Sequences in $\mathcal{E}_{\mathrm{T}}^{N}$

Agnieszka Sakowicz Warsaw University Białystok Jarosław Gryko Warsaw University Białystok Adam Grabowski Warsaw University Białystok

MML Identifier: TOPRNS_1.

The papers [12], [3], [4], [11], [8], [10], [1], [2], [5], [6], [9], and [7] provide the notation and terminology for this paper.

For simplicity we adopt the following rules: f denotes a function, N, n, m denote natural numbers, q, r, r_1 , r_2 denote real numbers, x is arbitrary, and w, w_1 , w_2 , g denote points of $\mathcal{E}_{\mathrm{T}}^N$.

Let us consider N. A sequence in $\mathcal{E}_{\mathrm{T}}^{N}$ is a function from \mathbb{N} into the carrier of $\mathcal{E}_{\mathrm{T}}^{N}$.

In the sequel s_1 , s_2 , s_3 , s_4 , s_1' are sequences in $\mathcal{E}_{\mathrm{T}}^N$.

Next we state two propositions:

- (1) f is a sequence in $\mathcal{E}_{\mathrm{T}}^{N}$ if and only if dom $f = \mathbb{N}$ and for every x such that $x \in \mathbb{N}$ holds f(x) is a point of $\mathcal{E}_{\mathrm{T}}^{N}$.
- (2) f is a sequence in $\mathcal{E}_{\mathrm{T}}^{N}$ iff dom $f = \mathbb{N}$ and for every n holds f(n) is a point of $\mathcal{E}_{\mathrm{T}}^{N}$.

Let us consider N, s_1 , n. Then $s_1(n)$ is a point of $\mathcal{E}_{\mathrm{T}}^N$.

Let us consider N. A sequence in $\mathcal{E}_{\mathrm{T}}^{N}$ is non-zero if:

(Def.1) rng it \subseteq (the carrier of $\mathcal{E}_{\mathbf{T}}^{N}$) \ $\{0_{\mathcal{E}_{\mathbf{T}}^{N}}\}$.

We now state several propositions:

- (3) s_1 is non-zero iff for every x such that $x \in \mathbb{N}$ holds $s_1(x) \neq 0_{\mathcal{E}^N_T}$.
- (4) s_1 is non-zero iff for every n holds $s_1(n) \neq 0_{\mathcal{E}_T^N}$.
- (5) For all N, s_1 , s_2 such that for every x such that $x \in \mathbb{N}$ holds $s_1(x) = s_2(x)$ holds $s_1 = s_2$.
- (6) For all N, s_1 , s_2 such that for every n holds $s_1(n) = s_2(n)$ holds $s_1 = s_2$.
- (7) For every point w of $\mathcal{E}_{\mathrm{T}}^{N}$ there exists s_{1} such that $\mathrm{rng}\,s_{1}=\{w\}$.

The scheme ExTopRealNSeq deals with a natural number \mathcal{A} and a unary functor \mathcal{F} yielding a point of $\mathcal{E}_{\mathbf{T}}^{\mathcal{A}}$, and states that:

There exists a sequence s_1 in $\mathcal{E}_{\mathrm{T}}^{\mathcal{A}}$ such that for every n holds $s_1(n) = \mathcal{F}(n)$

for all values of the parameters.

Let us consider N, s_2 , s_3 . The functor $s_2 + s_3$ yielding a sequence in $\mathcal{E}_{\mathrm{T}}^N$ is defined by:

(Def.2) For every n holds $(s_2 + s_3)(n) = s_2(n) + s_3(n)$.

Let us consider r, N, s_1 . The functor $r \cdot s_1$ yields a sequence in $\mathcal{E}_{\mathrm{T}}^N$ and is defined by:

(Def.3) For every n holds $(r \cdot s_1)(n) = r \cdot s_1(n)$.

Let us consider N, s_1 . The functor $-s_1$ yields a sequence in $\mathcal{E}_{\mathrm{T}}^N$ and is defined as follows:

(Def.4) For every n holds $(-s_1)(n) = -s_1(n)$.

Let us consider N, s_2 , s_3 . The functor $s_2 - s_3$ yields a sequence in $\mathcal{E}_{\mathrm{T}}^N$ and is defined by:

(Def.5) $s_2 - s_3 = s_2 + -s_3$.

Let us consider N and let x be a point of $\mathcal{E}_{\mathrm{T}}^{N}$. The functor |x| yields a real number and is defined by:

(Def.6) There exists a finite sequence y of elements of \mathbb{R} such that x=y and |x|=|y|.

Let us consider N, s_1 . The functor $|s_1|$ yielding a sequence of real numbers is defined by:

(Def.7) For every n holds $|s_1|(n) = |s_1(n)|$.

