
FORMALIZED MATHEMATICS

Volume 5, Number 3, 1996

Warsaw University - Bia lystok

Full Adder Circuit. Part I
1

Grzegorz Bancerek

Institute of Mathematics

Polish Academy of Sciences

Yatsuka Nakamura

Shinshu University

Nagano

Summary. We continue the formalisation of circuits started by
Piotr Rudnicki, Andrzej Trybulec, Pauline Kawamoto, and the second
author in [16,17,14,15]. The first step in proving properties of full n-bit
adder circuit, i.e. 1-bit adder, is presented. We employ the notation of
combining circuits introduced in [13].

MML Identifier: FACIRC 1.

The terminology and notation used in this paper are introduced in the following
papers: [23], [25], [20], [1], [24], [27], [7], [8], [5], [11], [6], [19], [9], [26], [18], [3],
[2], [4], [10], [12], [22], [21], [16], [17], [14], [15], and [13].

1. Combining of Many Sorted Signatures

A set is pair if:

(Def.1) There exist sets x, y such that it = 〈〈x, y〉〉.

Let us mention that every set which is pair is also non empty.
Let x, y be sets. Observe that 〈〈x, y〉〉 is pair.
Let us mention that there exists a set which is pair and there exists a set

which is non pair.
Let us observe that every natural number is non pair.
A set has a pair if:

(Def.2) There exists a pair set x such that x ∈ it.

Note that every set which is empty has no pairs. Let x be a non pair set.
Note that {x} has no pairs. Let y be a non pair set. Observe that {x, y} has no
pairs. Let z be a non pair set. One can check that {x, y, z} has no pairs.

1This work was written while the first author visited Shinshu University, July–August 1994.

367
c© 1996 Warsaw University - Bia lystok

ISSN 1426–2630

368 grzegorz bancerek and yatsuka nakamura

Let us note that there exists a non empty set which has no pairs.

Let X, Y be sets with no pairs. One can verify that X ∪ Y has no pairs.
Let X be a set with no pairs and let Y be a set. One can verify the following

observations:

∗ X \ Y has no pairs,

∗ X ∩ Y has no pairs, and

∗ Y ∩ X has no pairs.

One can verify that every set which is empty is also relation-like. Let x be a
pair set. One can check that {x} is relation-like. Let y be a pair set. Observe
that {x, y} is relation-like. Let z be a pair set. One can check that {x, y, z} is
relation-like.

Let us note that every set which is relation-like and has no pairs is also empty.
A function is nonpair yielding if:

(Def.3) For every set x such that x ∈ dom it holds it(x) is non pair.

Let x be a non pair set. Observe that 〈x〉 is nonpair yielding. Let y be a non
pair set. One can check that 〈x, y〉 is nonpair yielding. Let z be a non pair set.
Observe that 〈x, y, z〉 is nonpair yielding.

One can prove the following proposition

(1) For every function f such that f is nonpair yielding holds rng f has no
pairs.

Let n be a natural number. Observe that there exists a finite sequence with
length n which is one-to-one and nonpair yielding.

One can check that there exists a finite sequence which is one-to-one and
nonpair yielding.

Let f be a nonpair yielding function. Note that rng f has no pairs.
The following propositions are true:

(2) Let S1, S2 be non empty many sorted signatures. Suppose S1 ≈ S2 and
InnerVertices(S1) is a binary relation and InnerVertices(S2) is a binary
relation. Then InnerVertices(S1+·S2) is a binary relation.

(3) Let S1, S2 be unsplit non empty many sorted signatures with ar-
ity held in gates. Suppose InnerVertices(S1) is a binary relation and
InnerVertices(S2) is a binary relation. Then InnerVertices(S1+·S2) is a
binary relation.

(4) For all non empty many sorted signatures S1, S2 such that S1 ≈ S2

and InnerVertices(S2) misses InputVertices(S1) holds InputVertices(S1) ⊆
InputVertices(S1+·S2) and InputVertices(S1+·S2) = InputVertices(S1) ∪
(InputVertices(S2) \ InnerVertices(S1)).

(5) For all sets X, R such that X has no pairs and R is a binary relation
holds X misses R.

(6) Let S1, S2 be unsplit non empty many sorted signatures with arity held
in gates. Suppose InputVertices(S1) has no pairs and InnerVertices(S2)
is a binary relation. Then InputVertices(S1) ⊆ InputVertices(S1+·S2)

full adder circuit. part i 369

and InputVertices(S1+·S2) = InputVertices(S1) ∪ (InputVertices(S2) \
InnerVertices(S1)).

(7) Let S1, S2 be unsplit non empty many sorted signatures with arity held
in gates. Suppose InputVertices(S1) has no pairs and InnerVertices(S1) is
a binary relation and InputVertices(S2) has no pairs and InnerVertices(S2)
is a binary relation. Then InputVertices(S1+·S2) = InputVertices(S1) ∪
InputVertices(S2).

