
FORMALIZED MATHEMATICS

Volume 5, Number 1, 1996

Warsaw University - Bia lystok

Relocatability 1

Yasushi Tanaka

Shinshu University

Information Engineering Dept.

Nagano

Summary. This article defines the concept of relocating the pro-
gram part of a finite partial state of SCM (data part stays intact). The
relocated program differs from the original program in that all jump in-
structions are adjusted by the relocation factor and other instructions
remain unchanged. The main theorem states that if a program computes
a function then the relocated program computes the same function, and
vice versa.

MML Identifier: RELOC.

The terminology and notation used in this paper have been introduced in the
following articles: [16], [2], [1], [19], [5], [6], [15], [7], [18], [13], [4], [9], [3], [8],
[10], [11], [17], [12], and [14].

1. Relocatability

In this paper j, k, m will be natural numbers.
Let l1 be an instruction-location of SCM and let k be a natural number.

The functor l1 +k yielding an instruction-location of SCM is defined as follows:

(Def.1) There exists a natural number m such that l1 = im and l1 + k = im+k.

The functor l1 −′ k yields an instruction-location of SCM and is defined as
follows:

(Def.2) There exists a natural number m such that l1 = im and l1 −
′ k = im−

′k.

The following three propositions are true:

(1) For every instruction-location l1 of SCM and for every natural number
k holds (l1 + k) −′ k = l1.

1This work was done under guidance and supervision of A. Trybulec and P. Rudnicki.

103
c© 1996 Warsaw University - Bia lystok

ISSN 0777–4028



104 yasushi tanaka

(2) For all instructions-locations l2, l3 of SCM and for every natural
number k holds Start-At(l2 + k) = Start-At(l3 + k) iff Start-At(l2) =
Start-At(l3).

(3) For all instructions-locations l2, l3 of SCM and for every natural num-
ber k such that Start-At(l2) = Start-At(l3) holds Start-At(l2 −′ k) =
Start-At(l3 −

′ k).

Let I be an instruction of SCM and let k be a natural number. The functor
IncAddr(I, k) yields an instruction of SCM and is defined as follows:

(Def.3) (i) IncAddr(I, k) = goto ((@I)addressTj + k) if InsCode(I) = 6,

(ii) IncAddr(I, k) = if (@I)addressTc = 0 goto (@I)addressTj + k if
InsCode(I) = 7,

(iii) IncAddr(I, k) = if (@I)addressTc > 0 goto (@I)addressTj + k if
InsCode(I) = 8,

(iv) IncAddr(I, k) = I, otherwise.

One can prove the following propositions:

(4) For every natural number k holds IncAddr(haltSCM, k) = haltSCM.

(5) For every natural number k and for all data-locations a, b holds
IncAddr(a:=b, k) = a:=b.

(6) For every natural number k and for all data-locations a, b holds
IncAddr(AddTo(a, b), k) = AddTo(a, b).

(7) For every natural number k and for all data-locations a, b holds
IncAddr(SubFrom(a, b), k) = SubFrom(a, b).

(8) For every natural number k and for all data-locations a, b holds
IncAddr(MultBy(a, b), k) = MultBy(a, b).

(9) For every natural number k and for all data-locations a, b holds
IncAddr(Divide(a, b), k) = Divide(a, b).

(10) For every natural number k and for every instruction-location l1 of
SCM holds IncAddr(goto l1, k) = goto (l1 + k).

(11) Let k be a natural number, and let l1 be an instruction-location of
SCM, and let a be a data-location. Then IncAddr(if a = 0 goto l1, k) =
if a = 0 goto l1 + k.

(12) Let k be a natural number, and let l1 be an instruction-location of
SCM, and let a be a data-location. Then IncAddr(if a > 0 goto l1, k) =
if a > 0 goto l1 + k.

(13) For every instruction I of SCM and for every natural number k holds
InsCode(IncAddr(I, k)) = InsCode(I).

(14) Let I1, I be instructions of SCM and let k be a natural num-
ber. Suppose InsCode(I) = 0 or InsCode(I) = 1 or InsCode(I) =
2 or InsCode(I) = 3 or InsCode(I) = 4 or InsCode(I) = 5 but
IncAddr(I1, k) = I. Then I1 = I.

