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Summary. In this paper definitions of many sorted closure system
and many sorted closure operator are introduced. These notations are
also introduced in [11], but in another meaning. In this article closure sys-
tem is absolutely multiplicative subset family of many sorted sets and in
[11] is many sorted absolutely multiplicative subset family of many sorted
sets. Analogously, closure operator is function between many sorted sets
and in [11] is many sorted function from a many sorted set into a many
sorted set.

MML Identifier: CLOSURE2.

The terminology and notation used in this paper are introduced in the following
papers: [21], [22], [7], [16], [23], [4], [5], [3], [8], [18], [6], [1], [20], [19], [2], [12],
[13], [14], [15], [17], [10], and [9].

1. Preliminaries

For simplicity we follow a convention: I will denote a set, i, x will be arbi-
trary, A, B, M will denote many sorted sets indexed by I, and f , f1 will denote
functions.

One can prove the following three propositions:

(1) For every non empty set M and for all elements X, Y of M such that
X ⊆ Y holds idM (X) ⊆ idM (Y ).

(2) If A ⊆ B, then A \ M ⊆ B.

(3) Let I be a non empty set, and let A be a many sorted set indexed by
I, and let B be a many sorted subset of A. Then rng B ⊆

⋃
rng(2A).
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One can check that every set which is empty is also functional.

One can verify that there exists a set which is empty and functional.

Let f , g be functions. Note that {f, g} is functional.

2. Set of Many Sorted Subsets of a Many Sorted Set

Let us consider I, M . The functor Bool(M) yields a set and is defined by:

(Def. 1) x ∈ Bool(M) iff x is a many sorted subset of M .

Let us consider I, M . One can verify that Bool(M) is non empty and func-
tional and has common domain.

Let us consider I, M .

(Def. 2) A subset of Bool(M) is called a family of many sorted subsets of M .

Let us consider I, M . Then Bool(M) is a family of many sorted subsets of
M .

Let us consider I, M . One can check that there exists a family of many sorted
subsets of M which is non empty and functional and has common domain.

Let us consider I, M . One can check that there exists a family of many
sorted subsets of M which is empty and finite.

In the sequel S1, S2 will denote families of many sorted subsets of M .

Let us consider I, M and let S be a non empty family of many sorted subsets
of M . We see that the element of S is a many sorted subset of M .

We now state several propositions:

(4) S1 ∪ S2 is a family of many sorted subsets of M .

(5) S1 ∩ S2 is a family of many sorted subsets of M .

(6) S1 \ x is a family of many sorted subsets of M .

(7) S1−
. S2 is a family of many sorted subsets of M .

(8) If A ⊆ M, then {A} is a family of many sorted subsets of M .

(9) If A ⊆ M and B ⊆ M, then {A,B} is a family of many sorted subsets
of M .

In the sequel E, T are elements of Bool(M).

One can prove the following four propositions:

(10) E ∩ T ∈ Bool(M).

(11) E ∪ T ∈ Bool(M).

(12) E \ A ∈ Bool(M).

(13) E−. T ∈ Bool(M).
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3. Many Sorted Operator corresponding to the Operator on

Many Sorted Subsets

Let S be a functional set. The functor |S| yielding a function is defined as
follows:

(Def. 3) (i) There exists a non empty functional set A such that A = S and
dom |S| =

⋂
{dom x : x ranges over elements of A} and for every i such

that i ∈ dom |S| holds |S|(i) = {x(i) : x ranges over elements of A} if
S 6= ∅,

(ii) |S| = ∅, otherwise.

Next we state the proposition

(14) For every non empty family S1 of many sorted subsets of M holds
dom |S1| = I.

Let S be an empty functional set. Observe that |S| is empty.
Let us consider I, M and let S be a family of many sorted subsets of M .

The functor |:S:| yielding a many sorted set indexed by I is defined as follows:

(Def. 4) (i) |:S:| = |S| if S 6= ∅,
(ii) |:S:| = ∅I , otherwise.

Let us consider I, M and let S be an empty family of many sorted subsets
of M . Note that |:S:| is empty yielding.

