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The papers [12], [3], [4], [11], [8], [10], [1], [2], [5], [6], [9], and [7] provide the
notation and terminology for this paper.

For simplicity we adopt the following rules: f denotes a function, N , n, m

denote natural numbers, q, r, r1, r2 denote real numbers, x is arbitrary, and w,
w1, w2, g denote points of EN

T
.

Let us consider N . A sequence in EN

T
is a function from � into the carrier of

EN

T
.
In the sequel s1, s2, s3, s4, s′1 are sequences in EN

T
.

Next we state two propositions:

(1) f is a sequence in EN

T
if and only if dom f = � and for every x such

that x ∈ � holds f(x) is a point of EN

T
.

(2) f is a sequence in EN

T
iff dom f = � and for every n holds f(n) is a

point of EN

T
.

Let us consider N , s1, n. Then s1(n) is a point of EN

T
.

Let us consider N . A sequence in EN

T
is non-zero if:

(Def.1) rng it ⊆ (the carrier of EN

T
) \ {0EN

T

}.

We now state several propositions:

(3) s1 is non-zero iff for every x such that x ∈ � holds s1(x) 6= 0EN

T

.

(4) s1 is non-zero iff for every n holds s1(n) 6= 0EN

T

.

(5) For all N , s1, s2 such that for every x such that x ∈ � holds s1(x) =
s2(x) holds s1 = s2.

(6) For all N , s1, s2 such that for every n holds s1(n) = s2(n) holds s1 = s2.

(7) For every point w of EN

T
there exists s1 such that rng s1 = {w}.

The scheme ExTopRealNSeq deals with a natural number A and a unary
functor F yielding a point of EA

T
, and states that:
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There exists a sequence s1 in EA
T

such that for every n holds s1(n) =
F(n)

for all values of the parameters.
Let us consider N , s2, s3. The functor s2 + s3 yielding a sequence in EN

T
is

defined by:

(Def.2) For every n holds (s2 + s3)(n) = s2(n) + s3(n).

Let us consider r, N , s1. The functor r · s1 yields a sequence in EN

T
and is

defined by:

(Def.3) For every n holds (r · s1)(n) = r · s1(n).

Let us consider N , s1. The functor −s1 yields a sequence in EN

T
and is defined

as follows:

(Def.4) For every n holds (−s1)(n) = −s1(n).

Let us consider N , s2, s3. The functor s2 − s3 yields a sequence in EN

T
and

is defined by:

(Def.5) s2 − s3 = s2 + −s3.

Let us consider N and let x be a point of EN

T
. The functor |x| yields a real

number and is defined by:

(Def.6) There exists a finite sequence y of elements of � such that x = y and
|x| = |y|.

Let us consider N , s1. The functor |s1| yielding a sequence of real numbers
is defined by:

(Def.7) For every n holds |s1|(n) = |s1(n)|.

We now state a number of propositions:

(8) |r| · |w| = |r · w|.

(9) |r · s1| = |r| |s1|.

(10) s2 + s3 = s3 + s2.

(11) (s2 + s3) + s4 = s2 + (s3 + s4).

(12) −s1 = (−1) · s1.

(13) r · (s2 + s3) = r · s2 + r · s3.

(14) (r · q) · s1 = r · (q · s1).

(15) r · (s2 − s3) = r · s2 − r · s3.

(16) s2 − (s3 + s4) = s2 − s3 − s4.

(17) 1 · s1 = s1.

(18) −−s1 = s1.

(19) s2 −−s3 = s2 + s3.

(20) s2 − (s3 − s4) = (s2 − s3) + s4.

(21) s2 + (s3 − s4) = (s2 + s3) − s4.

(22) If r 6= 0 and s1 is non-zero, then r · s1 is non-zero.

(23) If s1 is non-zero, then −s1 is non-zero.

(24) |0EN

T

| = 0.
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(25) If |w| = 0, then w = 0EN

T

.

(26) |w| ≥ 0.

(27) |−w| = |w|.

(28) |w1 − w2| = |w2 − w1|.

(29) |w1 − w2| = 0 iff w1 = w2.

(30) |w1 + w2| ≤ |w1| + |w2|.

(31) |w1 − w2| ≤ |w1| + |w2|.

(32) |w1| − |w2| ≤ |w1 + w2|.

(33) |w1| − |w2| ≤ |w1 − w2|.

(34) If w1 6= w2, then |w1 − w2| > 0.

(35) |w1 − w2| ≤ |w1 − w| + |w − w2|.

(36) If 0 ≤ |w1| and 0 ≤ r1 and |w1| < |w2| and r1 < r2, then |w1| · r1 <

|w2| · r2.

(38)1 −|w| < r and r < |w| iff |r| < |w|.

Let us consider N . A sequence in EN

T
is bounded if:

(Def.8) There exists r such that for every n holds |it(n)| < r.

The following proposition is true

(39) For every n there exists r such that 0 < r and for every m such that
m ≤ n holds |s1(m)| < r.

Let us consider N . A sequence in EN

T
is convergent if:

(Def.9) There exists g such that for every r such that 0 < r there exists n such
that for every m such that n ≤ m holds |it(m) − g| < r.

Let us consider N , s1. Let us assume that s1 is convergent. The functor
lim s1 yields a point of EN

T
and is defined by:

(Def.10) For every r such that 0 < r there exists n such that for every m such
that n ≤ m holds |s1(m) − lim s1| < r.

The following propositions are true:

(40) Suppose s1 is convergent. Then lim s1 = g if and only if for every r

such that 0 < r there exists n such that for every m such that n ≤ m

holds |s1(m) − g| < r.

(41) If s1 is convergent and s′1 is convergent, then s1 + s′1 is convergent.

(42) If s1 is convergent and s′1 is convergent, then lim(s1 + s′1) = lim s1 +
lim s′1.

(43) If s1 is convergent, then r · s1 is convergent.

(44) If s1 is convergent, then lim(r · s1) = r · lim s1.

(45) If s1 is convergent, then −s1 is convergent.

(46) If s1 is convergent, then lim(−s1) = −lim s1.

(47) If s1 is convergent and s′1 is convergent, then s1 − s′1 is convergent.

1The proposition (37) has been removed.
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(48) If s1 is convergent and s′1 is convergent, then lim(s1 − s′1) = lim s1 −
lim s′1.

(50)2 If s1 is convergent, then s1 is bounded.

(51) If s1 is convergent, then if lim s1 6= 0EN

T

, then there exists n such that

for every m such that n ≤ m holds | lim s1|
2

< |s1(m)|.
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