(8) For all non empty many sorted signatures S1, S2 such that S1 ≈ S2 and
InputVertices(S1) has no pairs and InputVertices(S2) has no pairs holds
InputVertices(S1+·S2) has no pairs.

(9) Let S1, S2 be unsplit non empty many sorted signatures with arity held
in gates. If InputVertices(S1) has no pairs and InputVertices(S2) has no
pairs, then InputVertices(S1+·S2) has no pairs.

2. Combinig of Circuits

In this article we present several logical schemes. The scheme 2AryBooleDef

concerns a binary functor F yielding an element of Boolean , and states that:
(i) There exists a function f from Boolean 2 into Boolean such
that for all elements x, y of Boolean holds f(〈x, y〉) = F(x, y), and
(ii) for all functions f1, f2 from Boolean2 into Boolean such that
for all elements x, y of Boolean holds f1(〈x, y〉) = F(x, y) and for
all elements x, y of Boolean holds f2(〈x, y〉) = F(x, y) holds f1 = f2

for all values of the parameter.
The scheme 3AryBooleDef deals with a ternary functor F yielding an element

of Boolean , and states that:
(i) There exists a function f from Boolean 3 into Boolean such
that for all elements x, y, z of Boolean holds f(〈x, y, z〉) =
F(x, y, z), and
(ii) for all functions f1, f2 from Boolean3 into Boolean such that
for all elements x, y, z of Boolean holds f1(〈x, y, z〉) = F(x, y, z)
and for all elements x, y, z of Boolean holds f2(〈x, y, z〉) = F(x, y, z)
holds f1 = f2

for all values of the parameter.
The function xor from Boolean 2 into Boolean is defined by:

(Def.4) For all elements x, y of Boolean holds xor(〈x, y〉) = x ⊕ y.

The function or from Boolean 2 into Boolean is defined by:

(Def.5) For all elements x, y of Boolean holds or(〈x, y〉) = x ∨ y.

The function & from Boolean 2 into Boolean is defined as follows:

(Def.6) For all elements x, y of Boolean holds &(〈x, y〉) = x ∧ y.

The function or3 from Boolean3 into Boolean is defined by:

(Def.7) For all elements x, y, z of Boolean holds or3(〈x, y, z〉) = x ∨ y ∨ z.

370 grzegorz bancerek and yatsuka nakamura

Let x be a set. Then 〈x〉 is a finite sequence with length 1. Let y be a set.
Then 〈x, y〉 is a finite sequence with length 2. Let z be a set. Then 〈x, y, z〉 is
a finite sequence with length 3.

Let n, m be natural numbers, let p be a finite sequence with length n, and
let q be a finite sequence with length m. Then p � q is a finite sequence with
length n + m.

3. Signatures with One Operation

The following proposition is true

(10) Let S be a circuit-like non void non empty many sorted signature, and
let A be a non-empty circuit of S, and let s be a state of A, and let g be
a gate of S. Then (Following(s))(the result sort of g) = (Den(g,A))(s ·
Arity(g)).

Let S be a non void circuit-like non empty many sorted signature, let A be a
non-empty circuit of S, let s be a state of A, and let n be a natural number. The
functor Following(s, n) yielding a state of A is defined by the condition (Def.8).

(Def.8) There exists a function f from into
∏

(the sorts of A) such that
Following(s, n) = f(n) and f(0) = s and for every natural number n and
for every state x of A such that x = f(n) holds f(n + 1) = Following(x).

The following propositions are true:

(11) Let S be a circuit-like non void non empty many sorted signature, and
let A be a non-empty circuit of S, and let s be a state of A. Then
Following(s, 0) = s.

(12) Let S be a circuit-like non void non empty many sorted signature, and
let A be a non-empty circuit of S, and let s be a state of A, and let n be a
natural number. Then Following(s, n + 1) = Following(Following(s, n)).

(13) Let S be a circuit-like non void non empty many sorted signa-
ture, and let A be a non-empty circuit of S, and let s be a state of
A, and let n, m be natural numbers. Then Following(s, n + m) =
Following(Following(s, n),m).

(14) Let S be a non void circuit-like non empty many sorted signature, and
let A be a non-empty circuit of S, and let s be a state of A. Then
Following(s, 1) = Following(s).

(15) Let S be a non void circuit-like non empty many sorted signature, and
let A be a non-empty circuit of S, and let s be a state of A. Then
Following(s, 2) = Following(Following(s)).

(16) Let S be a circuit-like non void non empty many sorted signature, and
let A be a non-empty circuit of S, and let s be a state of A, and let n be a
natural number. Then Following(s, n + 1) = Following(Following(s), n).

full adder circuit. part i 371

Let S be a non void circuit-like non empty many sorted signature, let A be
a non-empty circuit of S, let s be a state of A, and let x be a set. We say that
s is stable at x if and only if:

(Def.9) For every natural number n holds (Following(s, n))(x) = s(x).

