reflexive category structures, and let F
be a feasible functor structure from C1 to C2, and let G be a functor
structure from C2 to C3 and let A be a non empty reflexive substructure
of C1. Then (G · F )

�
A = G · (F �

A).

(17)1 Let A be a non empty category structure and let B be a non empty

substructure of A. Then B is full if and only if B
↪→ is full.

5. Theorems about ’full’ and ’faithful’ functor structures

Next we state two propositions:

(18) Let C1, C2 be non empty category structures and let F be a precovariant
functor structure from C1 to C2. Then F is full if and only if for all objects
o1, o2 of C1 holds Morph-MapF (o1, o2) is onto.

(19) Let C1, C2 be non empty category structures and let F be a precovariant
functor structure from C1 to C2. Then F is faithful if and only if for all
objects o1, o2 of C1 holds Morph-MapF (o1, o2) is one-to-one.

6. Theorems about the inversion of functor structures

One can prove the following propositions:

(20) For every transitive non empty category structure A with units holds
(idA)−1 = idA.

1The proposition (16) has been removed.
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(21) Let A, B be transitive reflexive non empty category structures with
units. Suppose A and B are isomorphic. Let F be a strict feasible functor
structure from A to B. Suppose F is bijective. Let G be a strict feasible
functor structure from B to A. If G = F−1, then F ·G = idB .

(22) Let A, B be transitive reflexive non empty category structures with
units. Suppose A and B are isomorphic. Let F be a strict feasible functor
structure from A to B. If F is bijective, then F−1 · F = idA.

(23) Let A, B be transitive reflexive non empty category structures with
units. Suppose A and B are isomorphic. Let F be a strict feasible functor
structure from A to B. If F is bijective, then (F −1)−1 = F.

(24) Let A, B, C be transitive reflexive non empty category structures with
units, and let G be a strict feasible functor structure from A to B, and
let F be a strict feasible functor structure from B to C, and let G1 be a
strict feasible functor structure from B to A, and let F1 be a strict feasible
functor structure from C to B. Suppose F is bijective and G is bijective
and F1 is bijective and G1 is bijective and G1 = G−1 and F1 = F−1. Then
(F ·G)−1 = G1 · F1.
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The terminology and notation used in this paper are introduced in the following
papers: [10], [2], [14], [13], [18], [22], [6], [16], [21], [1], [15], [3], [9], [7], [20], [4],
[19], [8], [5], [11], [12], and [17].

In this paper m will be a natural number.
Let us note that every finite partial state of SCMFSA is finite.
Let p be a finite sequence and let x, y be arbitrary. Note that p+· (x, y) is

finite sequence-like.
Let i be an integer. Then |i| is a natural number.
Let D be a set. Note that D∗ is non empty.
The following four propositions are true:

(1) For every natural number k holds |k| = k.

(2) For all natural numbers a, b, c such that a ≥ c and b ≥ c and a−′ c =
b−′ c holds a = b.

(3) For all natural numbers a, b such that a ≥ b holds a−′ b = a− b.
(4) For all integers a, b such that a < b holds a ≤ b− 1.

The scheme CardMono” concerns a set A, a non empty set B, and a unary
functor F yielding arbitrary, and states that:

A ≈ {F(d) : d ranges over elements of B, d ∈ A}
provided the parameters satisfy the following conditions:
• A ⊆ B,
• For all elements d1, d2 of B such that d1 ∈ A and d2 ∈ A and
F(d1) = F(d2) holds d1 = d2.

One can prove the following propositions:

(5) For all finite sequences p1, p2, q such that p1 ⊆ q and p2 ⊆ q and
len p1 = len p2 holds p1 = p2.
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(6) For all finite sequences p, q such that p � q = p holds q = ε.

(7) For every finite sequence p and for arbitrary x holds len(p � 〈x〉) =
len p+ 1.

(8) For all finite sequences p, q such that p ⊆ q holds len p ≤ len q.

