On the Lattice of Subalgebras of a Universal Algebra

Mirosław Jan Paszek Warsaw University Białystok

MML Identifier: UNIALG_3.

The papers [13], [16], [15], [12], [17], [6], [7], [2], [8], [5], [4], [18], [1], [10], [11], [9], [14], and [3] provide the terminology and notation for this paper.

In this paper U_0 is a universal algebra, H is a non empty subset of the carrier of U_0 , and o is an operation of U_0 .

Let us consider U_0 . Family of subalgebras of U_0 is defined by:

(Def.1) For arbitrary U_1 such that $U_1 \in$ it holds U_1 is a subalgebra of U_0 .

Let us consider U_0 . One can check that there exists a family of subalgebras of U_0 which is non empty.

Let us consider U_0 . Then $\text{Subalgebras}(U_0)$ is a non empty family of subalgebras of U_0 . Let U_2 be a non empty family of subalgebras of U_0 . We see that the element of U_2 is a subalgebra of U_0 .

Let us consider U_0 . Then $\bigsqcup_{(U_0)}$ is a binary operation on Subalgebras (U_0) . Then $\bigsqcup_{(U_0)}$ is a binary operation on Subalgebras (U_0) .

Let us consider U_0 and let u be an element of Subalgebras (U_0) . The functor \overline{u} yielding a subset of the carrier of U_0 is defined as follows:

(Def.2) There exists a subalgebra U_1 of U_0 such that $u = U_1$ and \overline{u} = the carrier of U_1 .

Let us consider U_0 . The functor $\operatorname{Carr}(U_0)$ yields a function from $\operatorname{Subalgebras}(U_0)$ into $2^{\text{the carrier of } U_0}$ and is defined by:

(Def.3) For every element u of Subalgebras (U_0) holds $(\operatorname{Carr}(U_0))(u) = \overline{u}$.

We now state several propositions:

- (1) For arbitrary u holds $u \in \text{Subalgebras}(U_0)$ iff there exists a strict subalgebra U_1 of U_0 such that $u = U_1$.
- (2) Let H be a non empty subset of the carrier of U_0 and given o. If arity o = 0, then H is closed on o iff $o(\varepsilon) \in H$.

C 1996 Warsaw University - Białystok ISSN 1426-2630

- (3) For every subalgebra U_1 of U_0 holds the carrier of $U_1 \subseteq$ the carrier of U_0 .
- (4) For every non empty subset H of the carrier of U_0 and for every o such that H is closed on o and arity o = 0 holds $o_H = o$.
- (5) If U_0 has constants, then $\text{Constants}(U_0) = \{o(\varepsilon) : o \text{ ranges over operation of } U_0, \text{ arity } o = 0\}.$
- (6) For every universal algebra U_0 with constants and for every subalgebra U_1 of U_0 holds $\text{Constants}(U_0) = \text{Constants}(U_1)$.

Let U_0 be a universal algebra with constants. Note that every subalgebra of U_0 has constants.

The following proposition is true

(7) For every universal algebra U_0 with constants and for all subalgebras U_1, U_3 of U_0 holds $\text{Constants}(U_1) = \text{Constants}(U_3)$.

Let us consider U_0 . Then $\operatorname{Carr}(U_0)$ is a function from $\operatorname{Subalgebras}(U_0)$ into $2^{\text{the carrier of }U_0}$ and it can be characterized by the condition:

(Def.4) For every element u of Subalgebras (U_0) and for every subalgebra U_1 of U_0 such that $u = U_1$ holds $(\operatorname{Carr}(U_0))(u) =$ the carrier of U_1 .

One can prove the following propositions:

- (8) For every strict subalgebra H of U_0 and for every element u of U_0 holds $u \in (\operatorname{Carr}(U_0))(H)$ iff $u \in H$.
- (9) For every non empty subset H of Subalgebras (U_0) holds $(\operatorname{Carr}(U_0))^{\circ}H$ is non empty.
- (10) For every universal algebra U_0 with constants and for every strict subalgebra U_1 of U_0 holds $\text{Constants}(U_0) \subseteq (\text{Carr}(U_0))(U_1)$.
- (11) Let U_0 be a universal algebra with constants, and let U_1 be a subalgebra of U_0 , and let *a* be arbitrary. If *a* is an element of Constants (U_0) , then $a \in$ the carrier of U_1 .
- (12) Let U_0 be a universal algebra with constants and let H be a non empty subset of Subalgebras (U_0) . Then $\bigcap((\operatorname{Carr}(U_0))^{\circ}H)$ is a non empty subset of the carrier of U_0 .
- (13) For every universal algebra U_0 with constants holds the carrier of the lattice of subalgebras of $U_0 = \text{Subalgebras}(U_0)$.
- (14) Let U_0 be a universal algebra with constants, and let H be a non empty subset of Subalgebras (U_0) , and let S be a non empty subset of the carrier of U_0 . If $S = \bigcap ((\operatorname{Carr}(U_0))^{\circ}H)$, then S is operations closed.