The following proposition is true

(15) If S1 is non empty, then for every i such that i ∈ I holds |:S1:|(i) =
{x(i) : x ranges over elements of Bool(M), x ∈ S1}.

Let us consider I, M and let S1 be a non empty family of many sorted subsets
of M . Note that |:S1:| is non-empty.

One can prove the following propositions:

(16) dom |{f}| = dom f.

(17) dom |{f, f1}| = dom f ∩ dom f1.

(18) If i ∈ dom f, then |{f}|(i) = {f(i)}.

(19) If i ∈ I and S1 = {f}, then |:S1:|(i) = {f(i)}.

(20) If i ∈ dom |{f, f1}|, then |{f, f1}|(i) = {f(i), f1(i)}.

(21) If i ∈ I and S1 = {f, f1}, then |:S1:|(i) = {f(i), f1(i)}.

Let us consider I, M , S1. Then |:S1:| is a subset family of M .
We now state several propositions:

(22) If A ∈ S1, then A ∈ |:S1:|.

(23) If S1 = {A,B}, then
⋃
|:S1:| = A ∪ B.

(24) If S1 = {E,T}, then
⋂
|:S1:| = E ∩ T.

(25) Let Z be a many sorted subset of M . Suppose that for every many
sorted set Z1 indexed by I such that Z1 ∈ S1 holds Z ⊆ Z1. Then Z ⊆
⋂
|:S1:|.

(26) |: Bool(M):| = 2M .
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Let us consider I, M and let I1 be a family of many sorted subsets of M .
We say that I1 is additive if and only if:

(Def. 5) For all A, B such that A ∈ I1 and B ∈ I1 holds A ∪ B ∈ I1.

We say that I1 is absolutely-additive if and only if:

(Def. 6) For every family F of many sorted subsets of M such that F ⊆ I1 holds
⋃
|:F :| ∈ I1.

We say that I1 is multiplicative if and only if:

(Def. 7) For all A, B such that A ∈ I1 and B ∈ I1 holds A ∩ B ∈ I1.

We say that I1 is absolutely-multiplicative if and only if:

(Def. 8) For every family F of many sorted subsets of M such that F ⊆ I1 holds
⋂
|:F :| ∈ I1.

We say that I1 is properly upper bound if and only if:

(Def. 9) M ∈ I1.

We say that I1 is properly lower bound if and only if:

(Def. 10) ∅I ∈ I1.

Let us consider I, M . Observe that there exists a family of many sorted
subsets of M which is non empty functional additive absolutely-additive mul-
tiplicative absolutely-multiplicative properly upper bound and properly lower
bound and has common domain.

Let us consider I, M . Then Bool(M) is an additive absolutely-additive
multiplicative absolutely-multiplicative properly upper bound properly lower
bound family of many sorted subsets of M .

Let us consider I, M . Observe that every family of many sorted subsets of
M which is absolutely-additive is also additive.

Let us consider I, M . One can verify that every family of many sorted
subsets of M which is absolutely-multiplicative is also multiplicative.

Let us consider I, M . One can check that every family of many sorted subsets
of M which is absolutely-multiplicative is also properly upper bound.

Let us consider I, M . One can check that every family of many sorted subsets
of M which is properly upper bound is also non empty.

Let us consider I, M . One can check that every family of many sorted subsets
of M which is absolutely-additive is also properly lower bound.

Let us consider I, M . Note that every family of many sorted subsets of M

which is properly lower bound is also non empty.

4. Properties of Closure Operators

Let us consider I, M .

(Def. 11) A function from Bool(M) into Bool(M) is called a set operation in M .

Let us consider I, M , let f be a set operation in M , and let x be an element
of Bool(M). Then f(x) is an element of Bool(M).
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Let us consider I, M and let I1 be a set operation in M . We say that I1 is
reflexive if and only if:

(Def. 12) For every element x of Bool(M) holds x ⊆ I1(x).

We say that I1 is monotonic if and only if:

(Def. 13) For all elements x, y of Bool(M) such that x ⊆ y holds I1(x) ⊆ I1(y).

