Examples of Category Structures

Andrzej Trybulec Warsaw University Białystok

Summary. We continue the formalization of the category theory.

MML Identifier: ALTCAT_2.

The notation and terminology used here are introduced in the following papers: [17], [19], [9], [20], [18], [5], [6], [2], [13], [1], [8], [4], [3], [7], [16], [12], [14], [15], [10], and [11].

1. Preliminaries

One can prove the following proposition

(1) For all sets X_1, X_2 and for arbitrary a_1, a_2 holds $[X_1 \mapsto a_1, X_2 \mapsto a_2] = [X_1, X_2] \mapsto \langle a_1, a_2 \rangle$.

Let I be a set. Observe that \emptyset_I is function yielding.

The following two propositions are true:

- (2) For all functions f, g holds $\widehat{\neg}(g \cdot f) = g \cdot \widehat{\neg} f$.
- (3) For all functions f, g, h holds $\gamma(f \cdot [g, h]) = \gamma f \cdot [h, g]$.

Let f be a function yielding function. Observe that $\frown f$ is function yielding. One can prove the following proposition

(4) Let I be a set and let A, B, C be many sorted sets indexed by I. Suppose A is transformable to B. Let F be a many sorted function from A into B and let G be a many sorted function from B into C. Then $G \circ F$ is a many sorted function from A into C.

Let I be a set and let A be a many sorted set indexed by [I, I]. Then $\neg A$ is a many sorted set indexed by [I, I].

We now state the proposition

C 1996 Warsaw University - Białystok ISSN 1426-2630 (5) Let I_1 be a set, and let I_2 be a non empty set, and let f be a function from I_1 into I_2 , and let B, C be many sorted sets indexed by I_2 , and let G be a many sorted function from B into C. Then $G \cdot f$ is a many sorted function from $B \cdot f$ into $C \cdot f$.

Let I be a set, let A, B be many sorted sets indexed by [I, I], and let F be a many sorted function from A into B. Then $\frown F$ is a many sorted function from $\frown A$ into $\frown B$.

We now state the proposition

(6) Let I_1 , I_2 be non empty sets, and let M be a many sorted set indexed by $[I_1, I_2]$ and let o_1 be an element of I_1 , and let o_2 be an element of I_2 . Then $(\frown M)(o_2, o_1) = M(o_1, o_2)$.

Let I_1 be a set and let f, g be many sorted functions of I_1 . Then $g \circ f$ is a many sorted function of I_1 .

2. An Auxiliary Notion

Let I, J be sets, let A be a many sorted set indexed by I, and let B be a many sorted set indexed by J. The predicate $A \subseteq B$ is defined as follows:

(Def. 1) $I \subseteq J$ and for arbitrary *i* such that $i \in I$ holds $A(i) \subseteq B(i)$.

One can prove the following four propositions:

- (7) For every set I and for every many sorted set A indexed by I holds $A \subseteq A$.
- (8) Let I, J be sets, and let A be a many sorted set indexed by I, and let B be a many sorted set indexed by J. If $A \subseteq B$ and $B \subseteq A$, then A = B.
- (9) Let I, J, K be sets, and let A be a many sorted set indexed by I, and let B be a many sorted set indexed by J, and let C be a many sorted set indexed by K. If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
- (10) Let I be a set, and let A be a many sorted set indexed by I, and let B be a many sorted set indexed by I. Then $A \subseteq B$ if and only if $A \subseteq B$.

3. A bit of lambda calculus

In this article we present several logical schemes. The scheme *OnSingletons* deals with a non empty set \mathcal{A} , a unary functor \mathcal{F} yielding arbitrary, and a unary predicate \mathcal{P} , and states that:

 $\{\langle o, \mathcal{F}(o) \rangle : o \text{ ranges over elements of } \mathcal{A}, \mathcal{P}[o]\}$ is a function for all values of the parameters.

