Maximal Kolmogorov Subspaces of a Topological Space as Stone Retracts of the Ambient Space ¹

Zbigniew Karno Warsaw University Białystok

Summary. Let X be a topological space. X is said to be T_0 -space (or Kolmogorov space) provided for every pair of distinct points $x, y \in X$ there exists an open subset of X containing exactly one of these points (see [1], [8], [4]). Such spaces and subspaces were investigated in Mizar formalism in [7]. A Kolmogorov subspace X_0 of a topological space X is said to be maximal provided for every Kolmogorov subspace Y of X if X_0 is subspace of Y then the topological structures of Y and X_0 are the same.

M.H. Stone proved in [10] that every topological space can be made into a Kolmogorov space by identifying points with the same closure (see also [11]). The purpose is to generalize the Stone result, using Mizar System. It is shown here that: (1) in every topological space X there exists a maximal Kolmogorov subspace X_0 of X, and (2) every maximal Kolmogorov subspace X_0 of X is a continuous retract of X. Moreover, if $r: X \to X_0$ is a continuous retraction of X onto a maximal Kolmogorov subspace X_0 of X, then $r^{-1}(x) = \text{MaxADSet}(x)$ for any point x of X belonging to X_0 , where MaxADSet(x) is a unique maximal antidiscrete subset of X containing x (see [5] for the precise definition of the set MaxADSet(x)). The retraction r from the last theorem is defined uniquely, and it is denoted in the text by "Stone-retraction". It has the following two remarkable properties: r is open, i.e., sends open sets in X to open sets in X_0 , and r is closed, i.e., sends closed sets in X to closed sets in X_0 .

These results may be obtained by the methods described by R.H. Warren in [17].

MML Identifier: TSP_2.

The terminology and notation used here are introduced in the following articles: [15], [16], [12], [18], [2], [3], [14], [9], [19], [13], [6], [5], and [7].

¹Presented at Mizar Conference: Mathematics in Mizar (Białystok, September 12–14, 1994).

C 1996 Warsaw University - Białystok ISSN 0777-4028 ZBIGNIEW KARNO

1. Maximal T_0 -Subsets

Let X be a topological space. Let us observe that a subset of X is T_0 if:

(Def.1) For all points a, b of X such that $a \in \text{it and } b \in \text{it holds if } a \neq b$, then MaxADSet $(a) \cap \text{MaxADSet}(b) = \emptyset$.

Let X be a topological space. Let us observe that a subset of X is T_0 if:

- (Def.2) For every point a of X such that $a \in it$ holds it $\cap MaxADSet(a) = \{a\}$. Let X be a topological space. Let us observe that a subset of X is T_0 if:
- (Def.3) For every point a of X such that $a \in$ it there exists a subset D of X such that D is maximal anti-discrete and it $\cap D = \{a\}$.

Let Y be a topological structure. A subset of Y is maximal T_0 if:

(Def.4) It is T_0 and for every subset D of Y such that D is T_0 and it $\subseteq D$ holds it = D.

Next we state the proposition

(1) Let Y_0 , Y_1 be topological structures, and let D_0 be a subset of Y_0 , and let D_1 be a subset of Y_1 . Suppose the topological structure of Y_0 = the topological structure of Y_1 and $D_0 = D_1$. If D_0 is maximal T_0 , then D_1 is maximal T_0 .

Let X be a topological space. Let us observe that a subset of X is maximal T_0 if:

(Def.5) It is T_0 and MaxADSet(it) = the carrier of X.

In the sequel X denotes a topological space. We now state several propositions:

- (2) For every subset M of X such that M is maximal T_0 holds M is dense.
- (3) For every subset A of X such that A is open or closed holds if A is maximal T_0 , then A is not proper.
- (4) Every empty subset of X is not maximal T_0 .
- (5) Let M be a subset of X. Suppose M is maximal T_0 . Let A be a subset of X. If A is closed, then $A = MaxADSet(M \cap A)$.
- (6) Let M be a subset of X. Suppose M is maximal T_0 . Let A be a subset of X. If A is open, then $A = MaxADSet(M \cap A)$.
- (7) For every subset M of X such that M is maximal T_0 and for every subset A of X holds $\overline{A} = \text{MaxADSet}(M \cap \overline{A})$.
- (8) For every subset M of X such that M is maximal T_0 and for every subset A of X holds Int $A = MaxADSet(M \cap Int A)$.

Let X be a topological space. Let us observe that a subset of X is maximal T_0 if:

(Def.6) For every point x of X there exists a point a of X such that $a \in it$ and it $\cap MaxADSet(x) = \{a\}$.

The following two propositions are true:

- (9) For every subset A of X such that A is T_0 there exists a subset M of X such that $A \subseteq M$ and M is maximal T_0 .
- (10) There exists subset of X which is maximal T_0 .