We say that I1 is idempotent if and only if:

(Def. 14) For every element x of Bool(M) holds I1(x) = I1(I1(x)).

We say that I1 is topological if and only if:

(Def. 15) For all elements x, y of Bool(M) holds I1(x ∪ y) = I1(x) ∪ I1(y).

Let us consider I, M . Observe that there exists a set operation in M which
is reflexive monotonic idempotent and topological.

Next we state four propositions:

(27) idBool(A) is a reflexive set operation in A.

(28) idBool(A) is a monotonic set operation in A.

(29) idBool(A) is an idempotent set operation in A.

(30) idBool(A) is a topological set operation in A.

In the sequel g, h are set operations in M .

One can prove the following three propositions:

(31) If E = M and g is reflexive, then E = g(E).

(32) If g is reflexive and for every element X of Bool(M) holds g(X) ⊆ X,

then g is idempotent.

(33) For every element A of Bool(M) such that A = E ∩ T holds if g is
monotonic, then g(A) ⊆ g(E) ∩ g(T ).

Let us consider I, M . One can check that every set operation in M which is
topological is also monotonic.

Next we state the proposition

(34) For every element A of Bool(M) such that A = E \ T holds if g is
topological, then g(E) \ g(T ) ⊆ g(A).

Let us consider I, M , h, g. Then g · h is a set operation in M .

The following four propositions are true:

(35) If g is reflexive and h is reflexive, then g · h is reflexive.

(36) If g is monotonic and h is monotonic, then g · h is monotonic.

(37) If g is idempotent and h is idempotent and g · h = h · g, then g · h is
idempotent.

(38) If g is topological and h is topological, then g · h is topological.
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5. On the Closure Operator and the Closure System

In the sequel S will be a 1-sorted structure.
Let us consider S. We consider closure system structures over S as extensions

of many-sorted structure over S as systems
〈 sorts, a family 〉,

where the sorts constitute a many sorted set indexed by the carrier of S and the
family is a family of many sorted subsets of the sorts.

In the sequel M1 is a many-sorted structure over S.
Let us consider S and let I1 be a closure system structure over S. We say

that I1 is additive if and only if:

(Def. 16) The family of I1 is additive.

We say that I1 is absolutely-additive if and only if:

(Def. 17) The family of I1 is absolutely-additive.

We say that I1 is multiplicative if and only if:

(Def. 18) The family of I1 is multiplicative.

We say that I1 is absolutely-multiplicative if and only if:

(Def. 19) The family of I1 is absolutely-multiplicative.

We say that I1 is properly upper bound if and only if:

(Def. 20) The family of I1 is properly upper bound.

We say that I1 is properly lower bound if and only if:

(Def. 21) The family of I1 is properly lower bound.

Let us consider S, M1. The functor Full(M1) yielding a closure system
structure over S is defined as follows:

(Def. 22) Full(M1) = 〈the sorts of M1, Bool(the sorts of M1)〉.

Let us consider S, M1. Note that Full(M1) is strict additive absolutely-
additive multiplicative absolutely-multiplicative properly upper bound and
properly lower bound.

Let us consider S and let M1 be a non-empty many-sorted structure over S.
Observe that Full(M1) is non-empty.

Let us consider S. Note that there exists a closure system structure over S

which is strict non-empty additive absolutely-additive multiplicative absolutely-
multiplicative properly upper bound and properly lower bound.

Let us consider S and let C1 be an additive closure system structure over S.
Note that the family of C1 is additive.

Let us consider S and let C1 be an absolutely-additive closure system struc-
ture over S. Note that the family of C1 is absolutely-additive.

Let us consider S and let C1 be a multiplicative closure system structure
over S. Note that the family of C1 is multiplicative.

Let us consider S and let C1 be an absolutely-multiplicative closure system
structure over S. Note that the family of C1 is absolutely-multiplicative.
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Let us consider S and let C1 be a properly upper bound closure system
structure over S. One can verify that the family of C1 is properly upper bound.

Let us consider S and let C1 be a properly lower bound closure system
structure over S. Observe that the family of C1 is properly lower bound.