The following propositions are true:

(17) Let S be a non void circuit-like non empty many sorted signature, and
let A be a non-empty circuit of S, and let s be a state of A, and let
x be a set. If s is stable at x, then for every natural number n holds
Following(s, n) is stable at x.

(18) Let S be a non void circuit-like non empty many sorted signature, and
let A be a non-empty circuit of S, and let s be a state of A, and let x be
a set. If x ∈ InputVertices(S), then s is stable at x.

(19) Let S be a non void circuit-like non empty many sorted signature, and
let A be a non-empty circuit of S, and let s be a state of A, and let g be
a gate of S. Suppose that for every set x such that x ∈ rng Arity(g) holds
s is stable at x. Then Following(s) is stable at the result sort of g.

4. Unsplit Condition

The following propositions are true:

(20) Let S1, S2 be non empty many sorted signatures and let v be a vertex
of S1. Then v ∈ the carrier of S1+·S2 and v ∈ the carrier of S2+·S1.

(21) Let S1, S2 be unsplit non empty many sorted signatures with arity
held in gates and let x be a set. If x ∈ InnerVertices(S1), then x ∈
InnerVertices(S1+·S2) and x ∈ InnerVertices(S2+·S1).

(22) For all non empty many sorted signatures S1, S2 and for every set x

such that x ∈ InnerVertices(S2) holds x ∈ InnerVertices(S1+·S2).

(23) For all unsplit non empty many sorted signatures S1, S2 with arity held
in gates holds S1+·S2 = S2+·S1.

(24) Let S1, S2 be unsplit non void non empty many sorted signatures with
arity held in gates and Boolean denotation held in gates, and let A1 be
a Boolean circuit of S1 with denotation held in gates, and let A2 be a
Boolean circuit of S2 with denotation held in gates. Then A1+·A2 =
A2+·A1.

(25) Let S1, S2, S3 be unsplit non void non empty many sorted signatures
with arity held in gates and Boolean denotation held in gates, and let A1

be a Boolean circuit of S1, and let A2 be a Boolean circuit of S2, and let
A3 be a Boolean circuit of S3. Then (A1+·A2)+·A3 = A1+·(A2+·A3).

(26) Let S1, S2 be unsplit non void non empty many sorted signatures with
arity held in gates and Boolean denotation held in gates, and let A1 be
a Boolean non-empty circuit of S1 with denotation held in gates, and let

372 grzegorz bancerek and yatsuka nakamura

A2 be a Boolean non-empty circuit of S2 with denotation held in gates,
and let s be a state of A1+·A2. Then s

�
(the carrier of S1) is a state of

A1 and s
�
(the carrier of S2) is a state of A2.

(27) For all unsplit non empty many sorted signatures S1, S2 with ar-
ity held in gates holds InnerVertices(S1+·S2) = InnerVertices(S1) ∪
InnerVertices(S2).

(28) Let S1, S2 be unsplit non void non empty many sorted signatures
with arity held in gates and Boolean denotation held in gates. Suppose
InnerVertices(S2) misses InputVertices(S1). Let A1 be a Boolean circuit
of S1 with denotation held in gates, and let A2 be a Boolean circuit of S2

with denotation held in gates, and let s be a state of A1+·A2, and let s1

be a state of A1. If s1 = s
�
(the carrier of S1), then Following(s)

�
(the

carrier of S1) = Following(s1).

(29) Let S1, S2 be unsplit non void non empty many sorted signatures
with arity held in gates and Boolean denotation held in gates. Suppose
InnerVertices(S1) misses InputVertices(S2). Let A1 be a Boolean circuit
of S1 with denotation held in gates, and let A2 be a Boolean circuit of S2

with denotation held in gates, and let s be a state of A1+·A2, and let s2

be a state of A2. If s2 = s
�
(the carrier of S2), then Following(s)

�
(the

carrier of S2) = Following(s2).

(30) Let S1, S2 be unsplit non void non empty many sorted signatures
with arity held in gates and Boolean denotation held in gates. Suppose
InnerVertices(S2) misses InputVertices(S1). Let A1 be a Boolean circuit
of S1 with denotation held in gates, and let A2 be a Boolean circuit of S2

with denotation held in gates, and let s be a state of A1+·A2, and let s1

be a state of A1. Suppose s1 = s
�
(the carrier of S1). Let n be a natural

number. Then Following(s, n)
�
(the carrier of S1) = Following(s1, n).

