Some Basic Properties of Many Sorted Sets

Artur Korniłowicz Warsaw University Białystok

MML Identifier: PZFMISC1.

The notation and terminology used here are introduced in the following papers: [11], [12], [5], [13], [2], [3], [4], [6], [1], [10], [9], [8], and [7].

1. Preliminaries

For simplicity we follow a convention: i will be arbitrary, I will be a set, f will be a function, x, x_1 , x_2 , y, A, B, X, Y, Z will be many sorted sets indexed by I, J will be a non empty set, and N_1 will be a many sorted set indexed by J.

We now state three propositions:

- (1) For every set X and for every many sorted set M indexed by I such that $i \in I$ holds $dom(M+(i \mapsto X)) = I$.
- (2) If $f = \emptyset$, then f is a many sorted set indexed by \emptyset .
- (3) If I is non-empty, then there exists no X which is empty yielding and non-empty.

2. Singelton and unordered pairs

Let us consider I, A. The functor $\{A\}$ yielding a many sorted set indexed by I is defined as follows:

(Def.1) For every i such that $i \in I$ holds $\{A\}(i) = \{A(i)\}.$

Let us consider I, A. Observe that $\{A\}$ is non-empty and locally-finite. Let us consider I, A, B. The functor $\{A, B\}$ yields a many sorted set indexed by I and is defined as follows: (Def.2) For every i such that $i \in I$ holds $\{A, B\}(i) = \{A(i), B(i)\}.$

Let us consider I, A, B. One can verify that $\{A, B\}$ is non-empty and locally-finite.

We now state a number of propositions:

- (4) $X = \{y\}$ iff for every x holds $x \in X$ iff x = y.
- (5) If for every x holds $x \in X$ iff $x = x_1$ or $x = x_2$, then $X = \{x_1, x_2\}$.
- (6) If $X = \{x_1, x_2\}$, then for every x such that $x = x_1$ or $x = x_2$ holds $x \in X$.
- $(7) \quad \{N_1\} \neq \emptyset_I.$
- (8) If $x \in \{A\}$, then x = A.
- $(9) \quad x \in \{x\}.$
- (10) If x = A or x = B, then $x \in \{A, B\}$.
- $(11) \quad \{A\} \cup \{B\} = \{A, B\}.$
- $(12) \quad \{x, x\} = \{x\}.$
- $(13) \{A, B\} = \{B, A\}.$
- (14) If $\{A\} \subseteq \{B\}$, then A = B.
- (15) If $\{x\} = \{y\}$, then x = y.
- (16) If $\{x\} = \{A, B\}$, then x = A and x = B.
- (17) If $\{x\} = \{A, B\}$, then A = B.
- $(18) \quad \{x\} \subseteq \{x, y\} \text{ and } \{y\} \subseteq \{x, y\}.$
- (19) If $\{x\} \cup \{y\} = \{x\}$ or $\{x\} \cup \{y\} = \{y\}$, then x = y.
- $(20) \quad \{x\} \cup \{x,y\} = \{x,y\}.$
- $(21) \quad \{y\} \cup \{x,y\} = \{x,y\}.$
- (22) If I is non empty and $\{x\} \cap \{y\} = \emptyset_I$, then $x \neq y$.
- (23) If $\{x\} \cap \{y\} = \{x\}$ or $\{x\} \cap \{y\} = \{y\}$, then x = y.
- $(24) \quad \{x\} \cap \{x,y\} = \{x\} \text{ and } \{y\} \cap \{x,y\} = \{y\}.$
- (25) If I is non empty and $\{x\} \setminus \{y\} = \{x\}$, then $x \neq y$.
- (26) If $\{x\} \setminus \{y\} = \emptyset_I$, then x = y.
- $(27) \quad \{x\} \setminus \{x,y\} = \emptyset_I \text{ and } \{y\} \setminus \{x,y\} = \emptyset_I.$
- (28) If $\{x\} \subseteq \{y\}$, then $\{x\} = \{y\}$.
- (29) If $\{x, y\} \subseteq \{A\}$, then x = A and y = A.
- (30) If $\{x, y\} \subseteq \{A\}$, then $\{x, y\} = \{A\}$.
- (31) $2^{\{x\}} = \{\emptyset_I, \{x\}\}.$
- $(32) \quad \{A\} \subseteq 2^A.$
- $(33) \quad \bigcup \{x\} = x.$
- $(34) \quad \bigcup \{\{x\}, \{y\}\} = \{x, y\}.$
- (35) $\bigcup \{A, B\} = A \cup B.$
- (36) $\{x\} \subseteq X \text{ iff } x \in X.$
- (37) $\{x_1, x_2\} \subseteq X \text{ iff } x_1 \in X \text{ and } x_2 \in X.$

- (38) If $A = \emptyset_I$ or $A = \{x_1\}$ or $A = \{x_2\}$ or $A = \{x_1, x_2\}$, then $A \subseteq \{x_1, x_2\}$.
 - 3. Sum of unordered pairs (or a singelton) and a set

One can prove the following propositions:

- (39) If $x \in A$ or x = B, then $x \in A \cup \{B\}$.
- (40) $A \cup \{x\} \subseteq B \text{ iff } x \in B \text{ and } A \subseteq B.$
- (41) If $\{x\} \cup X = X$, then $x \in X$.
- (42) If $x \in X$, then $\{x\} \cup X = X$.
- $(43) \quad \{x,y\} \cup A = A \text{ iff } x \in A \text{ and } y \in A.$
- (44) If I is non empty, then $\{x\} \cup X \neq \emptyset_I$.
- (45) If I is non empty, then $\{x,y\} \cup X \neq \emptyset_I$.
 - 4. Intersection of unordered pairs (or a singelton) and a set