Let us consider S, let M be a non-empty many sorted set indexed by the
carrier of S, and let F be a family of many sorted subsets of M . Note that
〈M,F 〉 is non-empty.

Let us consider S, M1 and let F be an additive family of many sorted subsets
of the sorts of M1. Note that 〈the sorts of M1, F 〉 is additive.

Let us consider S, M1 and let F be an absolutely-additive family of many
sorted subsets of the sorts of M1. Note that 〈the sorts of M1, F 〉 is absolutely-
additive.

Let us consider S, M1 and let F be a multiplicative family of many sorted
subsets of the sorts of M1. Observe that 〈the sorts of M1, F 〉 is multiplicative.

Let us consider S, M1 and let F be an absolutely-multiplicative family of
many sorted subsets of the sorts of M1. One can check that 〈the sorts of M1,
F 〉 is absolutely-multiplicative.

Let us consider S, M1 and let F be a properly upper bound family of many
sorted subsets of the sorts of M1. Note that 〈the sorts of M1, F 〉 is properly
upper bound.

Let us consider S, M1 and let F be a properly lower bound family of many
sorted subsets of the sorts of M1. Note that 〈the sorts of M1, F 〉 is properly
lower bound.

Let us consider S. Observe that every closure system structure over S which
is absolutely-additive is also additive.

Let us consider S. Note that every closure system structure over S which is
absolutely-multiplicative is also multiplicative.

Let us consider S. Observe that every closure system structure over S which
is absolutely-multiplicative is also properly upper bound.

Let us consider S. One can check that every closure system structure over S

which is absolutely-additive is also properly lower bound.

Let us consider S. A closure system of S is an absolutely-multiplicative
closure system structure over S.

Let us consider I, M . A closure operator of M is a reflexive monotonic
idempotent set operation in M .

Next we state the proposition

(39) Let A be a many sorted set indexed by the carrier of S, and let f be
a reflexive monotonic set operation in A, and let D be a family of many
sorted subsets of A. Suppose D = {x : x ranges over elements of Bool(A),
f(x) = x}. Then 〈A,D〉 is a closure system of S.

Let us consider S, let A be a many sorted set indexed by the carrier of S, and
let g be a closure operator of A. The functor ClSys(g) yielding a strict closure
system of S is defined by:
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(Def. 23) The sorts of ClSys(g) = A and the family of ClSys(g) = {x : x ranges
over elements of Bool(A), g(x) = x}.

Let us consider S, let A be a closure system of S, and let C be a many sorted
subset of the sorts of A. The functor C yielding an element of Bool(the sorts of
A) is defined by the condition (Def. 24).

(Def. 24) There exists a family F of many sorted subsets of the sorts of A such
that C =

⋂
|:F :| and F = {X : X ranges over elements of Bool(the sorts

of A), C ⊆ X ∧ X ∈ the family of A}.

One can prove the following propositions:

(40) Let D be a closure system of S, and let a be an element of Bool(the
sorts of D), and let f be a set operation in the sorts of D. Suppose
a ∈ the family of D and for every element x of Bool(the sorts of D) holds
f(x) = x. Then f(a) = a.

(41) Let D be a closure system of S, and let a be an element of Bool(the
sorts of D), and let f be a set operation in the sorts of D. Suppose
f(a) = a and for every element x of Bool(the sorts of D) holds f(x) = x.

Then a ∈ the family of D.

(42) Let D be a closure system of S and let f be a set operation in the sorts
of D. Suppose that for every element x of Bool(the sorts of D) holds
f(x) = x. Then f is reflexive monotonic and idempotent.

Let us consider S and let D be a closure system of S. The functor ClOp(D)
yields a closure operator of the sorts of D and is defined by:

(Def. 25) For every element x of Bool(the sorts of D) holds (ClOp(D))(x) = x.

Next we state two propositions:

(43) For every many sorted set A indexed by the carrier of S and for every
closure operator f of A holds ClOp(ClSys(f)) = f.

(44) For every closure system D of S holds ClSys(ClOp(D)) = the closure
system structure of D.
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