(31) Let S1, S2 be unsplit non void non empty many sorted signatures
with arity held in gates and Boolean denotation held in gates. Suppose
InnerVertices(S1) misses InputVertices(S2). Let A1 be a Boolean circuit
of S1 with denotation held in gates, and let A2 be a Boolean circuit of S2

with denotation held in gates, and let s be a state of A1+·A2, and let s2

be a state of A2. Suppose s2 = s
�
(the carrier of S2). Let n be a natural

number. Then Following(s, n)
�
(the carrier of S2) = Following(s2, n).

(32) Let S1, S2 be unsplit non void non empty many sorted signatures
with arity held in gates and Boolean denotation held in gates. Suppose
InnerVertices(S2) misses InputVertices(S1). Let A1 be a Boolean circuit
of S1 with denotation held in gates, and let A2 be a Boolean circuit of
S2 with denotation held in gates, and let s be a state of A1+·A2, and
let s1 be a state of A1. Suppose s1 = s

�
(the carrier of S1). Let v be

a set. Suppose v ∈ the carrier of S1. Let n be a natural number. Then
(Following(s, n))(v) = (Following(s1, n))(v).

(33) Let S1, S2 be unsplit non void non empty many sorted signatures
with arity held in gates and Boolean denotation held in gates. Suppose

full adder circuit. part i 373

InnerVertices(S1) misses InputVertices(S2). Let A1 be a Boolean circuit
of S1 with denotation held in gates, and let A2 be a Boolean circuit of
S2 with denotation held in gates, and let s be a state of A1+·A2, and
let s2 be a state of A2. Suppose s2 = s

�
(the carrier of S2). Let v be

a set. Suppose v ∈ the carrier of S2. Let n be a natural number. Then
(Following(s, n))(v) = (Following(s2, n))(v).

Let S be a non void non empty many sorted signature with denotation held
in gates and let g be a gate of S. One can verify that g2 is function-like and
relation-like.

Next we state four propositions:

(34) Let S be a circuit-like non void non empty many sorted signature with
denotation held in gates and let A be a non-empty circuit of S. Suppose
A has denotation held in gates. Let s be a state of A and let g be a gate
of S. Then (Following(s))(the result sort of g) = g2(s · Arity(g)).

(35) Let S be an unsplit non void non empty many sorted signature with
arity held in gates and Boolean denotation held in gates, and let A be a
Boolean non-empty circuit of S with denotation held in gates, and let s be
a state of A, and let p be a finite sequence, and let f be a function. If 〈〈p,

f〉〉 ∈ the operation symbols of S, then (Following(s))(〈〈p, f〉〉) = f(s · p).

(36) Let S be an unsplit non void non empty many sorted signature with
arity held in gates and Boolean denotation held in gates, and let A be a
Boolean non-empty circuit of S with denotation held in gates, and let s

be a state of A, and let p be a finite sequence, and let f be a function.
Suppose 〈〈p, f〉〉 ∈ the operation symbols of S and for every set x such that
x ∈ rng p holds s is stable at x. Then Following(s) is stable at 〈〈p, f〉〉.

(37) For every unsplit non empty many sorted signature S holds
InnerVertices(S) = the operation symbols of S.

5. One Gate Circuits

We now state a number of propositions:

(38) For every set f and for every finite sequence p holds
InnerVertices(1GateCircStr(p, f)) is a binary relation.

(39) For every set f and for every nonpair yielding finite sequence p holds
InputVertices(1GateCircStr(p, f)) has no pairs.

(40) For every set f and for all sets x, y holds InputVertices(1GateCircStr(〈x,

y〉, f)) = {x, y}.

(41) For every set f and for all non pair sets x, y holds
InputVertices(1GateCircStr(〈x, y〉, f)) has no pairs.

(42) For every set f and for all sets x, y, z holds
InputVertices(1GateCircStr(〈x, y, z〉, f)) = {x, y, z}.

374 grzegorz bancerek and yatsuka nakamura

(43) Let x, y, f be sets. Then x ∈ the carrier of 1GateCircStr(〈x, y〉, f) and
y ∈ the carrier of 1GateCircStr(〈x, y〉, f) and 〈〈〈x, y〉, f〉〉 ∈ the carrier of
1GateCircStr(〈x, y〉, f).

(44) Let x, y, z, f be sets. Then x ∈ the carrier of 1GateCircStr(〈x, y, z〉, f)
and y ∈ the carrier of 1GateCircStr(〈x, y, z〉, f) and z ∈ the carrier of
1GateCircStr(〈x, y, z〉, f).

(45) Let f , x be sets and let p be a finite sequence. Then x ∈ the carrier of
1GateCircStr(p, f, x) and for every set y such that y ∈ rng p holds y ∈ the
carrier of 1GateCircStr(p, f, x).

(46) For all sets f , x and for every finite sequence p holds
1GateCircStr(p, f, x) is circuit-like and has arity held in gates.

