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1. DIRECTED SETS

One can check that there exists a coherent space which is finite. Let us
observe that a set is binary complete if:

(Def.1)  For every set A such that for all sets a, b such that a € A and b € A
holds a U b € it holds |J A € it.

Let X be a set. The functor FlatCoh(X) yielding a set is defined as follows:
(Def.2)  FlatCoh(X) = CohSp(Ax).
The functor SubFin(X) yielding a subset of X is defined by:
(Def.3)  For every set = holds x € SubFin(X) iff z € X and z is finite.
One can prove the following three propositions:

(1)  For all sets X, z holds x € FlatCoh(X) iff x = () or there exists a set y
such that z = {y} and y € X.

(2) For every set X holds |JFlatCoh(X) = X.
(3)  For every finite down-closed set X holds SubFin(X) = X.

One can check that {0} is down-closed and binary complete. Let X be a set.
One can check that 2% is down-closed and binary complete and FlatCoh(X) is
non empty down-closed and binary complete.
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Let C be a non empty down-closed set. Observe that SubFin(C) is non
empty and down-closed.
We now state the proposition
(4)  Web({0}) = 0.
The scheme MinimalElement wrt Incl concerns sets A, B and a unary pred-
icate P, and states that:
There exists a set a such that a € B and Pla] and for every set b
such that b € B and P[b] and b C a holds b =a
provided the following requirements are met:
o A€ B,
o P[A],
e A is finite.
Let X be a set. One can check that there exists a subset of X which is finite.
Let C be a coherent space. Observe that there exists an element of C' which
is finite.
Let X be a set. We say that X is U-directed if and only if:
(Def.4)  For every finite subset Y of X there exists a set a such that Y C a
and a € X.

We say that X is N-directed if and only if:
(Def.5)  For every finite subset Y of X there exists a set a such that for every
set y such that y € Y holds a C y and a € X.
Let us note that every set which is U-directed is also non empty and every
set which is N-directed is also non empty.
We now state several propositions:
(5) Let X be a set. Suppose X is U-directed. Let a, b be sets. If a € X
and b € X, then there exists a set ¢ such that a Ub C c and ¢ € X.

(6) Let X be a non empty set. Suppose that for all sets a, b such that
a € X and b € X there exists a set ¢ such that aUb C ¢ and ¢ € X. Then
X is U-directed.
(7)  Let X be a set. Suppose X is N-directed. Let a, b be sets. If a € X
and b € X, then there exists a set ¢ such that c CaNband c € X.
(8) Let X be a non empty set. Suppose that for all sets a, b such that
a € X and b € X there exists a set ¢ such that ¢ C anNb and ¢ € X. Then
X is N-directed.
(9) For every set x holds {z} is U-directed and N-directed.
(10)  For all sets x, y holds {z,y,x Uy} is U-directed.
(11)  For all sets x, y holds {z,y,z Ny} is N-directed.
Let us observe that there exists a set which is U-directed N-directed and
finite.
Let C be a non empty set. Observe that there exists a subset of C' which is
U-directed N-directed and finite.
We now state the proposition
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(12)  For every set X holds Fin X is U-directed and N-directed.
Let X be a set. Observe that Fin X is U-directed and N-directed.
Let C be a down-closed non empty set. Note that there exists a subset of C
which is preboolean and non empty.
Let C be a down-closed non empty set and let a be an element of C. Then
Fina is a preboolean non empty subset of C.
One can prove the following proposition
(13) Let X be a non empty set and let Y be a set. Suppose X is U-directed
and Y C X and Y is finite. Then there exists a set Z such that Z € X
and Y C Z.
Let X be a set. We say that X is N-closed if and only if:
(Def.6)  For all sets x, y such that x € X and y € X holds x Ny € X.
We say that X is closed under directed unions if and only if:
(Det.7)  For every subset A of X such that A is U-directed holds JA € X.
One can check that every set which is down-closed is also N-closed.
Next we state two propositions:
(14)  For every coherent space C and for all elements x, y of C holds xNy € C.
(15)  For every coherent space C' and for every U-directed subset A of C holds
UAdecC.
Let us note that every coherent space is closed under directed unions.
Let us note that there exists a coherent space which is N-closed and closed
under directed unions.
Let C be a closed under directed unions non empty set and let A be a U-
directed subset of C. Then [J A is an element of C.
Let X, Y be sets. We say that X includes lattice of Y if and only if:

(Def.8)  For all sets a, b such that a € Y and b € Y holds anb € X and aUb € X.
The following proposition is true

(16)  For every non empty set X such that X includes lattice of X holds X
is U-directed and N-directed.

Let X, z, y be sets. We say that X includes lattice of x, y if and only if:
(Def.9) X includes lattice of {z,y}.
One can prove the following proposition

(17)  For all sets X, z, y holds X includes lattice of z, y iff z € X and y € X
and xNy e X and z Uy € X.

2. CONTINUOUS, STABLE, AND LINEAR FUNCTIONS

Let f be a function. We say that f is preserving arbitrary unions if and only
if:
(Def.10)  For every subset A of dom f such that |JA € dom f holds f(UA) =
U(f°A).
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We say that f is preserving directed unions if and only if:
(Def.11)  For every subset A of dom f such that A is U-directed and |J A € dom f
holds f(UA) =U(f°A).

Let f be a function. We say that f is C-monotone if and only if:

(Def.12)  For all sets a, b such that a € dom f and b € dom f and a C b holds
fla) C f(b).
We say that f is preserving binary intersections if and only if:
(Def.13)  For all sets a, b such that dom f includes lattice of a, b holds f(anb) =
fla) N f(b).

Let us note that every function which is preserving directed unions is also
C-monotone and every function which is preserving arbitrary unions is also
preserving directed unions.

Next we state two propositions:

(18) Let f be a function. Suppose f is preserving arbitrary unions. Let
z, y be sets. If x € domf and y € dom f and z Uy € dom f, then
flxUy) = fz) U fy).

(19)  For every function f such that f is preserving arbitrary unions holds
f0)=9.

Let C1, Cy be coherent spaces. Note that there exists a function from C; into
C5 which is preserving arbitrary unions and preserving binary intersections.

Let C be a coherent space. One can verify that there exists a many sorted
set indexed by C which is preserving arbitrary unions and preserving binary
intersections.

Let f be a function. We say that f is continuous if and only if:

(Def.14)  dom f is closed under directed unions and f is preserving directed
unions.

Let f be a function. We say that f is stable if and only if:

(Def.15)  dom f is N-closed and f is continuous and preserving binary intersec-
tions.

Let f be a function. We say that f is linear if and only if:
(Def.16)  f is stable and preserving arbitrary unions.
One can check the following observations:
x  every function which is continuous is also preserving directed unions,

*  every function which is stable is also preserving binary intersections and
continuous, and
% every function which is linear is also preserving arbitrary unions and
stable.
Let X be a closed under directed unions set. Note that every many sorted
set indexed by X which is preserving directed unions is also continuous.

Let X be a N-closed set. Observe that every many sorted set indexed by X
which is continuous and preserving binary intersections is also stable.
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Let us note that every function which is stable and preserving arbitrary
unions is also linear.

Note that there exists a function which is linear. Let C' be a coherent space.
One can check that there exists a many sorted set indexed by C' which is linear.
Let B be a coherent space. One can check that there exists a function from B
into C' which is linear.

Let f be a continuous function. One can verify that dom f is closed under
directed unions.

Let f be a stable function. One can verify that dom f is N-closed.

We now state several propositions:

(20)  For every set X holds [JFin X = X.

(21)  For every continuous function f such that dom f is down-closed and for
every set a such that a € dom f holds f(a) = U(f°Fina).