(9) For all finite sequences p, q and for every natural number i such that
1 ≤ i and i ≤ len p holds (p � q)(i) = p(i).

(10) For all finite sequences p, q and for every natural number i such that
1 ≤ i and i ≤ len q holds (p � q)(len p+ i) = q(i).

(11) For every finite sequence p and for every natural number i holds i ∈
dom p iff 1 ≤ i and i ≤ len p.

(12) For every finite sequence p such that p 6= ε holds len p ∈ dom p.

(13) For every set D holds Flat(εD∗) = εD.

(14) For every set D and for all finite sequences F , G of elements of D∗ holds
Flat(F � G) = Flat(F ) � Flat(G).

(15) For every set D and for all elements p, q of D∗ holds Flat(〈p, q〉) = p � q.
(16) For every set D and for all elements p, q, r of D∗ holds Flat(〈p, q,

r〉) = p � q � r.
(17) Let D be a non empty set and let p, q be finite sequences of elements

of D. If p ⊆ q, then there exists a finite sequence p′ of elements of D such
that p � p′ = q.

(18) Let D be a non empty set, and let p, q be finite sequences of elements
of D, and let i be a natural number. If p ⊆ q and 1 ≤ i and i ≤ len p,
then q(i) = p(i).

(19) For every set D and for all finite sequences F , G of elements of D∗ such
that F ⊆ G holds Flat(F ) ⊆ Flat(G).

(20) For every finite sequence p holds p
�
Seg 0 = ε.

(21) For all finite sequences f , g holds f
�
Seg 0 = g

�
Seg 0.

(22) For every non empty set D and for every element x of D holds 〈x〉 is a
finite sequence of elements of D.

(23) Let D be a set and let p, q be finite sequences of elements of D. Then
p � q is a finite sequence of elements of D.

Let f be a finite sequence of elements of the instructions of SCMFSA. The
functor Load(f) yielding a finite partial state of SCMFSA is defined by:

(Def. 1) dom Load(f) = {insloc(m−′1) : m ∈ dom f} and for every natural num-
ber k such that insloc(k) ∈ dom Load(f) holds (Load(f))(insloc(k)) =
πk+1f.

The following propositions are true:

(24) Let f be a finite sequence of elements of the instructions of SCMFSA

and let k be a natural number. Then dom Load(f) = {insloc(m −′ 1) :
m ∈ dom f}.
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(25) For every finite sequence f of elements of the instructions of SCMFSA

holds card Load(f) = len f.

(26) Let p be a finite sequence of elements of the instructions of SCMFSA

and let k be a natural number. Then insloc(k) ∈ dom Load(p) if and only
if k + 1 ∈ dom p.

(27) For all natural numbers k, n holds k < n iff 0 < k + 1 and k + 1 ≤ n.
(28) For all natural numbers k, n holds k < n iff 1 ≤ k + 1 and k + 1 ≤ n.
(29) Let p be a finite sequence of elements of the instructions of SCMFSA

and let k be a natural number. Then insloc(k) ∈ dom Load(p) if and only
if k < len p.

(30) For every non empty finite sequence f of elements of the instructions
of SCMFSA holds 1 ∈ dom f and insloc(0) ∈ dom Load(f).

(31) For all finite sequences p, q of elements of the instructions of SCMFSA

holds Load(p) ⊆ Load(p � q).
(32) For all finite sequences p, q of elements of the instructions of SCMFSA

such that p ⊆ q holds Load(p) ⊆ Load(q).

Let a be an integer location and let k be an integer. The functor a:=k yields
a finite partial state of SCMFSA and is defined as follows:

(Def. 2) (i) There exists a natural number k1 such that k1 + 1 = k and a:=k =
Load(〈a:= intloc(0)〉 � (k1 7→ AddTo(a, intloc(0))) � 〈haltSCMFSA

〉) if k >
0,

(ii) there exists a natural number k1 such that k1 + k = 1 and a:=k =
Load(〈a:= intloc(0)〉 � (k1 7→ SubFrom(a, intloc(0))) � 〈haltSCMFSA

〉), oth-
erwise.