The scheme *DomOnSingletons* deals with a non empty set \mathcal{A} , a function \mathcal{B} , a unary functor \mathcal{F} yielding arbitrary, and a unary predicate \mathcal{P} , and states that: dom $\mathcal{B} = \{o : o \text{ ranges over elements of } \mathcal{A}, \mathcal{P}[o]\}$ provided the following condition is satisfied:

• $\mathcal{B} = \{ \langle o, \mathcal{F}(o) \rangle : o \text{ ranges over elements of } \mathcal{A}, \mathcal{P}[o] \}.$

The scheme *ValOnSingletons* deals with a non empty set \mathcal{A} , a function \mathcal{B} , an element \mathcal{C} of \mathcal{A} , a unary functor \mathcal{F} yielding arbitrary, and a unary predicate \mathcal{P} , and states that:

 $\mathcal{B}(\mathcal{C}) = \mathcal{F}(\mathcal{C})$

provided the following requirements are met:

- $\mathcal{B} = \{ \langle o, \mathcal{F}(o) \rangle : o \text{ ranges over elements of } \mathcal{A}, \mathcal{P}[o] \},\$
- $\mathcal{P}[\mathcal{C}]$.

4. More on old categories

The following propositions are true:

- (11) For every category C and for all objects i, j, k of C holds $[\hom(j, k), \hom(i, j)] \subseteq \operatorname{dom}(\operatorname{the composition of } C).$
- (12) For every category C and for all objects i, j, k of C holds (the composition of C)° $[\hom(j, k), \hom(i, j)] \subseteq \hom(i, k).$

Let C be a category structure. The functor HomSets_C yields a many sorted set indexed by [the objects of C, the objects of C] and is defined as follows:

(Def. 2) For all objects i, j of C holds $\operatorname{HomSets}_C(i, j) = \operatorname{hom}(i, j)$.

The following proposition is true

(13) For every category C and for every object i of C holds $id_i \in HomSets_C(i, i)$.

Let C be a category. The functor Composition_C yielding a binary composition of HomSets_C is defined by:

(Def. 3) For all objects i, j, k of C holds $\text{Composition}_C(i, j, k) = (\text{the composition of } C) \upharpoonright [\text{HomSets}_C(j, k), \text{HomSets}_C(i, j)].$

Next we state three propositions:

- (14) Let C be a category and let i, j, k be objects of C Suppose hom $(i, j) \neq \emptyset$ and hom $(j, k) \neq \emptyset$. Let f be a morphism from i to j and let g be a morphism from j to k. Then Composition_C $(i, j, k)(g, f) = g \cdot f$.
- (15) For every category C holds Composition_C is associative.
- (16) For every category C holds Composition_C has left units and right units.

5. TRANSFORMING AN OLD CATEGORY INTO A NEW ONE

Let C be a category. The functor Alter(C) yielding a strict non empty category structure is defined as follows:

(Def. 4) Alter(C) = $\langle \text{the objects of } C, \text{HomSets}_C, \text{Composition}_C \rangle$.

We now state three propositions:

- (17) For every category C holds Alter(C) is associative.
- (18) For every category C holds Alter(C) has units.
- (19) For every category C holds Alter(C) is transitive.

Let C be a category. Then Alter(C) is a strict category.

6. More on New Categories

Let us note that there exists a graph which is non empty and strict. Let C be a graph. We say that C is reflexive if and only if:

(Def. 5) For arbitrary x such that $x \in$ the carrier of C holds (the arrows of C)(x, $x) \neq \emptyset$.

Let C be a non empty graph. Let us observe that C is reflexive if and only if:

(Def. 6) For every object o of C holds $\langle o, o \rangle \neq \emptyset$.

Let C be a non empty category structure. Observe that the carrier of C is non empty.

Let C be a non empty transitive category structure. Let us observe that C is associative if and only if the condition (Def. 7) is satisfied.

(Def. 7) Let o_1 , o_2 , o_3 , o_4 be objects of C and let f be a morphism from o_1 to o_2 , and let g be a morphism from o_2 to o_3 , and let h be a morphism from o_3 to o_4 . If $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_3 \rangle \neq \emptyset$ and $\langle o_3, o_4 \rangle \neq \emptyset$, then $(h \cdot g) \cdot f = h \cdot (g \cdot f)$.

