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Summary. An attempt to define the concept of a functor covering
both cases (covariant and contravariant) resulted in a structure consist-
ing of two fields: the object map and the morphism map, the first one
mapping the Cartesian squares of the set of objects rather than the set of
objects. We start with an auxiliary notion of bifunction, i.e. a function
mapping the Cartesian square of a set A into the Cartesian square of a
set B. A bifunction f is said to be covariant if there is a function g from
A into B that f is the Cartesian square of g and f is contravariant if there
is a function g such that f(o1, o2) = 〈g(o2), g(o1)〉. The term transfor-
mation, another auxiliary notion, might be misleading. It is not related
to natural transformations. A transformation from a many sorted set A
indexed by I into a many sorted set B indexed by J w.r.t. a function f
from I into J is a (many sorted) function from A into B · f . Eventually,
the morphism map of a functor from C1 into C2 is a transformation from
the arrows of the category C1 into the composition of the object map of
the functor and the arrows of C2.

Several kinds of functor structures have been defined: one-to-one,
faithful, onto, full and id-preserving. We were pressed to split property
that the composition be preserved into two: comp-preserving (for covari-
ant functors) and comp-reversing (for contravariant functors). We defined
also some operation on functors, e.g. the composition, the inverse func-
tor. In the last section it is defined what is meant that two categories are
isomorphic (anti-isomorphic).

MML Identifier: FUNCTOR0.

The articles [15], [17], [6], [18], [16], [3], [4], [2], [10], [1], [5], [14], [9], [8], [13],
[7], [11], and [12] provide the terminology and notation for this paper.

1. Preliminaries

The scheme ValOnPair concerns a non empty set A, a function B, elements
C, D of A, a binary functor F yielding arbitrary, and a binary predicate P, and
states that:
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B(C, D) = F(C,D)

provided the following conditions are met:

• B = {〈〈〈〈o, o′〉〉, F(o, o′)〉〉 : o ranges over elements of A, o′ ranges over
elements of A, P[o, o′]},

• P[C,D].

One can prove the following propositions:

(1) For every set A holds ∅ is a function from A into ∅.

(2) For every set A and for every function f from A into ∅ holds f = ∅.

(3) For every set I and for every many sorted set M indexed by I holds
M · idI = M.

Let f be an empty function. Note that � f is empty. Let g be a function.
One can verify that [: f, g :] is empty and [: g, f :] is empty.

The following propositions are true:

(4) For every set A and for every function f holds f ◦(idA) = (� f)◦(idA).

(5) For all sets X, Y and for every function f from X into Y holds f is
onto iff [: f, f :] is onto.

Let I1 be a set and let f , g be many sorted functions of I1. Then g ◦ f is a
many sorted function of I1.

Let f be a function yielding function. One can verify that � f is function
yielding.

One can prove the following propositions:

(6) For all sets A, B and for arbitrary a holds � ([: A, B :] 7−→ a) = [: B,

A :] 7−→ a.

(7) For all functions f , g such that f is one-to-one and g is one-to-one holds
[: f, g :]−1 = [: f−1, g−1 :].

(8) For every function f such that [: f, f :] is one-to-one holds f is one-to-
one.

(9) For every function f such that f is one-to-one holds � f is one-to-one.

(10) For all functions f , g such that � [: f, g :] is one-to-one holds [: g, f :] is
one-to-one.

(11) For all functions f , g such that f is one-to-one and g is one-to-one holds
( � [: f, g :])−1 = � ([: g, f :]−1).

(12) For all sets A, B and for every function f from A into B such that f is
onto holds idB ⊆ [: f, f :]◦(idA).

(13) For all function yielding functions F , G and for every function f holds
(G ◦ F ) · f = (G · f) ◦ (F · f).

Let A, B, C be sets and let f be a function from [:A, B :] into C. Then � f

is a function from [:B, A :] into C.

Next we state two propositions:

(14) For all sets A, B, C and for every function f from [:A, B :] into C such
that � f is onto holds f is onto.
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(15) For every set A and for every non empty set B and for every function
f from A into B holds [: f, f :]◦(idA) ⊆ idB.

2. Functions Between Cartesian Squares

Let A, B be sets.

(Def. 1) A function from [:A, A :] into [: B, B :] is called a bifunction from A into
B.

Let A, B be sets and let f be a bifunction from A into B. We say that f is
precovariant if and only if:

(Def. 2) There exists a function g from A into B such that f = [: g, g :].