Let p be a programmed finite partial state of SCM and let k be a natural
number. The functor Shift(p, k) yielding a programmed finite partial state of



relocatability 105

SCM is defined by:

(Def.4) dom Shift(p, k) = {im+k : im ∈ dom p} and for every m such that
im ∈ dom p holds (Shift(p, k))(im+k) = p(im).

We now state three propositions:

(15) Let l be an instruction-location of SCM, and let k be a natural number,
and let p be a programmed finite partial state of SCM. If l ∈ dom p, then
(Shift(p, k))(l + k) = p(l).

(16) Let p be a programmed finite partial state of SCM and let k be a natural
number. Then dom Shift(p, k) = {i1 + k : i1 ranges over instructions-
locations of SCM, i1 ∈ dom p}.

(17) Let p be a programmed finite partial state of SCM and let k be a natural
number. Then domShift(p, k) ⊆ the instruction locations of SCM.

Let p be a programmed finite partial state of SCM and let k be a natural
number. The functor IncAddr(p, k) yielding a programmed finite partial state
of SCM is defined as follows:

(Def.5) dom IncAddr(p, k) = dom p and for every m such that im ∈ dom p holds
(IncAddr(p, k))(im) = IncAddr(πim

p, k).

One can prove the following two propositions:

(18) Let p be a programmed finite partial state of SCM, and let k be a
natural number, and let l be an instruction-location of SCM. If l ∈ dom p,

then (IncAddr(p, k))(l) = IncAddr(πlp, k).

(19) For every natural number i and for every programmed finite partial
state p of SCM holds Shift(IncAddr(p, i), i) = IncAddr(Shift(p, i), i).

Let p be a finite partial state of SCM and let k be a natural number. The
functor Relocated(p, k) yielding a finite partial state of SCM is defined as fol-
lows:

(Def.6) Relocated(p, k) = Start-At(ICp + k) +· IncAddr(Shift(ProgramPart(p),
k), k) +· DataPart(p).

Next we state a number of propositions:

(20) For every finite partial state p of SCM holds
dom IncAddr(Shift(ProgramPart(p), k), k) ⊆ Instr-LocSCM.

(21) For every finite partial state p of SCM and for every natural number
k holds DataPart(Relocated(p, k)) = DataPart(p).

(22) For every finite partial state p of SCM and for every natural number k

holds ProgramPart(Relocated(p, k)) = IncAddr(Shift(ProgramPart(p), k), k).

(23) For every finite partial state p of SCM holds
dom ProgramPart(Relocated(p, k)) = {ij+k : ij ∈ dom ProgramPart(p)}.

(24) Let p be a finite partial state of SCM, and let k be a natural number,
and let l be an instruction-location of SCM. Then l ∈ dom p if and only
if l + k ∈ dom Relocated(p, k).

(25) For every finite partial state p of SCM and for every natural number
k holds ICSCM ∈ dom Relocated(p, k).



106 yasushi tanaka

(26) For every finite partial state p of SCM and for every natural number
k holds ICRelocated(p,k) = ICp + k.

(27) Let p be a finite partial state of SCM, and let k be a natural number,
and let l1 be an instruction-location of SCM, and let I be an instruction
of SCM. If l1 ∈ domProgramPart(p) and I = p(l1), then IncAddr(I, k) =
(Relocated(p, k))(l1 + k).

(28) For every finite partial state p of SCM and for every natural number
k holds Start-At(ICp + k) ⊆ Relocated(p, k).

(29) Let s be a data-only finite partial state of SCM, and let p be a finite
partial state of SCM, and let k be a natural number. If ICSCM ∈ dom p,

then Relocated(p +· s, k) = Relocated(p, k) +· s.

(30) Let k be a natural number, and let p be an autonomic finite partial state
of SCM, and let s1, s2 be states of SCM. If p ⊆ s1 and Relocated(p, k) ⊆
s2, then p ⊆ s1 +· s2

�
Data-LocSCM.