We now state a number of propositions:

- $(8) |r| \cdot |w| = |r \cdot w|.$
- (9) $|r \cdot s_1| = |r| |s_1|$.
- $(10) s_2 + s_3 = s_3 + s_2.$
- $(11) (s_2 + s_3) + s_4 = s_2 + (s_3 + s_4).$
- $(12) -s_1 = (-1) \cdot s_1.$
- (13) $r \cdot (s_2 + s_3) = r \cdot s_2 + r \cdot s_3$.
- $(14) \quad (r \cdot q) \cdot s_1 = r \cdot (q \cdot s_1).$
- $(15) r \cdot (s_2 s_3) = r \cdot s_2 r \cdot s_3.$
- $(16) s_2 (s_3 + s_4) = s_2 s_3 s_4.$
- (17) $1 \cdot s_1 = s_1$.
- (18) $--s_1 = s_1$.
- $(19) s_2 -s_3 = s_2 + s_3.$
- $(20) s_2 (s_3 s_4) = (s_2 s_3) + s_4.$
- $(21) s_2 + (s_3 s_4) = (s_2 + s_3) s_4.$
- (22) If $r \neq 0$ and s_1 is non-zero, then $r \cdot s_1$ is non-zero.
- (23) If s_1 is non-zero, then $-s_1$ is non-zero.
- $(24) |0_{\mathcal{E}_{T}^{N}}| = 0.$

- (25) If |w| = 0, then $w = 0_{\mathcal{E}_{T}^{N}}$.
- $(26) |w| \ge 0.$
- (27) |-w| = |w|.
- $(28) |w_1 w_2| = |w_2 w_1|.$
- $(29) |w_1 w_2| = 0 iff w_1 = w_2.$
- $(30) |w_1 + w_2| \le |w_1| + |w_2|.$
- $(31) |w_1 w_2| \le |w_1| + |w_2|.$
- $(32) |w_1| |w_2| \le |w_1 + w_2|.$
- $(33) |w_1| |w_2| \le |w_1 w_2|.$
- (34) If $w_1 \neq w_2$, then $|w_1 w_2| > 0$.
- $(35) |w_1 w_2| \le |w_1 w| + |w w_2|.$
- (36) If $0 \le |w_1|$ and $0 \le r_1$ and $|w_1| < |w_2|$ and $r_1 < r_2$, then $|w_1| \cdot r_1 < |w_2| \cdot r_2$.
- $(38)^1 |w| < r \text{ and } r < |w| \text{ iff } |r| < |w|.$

Let us consider N. A sequence in \mathcal{E}_{T}^{N} is bounded if:

(Def.8) There exists r such that for every n holds |it(n)| < r.

The following proposition is true

(39) For every n there exists r such that 0 < r and for every m such that $m \le n$ holds $|s_1(m)| < r$.

Let us consider N. A sequence in $\mathcal{E}_{\mathrm{T}}^{N}$ is convergent if:

(Def.9) There exists g such that for every r such that 0 < r there exists n such that for every m such that $n \le m$ holds |it(m) - g| < r.

Let us consider N, s_1 . Let us assume that s_1 is convergent. The functor $\lim s_1$ yields a point of \mathcal{E}_T^N and is defined by:

(Def.10) For every r such that 0 < r there exists n such that for every m such that $n \le m$ holds $|s_1(m) - \lim s_1| < r$.

The following propositions are true:

- (40) Suppose s_1 is convergent. Then $\lim s_1 = g$ if and only if for every r such that 0 < r there exists n such that for every m such that $n \le m$ holds $|s_1(m) g| < r$.
- (41) If s_1 is convergent and s'_1 is convergent, then $s_1 + s'_1$ is convergent.
- (42) If s_1 is convergent and s'_1 is convergent, then $\lim(s_1 + s'_1) = \lim s_1 + \lim s'_1$.
- (43) If s_1 is convergent, then $r \cdot s_1$ is convergent.
- (44) If s_1 is convergent, then $\lim(r \cdot s_1) = r \cdot \lim s_1$.
- (45) If s_1 is convergent, then $-s_1$ is convergent.
- (46) If s_1 is convergent, then $\lim(-s_1) = -\lim s_1$.
- (47) If s_1 is convergent and s'_1 is convergent, then $s_1 s'_1$ is convergent.

¹The proposition (37) has been removed.

- (48) If s_1 is convergent and s'_1 is convergent, then $\lim(s_1 s'_1) = \lim s_1 \lim s'_1$.
- $(50)^2$ If s_1 is convergent, then s_1 is bounded.
- (51) If s_1 is convergent, then if $\lim s_1 \neq 0_{\mathcal{E}_{\mathbf{T}}^N}$, then there exists n such that for every m such that $n \leq m$ holds $\frac{|\lim s_1|}{2} < |s_1(m)|$.

References

- [1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [2] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [5] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- [6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [9] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [10] Jan Popiolek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [12] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.

Received May 10, 1994

²The proposition (49) has been removed.