(22) Let f be a function. Suppose dom f is down-closed. Then f is contin-
uous if and only if the following conditions are satisfied:
(i) dom f is closed under directed unions,
(ii)  f is C-monotone, and
(i)  for all sets a, y such that a € dom f and y € f(a) there exists a set b
such that b is finite and b C a and y € f(b).

(23) Let f be a function. Suppose dom f is down-closed and closed under
directed unions. Then f is stable if and only if the following conditions
are satisfied:

(i)  f is C-monotone, and

(ii) for all sets a, y such that a € dom f and y € f(a) there exists a set b
such that b is finite and b C a and y € f(b) and for every set ¢ such that
cCaandye f(c) holds b C c.

(24) Let f be a function. Suppose dom f is down-closed and closed under
directed unions. Then f is linear if and only if the following conditions
are satisfied:

(i)  f is C-monotone, and

(ii) for all sets a, y such that a € dom f and y € f(a) there exists a set
such that € a and y € f({z}) and for every set b such that b C a and
y € f(b) holds = € b.

3. GRAPH OF CONTINUOUS FUNCTION

Let f be a function. The functor graph(f) yielding a set is defined as follows:
(Def.17)  For every set x holds z € graph(f) iff there exists a finite set y and
there exists a set z such that z = (y, z) and y € dom f and z € f(y).
Let Cq, C5 be non empty sets and let f be a function from C into C5. Then
graph(f) is a subset of [ Cy, JC2].
Let f be a function. Note that graph(f) is relation-like.
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Next we state several propositions:

(25)  For every function f and for all sets x, y holds (x, y) € graph(f) iff x
is finite and = € dom f and y € f(z).

(26) Let f be a C-monotone function and let a, b be sets. Suppose b € dom f
and a C b and b is finite. Let y be a set. If (a, y) € graph(f), then (b,
y) € graph(f).

(27)  Let C1, Cy be coherent spaces, and let f be a function from Cy into Co,
and let a be an element of C, and let y1, y2 be sets. If (a, y1) € graph(f)
and (a, y2) € graph(f), then {y1,y2} € Cs.

(28) Let Ci, Cy be coherent spaces, and let f be a C-monotone function
from C7 into Cy, and let a, b be elements of Cy. Suppose a Ub € Cj.
Let y1, y2 be sets. If (a, y1) € graph(f) and (b, y2) € graph(f), then
{y1, 92} € Co.

(29)  For all coherent spaces C, Cs and for all continuous functions f, g from
C4 into Cy such that graph(f) = graph(g) holds f = g.

(30) Let Cy, C2 be coherent spaces and let X be a subset of [ Cq, |JCq2 .
Suppose that

(i)  for every set = such that x € X holds z is finite,
(ii)  for all finite elements a, b of C; such that a C b and for every set y
such that (a, y) € X holds (b, y) € X, and
(i)  for every finite element a of Cy and for all sets y;, y2 such that (a,
y1) € X and (a, y2) € X holds {y1,y2} € Ca.
Then there exists a continuous function f from C7 into Cy such that
X = graph(f).

(31) Let Cq, Cy be coherent spaces, and let f be a continuous function from

C1 into Cy, and let a be an element of Cy. Then f(a) = (graph(f))° Fina.

4. TRACE OF STABLE FUNCTION

Let f be a function. The functor Trace(f) yields a set and is defined by the
condition (Def.18).
(Def.18)  Let = be a set. Then x € Trace(f) if and only if there exist sets a, y
such that x = (a, y) and a € dom f and y € f(a) and for every set b such
that b € dom f and b C a and y € f(b) holds a = b.
Next we state the proposition
(32) Let f be a function and let a, y be sets. Then (a, y) € Trace(f) if and
only if the following conditions are satisfied:
(i) a€domf,
(i) y€ f(a), and
(iii)  for every set b such that b € dom f and b C a and y € f(b) holds a = b.