(31) For every state s of SCM holds Exec(IncAddr(CurInstr(s), k), s +·
Start-At(ICs + k)) = Following(s) +· Start-At(ICFollowing(s) + k).

(32) Let I2 be an instruction of SCM, and let s be a state of SCM,
and let p be a finite partial state of SCM, and let i, j, k be natu-
ral numbers. If ICs = ij+k, then Exec(I2, s +· Start-At(ICs −′ k)) =
Exec(IncAddr(I2, k), s) +· Start-At(ICExec(IncAddr(I2,k),s) −

′ k).

2. Main theorems of Relocatability

Next we state several propositions:

(33) Let k be a natural number and let p be an autonomic finite
partial state of SCM. Suppose ICSCM ∈ dom p. Let s be a
state of SCM. Suppose p ⊆ s. Let i be a natural number.
Then (Computation(s +· Relocated(p, k)))(i) = (Computation(s))(i) +·
Start-At(IC(Computation(s))(i) + k) +· ProgramPart(Relocated(p, k)).

(34) Let k be a natural number, and let p be an autonomic finite par-
tial state of SCM, and let s1, s2, s3 be states of SCM. Suppose
ICSCM ∈ dom p and p ⊆ s1 and Relocated(p, k) ⊆ s2 and s3 = s1 +· s2

�
Data-LocSCM. Let i be a natural number. Then IC(Computation(s1))(i)+k =
IC(Computation(s2))(i) and IncAddr(CurInstr((Computation(s1))(i)), k) =
CurInstr((Computation(s2))(i)) and (Computation(s1))(i)

�
dom DataPart

(p) = (Computation(s2))(i)
�

dom DataPart(Relocated(p, k)) and
(Computation(s3))(i)

�
Data-LocSCM = (Computation(s2))(i)

�
Data-LocSCM.

(35) Let p be an autonomic finite partial state of SCM and let k be a
natural number. If ICSCM ∈ dom p, then p is halting iff Relocated(p, k)
is halting.

(36) Let k be a natural number and let p be an autonomic finite
partial state of SCM. Suppose ICSCM ∈ dom p. Let s be a



relocatability 107

state of SCM. Suppose Relocated(p, k) ⊆ s. Let i be a nat-
ural number. Then (Computation(s))(i) = (Computation(s +·
p))(i)+·Start-At(IC(Computation(s+·p))(i) +k)+·s

�
dom ProgramPart(p)+·

ProgramPart(Relocated(p, k)).

(37) Let k be a natural number and let p be a finite partial state
of SCM. Suppose ICSCM ∈ dom p. Let s be a state of SCM.
Suppose p ⊆ s and Relocated(p, k) is autonomic. Let i be a
natural number. Then (Computation(s))(i) = (Computation(s +·
Relocated(p, k)))(i) +· Start-At(IC(Computation(s+·Relocated(p,k)))(i) −

′ k) +·
s

�
dom ProgramPart(Relocated(p, k)) +· ProgramPart(p).

(38) Let p be a finite partial state of SCM. Suppose ICSCM ∈ dom p. Let
k be a natural number. Then p is autonomic if and only if Relocated(p, k)
is autonomic.

(39) Let p be a halting autonomic finite partial state of SCM. If ICSCM ∈
dom p, then for every natural number k holds DataPart(Result(p)) =
DataPart(Result(Relocated(p, k))).

(40) Let F be a data-only partial function from FinPartSt(SCM) to
FinPartSt(SCM) and let p be a finite partial state of SCM. Suppose
ICSCM ∈ dom p. Let k be a natural number. Then p computes F if and
only if Relocated(p, k) computes F .

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[4] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–

676, 1990.
[5] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[6] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[7] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[8] Czes law Byliński. Products and coproducts in categories. Formalized Mathematics,

2(5):701–709, 1991.
[9] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.

[10] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151–160, 1992.
[11] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-

malized Mathematics, 3(2):241–250, 1992.
[12] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,

4(1):83–86, 1993.
[13] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Math-

ematics, 2(5):623–627, 1991.
[14] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,

5(1):1–8, 1996.
[15] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.



108 yasushi tanaka

[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[17] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[18] Micha l J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received June 16, 1994