2. MAXIMAL KOLMOGOROV SUBSPACES

Let Y be a non empty topological structure. A subspace of Y is maximal T_0 if:

(Def.7) For every subset A of Y such that A = the carrier of it holds A is maximal T_0 .

One can prove the following proposition

(11) Let Y be a non empty topological structure, and let Y_0 be a subspace of Y, and let A be a subset of Y. Suppose A = the carrier of Y_0 . Then A is maximal T_0 if and only if Y_0 is maximal T_0 .

Let Y be a non empty topological structure. Note that every subspace of Y which is maximal T_0 is also T_0 and every subspace of Y which is non T_0 is also non maximal T_0 .

Let X be a topological space. Let us observe that a subspace of X is maximal T_0 if it satisfies the conditions (Def.8).

- (Def.8) (i) It is T_0 , and
 - (ii) for every T_0 subspace Y_0 of X such that it is a subspace of Y_0 holds the topological structure of it = the topological structure of Y_0 .

In the sequel X will be a topological space.

One can prove the following proposition

(12) Let A_0 be a non empty subset of X. Suppose A_0 is maximal T_0 . Then there exists a strict subspace X_0 of X such that X_0 is maximal T_0 and A_0 = the carrier of X_0 .

Let X be a topological space. One can verify the following observations:

- * every subspace of X which is maximal T_0 is also dense,
- * every subspace of X which is non dense is also non maximal T_0 ,
- * every subspace of X which is open and maximal T_0 is also non proper,
- * every subspace of X which is open and proper is also non maximal T_0 ,
- * every subspace of X which is proper and maximal T_0 is also non open,
- * every subspace of X which is closed and maximal T_0 is also non proper,
- * every subspace of X which is closed and proper is also non maximal T_0 , and

* every subspace of X which is proper and maximal T_0 is also non closed. Next we state the proposition

(13) Let Y_0 be a T_0 subspace of X. Then there exists a strict subspace X_0 of X such that Y_0 is a subspace of X_0 and X_0 is maximal T_0 .

Let X be a topological space. Note that there exists a subspace of X which is maximal T_0 and strict.

Let X be a topological space. A maximal Kolmogorov subspace of X is a maximal T_0 subspace of X.

The following four propositions are true:

- (14) Let X_0 be a maximal Kolmogorov subspace of X, and let G be a subset of X, and let G_0 be a subset of X_0 . Suppose $G_0 = G$. Then G_0 is open if and only if the following conditions are satisfied:
 - (i) MaxADSet(G) is open, and
 - (ii) $G_0 = \text{MaxADSet}(G) \cap (\text{the carrier of } X_0).$
- (15) Let X_0 be a maximal Kolmogorov subspace of X and let G be a subset of X. Then G is open if and only if the following conditions are satisfied:
 - (i) G = MaxADSet(G), and
 - (ii) there exists a subset G_0 of X_0 such that G_0 is open and $G_0 = G \cap$ (the carrier of X_0).
- (16) Let X_0 be a maximal Kolmogorov subspace of X, and let F be a subset of X, and let F_0 be a subset of X_0 . Suppose $F_0 = F$. Then F_0 is closed if and only if the following conditions are satisfied:
 - (i) MaxADSet(F) is closed, and
 - (ii) $F_0 = \text{MaxADSet}(F) \cap (\text{the carrier of } X_0).$
- (17) Let X_0 be a maximal Kolmogorov subspace of X and let F be a subset of X. Then F is closed if and only if the following conditions are satisfied:
 - (i) F = MaxADSet(F), and
 - (ii) there exists a subset F_0 of X_0 such that F_0 is closed and $F_0 = F \cap$ (the carrier of X_0).

3. STONE RETRACTION MAPPING THEOREMS

In the sequel X is a topological space and X_0 is a maximal Kolmogorov subspace of X.

One can prove the following propositions:

- (18) Let r be a mapping from X into X_0 and let M be a subset of X. Suppose M = the carrier of X_0 . Suppose that for every point a of X holds $M \cap \text{MaxADSet}(a) = \{r(a)\}$. Then r is a continuous mapping from X into X_0 .
- (19) Let r be a mapping from X into X_0 . Suppose that for every point a of X holds $r(a) \in \text{MaxADSet}(a)$. Then r is a continuous mapping from X into X_0 .
- (20) Let r be a continuous mapping from X into X_0 and let M be a subset of X. Suppose M = the carrier of X_0 . If for every point a of X holds $M \cap \text{MaxADSet}(a) = \{r(a)\}$, then r is a retraction.

- (21) For every continuous mapping r from X into X_0 such that for every point a of X holds $r(a) \in MaxADSet(a)$ holds r is a retraction.
- (22) There exists continuous mapping from X into X_0 which is a retraction.
- (23) X_0 is a retract of X.

Let X be a topological space and let X_0 be a maximal Kolmogorov subspace of X. Stone-retraction of X onto X_0 is a continuous mapping from X into X_0 and is defined as follows:

(Def.9) Stone-retraction of X onto X_0 is a retraction.