Let C1, C5 be non empty sets and let f be a function from C; into C5. Then
Trace(f) is a subset of [ C1, JCq2 .
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Let f be a function. One can check that Trace(f) is relation-like.
Next we state a number of propositions:

(33)  For every continuous function f such that dom f is down-closed holds
Trace(f) C graph(f).

(34) Let f be a continuous function. Suppose dom f is down-closed. Let a,
y be sets. If (a, y) € Trace(f), then a is finite.

(35)  Let C1, C3 be coherent spaces, and let f be a C-monotone function from
C4 into (9, and let a1, as be sets. Suppose a1 Uas € Cy. Let y1, yo be
sets. If (a1, y1) € Trace(f) and (a2, y2) € Trace(f), then {y1,y2} € Cs.

(36) Let C;, Cy be coherent spaces, and let f be a preserving binary inter-
sections function from C7 into Cs, and let a1, as be sets. If aq Uag € C1,
then for every set y such that (a;, y) € Trace(f) and (ag, y) € Trace(f)
holds a1 = as.

(37)  Let Cq, Co be coherent spaces and let f, g be stable functions from Cy
into Cy. If Trace(f) C Trace(g), then for every element a of C; holds
fla) € g(a).

(38)  For all coherent spaces Cy, Cy and for all stable functions f, g from Cy
into Cy such that Trace(f) = Trace(g) holds f = g.

(39) Let Cy, C2 be coherent spaces and let X be a subset of [ Cq, |JC2 .

Suppose that

(i)  for every set x such that z € X holds z is finite,

(ii)  for all elements a, b of Cy such that a Ub € C; and for all sets y1, y2
such that (a, y1) € X and (b, y2) € X holds {y1,y2} € Cs, and

(iii)  for all elements a, b of C such that aUb € C; and for every set y such
that (a, y) € X and (b, y) € X holds a = b.
Then there exists a stable function f from C; into Cs such that X =
Trace(f).

(40)  Let C1, Cy be coherent spaces, and let f be a stable function from Cy
into Co, and let a be an element of Cy. Then f(a) = (Trace(f))° Fina.

(41)  Let Cy, Cy be coherent spaces, and let f be a stable function from C;
into Co, and let a be an element of C7, and let y be a set. Then y € f(a)
if and only if there exists an element b of C such that (b, y) € Trace(f)
and b C a.

(42)  For all coherent spaces C7, Cs there exists a stable function f from Cy
into Cy such that Trace(f) = 0.

(43)  Let C1, Cq be coherent spaces, and let a be a finite element of C', and
let y be a set. If y € |JC9, then there exists a stable function f from C
into Cy such that Trace(f) = {{a, y)}.

(44)  Let Cq, Cy be coherent spaces, and let a be an element of C, and let y
be a set. Suppose y € |JCs. Let f be a stable function from C; into Cos.
Suppose Trace(f) = {{a, y)}. Let b be an element of Cy. Then if a C b,
then f(b) = {y} and if a Z b, then f(b) = 0.
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(45)  Let C1, Cy be coherent spaces, and let f be a stable function from C4
into Cy, and let X be a subset of Trace(f). Then there exists a stable
function ¢ from C into Co such that Trace(g) = X.

(46) Let C7, Cy be coherent spaces and let A be a set. Suppose that for all
sets x, y such that x € A and y € A there exists a stable function f from
(4 into Cy such that x Uy = Trace(f). Then there exists a stable function
f from C4 into Cs such that |J A = Trace(f).

Let Cy, Cs be coherent spaces. The functor StabCoh(C1, Cy) yielding a set
is defined as follows:
(Def.19)  For every set x holds x € StabCoh(Cy,Cs) iff there exists a stable
function f from Cj into Cy such that z = Trace(f).
Let Cp, Co be coherent spaces. Note that StabCoh(Cq,C>) is non empty
down-closed and binary complete.
We now state three propositions:

(47)  For all coherent spaces Cy, Cy and for every stable function f from C
into Cs holds Trace(f) C [ SubFin(C1), U Ca .

