
FORMALIZED MATHEMATICS

Volume 5, Number 4, 1996

Warsaw University - Bia lystok

Examples of Category Structures

Andrzej Trybulec

Warsaw University

Bia lystok

Summary. We continue the formalization of the category theory.

MML Identifier: ALTCAT 2.

The notation and terminology used here are introduced in the following papers:
[17], [19], [9], [20], [18], [5], [6], [2], [13], [1], [8], [4], [3], [7], [16], [12], [14], [15],
[10], and [11].

1. Preliminaries

One can prove the following proposition

(1) For all sets X1, X2 and for arbitrary a1, a2 holds [:X1 7−→ a1, X2 7−→
a2 :] = [: X1, X2 :] 7−→ 〈〈a1, a2〉〉.

Let I be a set. Observe that ∅I is function yielding.
The following two propositions are true:

(2) For all functions f , g holds � (g · f) = g · � f.

(3) For all functions f , g, h holds � (f · [: g, h :]) = � f · [:h, g :].

Let f be a function yielding function. Observe that � f is function yielding.
One can prove the following proposition

(4) Let I be a set and let A, B, C be many sorted sets indexed by I.
Suppose A is transformable to B. Let F be a many sorted function from
A into B and let G be a many sorted function from B into C. Then G◦F

is a many sorted function from A into C.

Let I be a set and let A be a many sorted set indexed by [: I, I :]. Then � A

is a many sorted set indexed by [: I, I :].
We now state the proposition

493
c© 1996 Warsaw University - Bia lystok

ISSN 1426–2630

494 andrzej trybulec

(5) Let I1 be a set, and let I2 be a non empty set, and let f be a function
from I1 into I2, and let B, C be many sorted sets indexed by I2, and let
G be a many sorted function from B into C. Then G · f is a many sorted
function from B · f into C · f.

Let I be a set, let A, B be many sorted sets indexed by [: I, I :], and let F

be a many sorted function from A into B. Then � F is a many sorted function
from � A into � B.

We now state the proposition

(6) Let I1, I2 be non empty sets, and let M be a many sorted set indexed
by [: I1, I2 :] and let o1 be an element of I1, and let o2 be an element of I2.
Then (� M)(o2, o1) = M(o1, o2).

Let I1 be a set and let f , g be many sorted functions of I1 Then g ◦ f is a
many sorted function of I1.

2. An auxiliary notion

Let I, J be sets, let A be a many sorted set indexed by I, and let B be a
many sorted set indexed by J . The predicate A ⊆̇ B is defined as follows:

(Def. 1) I ⊆ J and for arbitrary i such that i ∈ I holds A(i) ⊆ B(i).

One can prove the following four propositions:

(7) For every set I and for every many sorted set A indexed by I holds
A ⊆̇ A.

(8) Let I, J be sets, and let A be a many sorted set indexed by I, and let
B be a many sorted set indexed by J . If A ⊆̇ B and B ⊆̇ A, then A = B.

(9) Let I, J , K be sets, and let A be a many sorted set indexed by I, and
let B be a many sorted set indexed by J , and let C be a many sorted set
indexed by K. If A ⊆̇ B and B ⊆̇ C, then A ⊆̇ C.

(10) Let I be a set, and let A be a many sorted set indexed by I, and let B

be a many sorted set indexed by I. Then A ⊆̇ B if and only if A ⊆ B.

3. A bit of lambda calculus

In this article we present several logical schemes. The scheme OnSingletons

deals with a non empty set A, a unary functor F yielding arbitrary, and a unary
predicate P, and states that:

{〈〈o, F(o)〉〉 : o ranges over elements of A, P[o]} is a function
for all values of the parameters.

The scheme DomOnSingletons deals with a non empty set A, a function B,
a unary functor F yielding arbitrary, and a unary predicate P, and states that:

domB = {o : o ranges over elements of A, P[o]}

examples of category structures 495

provided the following condition is satisfied:
• B = {〈〈o, F(o)〉〉 : o ranges over elements of A, P[o]}.
The scheme ValOnSingletons deals with a non empty set A, a function B, an

element C of A, a unary functor F yielding arbitrary, and a unary predicate P,
and states that:

B(C) = F(C)
provided the following requirements are met:

• B = {〈〈o, F(o)〉〉 : o ranges over elements of A, P[o]},
• P[C].

4. More on old categories

The following propositions are true:

(11) For every category C and for all objects i, j, k of C holds [: hom(j, k),
hom(i, j) :] ⊆ dom (the composition of C).

(12) For every category C and for all objects i, j, k of C holds (the compo-
sition of C)◦[: hom(j, k), hom(i, j) :] ⊆ hom(i, k).

Let C be a category structure. The functor HomSetsC yields a many sorted
set indexed by [: the objects of C, the objects of C :] and is defined as follows:

(Def. 2) For all objects i, j of C holds HomSetsC(i, j) = hom(i, j).

The following proposition is true

(13) For every category C and for every object i of C holds idi ∈ HomSetsC(i,
i).

