The Correspondence Between Homomorphisms of Universal Algebra & Many Sorted Algebra

Adam Grabowski Warsaw University Białystok

Summary. The aim of the article is to check the compatibility of the homomorphism of universal algebras introduced in [13] and the corresponding concept for many sorted algebras introduced in [14].

MML Identifier: MSUHOM_1.

The articles [22], [25], [26], [28], [8], [9], [11], [21], [23], [3], [12], [10], [1], [19], [6], [27], [18], [15], [2], [5], [4], [16], [7], [24], [13], [14], [17], and [20] provide the notation and terminology for this paper.

For simplicity we follow the rules: U_1 , U_2 , U_3 denote universal algebras, n denotes a natural number, A denotes a non empty set, and h denotes a function from U_1 into U_2 .

The following propositions are true:

- (1) For all functions f, g and for every set C such that $\operatorname{rng} f \subseteq C$ holds $(g \upharpoonright C) \cdot f = g \cdot f$.
- (2) For every set I and for every subset C of I holds $C^* \subseteq I^*$.
- (3) For every function f and for every set C such that f is function yielding holds $f \upharpoonright C$ is function yielding.
- (4) For every set I and for every subset C of I and for every many sorted set M indexed by I holds $(M \upharpoonright C)^{\#} = M^{\#} \upharpoonright C^*$.

Let us consider A, n and let a be an element of A. Then $n \mapsto a$ is a finite sequence of elements of A.

Let S, S' be non empty many sorted signatures. The predicate $S \leq S'$ is defined by the conditions (Def.1).

211

C 1996 Warsaw University - Białystok ISSN 1426-2630 (Def.1) (i) The carrier of $S \subseteq$ the carrier of S',

- (ii) the operation symbols of $S \subseteq$ the operation symbols of S',
- (iii) (the arity of S') \upharpoonright (the operation symbols of S) = the arity of S, and
- (iv) (the result sort of S') \upharpoonright (the operation symbols of S) = the result sort of S.

Let us note that this predicate is reflexive.

Next we state four propositions:

- (5) For all non empty many sorted signatures S, S', S'' such that $S \leq S'$ and $S' \leq S''$ holds $S \leq S''$.
- (6) For all strict non empty many sorted signatures S, S' such that $S \leq S'$ and $S' \leq S$ holds S = S'.
- (7) Let g be a function, and let a be an element of A, and let k be a natural number. If $1 \le k$ and $k \le n$, then $(a \mapsto g)(\pi_k(n \mapsto a)) = g$.
- (8) Let I be a set, and let I_0 be a subset of I, and let A, B be many sorted sets indexed by I, and let F be a many sorted function from A into B, and let A_0 , B_0 be many sorted sets indexed by I_0 . Suppose $A_0 = A \upharpoonright I_0$ and $B_0 = B \upharpoonright I_0$. Then $F \upharpoonright I_0$ is a many sorted function from A_0 into B_0 .

Let S, S' be strict non void non empty many sorted signatures and let A be a non-empty strict algebra over S'. Let us assume that $S \leq S'$. The functor (A over S) yielding a non-empty strict algebra over S is defined by the conditions (Def.2).

- (Def.2) (i) The sorts of $(A \text{ over } S) = (\text{the sorts of } A) \upharpoonright (\text{the carrier of } S), \text{ and }$
 - (ii) the characteristics of $(A \text{ over } S) = (\text{the characteristics of } A) \upharpoonright (\text{the operation symbols of } S).$

We now state two propositions:

- (9) For every strict non void non empty many sorted signature S and for every non-empty strict algebra A over S holds A = (A over S).
- (10) For all U_1 , U_2 such that U_1 and U_2 are similar holds $MSSign(U_1) = MSSign(U_2)$.

Let U_1 , U_2 be universal algebras and let h be a function from U_1 into U_2 . Let us assume that $MSSign(U_1) = MSSign(U_2)$. The functor MSAlg(h) yielding a many sorted function from $MSAlg(U_1)$ into $(MSAlg(U_2) \text{ over } MSSign(U_1))$ is defined by:

(Def.3) $MSAlg(h) = \{0\} \mapsto h.$

The following propositions are true:

- (11) Given U_1, U_2, h . Suppose U_1 and U_2 are similar. Let o be an operation symbol of $MSSign(U_1)$. Then (MSAlg(h)) (the result sort of o) = h.
- (12) For every operation symbol o of $MSSign(U_1)$ holds $Den(o, MSAlg(U_1)) =$ (the characteristic of U_1)(o).
- (13) For every operation symbol o of $MSSign(U_1)$ holds $Den(o, MSAlg(U_1))$ is an operation of U_1 .

