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Summary. We continue the formalization of the category theory.

MML Identifier: ALTCAT_2.

The notation and terminology used here are introduced in the following papers:
[17], [19], [9], [20], [18], [5], [6], [2], [13], [1], 8], [4], 3], [7], [16], [12], [14], [15],
[10], and [11].

1. PRELIMINARIES

One can prove the following proposition

(1)  For all sets X3, X, and for arbitrary ay, ag holds [ X; — a1, Xo —
a2:] = [:Xl, Xg:] — (al, CL2>.

Let I be a set. Observe that (); is function yielding.

The following two propositions are true:

(2)  For all functions f, g holds ~(g- f) =g - f.

(3)  For all functions f, g, h holds ~(f - fg, h]) =~f-[h, g].

Let f be a function yielding function. Observe that ~f is function yielding.

One can prove the following proposition

(4)  Let I be a set and let A, B, C' be many sorted sets indexed by I.
Suppose A is transformable to B. Let F' be a many sorted function from
Ainto B and let G be a many sorted function from B into C'. Then Go F
is a many sorted function from A into C.

Let I be a set and let A be a many sorted set indexed by [ I, I]. Then ~A

is a many sorted set indexed by [ I, I{.
We now state the proposition
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(5) Let I; be a set, and let I3 be a non empty set, and let f be a function
from I into Is, and let B, C' be many sorted sets indexed by Io, and let
G be a many sorted function from B into C. Then G - f is a many sorted
function from B - f into C - f.

Let I be a set, let A, B be many sorted sets indexed by [ I, I], and let F
be a many sorted function from A into B. Then ~F is a many sorted function
from ~A into ~B.

We now state the proposition

(6) Let I1, I be non empty sets, and let M be a many sorted set indexed

by [ I, Is ] and let 01 be an element of I, and let 0y be an element of I5.
Then (F~M)(02, 01) = M(o1, 02).

Let I; be a set and let f, g be many sorted functions of I; Then go f is a

many sorted function of I.

2. AN AUXILIARY NOTION

Let I, J be sets, let A be a many sorted set indexed by I, and let B be a
many sorted set indexed by .J. The predicate A C B is defined as follows:
(Def. 1) I C J and for arbitrary ¢ such that i € I holds A(i) C B(i).

One can prove the following four propositions:

(7)  For every set I and for every many sorted set A indexed by I holds
ACA.

(8) Let I, J be sets, and let A be a many sorted set indexed by I, and let
B be a many sorted set indexed by J. If A C B and B C A, then A = B.

(9) Let I, J, K be sets, and let A be a many sorted set indexed by I, and
let B be a many sorted set indexed by .J, and let C' be a many sorted set
indexed by K. If A C Band B C C, then A C C.

(10)  Let I be a set, and let A be a many sorted set indexed by I, and let B

be a many sorted set indexed by I. Then A C B if and only if A C B.

3. A BIT OF LAMBDA CALCULUS

In this article we present several logical schemes. The scheme OnSingletons
deals with a non empty set A, a unary functor F yielding arbitrary, and a unary
predicate P, and states that:

{{o, F(0)) : o ranges over elements of A, P[o]} is a function
for all values of the parameters.

The scheme DomOnSingletons deals with a non empty set A, a function B,
a unary functor F yielding arbitrary, and a unary predicate P, and states that:

dom B = {0 : o ranges over elements of A, P[o]}
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provided the following condition is satisfied:

e B={(o, F(0)) : o ranges over elements of A, P[o]}.

The scheme ValOnSingletons deals with a non empty set A, a function B, an
element C of A, a unary functor F yielding arbitrary, and a unary predicate P,
and states that:

B(C) = F(C)
provided the following requirements are met:
e B ={(o, F(0)) : o ranges over elements of A, P[o]},
e P[C].

4. MORE ON OLD CATEGORIES

The following propositions are true:
(11)  For every category C and for all objects i, j, k of C holds [ hom(j, k),
hom(, j) | € dom (the composition of C').
(12)  For every category C and for all objects i, j, k of C holds (the compo-
sition of C')°fhom(j, k), hom(4, j) | C hom(i, k).
Let C be a category structure. The functor HomSets¢ yields a many sorted
set indexed by [ the objects of C, the objects of C'] and is defined as follows:
(Def. 2)  For all objects 4, j of C holds HomSetsc (7, j) = hom(i, 7).
The following proposition is true
(13)  For every category C and for every object i of C holds id; € HomSets¢ (4,
i).