Next we state three propositions:

- (24) Let a be a point of X and let \underline{b} be a point of X_0 . If a = b, then (Stone-retraction of X onto X_0)⁻¹ $\overline{\{b\}} = \overline{\{a\}}$.
- (25) For every point a of X and for every point b of X_0 such that a = b holds (Stone-retraction of X onto X_0)⁻¹ {b} = MaxADSet(a).
- (26) For every subset E of X and for every subset F of X_0 such that F = E holds (Stone-retraction of X onto X_0)⁻¹ F = MaxADSet(E).

Let X be a topological space and let X_0 be a maximal Kolmogorov subspace of X. Then Stone-retraction of X onto X_0 is a continuous mapping from X into X_0 and it can be characterized by the condition:

(Def.10) Let M be a subset of X. Suppose M = the carrier of X_0 . Let a be a point of X. Then $M \cap \text{MaxADSet}(a) = \{(\text{Stone-retraction of } X \text{ onto } X_0)(a)\}.$

Let X be a topological space and let X_0 be a maximal Kolmogorov subspace of X. Then Stone-retraction of X onto X_0 is a continuous mapping from X into X_0 and it can be characterized by the condition:

(Def.11) For every point a of X holds (Stone-retraction of X onto X_0) $(a) \in MaxADSet(a)$.

Next we state two propositions:

- (27) For every point a of X holds (Stone-retraction of X onto X_0)⁻¹ {(Stone-retraction of X onto X_0)(a)} = MaxADSet(a).
- (28) For every point a of X holds (Stone-retraction of X onto $X_0)^{\circ}\{a\} =$ (Stone-retraction of X onto $X_0)^{\circ}$ MaxADSet(a).

Let X be a topological space and let X_0 be a maximal Kolmogorov subspace of X. Then Stone-retraction of X onto X_0 is a continuous mapping from X into X_0 and it can be characterized by the condition:

(Def.12) Let M be a subset of X. Suppose M = the carrier of X_0 . Let A be a subset of X. Then $M \cap \text{MaxADSet}(A) = (\text{Stone-retraction of } X \text{ onto } X_0)^{\circ}A$.

The following propositions are true:

- (29) For every subset A of X holds (Stone-retraction of X onto X_0)⁻¹ (Stone-retraction of X onto X_0)°A = MaxADSet(A).
- (30) For every subset A of X holds (Stone-retraction of X onto $X_0)^{\circ}A =$ (Stone-retraction of X onto $X_0)^{\circ}$ MaxADSet(A).

- (31) Let A, B be subsets of X. Then (Stone-retraction of X onto $X_0)^{\circ}(A \cup B) = ($ Stone-retraction of X onto $X_0)^{\circ}A \cup ($ Stone-retraction of X onto $X_0)^{\circ}B$.
- (32) Let A, B be subsets of X. Suppose A is open or B is open. Then (Stone-retraction of X onto X_0)° $(A \cap B) =$ (Stone-retraction of X onto X_0)° $A \cap$ (Stone-retraction of X onto X_0)°B.
- (33) Let A, B be subsets of X. Suppose A is closed or B is closed. Then (Stone-retraction of X onto X_0)° $(A \cap B) =$ (Stone-retraction of X onto X_0)° $A \cap$ (Stone-retraction of X onto X_0)°B.
- (34) For every subset A of X such that A is open holds (Stone-retraction of X onto X_0)°A is open.
- (35) For every subset A of X such that A is closed holds (Stone-retraction of X onto X_0)°A is closed.

References

- [1] P. Alexandroff and H. H. Hopf. Topologie I. Springer-Verlag, Berlin, 1935.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- Ryszard Engelking. General Topology. Volume 60 of Monografie Matematyczne, PWN -Polish Scientific Publishers, Warsaw, 1977.
- Zbigniew Karno. Maximal anti-discrete subspaces of topological spaces. Formalized Mathematics, 5(1):109–118, 1996.
- Zbigniew Karno. Maximal discrete subspaces of almost discrete topological spaces. Formalized Mathematics, 4(1):125–135, 1993.
- Zbigniew Karno. On Kolmogorov topological spaces. Formalized Mathematics, 5(1):119– 124, 1996.
- [8] Kazimierz Kuratowski. Topology. Volume I, PWN Polish Scientific Publishers, Academic Press, Warsaw, New York and London, 1966.
- Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Formalized Mathematics*, 1(1):223–230, 1990.
- [10] M. H. Stone. Application of boolean algebras to topology. Math. Sb., 1:765–771, 1936.
- [11] W.J. Thron. *Topological Structures*. Holt, Rinehart and Winston, New York, 1966.
- [12] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [13] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535–545, 1991.
- [14] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [17] R.H. Warren. Identification spaces and unique uniformity. *Pacific Journal of Mathe*matics, 95:483–492, 1981.
- [18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [19] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231–237, 1990.

Received July 26, 1994