(47) For every finite sequence p and for every set f holds 〈〈p, f〉〉 ∈
InnerVertices(1GateCircStr(p, f)).

Let x, y be sets and let f be a function from Boolean 2 into Boolean . The func-
tor 1GateCircuit(x, y, f) yielding a Boolean strict circuit of 1GateCircStr(〈x,

y〉, f) with denotation held in gates is defined by:

(Def.10) 1GateCircuit(x, y, f) = 1GateCircuit(〈x, y〉, f).

We adopt the following convention: x, y, z, c denote sets and f denotes a
function from Boolean2 into Boolean .

We now state four propositions:

(48) Let X be a finite non empty set, and let f be a function from
X2 into X, and let s be a state of 1GateCircuit(〈x, y〉, f). Then
(Following(s))(〈〈〈x, y〉, f〉〉) = f(〈s(x), s(y)〉) and (Following(s))(x) = s(x)
and (Following(s))(y) = s(y).

(49) Let X be a finite non empty set, and let f be a function from X 2 into
X, and let s be a state of 1GateCircuit(〈x, y〉, f). Then Following(s) is
stable.

(50) For every state s of 1GateCircuit(x, y, f) holds (Following(s))(〈〈〈x,

y〉, f〉〉) = f(〈s(x), s(y)〉) and (Following(s))(x) = s(x) and
(Following(s))(y) = s(y).

(51) For every state s of 1GateCircuit(x, y, f) holds Following(s) is stable.

Let x, y, z be sets and let f be a function from Boolean 3 into
Boolean . The functor 1GateCircuit(x, y, z, f) yields a Boolean strict circuit
of 1GateCircStr(〈x, y, z〉, f) with denotation held in gates and is defined by:

(Def.11) 1GateCircuit(x, y, z, f) = 1GateCircuit(〈x, y, z〉, f).

We now state four propositions:

(52) Let X be a finite non empty set, and let f be a function from X 3 into X,
and let s be a state of 1GateCircuit(〈x, y, z〉, f). Then (Following(s))(〈〈〈x,

y, z〉, f〉〉) = f(〈s(x), s(y), s(z)〉) and (Following(s))(x) = s(x) and
(Following(s))(y) = s(y) and (Following(s))(z) = s(z).

(53) Let X be a finite non empty set, and let f be a function from X 3 into
X, and let s be a state of 1GateCircuit(〈x, y, z〉, f). Then Following(s) is

full adder circuit. part i 375

stable.

(54) Let f be a function from Boolean 3 into Boolean and let s be a state
of 1GateCircuit(x, y, z, f). Then (Following(s))(〈〈〈x, y, z〉, f〉〉) = f(〈s(x),
s(y), s(z)〉) and (Following(s))(x) = s(x) and (Following(s))(y) = s(y)
and (Following(s))(z) = s(z).

(55) For every function f from Boolean 3 into Boolean and for every state s

of 1GateCircuit(x, y, z, f) holds Following(s) is stable.

6. Boolean Circuits

Let x, y, c be sets and let f be a function from Boolean 2 into Boolean . The
functor 2GatesCircStr(x, y, c, f) yielding an unsplit non void strict non empty
many sorted signature with arity held in gates and Boolean denotation held in
gates is defined as follows:

(Def.12) 2GatesCircStr(x, y, c, f) = 1GateCircStr(〈x, y〉, f)+· 1GateCircStr(〈〈〈〈x,

y〉, f〉〉, c〉, f).

Let x, y, c be sets and let f be a function from Boolean 2 into
Boolean . The functor 2GatesCircOutput(x, y, c, f) yields an element of
InnerVertices(2GatesCircStr(x, y, c, f)) and is defined as follows:

(Def.13) 2GatesCircOutput(x, y, c, f) = 〈〈〈〈〈〈x, y〉, f〉〉, c〉, f〉〉.

Let x, y, c be sets and let f be a function from Boolean 2 into Boolean . One
can verify that 2GatesCircOutput(x, y, c, f) is pair.

One can prove the following two propositions:

(56) InnerVertices(2GatesCircStr(x, y, c, f)) = {〈〈〈x, y〉, f〉〉,
2GatesCircOutput(x, y, c, f)}.

(57) If c 6= 〈〈〈x, y〉, f〉〉, then InputVertices(2GatesCircStr(x, y, c, f)) =
{x, y, c}.

Let x, y, c be sets and let f be a function from Boolean 2 into
Boolean . The functor 2GatesCircuit(x, y, c, f) yields a strict Boolean circuit
of 2GatesCircStr(x, y, c, f) with denotation held in gates and is defined by:

(Def.14) 2GatesCircuit(x, y, c, f) = 1GateCircuit(x, y, f)+· 1GateCircuit(〈〈〈x,

y〉, f〉〉, c, f).