Let C be a category. The functor Composition yielding a binary composi-
tion of HomSets¢ is defined by:

(Def. 3)  For all objects 4, j, k of C holds Composition(i, j, k) = (the compo-
sition of C) | [ HomSetsc (4, k), HomSetsc (i, 7).
Next we state three propositions:

(14)  Let C be a category and let i, j, k be objects of C Suppose hom(z, j) # ()
and hom(j,k) # 0. Let f be a morphism from i to j and let g be a
morphism from j to k. Then Composition-(z, j, k)(g, f) =g f.

(15)  For every category C holds Composition, is associative.
16 For every category C holds Composition, has left units and right units.
( y category p c g

5. TRANSFORMING AN OLD CATEGORY INTO A NEW ONE

Let C' be a category. The functor Alter(C) yielding a strict non empty
category structure is defined as follows:

(Def. 4)  Alter(C) = (the objects of C', HomSets¢, Composition,).
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We now state three propositions:
(17)  For every category C holds Alter(C) is associative.
(18)  For every category C holds Alter(C') has units.
(19)  For every category C holds Alter(C) is transitive.

Let C be a category. Then Alter(C) is a strict category.

6. MORE ON NEW CATEGORIES

Let us note that there exists a graph which is non empty and strict.
Let C be a graph. We say that C is reflexive if and only if:

(Def. 5)  For arbitrary x such that = € the carrier of C holds (the arrows of C')(,
x) # 0.
Let C be a non empty graph. Let us observe that C is reflexive if and only
if:
(Def. 6)  For every object o of C holds (o, 0) # 0.
Let C be a non empty category structure. Observe that the carrier of C' is
non empty.
Let C be a non empty transitive category structure. Let us observe that C
is associative if and only if the condition (Def. 7) is satisfied.

(Def. 7)  Let o1, 02, 03, 04 be objects of C' and let f be a morphism from o4
to 09, and let g be a morphism from o9 to o3, and let h be a morphism
from o3 to o4. If (01,00) # 0 and (09,03) # 0 and (03,04) # 0, then
(h-g)-f=h-(g-[)

Let C be a non empty category structure. Let us observe that C' has units
if and only if the condition (Def. 8) is satisfied.

(Def. 8)  Let o be an object of C. Then
(i)  (o0,0) #0, and
(ii)  there exists a morphism 4 from o to o such that for every object o’ of
C' and for every morphism m’ from o' to o and for every morphism m”
from o to o’ holds if (0',0) # (), then i - m' = m’ and if (0,0’) # 0, then
m’ i =m".
Let us observe that every non empty category structure which has units is
reflexive.
One can check that there exists a graph which is non empty and reflexive.
One can verify that there exists a category structure which is non empty and
reflexive.
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7. THE EMPTY CATEGORY

The strict category structure ) oar is defined by:
(Def. 9)  The carrier of D car is empty.
Let us note that D car is empty.
Let us mention that there exists a category structure which is empty and
strict.
Next we state the proposition
(20)  For every empty strict category structure E holds F = (gar.

8. SUBCATEGORIES

Let C be a category structure. A category structure is said to be a substruc-
ture of C if it satisfies the conditions (Def. 10).

(Def. 10) (i)  The carrier of it C the carrier of C,
(ii)  the arrows of it C the arrows of C, and
(iii)  the composition of it C the composition of C.
In the sequel C, Cy, Cy, C3 denote category structures.
The following propositions are true:
(21)  C is a substructure of C'.

(22) If ¢y is a substructure of Cy and Cy is a substructure of C3, then C is
a substructure of Cj.

(23) Let C1, Cy be category structures. Suppose C is a substructure of Cy
and C5 is a substructure of C'y. Then the category structure of C'; = the
category structure of Cj.

Let C be a category structure. One can check that there exists a substructure
of C' which is strict.
Let C' be a non empty category structure and let o be an object of C. The

functor Ofo yielding a strict substructure of C' is defined by the conditions
(Def. 11).