- (14) For every operation symbol o of $MSSign(U_1)$ holds every element of $Args(o, MSAlg(U_1))$ is a finite sequence of elements of the carrier of U_1 .
- (15) Given U_1, U_2, h . Suppose U_1 and U_2 are similar. Let o be an operation symbol of $MSSign(U_1)$ and let y be an element of $Args(o, MSAlg(U_1))$. Then $MSAlg(h) \# y = h \cdot y$.
- (16) If h is a homomorphism of U_1 into U_2 , then MSAlg(h) is a homomorphism of $MSAlg(U_1)$ into $(MSAlg(U_2) \text{ over } MSSign(U_1))$.
- (17) If U_1 and U_2 are similar, then MSAlg(h) is a many sorted set indexed by $\{0\}$.
- (18) If h is an epimorphism of U_1 onto U_2 , then MSAlg(h) is an epimorphism of $MSAlg(U_1)$ onto $(MSAlg(U_2)$ over $MSSign(U_1))$.
- (19) If h is a monomorphism of U_1 into U_2 , then MSAlg(h) is a monomorphism of $MSAlg(U_1)$ into $(MSAlg(U_2) \text{ over } MSSign(U_1))$.
- (20) If h is an isomorphism of U_1 and U_2 , then MSAlg(h) is an isomorphism of $MSAlg(U_1)$ and $(MSAlg(U_2) \text{ over } MSSign(U_1))$.
- (21) Given U_1, U_2, h . Suppose U_1 and U_2 are similar. Suppose MSAlg(h) is a homomorphism of MSAlg(U_1) into (MSAlg(U_2) over MSSign(U_1)). Then h is a homomorphism of U_1 into U_2 .
- (22) Given U_1 , U_2 , h. Suppose U_1 and U_2 are similar. Suppose MSAlg(h) is an epimorphism of MSAlg (U_1) onto (MSAlg (U_2) over MSSign (U_1)). Then h is an epimorphism of U_1 onto U_2 .
- (23) Given U_1, U_2, h . Suppose U_1 and U_2 are similar. Suppose MSAlg(h) is a monomorphism of MSAlg (U_1) into (MSAlg (U_2) over MSSign (U_1)). Then h is a monomorphism of U_1 into U_2 .
- (24) Given U_1 , U_2 , h. Suppose U_1 and U_2 are similar. Suppose MSAlg(h) is an isomorphism of MSAlg (U_1) and $(MSAlg(U_2) \text{ over MSSign}(U_1))$. Then h is an isomorphism of U_1 and U_2 .
- (25) $\operatorname{MSAlg}(\operatorname{id}_{(\text{the carrier of }U_1)}) = \operatorname{id}_{(\text{the sorts of }MSAlg(U_1))}.$
- (26) Given U_1 , U_2 , U_3 . Suppose U_1 and U_2 are similar and U_2 and U_3 are similar. Let h_1 be a function from U_1 into U_2 and let h_2 be a function from U_2 into U_3 . Then $MSAlg(h_2) \circ MSAlg(h_1) = MSAlg(h_2 \cdot h_1)$.

References

- [1] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
 [4] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Formal-
- *ized Mathematics*, 5(1):47–54, 1996.
- [5] Ewa Burakowska. Subalgebras of the universal algebra. Lattices of subalgebras. Formalized Mathematics, 4(1):23–27, 1993.
- [6] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669– 676, 1990.
- [7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.

ADAM GRABOWSKI

- [8] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [10] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409–420, 1990.
- [11] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- Zbigniew Karno. Maximal discrete subspaces of almost discrete topological spaces. Formalized Mathematics, 4(1):125–135, 1993.
- [13] Małgorzata Korolkiewicz. Homomorphisms of algebras. Quotient universal algebra. Formalized Mathematics, 4(1):109–113, 1993.
- [14] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathematics, 5(1):61–65, 1996.
- [15] Jarosław Kotowicz, Beata Madras, and Małgorzata Korolkiewicz. Basic notation of universal algebra. Formalized Mathematics, 3(2):251–253, 1992.
- [16] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103–108, 1993.
- [17] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Formalized Mathematics, 5(2):167–172, 1996.
- [18] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441–444, 1990.
- [19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [20] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
- [21] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [22] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [23] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979–981, 1990.
- [24] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [25] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [26] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(1):73–83, 1990.
- [27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
- [28] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85–89, 1990.

Received December 13, 1994