Let C be a non empty category structure. Let us observe that C has units if and only if the condition (Def. 8) is satisfied.

(Def. 8) Let o be an object of C. Then

- (i) $\langle o, o \rangle \neq \emptyset$, and
- (ii) there exists a morphism *i* from *o* to *o* such that for every object *o'* of *C* and for every morphism *m'* from *o'* to *o* and for every morphism *m''* from *o* to *o'* holds if $\langle o', o \rangle \neq \emptyset$, then $i \cdot m' = m'$ and if $\langle o, o' \rangle \neq \emptyset$, then $m'' \cdot i = m''$.

Let us observe that every non empty category structure which has units is reflexive.

One can check that there exists a graph which is non empty and reflexive.

One can verify that there exists a category structure which is non empty and reflexive.

7. The empty category

The strict category structure \emptyset_{CAT} is defined by:

(Def. 9) The carrier of \emptyset_{CAT} is empty.

Let us note that \emptyset_{CAT} is empty.

Let us mention that there exists a category structure which is empty and strict.

Next we state the proposition

(20) For every empty strict category structure E holds $E = \emptyset_{CAT}$.

8. Subcategories

Let C be a category structure. A category structure is said to be a substructure of C if it satisfies the conditions (Def. 10).

- (Def. 10) (i) The carrier of it \subseteq the carrier of C,
 - (ii) the arrows of it \subseteq the arrows of C, and
 - (iii) the composition of it \subseteq the composition of C.

In the sequel C, C_1, C_2, C_3 denote category structures. The following propositions are true:

- (21) C is a substructure of C.
- (22) If C_1 is a substructure of C_2 and C_2 is a substructure of C_3 , then C_1 is a substructure of C_3 .
- (23) Let C_1 , C_2 be category structures. Suppose C_1 is a substructure of C_2 and C_2 is a substructure of C_1 . Then the category structure of C_1 = the category structure of C_2 .

Let C be a category structure. One can check that there exists a substructure of C which is strict.

Let C be a non empty category structure and let o be an object of C. The functor $\Box \upharpoonright o$ yielding a strict substructure of C is defined by the conditions (Def. 11).

(Def. 11) (i) The carrier of $\Box \upharpoonright o = \{o\},\$

(ii) the arrows of $\Box \upharpoonright o = [\langle o, o \rangle \mapsto \langle o, o \rangle]$, and

(iii) the composition of $\Box \upharpoonright o = \langle o, o, o \rangle \mapsto$ (the composition of C)(o, o, o).

In the sequel C denotes a non empty category structure and o denotes an object of C.

One can prove the following proposition

(24) For every object o' of $\Box \upharpoonright o$ holds o' = o.

Let C be a non empty category structure and let o be an object of C. Observe that $\Box \upharpoonright o$ is transitive and non empty.

Let C be a non empty category structure. One can verify that there exists a substructure of C which is transitive non empty and strict.

We now state the proposition

(25) Let C be a transitive non empty category structure and let D_1 , D_2 be transitive non empty substructures of C. Suppose the carrier of $D_1 \subseteq$ the carrier of D_2 and the arrows of $D_1 \subseteq$ the arrows of D_2 . Then D_1 is a substructure of D_2 .

Let C be a category structure and let D be a substructure of C. We say that D is full if and only if:

(Def. 12) The arrows of $D = (\text{the arrows of } C) \upharpoonright [\text{the carrier of } D, \text{ the carrier of } D].$

Let C be a non empty category structure with units and let D be a substructure of C. We say that D is id-inheriting if and only if:

(Def. 13) For every object o of D and for every object o' of C such that o = o' holds $id_{o'} \in \langle o, o \rangle$.

Let C be a category structure. One can verify that there exists a substructure of C which is full and strict.

Let C be a non empty category structure. Observe that there exists a substructure of C which is full non empty and strict.

Let C be a category and let o be an object of C. Note that $\Box \upharpoonright o$ is full and id-inheriting.

Let C be a category. One can verify that there exists a substructure of C which is full id-inheriting non empty and strict.

In the sequel C is a non empty transitive category structure.