We now state several propositions:

- (46) If $X \cap \{x\} = \{x\}$, then $x \in X$.
- (47) If $x \in X$, then $X \cap \{x\} = \{x\}$.
- (48) $x \in X \text{ and } y \in X \text{ iff } \{x, y\} \cap X = \{x, y\}.$
- (49) If I is non empty and $\{x\} \cap X = \emptyset_I$, then $x \notin X$.
- (50) If I is non empty and $\{x,y\} \cap X = \emptyset_I$, then $x \notin X$ and $y \notin X$.
 - 5. Difference of unordered pairs (or a singelton) and a set

The following propositions are true:

- (51) If $y \in X \setminus \{x\}$, then $y \in X$.
- (52) If I is non empty and $y \in X \setminus \{x\}$, then $y \neq x$.
- (53) If I is non empty and $X \setminus \{x\} = X$, then $x \notin X$.
- (54) If I is non empty and $\{x\} \setminus X = \{x\}$, then $x \notin X$.
- (55) $\{x\} \setminus X = \emptyset_I \text{ iff } x \in X.$
- (56) If I is non empty and $\{x,y\} \setminus X = \{x\}$, then $x \notin X$.
- (57) If I is non empty and $\{x,y\} \setminus X = \{y\}$, then $y \notin X$.
- (58) If I is non empty and $\{x,y\} \setminus X = \{x,y\}$, then $x \notin X$ and $y \notin X$.
- (59) $\{x,y\} \setminus X = \emptyset_I \text{ iff } x \in X \text{ and } y \in X.$
- (60) If $X = \emptyset_I$ or $X = \{x\}$ or $X = \{y\}$ or $X = \{x, y\}$, then $X \setminus \{x, y\} = \emptyset_I$.

6. Cartesian product

One can prove the following propositions:

- (61) If $X = \emptyset_I$ or $Y = \emptyset_I$, then $[X, Y] = \emptyset_I$.
- (62) If X is non-empty and Y is non-empty and $[\![X,Y]\!] = [\![Y,X]\!]$, then X=Y.
- (63) If [X, X] = [Y, Y], then X = Y.
- (64) If Z is non-empty and if $[\![X,Z]\!]\subseteq [\![Y,Z]\!]$ or $[\![Z,X]\!]\subseteq [\![Z,Y]\!]$, then $X\subset Y$.
- (65) If $X \subseteq Y$, then $[X, Z] \subseteq [Y, Z]$ and $[Z, X] \subseteq [Z, Y]$.
- (66) If $x_1 \subseteq A$ and $x_2 \subseteq B$, then $\llbracket x_1, x_2 \rrbracket \subseteq \llbracket A, B \rrbracket$.
- $(67) \quad [\![X \cup Y, Z]\!] = [\![X, Z]\!] \cup [\![Y, Z]\!] \text{ and } [\![Z, X \cup Y]\!] = [\![Z, X]\!] \cup [\![Z, Y]\!].$
- (69) $[X \cap Y, Z] = [X, Z] \cap [Y, Z]$ and $[Z, X \cap Y] = [Z, X] \cap [Z, Y]$.
- (71) If $A \subseteq X$ and $B \subseteq Y$, then $[A, Y] \cap [X, B] = [A, B]$.

- (74) If $x_1 \cap x_2 = \emptyset_I$ or $A \cap B = \emptyset_I$, then $[x_1, A] \cap [x_2, B] = \emptyset_I$.
- (75) If X is non-empty, then $[\![\{x\},X]\!]$ is non-empty and $[\![X,\{x\}]\!]$ is non-empty.
- $[\{x,y\},X] = [\![\{x\},X]\!] \cup [\![\{y\},X]\!] \text{ and } [\![X,\{x,y\}]\!] = [\![X,\{x\}]\!] \cup [\![X,\{y\}]\!].$
- (77) If x_1 is non-empty and A is non-empty and $[x_1, A] = [x_2, B]$, then $x_1 = x_2$ and A = B.
- (78) If $X \subseteq [X, Y]$ or $X \subseteq [Y, X]$, then $X = \emptyset_I$.
- (79) If $A \in [x, y]$ and $A \in [X, Y]$, then $A \in [x \cap X, y \cap Y]$.
- (80) If $[x, X] \subseteq [y, Y]$ and [x, X] is non-empty, then $x \subseteq y$ and $X \subseteq Y$.
- (81) If $A \subseteq X$, then $[A, A] \subseteq [X, X]$.
- (82) If $X \cap Y = \emptyset_I$, then $[X, Y] \cap [Y, X] = \emptyset_I$.
- (83) If A is non-empty and if $[\![A,B]\!] \subseteq [\![X,Y]\!]$ or $[\![B,A]\!] \subseteq [\![Y,X]\!]$, then $B \subseteq Y$.
- (84) If $x \subseteq [A, B]$ and $y \subseteq [X, Y]$, then $x \cup y \subseteq [A \cup X, B \cup Y]$.

References

- Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

- [4] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521–527, 1990.
- [5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [6] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [7] Artur Kornilowicz. Definitions and basic properties of boolean & union of many sorted sets. Formalized Mathematics, 5(2):279–281, 1996.
- [8] Beata Madras. Products of many sorted algebras. Formalized Mathematics, 5(1):55–60, 1996.
- [9] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Formalized Mathematics, 5(2):167–172, 1996.
- [10] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
- [12] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [13] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received September 29, 1995