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Summary. This article is a continuation of an article on defining
functions on trees (see [6]). In this article we develop terminology special-
ized for binary trees, first defining binary trees and binary grammars. We
recast the induction principle for the set of parse trees of binary gram-
mars and the scheme of defining functions inductively with the set as
domain. We conclude with defining the scheme of defining such functions
by lambda-like expressions.

MML Identifier: BINTREE1.

The terminology and notation used here are introduced in the following articles:
[12], [14], [15], [13], [8], [9], [5], [7], [11], [10], [1], [3], [4], [2], and [6].

Let D be a non empty set and let t be a tree decorated with elements of D.
The root label of t is an element of D and is defined by:

(Def.1) The root label of t = t(ε).

One can prove the following two propositions:

(1) Let D be a non empty set and let t be a tree decorated with elements
of D. Then the roots of 〈t〉 = 〈the root label of t〉.

(2) Let D be a non empty set and let t1, t2 be trees decorated with elements
of D. Then the roots of 〈t1, t2〉 = 〈the root label of t1, the root label of
t2〉.

A tree is binary if:

(Def.2) For every element t of it such that t /∈ Leaves(it) holds succ t = {t �
〈0〉, t � 〈1〉}.

The following propositions are true:

1This work was partially supported by NSERC Grant OGP9207 while the first author
visited University of Alberta, May-June 1993.
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(3) For every tree T and for every element t of T holds t ∈ Leaves(T ) iff
t � 〈0〉 /∈ T.

(4) For every tree T and for every element t of T holds t ∈ Leaves(T ) iff it
is not true that there exists a natural number n such that t � 〈n〉 ∈ T.

(5) For every tree T and for every element t of T holds succ t = ∅ iff
t ∈ Leaves(T ).

(6) The elementary tree of 0 is binary.

(7) The elementary tree of 2 is binary.

Let us note that there exists a tree which is binary and finite.
A decorated tree is binary if:

(Def.3) dom it is binary.

Let D be a non empty set. Observe that there exists a tree decorated with
elements of D which is binary and finite.

Let us mention that there exists a decorated tree which is binary and finite.
Let us observe that every tree which is binary is also finite-order.
We now state four propositions:

(8) Let T0, T1 be trees and let t be an element of
︷ ︸︸ ︷

T0, T1. Then

(i) for every element p of T0 such that t = 〈0〉 � p holds t ∈ Leaves(
︷ ︸︸ ︷

T0, T1)
iff p ∈ Leaves(T0), and

(ii) for every element p of T1 such that t = 〈1〉 � p holds t ∈ Leaves(
︷ ︸︸ ︷

T0, T1)
iff p ∈ Leaves(T1).

(9) Let T0, T1 be trees and let t be an element of
︷ ︸︸ ︷

T0, T1. Then
(i) if t = ε, then succ t = {t � 〈0〉, t � 〈1〉},
(ii) for every element p of T0 such that t = 〈0〉 � p and for every finite

sequence s1 holds s1 ∈ succ p iff 〈0〉 � s1 ∈ succ t, and
(iii) for every element p of T1 such that t = 〈1〉 � p and for every finite

sequence s1 holds s1 ∈ succ p iff 〈1〉 � s1 ∈ succ t.

(10) For all trees T1, T2 holds T1 is binary and T2 is binary iff
︷ ︸︸ ︷

T1, T2 is binary.

(11) For all decorated trees T1, T2 and for arbitrary x holds T1 is binary and
T2 is binary iff x-tree(T1, T2) is binary.

Let D be a non empty set, let x be an element of D, and let T1, T2 be binary
finite trees decorated with elements of D. Then x-tree(T1, T2) is a binary finite
tree decorated with elements of D.

A non empty tree construction structure is binary if:

(Def.4) For every symbol s of it and for every finite sequence p such that s ⇒ p
there exist symbols x1, x2 of it such that p = 〈x1, x2〉.

One can check that there exists a non empty tree construction structure which
is binary and strict and has terminals, nonterminals, and useful nonterminals.

The scheme BinDTConstrStrEx concerns a non empty set A and a ternary
predicate P, and states that:
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There exists a binary strict non empty tree construction structure
G such that the carrier of G = A and for all symbols x, y, z of G
holds x ⇒ 〈y, z〉 iff P[x, y, z]

for all values of the parameters.

One can prove the following proposition

(12) Let G be a binary non empty tree construction structure with terminals
and nonterminals, and let t3 be a finite sequence of elements of TS(G),
and let n1 be a symbol of G. Suppose n1 ⇒ the roots of t3. Then

(i) n1 is a nonterminal of G,

(ii) dom t3 = {1, 2},

(iii) 1 ∈ dom t3,

(iv) 2 ∈ dom t3, and

(v) there exist elements t4, t5 of TS(G) such that the roots of t3 = 〈the
root label of t4, the root label of t5〉 and t4 = t3(1) and t5 = t3(2) and
n1-tree(t3) = n1-tree(t4, t5) and t4 ∈ rng t3 and t5 ∈ rng t3.