(48)  For all coherent spaces C, C holds |J StabCoh(C1, Cy) = [ SubFin(C),
UC21.

(49) Let Cy, Cs be coherent spaces, and let a, b be finite elements of C'y, and
let y1, y2 be sets. Then ({a, y1), (b, y2)) € Web(StabCoh(C1,C>)) if and
only if one of the following conditions is satisfied:

(i) aUb¢Ciand y; € UCy and y2 € |JCq, or
(i)  (y1, y2) € Web(Cy) and if y1 = y2, then a = b.

5. TRACE OF LINEAR FUNCTION

The following proposition is true
(50)  Let Cy, Cy be coherent spaces and let f be a stable function from C4
into Co. Then f is linear if and only if for all sets a, y such that {(a,
y) € Trace(f) there exists a set = such that a = {z}.
Let f be a function. The functor LinTrace(f) yielding a set is defined as
follows:
(Def.20)  For every set z holds = € LinTrace(f) iff there exist sets y, z such that
x = (y, z) and ({y}, z) € Trace(f).
Next we state three propositions:
(51)  For every function f and for all sets x, y holds (z, y) € LinTrace(f) iff
({z}, y) € Trace(f).
(52)  For every function f such that f(0) = () and for all sets z, y such that
{z} € dom f and y € f({z}) holds (z, y) € LinTrace(f).
(53)  For every function f and for all sets x, y such that (z, y) € LinTrace(f)
holds {z} € dom f and y € f({z}).
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Let C1, C5 be non empty sets and let f be a function from C; into Cs. Then
LinTrace(f) is a subset of [ JCq, JC2 .

Let f be a function. One can verify that LinTrace(f) is relation-like.

Let Cy, C be coherent spaces. The functor LinCoh(Cy, C3) yielding a set is
defined as follows:

(Def.21)  For every set  holds « € LinCoh(C4, Cy) iff there exists a linear function
f from C into Cy such that x = LinTrace(f).

Next we state a number of propositions:

(54) Let C1, Cy be coherent spaces, and let f be a C-monotone function
from C; into Cy, and let x1, xo be sets. Suppose {z1,z2} € Cy. Let yy,
y2 be sets. If (x1, y1) € LinTrace(f) and (z2, y2) € LinTrace(f), then
{y1,92} € Co.

(55) Let Ci, Cy be coherent spaces, and let f be a preserving binary
intersections function from C;7 into Cy, and let z1, zo be sets. If
{z1,22} € C4, then for every set y such that (z;, y) € LinTrace(f) and
(2, y) € LinTrace(f) holds 1 = z3.

(56)  For all coherent spaces C1, Co and for all linear functions f, g from Cy
into Cy such that LinTrace(f) = LinTrace(g) holds f = g.

(57)  Let C1, Cy be coherent spaces and let X be a subset of [ |JCy, JC2 .

Suppose that

(i)  for all sets a, b such that {a,b} € C7 and for all sets y1, y2 such that
(a, y1) € X and (b, y2) € X holds {y1,y2} € Cs, and

(ii)  for all sets a, b such that {a,b} € C7 and for every set y such that {a,
y) € X and (b, y) € X holds a = b.
Then there exists a linear function f from Cp into Cy such that X =
LinTrace(f).

(58) Let Cj, Cy be coherent spaces, and let f be a linear function from Cj
into Cy, and let a be an element of Cj. Then f(a) = (LinTrace(f))°a.

(59)  For all coherent spaces Cy, Cy there exists a linear function f from Cy
into Cy such that LinTrace(f) = 0.

(60) Let Cp, Cy be coherent spaces, and let x be a set, and let y be a set.
Suppose z € |JC1 and y € |JCs. Then there exists a linear function f
from Cy into Cy such that LinTrace(f) = {(z, y)}.

