Solvable Groups

Katarzyna Zawadzka Warsaw University Białystok

Summary. The concept of solvable group is introduced. Some theorems concerning heirdom of solvability are proved.

MML Identifier: GRSOLV_1.

The articles [7], [13], [3], [4], [11], [6], [5], [2], [1], [9], [10], [8], and [12] provide the terminology and notation for this paper.

In this paper G denotes a group and i denotes a natural number.

A group is solvable if it satisfies the condition (Def.1).

- (Def.1) There exists a finite sequence F of elements of SubGrit such that
 - (i) len F > 0,
 - (ii) $F(1) = \Omega_{it}$,
 - (iii) $F(\operatorname{len} F) = \{\mathbf{1}\}_{it}$, and
 - (iv) for every i such that $i \in \text{dom } F$ and $i+1 \in \text{dom } F$ and for all strict subgroups G_1 , G_2 of it such that $G_1 = F(i)$ and $G_2 = F(i+1)$ holds G_2 is a strict normal subgroup of G_1 and for every normal subgroup N of G_1 such that $N = G_2$ holds $G_1 = G_2$ holds $G_2 = G_3$ such that $G_3 = G_3$ holds $G_3 = G_3$ holds G

One can check that there exists a group which is solvable and strict.

One can prove the following propositions:

- (1) Let G be a strict group and let H, F_1 , F_2 be strict subgroups of G. Suppose F_1 is a normal subgroup of F_2 . Then $F_1 \cap H$ is a normal subgroup of $F_2 \cap H$.
- (2) Let G be a strict group, and let F_2 be a strict subgroup of G, and let F_1 be a strict normal subgroup of F_2 , and let a, b be elements of F_2 . Then $a \cdot F_1 \cdot (b \cdot F_1) = (a \cdot b) \cdot F_1$.
- (3) Let G be a strict group, and let H, F_2 be strict subgroups of G, and let F_1 be a strict normal subgroup of F_2 , and let G_2 be a strict subgroup of G. Suppose $G_2 = H \cap F_2$. Let G_1 be a normal subgroup of G_2 . Suppose

 $G_1 = H \cap F_1$. Then there exists a subgroup G_3 of F_2/F_1 such that G_2/G_1 and G_3 are isomorphic.

- (4) Let G be a strict group, and let H, F_2 be strict subgroups of G, and let F_1 be a strict normal subgroup of F_2 , and let G_2 be a strict subgroup of G. Suppose $G_2 = F_2 \cap H$. Let G_1 be a normal subgroup of G_2 . Suppose $G_1 = F_1 \cap H$. Then there exists a subgroup G_3 of F_2/F_1 such that G_3/G_1 and G_3 are isomorphic.
- (5) For every solvable strict group G holds every strict subgroup of G is solvable.
- (6) Let G be a strict group. Given a finite sequence F of elements of $\operatorname{SubGr} G$ such that
 - (i) $\operatorname{len} F > 0$,
- (ii) $F(1) = \Omega_G$,
- (iii) $F(\operatorname{len} F) = \{\mathbf{1}\}_G$, and
- (iv) for every i such that $i \in \text{dom } F$ and $i+1 \in \text{dom } F$ and for all strict subgroups G_1 , G_2 of G such that $G_1 = F(i)$ and $G_2 = F(i+1)$ holds G_2 is a strict normal subgroup of G_1 and for every normal subgroup N of G_1 such that $N = G_2$ holds $G_1 \setminus N$ is a cyclic group.
 - Then G is solvable.
- (7) Every strict commutative group is strict and solvable.

Let G, H be strict groups, let g be a homomorphism from G to H, and let A be a subgroup of G. The functor $g \upharpoonright A$ yielding a homomorphism from A to H is defined as follows:

(Def.2) $g \upharpoonright A = g \upharpoonright$ (the carrier of A).

Let G, H be strict groups, let g be a homomorphism from G to H, and let A be a subgroup of G. The functor $g^{\circ}A$ yields a strict subgroup of H and is defined as follows:

(Def.3) $q^{\circ}A = \operatorname{Im}(q \upharpoonright A)$.

Next we state a number of propositions:

- (8) Let G, H be strict groups, and let g be a homomorphism from G to H, and let A be a subgroup of G. Then $rrg(g \upharpoonright A) = g^{\circ}$ (the carrier of A).
- (9) Let G, H be strict groups, and let g be a homomorphism from G to H, and let A be a strict subgroup of G. Then the carrier of $g^{\circ}A = g^{\circ}$ (the carrier of A).
- (10) Let G, H be strict groups, and let h be a homomorphism from G to H, and let A be a strict subgroup of G. Then $\text{Im}(h \upharpoonright A)$ is a strict subgroup of Im h.
- (11) Let G, H be strict groups, and let h be a homomorphism from G to H, and let A be a strict subgroup of G. Then $h^{\circ}A$ is a strict subgroup of $\operatorname{Im} h$.
- (12) For all strict groups G, H and for every homomorphism h from G to H holds $h^{\circ}(\{\mathbf{1}\}_{G}) = \{\mathbf{1}\}_{H}$ and $h^{\circ}(\Omega_{G}) = \Omega_{\operatorname{Im} h}$.

- (13) Let G, H be strict groups, and let h be a homomorphism from G to H, and let A, B be strict subgroups of G. If A is a subgroup of B, then $h^{\circ}A$ is a subgroup of $h^{\circ}B$.
- (14) Let G, H be strict groups, and let h be a homomorphism from G to H, and let A be a strict subgroup of G, and let a be an element of G. Then $h(a) \cdot h^{\circ}A = h^{\circ}(a \cdot A)$ and $h^{\circ}A \cdot h(a) = h^{\circ}(A \cdot a)$.
- (15) Let G, H be strict groups, and let h be a homomorphism from G to H, and let A, B be subsets of G. Then $h^{\circ}A \cdot h^{\circ}B = h^{\circ}(A \cdot B)$.
- (16) Let G, H be strict groups, and let h be a homomorphism from G to H, and let A, B be strict subgroups of G. Suppose A is a strict normal subgroup of B. Then $h^{\circ}A$ is a strict normal subgroup of $h^{\circ}B$.
- (17) Let G, H be strict groups and let h be a homomorphism from G to H. If G is a solvable group, then Im h is solvable.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [5] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [6] Dariusz Surowik. Cyclic groups and some of their properties part I. Formalized Mathematics, 2(5):623–627, 1991.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
- [8] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955–962, 1990.
- [9] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [10] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855–864, 1990.
- [11] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [12] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573–578, 1991.
- [13] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received October 23, 1994