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Summary. The aim of the article is to check the compatibility
of the homomorphism of universal algebras introduced in [13] and the
corresponding concept for many sorted algebras introduced in [14].

MML Identifier: MSUHOM_1.

The articles [22], [25], [26], [28], [8], [9], [11], [21], [23], [3], [12], [10], [1], [19],
6], [27], [18], [15], [2], [5], [4], [16], [7], [24], [13], [14], [17], and [20] provide the
notation and terminology for this paper.

For simplicity we follow the rules: Uy, Us, Us denote universal algebras, n
denotes a natural number, A denotes a non empty set, and h denotes a function
from U; into Us.

The following propositions are true:

(1)  For all functions f, g and for every set C such that rng f C C holds

(g1C)-f=g-f

(2)  For every set I and for every subset C' of I holds C* C I*.

(3)  For every function f and for every set C such that f is function yielding

holds f | C is function yielding.

(4)  For every set I and for every subset C' of I and for every many sorted

set M indexed by I holds (M | C)# = M* | C*.

Let us consider A, n and let a be an element of A. Then n — a is a finite

sequence of elements of A.

Let S, S’ be non empty many sorted signatures. The predicate S < S’ is
defined by the conditions (Def.1).
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(Def.1) (i)  The carrier of S C the carrier of S’,
(ii)  the operation symbols of S C the operation symbols of S’,
(iii)  (the arity of S") | (the operation symbols of S) = the arity of S, and
(iv)  (the result sort of S”) | (the operation symbols of S) = the result sort
of S.
Let us note that this predicate is reflexive.
Next we state four propositions:

(5)  For all non empty many sorted signatures S, S’, S” such that § < S’
and S’ < S” holds S < S§”.

(6)  For all strict non empty many sorted signatures S, S’ such that S < S’
and S’ < S holds S = 9'.

(7)  Let g be a function, and let a be an element of A, and let k be a natural
number. If 1 <k and k < n, then (a——g)(mx(n — a)) = g.

(8) Let I be a set, and let Iy be a subset of I, and let A, B be many sorted
sets indexed by I, and let F' be a many sorted function from A into B,
and let Ay, By be many sorted sets indexed by Iy. Suppose Ag = A | I
and By = B | Iy. Then F' | I is a many sorted function from Ag into By.

Let S, S’ be strict non void non empty many sorted signatures and let A be
a non-empty strict algebra over S’. Let us assume that S < S’. The functor
(Aover S) yielding a non-empty strict algebra over S is defined by the conditions
(Def.2).

(Def.2) (i)  The sorts of (Aover S) = (the sorts of A) | (the carrier of S), and

(ii)  the characteristics of (AoverS) = (the characteristics of A) | (the

operation symbols of ).

We now state two propositions:

(9)  For every strict non void non empty many sorted signature S and for

every non-empty strict algebra A over S holds A = (Aover 5).
(10)  For all Uy, Uy such that Uy and Us are similar holds MSSign(U;) =
MSSign(Us).

Let Uj, Us be universal algebras and let h be a function from U; into Us.
Let us assume that MSSign(U;) = MSSign(Uz). The functor MSAlg(h) yielding
a many sorted function from MSAlg(Uy) into (MSAlg(Us) over MSSign(Uy)) is
defined by:

(Def.3)  MSAlg(h) = {0} — h.

The following propositions are true:

(11)  Given Uy, Us, h. Suppose U; and U, are similar. Let o be an operation
symbol of MSSign(U;). Then (MSAlg(h))(the result sort of o) = h.

(12)  For every operation symbol o of MSSign(U7) holds Den(o, MSAlg(U;)) =
(the characteristic of Uy)(0).

(13)  For every operation symbol o of MSSign(U7) holds Den(o, MSAlg(Uy))
is an operation of Uj.
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(14)  For every operation symbol o of MSSign(U;) holds every element of
Args(o, MSAlg(U;)) is a finite sequence of elements of the carrier of Uj.

(15)  Given Uy, Us, h. Suppose U; and U; are similar. Let o be an operation
symbol of MSSign(U;) and let y be an element of Args(o, MSAlg(Uy)).
Then MSAlg(h)#y = h - y.

(16) If h is a homomorphism of U; into Us, then MSAlg(h) is a homomor-
phism of MSAlg(U;) into (MSAlg(Us) over MSSign(Uy)).

(17)  If Uy and Uj are similar, then MSAlg(h) is a many sorted set indexed
by {0}.

(18)  If h is an epimorphism of U; onto Us, then MSAlg(h) is an epimorphism
of MSAlg(U;) onto (MSAlg(Us) over MSSign(Uy)).

(19) If h is a monomorphism of U; into Us, then MSAlg(h) is a monomor-
phism of MSAlg(U;) into (MSAIlg(Us) over MSSign(Uy)).

(20)  If h is an isomorphism of U; and Us, then MSAlg(h) is an isomorphism
of MSAlg(U;) and (MSAlg(Us) over MSSign(Uy)).

(21)  Given Uy, Us, h. Suppose Uy and U, are similar. Suppose MSAlg(h) is a
homomorphism of MSAlg(U;) into (MSAlg(Us) over MSSign(Uy)). Then
h is a homomorphism of Uy into Us.

(22)  Given Uy, Uy, h. Suppose Uy and Us are similar. Suppose MSAlg(h) is
an epimorphism of MSAlg(U;) onto (MSAlg(Us) over MSSign(U;)). Then
h is an epimorphism of U; onto Us.

(23)  Given Uy, Us, h. Suppose Uy and Us are similar. Suppose MSAlg(h) is a
monomorphism of MSAlg(U;) into (MSAlg(Us) over MSSign(Uy)). Then
h is a monomorphism of Uy into Us.

(24)  Given Uy, Uy, h. Suppose Uy and Us are similar. Suppose MSAlg(h) is
an isomorphism of MSAlg(U;) and (MSAlg(Us) over MSSign(U;)). Then
h is an isomorphism of U; and Us.

(25) MSAlg(ld(the carrier of U1)) = id(the sorts of MSAlg(U1))*

(26) Given Uy, Us, Us. Suppose Uy and Us are similar and Us and Us are
similar. Let hq; be a function from U;j into Us and let he be a function
from Uy into Us. Then MSAlg(hy) o MSAlg(hy) = MSAlg(hs - hy).
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