Let C be a category. The functor CompositionC yielding a binary composi-
tion of HomSetsC is defined by:

(Def. 3) For all objects i, j, k of C holds CompositionC(i, j, k) = (the compo-
sition of C)

�
[: HomSetsC(j, k), HomSetsC(i, j) :].

Next we state three propositions:

(14) Let C be a category and let i, j, k be objects of C Suppose hom(i, j) 6= ∅
and hom(j, k) 6= ∅. Let f be a morphism from i to j and let g be a
morphism from j to k. Then CompositionC(i, j, k)(g, f) = g · f.

(15) For every category C holds CompositionC is associative.

(16) For every category C holds CompositionC has left units and right units.

5. Transforming an old category into a new one

Let C be a category. The functor Alter(C) yielding a strict non empty
category structure is defined as follows:

(Def. 4) Alter(C) = 〈the objects of C, HomSetsC ,CompositionC〉.

496 andrzej trybulec

We now state three propositions:

(17) For every category C holds Alter(C) is associative.

(18) For every category C holds Alter(C) has units.

(19) For every category C holds Alter(C) is transitive.

Let C be a category. Then Alter(C) is a strict category.

6. More on new categories

Let us note that there exists a graph which is non empty and strict.

Let C be a graph. We say that C is reflexive if and only if:

(Def. 5) For arbitrary x such that x ∈ the carrier of C holds (the arrows of C)(x,

x) 6= ∅.

Let C be a non empty graph. Let us observe that C is reflexive if and only
if:

(Def. 6) For every object o of C holds 〈o, o〉 6= ∅.

Let C be a non empty category structure. Observe that the carrier of C is
non empty.

Let C be a non empty transitive category structure. Let us observe that C

is associative if and only if the condition (Def. 7) is satisfied.

(Def. 7) Let o1, o2, o3, o4 be objects of C and let f be a morphism from o1

to o2, and let g be a morphism from o2 to o3, and let h be a morphism
from o3 to o4. If 〈o1, o2〉 6= ∅ and 〈o2, o3〉 6= ∅ and 〈o3, o4〉 6= ∅, then
(h · g) · f = h · (g · f).

Let C be a non empty category structure. Let us observe that C has units
if and only if the condition (Def. 8) is satisfied.

(Def. 8) Let o be an object of C. Then

(i) 〈o, o〉 6= ∅, and

(ii) there exists a morphism i from o to o such that for every object o′ of
C and for every morphism m′ from o′ to o and for every morphism m′′

from o to o′ holds if 〈o′, o〉 6= ∅, then i · m′ = m′ and if 〈o, o′〉 6= ∅, then
m′′ · i = m′′.

Let us observe that every non empty category structure which has units is
reflexive.

One can check that there exists a graph which is non empty and reflexive.

One can verify that there exists a category structure which is non empty and
reflexive.

examples of category structures 497

7. The empty category

The strict category structure ∅CAT is defined by:

(Def. 9) The carrier of ∅CAT is empty.

Let us note that ∅CAT is empty.
Let us mention that there exists a category structure which is empty and

strict.
Next we state the proposition

(20) For every empty strict category structure E holds E = ∅CAT .

8. Subcategories

Let C be a category structure. A category structure is said to be a substruc-
ture of C if it satisfies the conditions (Def. 10).

(Def. 10) (i) The carrier of it ⊆ the carrier of C,
(ii) the arrows of it ⊆̇ the arrows of C, and
(iii) the composition of it ⊆̇ the composition of C.

In the sequel C, C1, C2, C3 denote category structures.
The following propositions are true:

(21) C is a substructure of C.

(22) If C1 is a substructure of C2 and C2 is a substructure of C3, then C1 is
a substructure of C3.

(23) Let C1, C2 be category structures. Suppose C1 is a substructure of C2

and C2 is a substructure of C1. Then the category structure of C1 = the
category structure of C2.

Let C be a category structure. One can check that there exists a substructure
of C which is strict.

Let C be a non empty category structure and let o be an object of C. The
functor �

�
o yielding a strict substructure of C is defined by the conditions

(Def. 11).

(Def. 11) (i) The carrier of �
�
o = {o},

(ii) the arrows of �
�
o = [〈〈o, o〉〉 7→ 〈o, o〉], and

(iii) the composition of �
�
o = 〈〈o, o, o〉〉7−→. (the composition of C)(o, o, o).

In the sequel C denotes a non empty category structure and o denotes an
object of C.

One can prove the following proposition

(24) For every object o′ of �
�
o holds o′ = o.

Let C be a non empty category structure and let o be an object of C. Observe
that �

�
o is transitive and non empty.

498 andrzej trybulec

Let C be a non empty category structure. One can verify that there exists a
substructure of C which is transitive non empty and strict.

We now state the proposition

(25) Let C be a transitive non empty category structure and let D1, D2 be
transitive non empty substructures of C. Suppose the carrier of D1 ⊆ the
carrier of D2 and the arrows of D1 ⊆̇ the arrows of D2. Then D1 is a
substructure of D2.