(Def. 11) (i)  The carrier of OJo = {o},
(ii)  the arrows of OJo = [{0,0) — (0,0)], and
(ili)  the composition of O}o = (o, 0, 0)——(the composition of C)(o, o, 0).
In the sequel C denotes a non empty category structure and o denotes an
object of C.
One can prove the following proposition

(24)  For every object o' of Oo holds o' = o.

Let C be a non empty category structure and let o be an object of C. Observe
that OJo is transitive and non empty.
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Let C be a non empty category structure. One can verify that there exists a
substructure of C' which is transitive non empty and strict.
We now state the proposition

(25) Let C be a transitive non empty category structure and let D1, Do be
transitive non empty substructures of C'. Suppose the carrier of D1 C the
carrier of Dy and the arrows of Dy C the arrows of Dy. Then Dj is a
substructure of Ds.

Let C be a category structure and let D be a substructure of C. We say that
D is full if and only if:

(Def. 12)  The arrows of D = (the arrows of C') | [ the carrier of D, the carrier of
D.
Let C' be a non empty category structure with units and let D be a substruc-
ture of C. We say that D is id-inheriting if and only if:

(Def. 13)  For every object o of D and for every object o’ of C' such that o = o
holds idy € (o0, 0).

Let C be a category structure. One can verify that there exists a substructure
of C' which is full and strict.

Let C be a non empty category structure. Observe that there exists a sub-
structure of C which is full non empty and strict.

Let C' be a category and let o be an object of C'. Note that OJo is full and
id-inheriting.

Let C be a category. One can verify that there exists a substructure of C
which is full id-inheriting non empty and strict.

In the sequel C' is a non empty transitive category structure.

The following propositions are true:

(26) Let D be a substructure of C. Suppose the carrier of D = the carrier
of C' and the arrows of D = the arrows of C. Then the category structure
of D = the category structure of C.

(27)  Let Dy, D2 be non empty transitive substructures of C. Suppose the
carrier of D7 = the carrier of Dy and the arrows of D; = the arrows of
D5. Then the category structure of Dy = the category structure of Ds.

(28) Let D be a full substructure of C. Suppose the carrier of D = the
carrier of C'. Then the category structure of D = the category structure
of C.

(29) Let C be a non empty category structure, and let D be a full non empty
substructure of C, and let 01, 02 be objects of C' and let py, p2 be objects
of D If oy = p; and 09 = po, then (01,092) = (p1,p2).

(30)  For every non empty category structure C' and for every non empty
substructure D of C holds every object of D is an object of C.

Let C be a transitive non empty category structure. Note that every sub-
structure of C' which is full and non empty is also transitive.
The following propositions are true:
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(31) Let D1, Dy be full non empty substructures of C'. Suppose the carrier
of D; = the carrier of Dy. Then the category structure of D; = the
category structure of Ds.

(32) Let C be a non empty category structure, and let D be a non empty
substructure of C, and let 01, 02 be objects of C' and let py, p2 be objects
of D If oy = p; and 02 = po, then (p1,p2) C (01, 09).
(33) Let C be a non empty transitive category structure, and let D be a
non empty transitive substructure of C, and let py, p2, p3 be objects of
D Suppose (p1,p2) # 0 and (p2,p3) # 0. Let o1, 02, 03 be objects of C
Suppose 01 = p; and 09 = py and 03 = p3. Let f be a morphism from o1
to 02, and let g be a morphism from 05 to o3, and let f; be a morphism
from p; to po, and let g1 be a morphism from ps to ps. If f = f1 and
g=g1, theng-f=g1-fi
Let C be an associative transitive non empty category structure. Note that
every non empty substructure of C' which is transitive is also associative.
One can prove the following proposition

(34) Let C be a non empty category structure, and let D be a non empty
substructure of C, and let 01, 02 be objects of C and let p1, ps be objects
of D If 01 = p1 and 03 = py and (p1, p2) # 0, then every morphism from
p1 to po is a morphism from o7 to oo.

Let C be a transitive non empty category structure with units. Note that
every non empty substructure of C' which is id-inheriting and transitive has
units.

Let C be a category. Note that there exists a non empty substructure of C
which is id-inheriting and transitive.

Let C be a category. A subcategory of C is an id-inheriting transitive sub-
structure of C.

We now state the proposition

(35) Let C be a category, and let D be a non empty subcategory of C, and
let 0 be an object of D, and let o’ be an object of C. If 0o = ¢, then
id, = id, .
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