The following propositions are true:

- (26) Let D be a substructure of C. Suppose the carrier of D = the carrier of C and the arrows of D = the arrows of C. Then the category structure of D = the category structure of C.
- (27) Let D_1 , D_2 be non empty transitive substructures of C. Suppose the carrier of D_1 = the carrier of D_2 and the arrows of D_1 = the arrows of D_2 . Then the category structure of D_1 = the category structure of D_2 .
- (28) Let D be a full substructure of C. Suppose the carrier of D = the carrier of C. Then the category structure of D = the category structure of C.
- (29) Let C be a non empty category structure, and let D be a full non empty substructure of C, and let o_1 , o_2 be objects of C and let p_1 , p_2 be objects of D If $o_1 = p_1$ and $o_2 = p_2$, then $\langle o_1, o_2 \rangle = \langle p_1, p_2 \rangle$.
- (30) For every non empty category structure C and for every non empty substructure D of C holds every object of D is an object of C.

Let C be a transitive non empty category structure. Note that every substructure of C which is full and non empty is also transitive.

The following propositions are true:

- (31) Let D_1 , D_2 be full non empty substructures of C. Suppose the carrier of D_1 = the carrier of D_2 . Then the category structure of D_1 = the category structure of D_2 .
- (32) Let C be a non empty category structure, and let D be a non empty substructure of C, and let o_1 , o_2 be objects of C and let p_1 , p_2 be objects of D If $o_1 = p_1$ and $o_2 = p_2$, then $\langle p_1, p_2 \rangle \subseteq \langle o_1, o_2 \rangle$.
- (33) Let C be a non empty transitive category structure, and let D be a non empty transitive substructure of C, and let p_1 , p_2 , p_3 be objects of D Suppose $\langle p_1, p_2 \rangle \neq \emptyset$ and $\langle p_2, p_3 \rangle \neq \emptyset$. Let o_1 , o_2 , o_3 be objects of C Suppose $o_1 = p_1$ and $o_2 = p_2$ and $o_3 = p_3$. Let f be a morphism from o_1 to o_2 , and let g be a morphism from o_2 to o_3 , and let f_1 be a morphism from p_1 to p_2 , and let g_1 be a morphism from p_2 to p_3 . If $f = f_1$ and $g = g_1$, then $g \cdot f = g_1 \cdot f_1$.

Let C be an associative transitive non empty category structure. Note that every non empty substructure of C which is transitive is also associative.

One can prove the following proposition

(34) Let C be a non empty category structure, and let D be a non empty substructure of C, and let o_1 , o_2 be objects of C and let p_1 , p_2 be objects of D If $o_1 = p_1$ and $o_2 = p_2$ and $\langle p_1, p_2 \rangle \neq \emptyset$, then every morphism from p_1 to p_2 is a morphism from o_1 to o_2 .

Let C be a transitive non empty category structure with units. Note that every non empty substructure of C which is id-inheriting and transitive has units.

Let C be a category. Note that there exists a non empty substructure of C which is id-inheriting and transitive.

Let C be a category. A subcategory of C is an id-inheriting transitive substructure of C.

We now state the proposition

(35) Let C be a category, and let D be a non empty subcategory of C, and let o be an object of D, and let o' be an object of C. If o = o', then $id_o = id_{o'}$.

References

- Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245–254, 1990.
- [2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [3] Czesław Byliński. Cartesian categories. Formalized Mathematics, 3(2):161–169, 1992.
- Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669– 676, 1990.
- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [7] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409-420, 1990.

- [8] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521–527, 1990.
- Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [10] Artur Korniłowicz. On the group of automorphisms of universal algebra & many sorted algebra. Formalized Mathematics, 5(2):221–226, 1996.
- [11] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathematics, 5(1):61–65, 1996.
- Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103-108, 1993.
- [13] Michał Muzalewski and Wojciech Skaba. Three-argument operations and four-argument operations. Formalized Mathematics, 2(2):221–224, 1991.
- [14] Andrzej Trybulec. Categories without uniqueness of cod and dom. Formalized Mathematics, 5(2):259-267, 1996.
- [15] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
- [16] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [18] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [19] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received January 22, 1996