We now state four propositions:

(58) InnerVertices(2GatesCircStr(x, y, c, f)) is a binary relation.

(59) For all non pair sets x, y, c holds InputVertices(2GatesCircStr(x, y, c, f))
has no pairs.

(60) x ∈ the carrier of 2GatesCircStr(x, y, c, f) and y ∈ the carrier of
2GatesCircStr(x, y, c, f) and c ∈ the carrier of 2GatesCircStr(x, y, c, f).

(61) 〈〈〈x, y〉, f〉〉 ∈ the carrier of 2GatesCircStr(x, y, c, f) and 〈〈〈〈〈〈x, y〉, f〉〉, c〉,
f〉〉 ∈ the carrier of 2GatesCircStr(x, y, c, f).

376 grzegorz bancerek and yatsuka nakamura

Let S be an unsplit non void non empty many sorted signature, let A be a
Boolean circuit of S, let s be a state of A, and let v be a vertex of S. Then s(v)
is an element of Boolean .

In the sequel s will be a state of 2GatesCircuit(x, y, c, f).
One can prove the following propositions:

(62) Suppose c 6= 〈〈〈x, y〉, f〉〉. Then (Following(s, 2))(2GatesCircOutput(x, y, c,

f)) = f(〈f(〈s(x), s(y)〉), s(c)〉) and (Following(s, 2))(〈〈〈x, y〉, f〉〉) =
f(〈s(x), s(y)〉) and (Following(s, 2))(x) = s(x) and (Following(s, 2))(y) =
s(y) and (Following(s, 2))(c) = s(c).

(63) If c 6= 〈〈〈x, y〉, f〉〉, then Following(s, 2) is stable.

(64) Suppose c 6= 〈〈〈x, y〉, xor 〉〉. Let s be a state of 2GatesCircuit(x, y, c, xor)
and let a1, a2, a3 be elements of Boolean . If a1 = s(x) and a2 = s(y)
and a3 = s(c), then (Following(s, 2))(2GatesCircOutput(x, y, c, xor)) =
a1 ⊕ a2 ⊕ a3.

(65) Suppose c 6= 〈〈〈x, y〉, or 〉〉. Let s be a state of 2GatesCircuit(x, y, c, or)
and let a1, a2, a3 be elements of Boolean . If a1 = s(x) and a2 = s(y) and
a3 = s(c), then (Following(s, 2))(2GatesCircOutput(x, y, c, or)) = a1 ∨
a2 ∨ a3.

(66) Suppose c 6= 〈〈〈x, y〉, &〉〉. Let s be a state of 2GatesCircuit(x, y, c,&) and
let a1, a2, a3 be elements of Boolean . If a1 = s(x) and a2 = s(y) and a3 =
s(c), then (Following(s, 2))(2GatesCircOutput(x, y, c,&)) = a1 ∧ a2 ∧ a3.

7. One Bit Adder

Let x, y, c be sets. The functor BitAdderOutput(x, y, c) yields an element
of InnerVertices(2GatesCircStr(x, y, c, xor)) and is defined as follows:

(Def.15) BitAdderOutput(x, y, c) = 2GatesCircOutput(x, y, c, xor).

Let x, y, c be sets. The functor BitAdderCirc(x, y, c) yields a strict Boolean
circuit of 2GatesCircStr(x, y, c, xor) with denotation held in gates and is defined
as follows:

(Def.16) BitAdderCirc(x, y, c) = 2GatesCircuit(x, y, c, xor).

Let x, y, c be sets. The functor MajorityIStr(x, y, c) yielding an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates is defined by:

(Def.17) MajorityIStr(x, y, c) = 1GateCircStr(〈x, y〉,&)+· 1GateCircStr(〈y,

c〉,&)+· 1GateCircStr(〈c, x〉,&).

Let x, y, c be sets. The functor MajorityStr(x, y, c) yields an unsplit non void
strict non empty many sorted signature with arity held in gates and Boolean
denotation held in gates and is defined as follows:

(Def.18) MajorityStr(x, y, c) = MajorityIStr(x, y, c)+· 1GateCircStr(〈〈〈〈x, y〉,
&〉〉, 〈〈〈y, c〉, &〉〉, 〈〈〈c, x〉, &〉〉〉, or3).

full adder circuit. part i 377

Let x, y, c be sets. The functor MajorityICirc(x, y, c) yields a strict Boolean
circuit of MajorityIStr(x, y, c) with denotation held in gates and is defined as
follows:

(Def.19) MajorityICirc(x, y, c) = 1GateCircuit(x, y,&)+· 1GateCircuit(y, c,&)
+· 1GateCircuit(c, x,&).

Next we state several propositions:

(67) InnerVertices(MajorityStr(x, y, c)) is a binary relation.

(68) For all non pair sets x, y, c holds InputVertices(MajorityStr(x, y, c))
has no pairs.