Now we present three schemes. The scheme BinDTConstrInd concerns a
binary non empty tree construction structure A with terminals and nonterminals
and a unary predicate P, and states that:

For every element t of TS(A) holds P[t]

provided the parameters have the following properties:

• For every terminal s of A holds P[the root tree of s],

• Let n1 be a nonterminal of A and let t4, t5 be elements of TS(A).
Suppose n1 ⇒ 〈the root label of t4, the root label of t5〉 and P[t4]
and P[t5]. Then P[n1-tree(t4, t5)].

The scheme BinDTConstrIndDef concerns a binary non empty tree construc-
tion structure A with terminals, nonterminals, and useful nonterminals, a non
empty set B, a unary functor F yielding an element of B, and a 5-ary functor
G yielding an element of B, and states that:

There exists a function f from TS(A) into B such that

(i) for every terminal t of A holds f(the root tree of t) = F(t),
and

(ii) for every nonterminal n1 of A and for all elements t4, t5 of
TS(A) and for all symbols r1, r2 of A such that r1 = the root label
of t4 and r2 = the root label of t5 and n1 ⇒ 〈r1, r2〉 and for all
elements x3, x4 of B such that x3 = f(t4) and x4 = f(t5) holds
f(n1-tree(t4, t5)) = G(n1, r1, r2, x3, x4)

for all values of the parameters.

The scheme BinDTConstrUniqDef deals with a binary non empty tree con-
struction structure A with terminals, nonterminals, and useful nonterminals, a
non empty set B, functions C, D from TS(A) into B, a unary functor F yielding
an element of B, and a 5-ary functor G yielding an element of B, and states that:

C = D

provided the following requirements are met:



12 grzegorz bancerek and piotr rudnicki

• (i) For every terminal t of A holds C(the root tree of t) = F(t),
and
(ii) for every nonterminal n1 of A and for all elements t4, t5 of
TS(A) and for all symbols r1, r2 of A such that r1 = the root label
of t4 and r2 = the root label of t5 and n1 ⇒ 〈r1, r2〉 and for all
elements x3, x4 of B such that x3 = C(t4) and x4 = C(t5) holds
C(n1-tree(t4, t5)) = G(n1, r1, r2, x3, x4),

• (i) For every terminal t of A holds D(the root tree of t) = F(t),
and
(ii) for every nonterminal n1 of A and for all elements t4, t5 of
TS(A) and for all symbols r1, r2 of A such that r1 = the root label
of t4 and r2 = the root label of t5 and n1 ⇒ 〈r1, r2〉 and for all
elements x3, x4 of B such that x3 = D(t4) and x4 = D(t5) holds
D(n1-tree(t4, t5)) = G(n1, r1, r2, x3, x4).

Let A, B, C be non empty sets, let a be an element of A, let b be an element
of B, and let c be an element of C. Then 〈〈a, b, c〉〉 is an element of [:A, B, C :].

Now we present two schemes. The scheme BinDTC DefLambda deals with a
binary non empty tree construction structure A with terminals, nonterminals,
and useful nonterminals, non empty sets B, C, a binary functor F yielding an
element of C, and a 4-ary functor G yielding an element of C, and states that:

There exists a function f from TS(A) into CB such that
(i) for every terminal t of A there exists a function g from B into
C such that g = f(the root tree of t) and for every element a of B
holds g(a) = F(t, a), and
(ii) for every nonterminal n1 of A and for all elements t1, t2 of
TS(A) and for all symbols r1, r2 of A such that r1 = the root label
of t1 and r2 = the root label of t2 and n1 ⇒ 〈r1, r2〉 there exist
functions g, f1, f2 from B into C such that g = f(n1-tree(t1, t2))
and f1 = f(t1) and f2 = f(t2) and for every element a of B holds
g(a) = G(n1, f1, f2, a)

for all values of the parameters.
The scheme BinDTC DefLambdaUniq deals with a binary non empty tree

construction structure A with terminals, nonterminals, and useful nonterminals,
non empty sets B, C, functions D, E from TS(A) into CB, a binary functor F
yielding an element of C, and a 4-ary functor G yielding an element of C, and
states that:

D = E
provided the parameters satisfy the following conditions:

• (i) For every terminal t of A there exists a function g from B
into C such that g = D(the root tree of t) and for every element a
of B holds g(a) = F(t, a), and
(ii) for every nonterminal n1 of A and for all elements t1, t2 of
TS(A) and for all symbols r1, r2 of A such that r1 = the root label
of t1 and r2 = the root label of t2 and n1 ⇒ 〈r1, r2〉 there exist
functions g, f1, f2 from B into C such that g = D(n1-tree(t1, t2))
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and f1 = D(t1) and f2 = D(t2) and for every element a of B holds
g(a) = G(n1, f1, f2, a),

• (i) For every terminal t of A there exists a function g from B
into C such that g = E(the root tree of t) and for every element a
of B holds g(a) = F(t, a), and
(ii) for every nonterminal n1 of A and for all elements t1, t2 of
TS(A) and for all symbols r1, r2 of A such that r1 = the root label
of t1 and r2 = the root label of t2 and n1 ⇒ 〈r1, r2〉 there exist
functions g, f1, f2 from B into C such that g = E(n1-tree(t1, t2))
and f1 = E(t1) and f2 = E(t2) and for every element a of B holds
g(a) = G(n1, f1, f2, a).

Let G be a binary non empty tree construction structure with terminals and
nonterminals. Note that every element of TS(G) is binary.
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