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Summary. The aim of the article is to check the compatibility
of the homomorphism of universal algebras introduced in [13] and the
corresponding concept for many sorted algebras introduced in [14].

MML Identifier: MSUHOM 1.

The articles [22], [25], [26], [28], [8], [9], [11], [21], [23], [3], [12], [10], [1], [19],
[6], [27], [18], [15], [2], [5], [4], [16], [7], [24], [13], [14], [17], and [20] provide the
notation and terminology for this paper.

For simplicity we follow the rules: U1, U2, U3 denote universal algebras, n

denotes a natural number, A denotes a non empty set, and h denotes a function
from U1 into U2.

The following propositions are true:

(1) For all functions f , g and for every set C such that rng f ⊆ C holds
(g

�
C) · f = g · f.

(2) For every set I and for every subset C of I holds C ∗ ⊆ I∗.

(3) For every function f and for every set C such that f is function yielding
holds f

�
C is function yielding.

(4) For every set I and for every subset C of I and for every many sorted
set M indexed by I holds (M

�
C)# = M# �

C∗.

Let us consider A, n and let a be an element of A. Then n 7→ a is a finite
sequence of elements of A.

Let S, S′ be non empty many sorted signatures. The predicate S ≤ S ′ is
defined by the conditions (Def.1).
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(Def.1) (i) The carrier of S ⊆ the carrier of S ′,

(ii) the operation symbols of S ⊆ the operation symbols of S ′,

(iii) (the arity of S ′)
�
(the operation symbols of S) = the arity of S, and

(iv) (the result sort of S ′)
�
(the operation symbols of S) = the result sort

of S.

Let us note that this predicate is reflexive.

Next we state four propositions:

(5) For all non empty many sorted signatures S, S ′, S′′ such that S ≤ S ′

and S′ ≤ S′′ holds S ≤ S ′′.

(6) For all strict non empty many sorted signatures S, S ′ such that S ≤ S ′

and S′ ≤ S holds S = S ′.

(7) Let g be a function, and let a be an element of A, and let k be a natural
number. If 1 ≤ k and k ≤ n, then (a7−→. g)(πk(n 7→ a)) = g.

(8) Let I be a set, and let I0 be a subset of I, and let A, B be many sorted
sets indexed by I, and let F be a many sorted function from A into B,
and let A0, B0 be many sorted sets indexed by I0. Suppose A0 = A

�
I0

and B0 = B
�
I0. Then F

�
I0 is a many sorted function from A0 into B0.

Let S, S′ be strict non void non empty many sorted signatures and let A be
a non-empty strict algebra over S ′. Let us assume that S ≤ S ′. The functor
(A over S) yielding a non-empty strict algebra over S is defined by the conditions
(Def.2).

(Def.2) (i) The sorts of (A over S) = (the sorts of A)
�
(the carrier of S), and

(ii) the characteristics of (A over S) = (the characteristics of A)
�
(the

operation symbols of S).

We now state two propositions:

(9) For every strict non void non empty many sorted signature S and for
every non-empty strict algebra A over S holds A = (A over S).

(10) For all U1, U2 such that U1 and U2 are similar holds MSSign(U1) =
MSSign(U2).

Let U1, U2 be universal algebras and let h be a function from U1 into U2.
Let us assume that MSSign(U1) = MSSign(U2). The functor MSAlg(h) yielding
a many sorted function from MSAlg(U1) into (MSAlg(U2) over MSSign(U1)) is
defined by:

(Def.3) MSAlg(h) = {0} 7−→ h.

The following propositions are true:

(11) Given U1, U2, h. Suppose U1 and U2 are similar. Let o be an operation
symbol of MSSign(U1). Then (MSAlg(h))(the result sort of o) = h.

(12) For every operation symbol o of MSSign(U1) holds Den(o,MSAlg(U1)) =
(the characteristic of U1)(o).

(13) For every operation symbol o of MSSign(U1) holds Den(o,MSAlg(U1))
is an operation of U1.
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(14) For every operation symbol o of MSSign(U1) holds every element of
Args(o,MSAlg(U1)) is a finite sequence of elements of the carrier of U1.

(15) Given U1, U2, h. Suppose U1 and U2 are similar. Let o be an operation
symbol of MSSign(U1) and let y be an element of Args(o,MSAlg(U1)).
Then MSAlg(h)#y = h · y.

(16) If h is a homomorphism of U1 into U2, then MSAlg(h) is a homomor-
phism of MSAlg(U1) into (MSAlg(U2) over MSSign(U1)).

(17) If U1 and U2 are similar, then MSAlg(h) is a many sorted set indexed
by {0}.

(18) If h is an epimorphism of U1 onto U2, then MSAlg(h) is an epimorphism
of MSAlg(U1) onto (MSAlg(U2) over MSSign(U1)).

(19) If h is a monomorphism of U1 into U2, then MSAlg(h) is a monomor-
phism of MSAlg(U1) into (MSAlg(U2) over MSSign(U1)).

(20) If h is an isomorphism of U1 and U2, then MSAlg(h) is an isomorphism
of MSAlg(U1) and (MSAlg(U2) over MSSign(U1)).

(21) Given U1, U2, h. Suppose U1 and U2 are similar. Suppose MSAlg(h) is a
homomorphism of MSAlg(U1) into (MSAlg(U2) over MSSign(U1)). Then
h is a homomorphism of U1 into U2.

(22) Given U1, U2, h. Suppose U1 and U2 are similar. Suppose MSAlg(h) is
an epimorphism of MSAlg(U1) onto (MSAlg(U2) over MSSign(U1)). Then
h is an epimorphism of U1 onto U2.

(23) Given U1, U2, h. Suppose U1 and U2 are similar. Suppose MSAlg(h) is a
monomorphism of MSAlg(U1) into (MSAlg(U2) over MSSign(U1)). Then
h is a monomorphism of U1 into U2.

(24) Given U1, U2, h. Suppose U1 and U2 are similar. Suppose MSAlg(h) is
an isomorphism of MSAlg(U1) and (MSAlg(U2) over MSSign(U1)). Then
h is an isomorphism of U1 and U2.

(25) MSAlg(id(the carrier of U1)) = id(the sorts of MSAlg(U1)).

(26) Given U1, U2, U3. Suppose U1 and U2 are similar and U2 and U3 are
similar. Let h1 be a function from U1 into U2 and let h2 be a function
from U2 into U3. Then MSAlg(h2) ◦ MSAlg(h1) = MSAlg(h2 · h1).
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