Let a be an integer location and let k be an integer. The functor aSeq(a, k)
yielding a finite sequence of elements of the instructions of SCMFSA is defined
by:

(Def. 3) (i) There exists a natural number k1 such that k1 + 1 = k and
aSeq(a, k) = 〈a:= intloc(0)〉 � (k1 7→ AddTo(a, intloc(0))) if k > 0,

(ii) there exists a natural number k1 such that k1 +k = 1 and aSeq(a, k) =
〈a:= intloc(0)〉 � (k1 7→ SubFrom(a, intloc(0))), otherwise.

One can prove the following proposition

(33) For every integer location a and for every integer k holds a:=k =
Load((aSeq(a, k)) � 〈haltSCMFSA

〉).
Let f be a finite sequence location and let p be a finite sequence of elements of

� . The functor aSeq(f, p) yields a finite sequence of elements of the instructions
of SCMFSA and is defined by the condition (Def. 4).

(Def. 4) There exists a finite sequence p3 of elements of
(the instructions of SCMFSA)∗ such that

(i) len p3 = len p,
(ii) for every natural number k such that 1 ≤ k and k ≤ len p there

exists an integer i such that i = p(k) and p3(k) = (aSeq(intloc(1), k)) �
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aSeq(intloc(2), i) � 〈fintloc(1):= intloc(2)〉, and
(iii) aSeq(f, p) = Flat(p3).

Let f be a finite sequence location and let p be a finite sequence of elements
of � The functor f :=p yielding a finite partial state of SCMFSA is defined by:

(Def. 5) f :=p = Load((aSeq(intloc(1), len p)) � 〈f :=〈0, . . . , 0︸ ︷︷ ︸
intloc(1)

〉〉 � aSeq(f, p) �

〈haltSCMFSA
〉).

Next we state several propositions:

(34) For every integer location a holds a:=1 = Load(〈a:= intloc(0)〉 �
〈haltSCMFSA

〉).
(35) For every integer location a holds a:=0 = Load(〈a:= intloc(0)〉 �

〈SubFrom(a, intloc(0))〉 � 〈haltSCMFSA
〉).

(36) Let s be a state of SCMFSA. Suppose s(intloc(0)) = 1. Let c0 be a nat-
ural number. Suppose ICs = insloc(c0). Let a be an integer location and
let k be an integer. Suppose a 6= intloc(0) and for every natural number c
such that c ∈ dom aSeq(a, k) holds (aSeq(a, k))(c) = s(insloc((c0+c)−′1)).
Then

(i) for every natural number i such that i ≤ len aSeq(a, k) holds
IC(Computation(s))(i) = insloc(c0 + i) and for every integer location b such
that b 6= a holds (Computation(s))(i)(b) = s(b) and for every finite se-
quence location f holds (Computation(s))(i)(f) = s(f), and

(ii) (Computation(s))(len aSeq(a, k))(a) = k.

(37) Let s be a state of SCMFSA. Suppose ICs = insloc(0) and
s(intloc(0)) = 1. Let a be an integer location and let k be an integer.
Suppose Load(aSeq(a, k)) ⊆ s and a 6= intloc(0). Then

(i) for every natural number i such that i ≤ len aSeq(a, k) holds
IC(Computation(s))(i) = insloc(i) and for every integer location b such that
b 6= a holds (Computation(s))(i)(b) = s(b) and for every finite sequence
location f holds (Computation(s))(i)(f) = s(f), and

(ii) (Computation(s))(len aSeq(a, k))(a) = k.

(38) Let s be a state of SCMFSA. Suppose ICs = insloc(0) and
s(intloc(0)) = 1. Let a be an integer location and let k be an integer.
Suppose a:=k ⊆ s and a 6= intloc(0). Then

(i) s is halting,
(ii) (Result(s))(a) = k,

(iii) for every integer location b such that b 6= a holds (Result(s))(b) = s(b),
and

(iv) for every finite sequence location f holds (Result(s))(f) = s(f).