(69) For every state s of MajorityICirc(x, y, c) and for all elements a, b of
Boolean such that a = s(x) and b = s(y) holds (Following(s))(〈〈〈x, y〉,
&〉〉) = a ∧ b.

(70) For every state s of MajorityICirc(x, y, c) and for all elements a, b of
Boolean such that a = s(y) and b = s(c) holds (Following(s))(〈〈〈y, c〉,
&〉〉) = a ∧ b.

(71) For every state s of MajorityICirc(x, y, c) and for all elements a, b of
Boolean such that a = s(c) and b = s(x) holds (Following(s))(〈〈〈c, x〉,
&〉〉) = a ∧ b.

Let x, y, c be sets. The functor MajorityOutput(x, y, c) yields an element of
InnerVertices(MajorityStr(x, y, c)) and is defined by:

(Def.20) MajorityOutput(x, y, c) = 〈〈〈〈〈〈x, y〉, &〉〉, 〈〈〈y, c〉, &〉〉, 〈〈〈c, x〉, &〉〉〉, or3 〉〉.

Let x, y, c be sets. The functor MajorityCirc(x, y, c) yielding a strict Boolean
circuit of MajorityStr(x, y, c) with denotation held in gates is defined by:

(Def.21) MajorityCirc(x, y, c) = MajorityICirc(x, y, c)+· 1GateCircuit(〈〈〈x, y〉,
&〉〉, 〈〈〈y, c〉, &〉〉, 〈〈〈c, x〉, &〉〉, or3).

Next we state a number of propositions:

(72) x ∈ the carrier of MajorityStr(x, y, c) and y ∈ the carrier of
MajorityStr(x, y, c) and c ∈ the carrier of MajorityStr(x, y, c).

(73) 〈〈〈x, y〉, &〉〉 ∈ InnerVertices(MajorityStr(x, y, c)) and 〈〈〈y, c〉, &〉〉 ∈
InnerVertices(MajorityStr(x, y, c)) and 〈〈〈c, x〉, &〉〉
∈ InnerVertices(MajorityStr(x, y, c)).

(74) For all non pair sets x, y, c holds x ∈ InputVertices(MajorityStr(x, y, c))
and y ∈ InputVertices(MajorityStr(x, y, c)) and
c ∈ InputVertices(MajorityStr(x, y, c)).

(75) For all non pair sets x, y, c holds InputVertices(MajorityStr(x, y, c)) =
{x, y, c} and InnerVertices(MajorityStr(x, y, c)) = {〈〈〈x, y〉, &〉〉, 〈〈〈y, c〉,
&〉〉, 〈〈〈c, x〉, &〉〉} ∪ {MajorityOutput(x, y, c)}.

(76) Let x, y, c be non pair sets, and let s be a state of MajorityCirc(x, y, c),
and let a1, a2 be elements of Boolean . If a1 = s(x) and a2 = s(y), then
(Following(s))(〈〈〈x, y〉, &〉〉) = a1 ∧ a2.

(77) Let x, y, c be non pair sets, and let s be a state of MajorityCirc(x, y, c),
and let a2, a3 be elements of Boolean . If a2 = s(y) and a3 = s(c), then

378 grzegorz bancerek and yatsuka nakamura

(Following(s))(〈〈〈y, c〉, &〉〉) = a2 ∧ a3.

(78) Let x, y, c be non pair sets, and let s be a state of MajorityCirc(x, y, c),
and let a1, a3 be elements of Boolean . If a1 = s(x) and a3 = s(c), then
(Following(s))(〈〈〈c, x〉, &〉〉) = a3 ∧ a1.

(79) Let x, y, c be non pair sets, and let s be a state of MajorityCirc(x, y, c),
and let a1, a2, a3 be elements of Boolean . If a1 = s(〈〈〈x,

y〉, &〉〉) and a2 = s(〈〈〈y, c〉, &〉〉) and a3 = s(〈〈〈c, x〉, &〉〉), then
(Following(s))(MajorityOutput(x, y, c)) = a1 ∨ a2 ∨ a3.

(80) Let x, y, c be non pair sets, and let s be a state of MajorityCirc(x, y, c),
and let a1, a2 be elements of Boolean . If a1 = s(x) and a2 = s(y), then
(Following(s, 2))(〈〈〈x, y〉, &〉〉) = a1 ∧ a2.

(81) Let x, y, c be non pair sets, and let s be a state of MajorityCirc(x, y, c),
and let a2, a3 be elements of Boolean . If a2 = s(y) and a3 = s(c), then
(Following(s, 2))(〈〈〈y, c〉, &〉〉) = a2 ∧ a3.

(82) Let x, y, c be non pair sets, and let s be a state of MajorityCirc(x, y, c),
and let a1, a3 be elements of Boolean . If a1 = s(x) and a3 = s(c), then
(Following(s, 2))(〈〈〈c, x〉, &〉〉) = a3 ∧ a1.