(61) Let Cp, Cy be coherent spaces, and let « be a set, and let y be a set.
Suppose xz € |JC; and y € |JCs. Let f be a linear function from C; into
(. Suppose LinTrace(f) = {(z, y)}. Let a be an element of Cy. Then if
x € a, then f(a) = {y} and if = ¢ a, then f(a) = 0.

(62) Let C1, Cy be coherent spaces, and let f be a linear function from Cy
into Cy, and let X be a subset of LinTrace(f). Then there exists a linear
function g from C into Cy such that LinTrace(g) = X.

(63) Let C1, Cy be coherent spaces and let A be a set. Suppose that for
all sets =, y such that z € A and y € A there exists a linear function f
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from C4 into C9 such that z Uy = LinTrace(f). Then there exists a linear
function f from Cj into Cy such that (J A = LinTrace(f).

Let Cy, Cy be coherent spaces. One can check that LinCoh(Cy,C2) is non
empty down-closed and binary complete.
One can prove the following propositions:
(64)  For all coherent spaces C, Cy holds |JLinCoh(C1,Cs) = fUC1, UCa 1.
(65) Let C7, Cy be coherent spaces, and let 1, x2 be sets, and let y1, y2 be
sets. Then ((x1, y1), (x2, y2)) € Web(LinCoh(C1, Cs)) if and only if the
following conditions are satisfied:
(i) = eUay,
(i) z2€UCh, and
(iii)  (z1, z2) ¢ Web(Ci) and y; € UC2 and yo € UCs or (y1, y2) €
Web(Cs) and if y; = ys, then z1 = z5.

6. NEGATION OF COHERENCE SPACES

Let C be a coherent space. The functor ~C' yielding a set is defined by:
(Def.22)  —=C = {a : a ranges over subsets of UC, Ay clement of ¢ Va:set @M C

{z}}-

One can prove the following proposition

(66) Let C be a coherent space and let x be a set. Then z € —=C'if and only

if the following conditions are satisfied:

(i) x=CUC, and

(ii)  for every element a of C' there exists a set z such that x Na C {z}.

Let C be a coherent space. Observe that —C' is non empty down-closed and

binary complete.
Next we state several propositions:

(67)  For every coherent space C holds |J-C = |JC.

(68)  For every coherent space C' and for all sets z, y such that x # y and
{z,y} € C holds {z,y} ¢ ~C.

(69)  For every coherent space C' and for all sets x, y such that {z,y} CUC
and {z,y} ¢ C holds {z,y} € =C.

(70)  For every coherent space C' and for all sets x, y holds (z, y) € Web(—=C)
iff : e JC buty € JC but z =y or (z, y) ¢ Web(C).

(71)  For every coherent space C holds -—=C = C.

(72) {0} = {0}.

(73)  For every set X holds - FlatCoh(X) = 2% and —(2%) = FlatCoh(X).
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7. PropUCT AND COPRODUCT ON COHERENCE SPACES

Let z, y be sets. The functor z W y yielding a set is defined by:
(Def.23)  x Wy = Jdisjoint(z,y).
We now state a number of propositions:
(74)  For all sets z, y holds s Wy =[x, {1} U}y, {2}].
(75)  For every set z holds W) =[x, {1}] and 0 W = [z, {2}].
(76)  For all sets x, y, z such that z € z Wy holds z = (21, 22) but 2z =1
and z1 €Ex or 2z =2 and 21 € y.

(77)  For all sets z, y, z holds (z, 1) € z Wy iff z € x.
(78)  For all sets z, y, z holds (z, 2) e x Wy iff z € y.
(79)  For all sets x1, y1, 2, yo holds x1 Wy C xoWys iff 1 C 29 and y; C yo.
(80)  For all sets x, y, z such that z C x Wy there exist sets z1, y; such that

z=x1 Wy and 1 C x and y; C y.

(81)  For all sets x1, y1, x2, y2 holds x1 Wy = xoWys iff 1 = x5 and y; = yo.

(82)  For all sets x1, y1, 2, y2 holds (x1 Wy1) U (22 Wys) = 21 Uz Wy Uys.