(39) Let s be a state of SCMFSA. Suppose ICs = insloc(0) and
s(intloc(0)) = 1. Let f be a finite sequence location and let p be a fi-
nite sequence of elements of � . Suppose f :=p ⊆ s. Then

(i) s is halting,
(ii) (Result(s))(f) = p,
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(iii) for every integer location b such that b 6= intloc(1) and b 6= intloc(2)
holds (Result(s))(b) = s(b), and

(iv) for every finite sequence location g such that g 6= f holds
(Result(s))(g) = s(g).
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Summary. This article is continuation of an article defining prod-
ucts of many sorted algebras [12]. Some properties of notions such as
commute, Frege, Args() are shown in this article. Notions of constant of
operations in many sorted algebras and projection of products of family
of many sorted algebras are defined. There is also introduced the notion
of class of family of many sorted algebras. The main theorem states that
product of family of many sorted algebras and product of class of family
of many sorted algebras are isomorphic.

MML Identifier: PRALG 3.

The terminology and notation used in this paper have been introduced in the
following articles: [20], [22], [14], [23], [7], [8], [16], [9], [17], [6], [15], [4], [2], [1],
[3], [19], [18], [10], [12], [13], [24], [21], [11], and [5].

1. Preliminaries

For simplicity we adopt the following convention: I denotes a non empty set,
J denotes a many sorted set indexed by I, S denotes a non void non empty
many sorted signature, i denotes an element of I, c denotes a set, A denotes an
algebra family of I over S, E1 denotes an equivalence relation of I, U0, U1, U2

denote algebras over S, s denotes a sort symbol of S, o denotes an operation
symbol of S, and f denotes a function.

Let I be a set, let us consider S, and let A1 be an algebra family of I over
S. One can verify that

∏
A1 is non-empty.

Let I be a non empty set and let E1 be an equivalence relation of I. Note
that ClassesE1 is non empty.

Let I be a set. Then idI is a many sorted set indexed by I.
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Let us consider I, E1. Note that ClassesE1 has non empty elements.
Let X be a set with non empty elements. Then idX is a non-empty many

sorted set indexed by X.
Next we state several propositions:

(1) For all functions f , F and for every set A such that f ∈ ∏
F holds

f
�
A ∈ ∏(F

�
A).

(2) Let A be an algebra family of I over S, and let s be a sort symbol of
S, and let a be a non empty subset of I, and let A2 be an algebra family
of a over S. If A

�
a = A2, then Carrier(A2, s) = Carrier(A, s)

�
a.

(3) Let i be a set, and let I be a non empty set, and let E1 be an equivalence
relation of I, and let c1, c2 be elements of ClassesE1. If i ∈ c1 and i ∈ c2,
then c1 = c2.

(4) For all sets X, Y and for every function f such that f ∈ Y X holds
dom f = X and rng f ⊆ Y.

(5) Let D be a non empty set, and let F be a many sorted function of D,
and let C be a functional non empty set with common domain. Suppose
C = rngF. Let d be an element of D and let e be a set. If d ∈ domF and
e ∈ DOM(C), then F (d)(e) = (commute(F ))(e)(d).

2. Constants of Many Sorted Algebras

Let us consider S, U0 and let o be an operation symbol of S. The functor
const(o, U0) is defined by:

(Def. 1) const(o, U0) = (Den(o, U0))(ε).

Next we state four propositions:

(6) If Arity(o) = ε and Result(o, U0) 6= ∅, then const(o, U0) ∈ Result(o, U0).

(7) Suppose (the sorts of U0)(s) 6= ∅. Then Constants(U0, s) =
{const(o, U0) : o ranges over elements of the operation symbols of S,
the result sort of o = s ∧ Arity(o) = ε}.