(83) Let x, y, c be non pair sets, and let s be a state of MajorityCirc(x, y, c),
and let a1, a2, a3 be elements of Boolean . If a1 = s(x) and a2 = s(y) and
a3 = s(c), then (Following(s, 2))(MajorityOutput(x, y, c)) = a1∧a2∨a2∧
a3 ∨ a3 ∧ a1.

(84) For all non pair sets x, y, c and for every state s of MajorityCirc(x, y, c)
holds Following(s, 2) is stable.

Let x, y, c be sets. The functor BitAdderWithOverflowStr(x, y, c) yields an
unsplit non void strict non empty many sorted signature with arity held in gates
and Boolean denotation held in gates and is defined as follows:

(Def.22) BitAdderWithOverflowStr(x, y, c) = 2GatesCircStr(x, y, c, xor)
+·MajorityStr(x, y, c).

The following three propositions are true:

(85) For all non pair sets x, y, c holds InputVertices(BitAdderWithOverflowStr
(x, y, c)) = {x, y, c}.

(86) For all non pair sets x, y, c holds InnerVertices(BitAdderWithOverflowStr
(x, y, c)) = {〈〈〈x, y〉, xor 〉〉, 2GatesCircOutput(x, y, c, xor)} ∪ {〈〈〈x, y〉,
&〉〉, 〈〈〈y, c〉, &〉〉, 〈〈〈c, x〉, &〉〉} ∪ {MajorityOutput(x, y, c)}.

(87) Let S be a non empty many sorted signature. Suppose S =
BitAdderWithOverflowStr(x, y, c). Then x ∈ the carrier of S and y ∈ the
carrier of S and c ∈ the carrier of S.

Let x, y, c be sets. The functor BitAdderWithOverflowCirc(x, y, c) yielding a
strict Boolean circuit of BitAdderWithOverflowStr(x, y, c) with denotation held
in gates is defined as follows:

(Def.23) BitAdderWithOverflowCirc(x, y, c) = BitAdderCirc(x, y, c)
+·MajorityCirc(x, y, c).

full adder circuit. part i 379

We now state several propositions:

(88) InnerVertices(BitAdderWithOverflowStr(x, y, c)) is a binary relation.

(89) For all non pair sets x, y, c holds InputVertices(BitAdderWithOverflowStr
(x, y, c)) has no pairs.

(90) BitAdderOutput(x, y, c) ∈ InnerVertices(BitAdderWithOverflowStr(x,

y, c)) and MajorityOutput(x, y, c) ∈ InnerVertices(BitAdderWithOverflow
Str(x, y, c)).

(91) Let x, y, c be non pair sets, and let s be a state of
BitAdderWithOverflowCirc(x, y, c), and let a1, a2, a3 be elements of
Boolean . Suppose a1 = s(x) and a2 = s(y) and a3 = s(c).
Then (Following(s, 2))(BitAdderOutput(x, y, c)) = a1 ⊕ a2 ⊕ a3 and
(Following(s, 2))(MajorityOutput(x, y, c)) = a1 ∧ a2 ∨ a2 ∧ a3 ∨ a3 ∧ a1.

(92) For all non pair sets x, y, c and for every state s of
BitAdderWithOverflowCirc(x, y, c) holds Following(s, 2) is stable.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[4] Grzegorz Bancerek. Tarski’s classes and ranks. Formalized Mathematics, 1(3):563–567,

1990.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[6] Czes law Byliński. Finite sequences and tuples of elements of a non-empty sets. Formal-

ized Mathematics, 1(3):529–536, 1990.
[7] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[8] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[9] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[10] Czes law Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[11] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[12] Anna Lango and Grzegorz Bancerek. Product of families of groups and vector spaces.

Formalized Mathematics, 3(2):235–240, 1992.
[13] Yatsuka Nakamura and Grzegorz Bancerek. Combining of circuits. Formalized Mathe-

matics, 5(2):283–295, 1996.
[14] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. In-

troduction to circuits, I. Formalized Mathematics, 5(2):227–232, 1996.
[15] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. In-

troduction to circuits, II. Formalized Mathematics, 5(2):273–278, 1996.
[16] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Pre-

liminaries to circuits, I. Formalized Mathematics, 5(2):167–172, 1996.
[17] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Pre-

liminaries to circuits, II. Formalized Mathematics, 5(2):215–220, 1996.
[18] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,

4(1):83–86, 1993.
[19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[20] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.

380 grzegorz bancerek and yatsuka nakamura

[21] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
[22] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[24] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97–105, 1990.

[25] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[26] Edmund Woronowicz. Many–argument relations. Formalized Mathematics, 1(4):733–

737, 1990.
[27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received August 10, 1995