(83)  For all sets x1, y1, 2, y2 holds (x1 Wy1) N (z2 Wys) = 21 Nxo Wy Nyo.

Let C'1, C5 be coherent spaces. The functor C1MCs yields a set and is defined
by:
(Def.24)  C1MCy = {aWb: aranges over elements of C7, b ranges over elements
of CQ}
The functor C7 U Cy yielding a set is defined as follows:
(Def.25)  C1UCy ={aWi: aranges over elements of C1} U{0Wb : b ranges over
elements of Cy}.
The following propositions are true:

(84) Let C1, C be coherent spaces and let x be a set. Then z € Cy M Cy if
and only if there exists an element a of C; and there exists an element b
of Cy such that £ = a Wb.

(85)  For all coherent spaces C1, Co and for all sets x, y holds zwWy € C1MCy
iff € C7 and y € Cb.

(86)  For all coherent spaces C7, Cy holds J(C1 M Cy) =UJCrL W JCs.

(87)  For all coherent spaces C1, Co and for all sets x, y holds zwWy € C1UC,
ifreCiandy=0orz=0andy e Cs.

(88)  Let Cy, Cy be coherent spaces and let x be a set. Suppose x € Cq LI Cs.
Then there exists an element a of C7 and there exists an element b of Cs
such that z =awWbbut a =0 or b = 0.

(89)  For all coherent spaces C7, Cy holds J(C1 L Cy) =UJCr W JCa.

Let Ci, C5 be coherent spaces. Observe that C7 M Cs is non empty down-
closed and binary complete and C; LI C5 is non empty down-closed and binary
complete.
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In the sequel C7, Cy will be coherent spaces.
We now state several propositions:
(90)  For all sets z, y holds ({xz, 1), (y, 1)) € Web(C; M Cq) iff (z, y) €
Web(C'l).
(91)  For all sets x, y holds ({(x, 2), (y, 2)) € Web(Cy 1 Cy) iff (z,y) €
Web(Cg)
(92) For all sets x, y such that z € JC; and y € |JC2 holds ({(z, 1), (v,
2)) € Web(C; 11 Cy) and ((y, 2), (z, 1)) € Web(C1 M Cy).
(93) For all sets z, y holds ((z, 1), (y, 1)) € Web(Cy U Cy) iff (z, y) €
Web(C'l).
(94) For all sets x, y holds ({(x, 2), (y, 2)) € Web(Cy U Cy) iff (z,y) €
Web(Cg)
(95)  For all sets x, y such that z € JC; and y € |JC2 holds ({(z, 1), (v,
2)) ¢ Web(C; U Cy) and ((y, 2), (z, 1)) ¢ Web(C; U Cy).
(96) —(C1NCy) =-C1U—Ch.
Let C1, C5 be coherent spaces. The functor C7 ® C5 yielding a set is defined
as follows:

(Def.26) Oy @ Cy = {201 : @ ranges over elements of Cj, b ranges over
elements of Cy}.
We now state the proposition
(97)  Let C1, Co be coherent spaces and let « be a set. Then z € C; ® Cy if
and only if there exists an element a of C; and there exists an element b
of Cy such that x C [ a, b].
Let C1, Cs be coherent spaces. One can check that Cy ® Cy is non empty.
Next we state the proposition
(98)  For all coherent spaces C7, Co and for every element a of C; ® Cy holds
m1(a) € Cy and ma(a) € Cy and a C [ 7i(a), ma(a)].
Let C1, Cy be coherent spaces. One can check that C; ® Cy is down-closed
and binary complete.
Next we state two propositions:

(99)  For all coherent spaces Cy, Cy holds |J(C; ® Co) = [UC1, U2 1.

(100)  For all sets x1, y1, z2, y2 holds ({x1, z2), (y1, y2)) € Web(C; @ Cy) iff
(1, y1) € Web(Cy) and (x2, y2) € Web(Cy).
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