(8) If Arity(o) = ε, then (commute(OPER(A)))(o) ∈ ((
⋃{Result(o,A(i′)) :

i′ ranges over elements of I}){ 	 })I .
(9) If Arity(o) = ε, then const(o,

∏
A) ∈ (

⋃{Result(o,A(i′)) : i′ ranges over
elements of I})I .

Let us consider S, I, o, A. Observe that const(o,
∏
A) is relation-like and

function-like.
One can prove the following three propositions:

(10) For every operation symbol o of S such that Arity(o) = ε holds
(const(o,

∏
A))(i) = const(o,A(i)).

(11) If Arity(o) = ε and dom f = I and for every element i of I holds
f(i) = const(o,A(i)), then f = const(o,

∏
A).
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(12) Let e be an element of Args(o, U1). Suppose e = ε and Arity(o) = ε and
Args(o, U1) 6= ∅ and Args(o, U2) 6= ∅. Let F be a many sorted function
from U1 into U2. Then F#e = ε.

3. Properties of Arguments of Operations in Many Sorted
Algebras

Next we state a number of propositions:

(13) Let U1, U2 be non-empty algebras over S, and let F be a many sorted
function from U1 into U2, and let x be an element of Args(o, U1). Then
x ∈ ∏(domκ(F ·Arity(o))(κ)).

(14) Let U1, U2 be non-empty algebras over S, and let F be a many sorted
function from U1 into U2, and let x be an element of Args(o, U1), and let
n be a set. If n ∈ dom Arity(o), then (F#x)(n) = F (πn Arity(o))(x(n)).

(15) Let x be an element of Args(o,
∏
A). Then x ∈ ((

⋃{(the sorts of
A(i′))(s′) : i′ ranges over elements of I, s′ ranges over elements of the
carrier of S})I)dom Arity(o).

(16) For every element x of Args(o,
∏
A) and for every set n such that n ∈

dom Arity(o) holds x(n) ∈ ∏Carrier(A, πn Arity(o)).

(17) Let i be an element of I and let n be a set. Suppose n ∈ dom Arity(o).
Let s be a sort symbol of S. Suppose s = Arity(o)(n). Let y be an element
of Args(o,

∏
A) and let g be a function. If g = y(n), then g(i) ∈ (the sorts

of A(i))(s).

(18) For every element y of Args(o,
∏
A) such that Arity(o) 6= ε holds

commute(y) ∈ ∏(domκA(o)(κ)).

(19) For every element y of Args(o,
∏
A) such that Arity(o) 6= ε holds y ∈

dom 
 commute(Frege(A(o))).

(20) Given I, S, A, o and let s be a sort symbol of S. Suppose s = the result
sort of o. Let x be an element of Args(o,

∏
A). Then (Den(o,

∏
A))(x) ∈∏

Carrier(A, s).

(21) Given I, S, A, i and let o be an operation symbol of S. Suppose
Arity(o) 6= ε. Let U1 be a non-empty algebra over S, and let x be an
element of Args(o,

∏
A), and let F be a many sorted function from

∏
A

into U1. Then (commute(x))(i) is an element of Args(o,A(i)).

(22) Given I, S, A, i, o, and let x be an element of Args(o,
∏
A), and let n be

a set. If n ∈ dom Arity(o), then for every function f such that f = x(n)
holds (commute(x))(i)(n) = f(i).

(23) Let o be an operation symbol of S. Suppose Arity(o) 6= ∅. Let
y be an element of Args(o,

∏
A), and let i′ be an element of I,

and let g be a function. If g = (Den(o,
∏
A))(y), then g(i′) =

(Den(o,A(i′)))((commute(y))(i′)).
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4. The Projection of Family of Many Sorted Algebras

Let f be a function and let x be a set. The functor proj(f, x) yields a function
and is defined as follows:

(Def. 2) dom proj(f, x) =
∏
f and for every function y such that y ∈

dom proj(f, x) holds (proj(f, x))(y) = y(x).