Let C be a category structure and let D be a substructure of C. We say that
D is full if and only if:

(Def. 12) The arrows of D = (the arrows of C)
�
[: the carrier of D, the carrier of

D :].

Let C be a non empty category structure with units and let D be a substruc-
ture of C. We say that D is id-inheriting if and only if:

(Def. 13) For every object o of D and for every object o′ of C such that o = o′

holds ido′ ∈ 〈o, o〉.

Let C be a category structure. One can verify that there exists a substructure
of C which is full and strict.

Let C be a non empty category structure. Observe that there exists a sub-
structure of C which is full non empty and strict.

Let C be a category and let o be an object of C. Note that �
�
o is full and

id-inheriting.

Let C be a category. One can verify that there exists a substructure of C

which is full id-inheriting non empty and strict.
In the sequel C is a non empty transitive category structure.

The following propositions are true:

(26) Let D be a substructure of C. Suppose the carrier of D = the carrier
of C and the arrows of D = the arrows of C. Then the category structure
of D = the category structure of C.

(27) Let D1, D2 be non empty transitive substructures of C. Suppose the
carrier of D1 = the carrier of D2 and the arrows of D1 = the arrows of
D2. Then the category structure of D1 = the category structure of D2.

(28) Let D be a full substructure of C. Suppose the carrier of D = the
carrier of C. Then the category structure of D = the category structure
of C.

(29) Let C be a non empty category structure, and let D be a full non empty
substructure of C, and let o1, o2 be objects of C and let p1, p2 be objects
of D If o1 = p1 and o2 = p2, then 〈o1, o2〉 = 〈p1, p2〉.

(30) For every non empty category structure C and for every non empty
substructure D of C holds every object of D is an object of C.

Let C be a transitive non empty category structure. Note that every sub-
structure of C which is full and non empty is also transitive.

The following propositions are true:

examples of category structures 499

(31) Let D1, D2 be full non empty substructures of C. Suppose the carrier
of D1 = the carrier of D2. Then the category structure of D1 = the
category structure of D2.

(32) Let C be a non empty category structure, and let D be a non empty
substructure of C, and let o1, o2 be objects of C and let p1, p2 be objects
of D If o1 = p1 and o2 = p2, then 〈p1, p2〉 ⊆ 〈o1, o2〉.

(33) Let C be a non empty transitive category structure, and let D be a
non empty transitive substructure of C, and let p1, p2, p3 be objects of
D Suppose 〈p1, p2〉 6= ∅ and 〈p2, p3〉 6= ∅. Let o1, o2, o3 be objects of C

Suppose o1 = p1 and o2 = p2 and o3 = p3. Let f be a morphism from o1

to o2, and let g be a morphism from o2 to o3, and let f1 be a morphism
from p1 to p2, and let g1 be a morphism from p2 to p3. If f = f1 and
g = g1, then g · f = g1 · f1.

Let C be an associative transitive non empty category structure. Note that
every non empty substructure of C which is transitive is also associative.

One can prove the following proposition

(34) Let C be a non empty category structure, and let D be a non empty
substructure of C, and let o1, o2 be objects of C and let p1, p2 be objects
of D If o1 = p1 and o2 = p2 and 〈p1, p2〉 6= ∅, then every morphism from
p1 to p2 is a morphism from o1 to o2.

Let C be a transitive non empty category structure with units. Note that
every non empty substructure of C which is id-inheriting and transitive has
units.

Let C be a category. Note that there exists a non empty substructure of C

which is id-inheriting and transitive.
Let C be a category. A subcategory of C is an id-inheriting transitive sub-

structure of C.
We now state the proposition

(35) Let C be a category, and let D be a non empty subcategory of C, and
let o be an object of D, and let o′ be an object of C. If o = o′, then
ido = ido′ .

References

[1] Czes law Byliński. Basic functions and operations on functions. Formalized Mathematics,
1(1):245–254, 1990.

[2] Czes law Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[3] Czes law Byliński. Cartesian categories. Formalized Mathematics, 3(2):161–169, 1992.
[4] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–

676, 1990.
[5] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[6] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[7] Czes law Byliński. Introduction to categories and functors. Formalized Mathematics,

1(2):409–420, 1990.

500 andrzej trybulec

[8] Czes law Byliński. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[9] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[10] Artur Korni lowicz. On the group of automorphisms of universal algebra & many sorted
algebra. Formalized Mathematics, 5(2):221–226, 1996.

[11] Ma lgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Math-

ematics, 5(1):61–65, 1996.
[12] Beata Madras. Product of family of universal algebras. Formalized Mathematics,

4(1):103–108, 1993.
[13] Micha l Muzalewski and Wojciech Skaba. Three-argument operations and four-argument

operations. Formalized Mathematics, 2(2):221–224, 1991.
[14] Andrzej Trybulec. Categories without uniqueness of cod and dom. Formalized Mathe-

matics, 5(2):259–267, 1996.
[15] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
[16] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[18] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97–105, 1990.

[19] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received January 22, 1996