Let U_0 be a strict universal algebra with constants and let H be a non empty subset of Subalgebras (U_0) . The functor $\bigcap H$ yielding a strict subalgebra of U_0 is defined as follows:

(Def.5) The carrier of $\bigcap H = \bigcap ((\operatorname{Carr}(U_0))^{\circ} H).$

One can prove the following propositions:

- (15) Let U_0 be a universal algebra with constants, and let l_1 , l_2 be elements of the carrier of the lattice of subalgebras of U_0 , and let U_1 , U_3 be strict subalgebras of U_0 . If $l_1 = U_1$ and $l_2 = U_3$, then $l_1 \sqcup l_2 = U_1 \sqcup U_3$.
- (16) Let U_0 be a universal algebra with constants, and let l_1 , l_2 be elements of the carrier of the lattice of subalgebras of U_0 , and let U_1 , U_3 be strict subalgebras of U_0 . If $l_1 = U_1$ and $l_2 = U_3$, then $l_1 \sqcap l_2 = U_1 \cap U_3$.
- (17) Let U_0 be a universal algebra with constants, and let l_1 , l_2 be elements of the carrier of the lattice of subalgebras of U_0 , and let U_1 , U_3 be strict subalgebras of U_0 . Suppose $l_1 = U_1$ and $l_2 = U_3$. Then $l_1 \subseteq l_2$ if and only if the carrier of $U_1 \subseteq$ the carrier of U_3 .
- (18) Let U_0 be a universal algebra with constants, and let l_1 , l_2 be elements of the carrier of the lattice of subalgebras of U_0 , and let U_1 , U_3 be strict subalgebras of U_0 . If $l_1 = U_1$ and $l_2 = U_3$, then $l_1 \sqsubseteq l_2$ iff U_1 is a subalgebra of U_3 .
- (19) For every strict universal algebra U_0 with constants holds the lattice of subalgebras of U_0 is bounded.
- (20) For every strict universal algebra U_0 with constants and for every strict subalgebra U_1 of U_0 holds $\text{Gen}^{\text{UA}}(\text{Constants}(U_0)) \cap U_1 = \text{Gen}^{\text{UA}}(\text{Constants}(U_0)).$
- (21) For every strict universal algebra U_0 with constants holds $\perp_{\text{the lattice of subalgebras of } U_0} = \text{Gen}^{\text{UA}}(\text{Constants}(U_0)).$
- (22) Let U_0 be a strict universal algebra with constants, and let U_1 be a subalgebra of U_0 , and let H be a subset of the carrier of U_0 . If H = the carrier of U_0 , then $\text{Gen}^{\text{UA}}(H) \sqcup U_1 = \text{Gen}^{\text{UA}}(H)$.
- (23) Let U_0 be a strict universal algebra with constants and let H be a subset of the carrier of U_0 . Suppose H = the carrier of U_0 . Then $T_{\text{the lattice of subalgebras of } U_0} = \text{Gen}^{\text{UA}}(H)$.
- (24) For every strict universal algebra U_0 with constants holds $\top_{\text{the lattice of subalgebras of } U_0} = U_0.$
- (25) For every strict universal algebra U_0 with constants holds the lattice of subalgebras of U_0 is complete.

Let U_4 , U_5 be universal algebras with constants and let F be a function from the carrier of U_4 into the carrier of U_5 . The functor FuncLatt(F) yielding a function from the carrier of the lattice of subalgebras of U_4 into the carrier of the lattice of subalgebras of U_5 is defined by the condition (Def.6).

- (Def.6) Let U_1 be a strict subalgebra of U_4 and let H be a subset of the carrier of U_5 . If $H = F^{\circ}$ (the carrier of U_1), then $(\operatorname{FuncLatt}(F))(U_1) = \operatorname{Gen}^{\mathrm{UA}}(H)$. We now state the proposition
 - (26) Let U_0 be a strict universal algebra with constants and let F be a function from the carrier of U_0 into the carrier of U_0 . Suppose $F = \operatorname{id}_{(\text{the carrier of } U_0)}$. Then $\operatorname{FuncLatt}(F) = \operatorname{id}_{(\text{the carrier of the lattice of subalgebras of } U_0)}$.

MIROSŁAW JAN PASZEK

References

- [1] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(1):107–114, 1990.
- [3] Ewa Burakowska. Subalgebras of the universal algebra. Lattices of subalgebras. Formalized Mathematics, 4(1):23-27, 1993.
- [4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- Jolanta Kamieńska and Jarosław Stanisław Walijewski. Homomorphisms of lattices, finite join and finite meet. Formalized Mathematics, 4(1):35–40, 1993.
- [10] Jarosław Kotowicz, Beata Madras, and Małgorzata Korolkiewicz. Basic notation of universal algebra. Formalized Mathematics, 3(2):251–253, 1992.
- [11] Agnieszka Julia Marasik. Boolean properties of lattices. Formalized Mathematics, 5(1):31–35, 1996.
- [12] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [14] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291– 296, 1990.
- [15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [16] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [18] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215– 222, 1990.

Received May 23, 1995