Let us consider I, S, let A be an algebra family of I over S, and let i be an
element of I. The functor proj(A, i) yielding a many sorted function from

∏
A

into A(i) is defined by:

(Def. 3) For every element s of the carrier of S holds (proj(A, i))(s) =
proj(Carrier(A, s), i).

Next we state several propositions:

(24) For every element x of Args(o,
∏
A) such that Args(o,

∏
A) 6= ε

and Arity(o) 6= ∅ and for every element i of I holds proj(A, i)#x =
(commute(x))(i).

(25) For every element i of I and for every algebra family A of I over S holds
proj(A, i) is a homomorphism of

∏
A into A(i).

(26) Let U1 be a non-empty algebra over S and let F be a many sorted
function of I. Suppose that for every element i of I there exists a many
sorted function F1 from U1 into A(i) such that F1 = F (i) and F1 is
a homomorphism of U1 into A(i) Then F ∈ ({F (i′)(s1) : s1 ranges
over sort symbols of S, i′ ranges over elements of I}the carrier of S)I and
(commute(F ))(s)(i) = F (i)(s).

(27) Let U1 be a non-empty algebra over S and let F be a many sorted
function of I. Suppose that for every element i of I there exists a many
sorted function F1 from U1 into A(i) such that F1 = F (i) and F1 is a
homomorphism of U1 into A(i) Then (commute(F ))(s) ∈ ((

⋃{(the sorts
of A(i′))(s1) : i′ ranges over elements of I, s1 ranges over sort symbols of
S})(the sorts of U1)(s))I .

(28) Let U1 be a non-empty algebra over S and let F be a many sorted
function of I. Suppose that for every element i of I there exists a many
sorted function F1 from U1 into A(i) such that F1 = F (i) and F1 is a
homomorphism of U1 into A(i) Let F ′ be a many sorted function from
U1 into A(i). Suppose F ′ = F (i). Let x be a set. Suppose x ∈ (the sorts
of U1)(s). Let f be a function. If f = (commute((commute(F ))(s)))(x),
then f(i) = F ′(s)(x).

(29) Let U1 be a non-empty algebra over S and let F be a many sorted
function of I. Suppose that for every element i of I there exists a many
sorted function F1 from U1 into A(i) such that F1 = F (i) and F1 is a
homomorphism of U1 into A(i) Let x be a set. If x ∈ (the sorts of U1)(s),
then (commute((commute(F ))(s)))(x) ∈ ∏Carrier(A, s).
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(30) Let U1 be a non-empty algebra over S and let F be a many sorted
function of I. Suppose that for every element i of I there exists a many
sorted function F1 from U1 into A(i) such that F1 = F (i) and F1 is a
homomorphism of U1 into A(i) Then there exists a many sorted function
H from U1 into

∏
A such that H is a homomorphism of U1 into

∏
A and

for every element i of I holds proj(A, i) ◦H = F (i).

5. The Class of Family of Many Sorted Algebras

Let us consider I, J , S. A many sorted set indexed by I is said to be a
MSAlgebra-Class of S, J if:

(Def. 4) For every set i such that i ∈ I holds it(i) is an algebra family of J(i)
over S.

Let us consider I, S, A, E1. The functor A
E1

yields a MSAlgebra-Class of S,
idClassesE1 and is defined by:

(Def. 5) For every c such that c ∈ ClassesE1 holds ( AE1
)(c) = A

�
c.

Let us consider I, S, let J be a non-empty many sorted set indexed by I,
and let C be a MSAlgebra-Class of S, J . The functor

∏
C yields an algebra

family of I over S and is defined by the condition (Def. 6).

(Def. 6) Given i. Suppose i ∈ I. Then there exists a non empty set J1 and
there exists an algebra family C1 of J1 over S such that J1 = J(i) and
C1 = C(i) and (

∏
C)(i) =

∏
C1.

We now state the proposition

(31) Let A be an algebra family of I over S and let E1 be an equivalence
relation of I. Then

∏
A and

∏∏
( AE1

) are isomorphic.
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[8] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.
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