We say that f is precontravariant if and only if:

(Def. 3) There exists a function g from A into B such that f = � [: g, g :].

The following proposition is true

(16) Let A be a set, and let B be a non empty set, and let b be an element
of B, and let f be a bifunction from A into B. If f = [:A, A :] 7−→ 〈〈b, b〉〉,
then f is precovariant and precontravariant.

Let A, B be sets. Note that there exists a bifunction from A into B which
is precovariant and precontravariant.

Next we state the proposition

(17) Let A, B be non empty sets and let f be a precovariant precontravariant
bifunction from A into B. Then there exists an element b of B such that
f = [: A, A :] 7−→ 〈〈b, b〉〉.

3. Unary Transformations

Let I1, I2 be sets, let f be a function from I1 into I2, let A be a many sorted
set indexed by I1, and let B be a many sorted set indexed by I2. A many sorted
set indexed by I1 is called a f -transformation from A to B if:

(Def. 4) (i) There exists a non empty set I ′

2 and there exists a many sorted set
B′ indexed by I ′2 and there exists a function f ′ from I1 into I ′2 such that
f = f ′ and B = B′ and it is a many sorted function from A into B ′ · f ′ if
I2 6= ∅,

(ii) it = ∅(I1), otherwise.

Let I1 be a set, let I2 be a non empty set, let f be a function from I1 into I2,
let A be a many sorted set indexed by I1, and let B be a many sorted set indexed
by I2. Let us note that the f -transformation from A to B can be characterized
by the following (equivalent) condition:

(Def. 5) It is a many sorted function from A into B · f.
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Let I1, I2 be sets, let f be a function from I1 into I2, let A be a many sorted
set indexed by I1, and let B be a many sorted set indexed by I2. Note that
every f -transformation from A to B is function yielding.

We now state the proposition

(18) Let I1 be a set, and let I2, I3 be non empty sets, and let f be a function
from I1 into I2, and let g be a function from I2 into I3, and let B be a
many sorted set indexed by I2 and let C be a many sorted set indexed
by I3 and let G be a g-transformation from B to C. Then G · f is a
g · f -transformation from B · f to C.

Let I1 be a set, let I2 be a non empty set, let f be a function from I1 into
I2, let A be a many sorted set indexed by [: I1, I1 :], let B be a many sorted set
indexed by [: I2, I2 :], and let F be a [: f, f :]-transformation from A to B. Then
� F is a [: f, f :]-transformation from � A to � B.

One can prove the following two propositions:

(19) Let I1, I2 be non empty sets, and let A be a many sorted set indexed
by I1 and let B be a many sorted set indexed by I2 and let o be an
element of I2. Suppose B(o) 6= ∅. Let m be an element of B(o) and
let f be a function from I1 into I2. Suppose f = I1 7−→ o. Then {〈〈o′,
A(o′) 7−→ m〉〉 : o′ ranges over elements of I1} is a f -transformation from
A to B.

(20) Let I1 be a set, and let I2, I3 be non empty sets, and let f be a function
from I1 into I2, and let g be a function from I2 into I3, and let A be a
many sorted set indexed by I1 and let B be a many sorted set indexed
by I2 and let C be a many sorted set indexed by I3 and let F be a f -
transformation from A to B, and let G be a g ·f -transformation from B ·f
to C. Suppose that for arbitrary i1 such that i1 ∈ I1 and (B · f)(i1) = ∅
holds A(i1) = ∅ or (C · (g ·f))(i1) = ∅. Then G◦ (F qua function yielding
function) is a g · f -transformation from A to C.

4. Functors

Let C1, C2 be 1-sorted structures. We introduce bimap structures from C1

into C2 which are systems
〈 an object map 〉,

where the object map is a bifunction from the carrier of C1 into the carrier of
C2.

Let C1, C2 be non empty graphs, let F be a bimap structure from C1 into
C2, and let o be an object of C1. The functor F (o) yields an object of C2 and
is defined as follows:

(Def. 6) F (o) = (the object map of F )(o, o)1.

Let A, B be 1-sorted structures and let F be a bimap structure from A into
B. We say that F is one-to-one if and only if:
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(Def. 7) The object map of F is one-to-one.

We say that F is onto if and only if:

(Def. 8) The object map of F is onto.

We say that F is reflexive if and only if:

(Def. 9) (The object map of F )◦(id(the carrier of A)) ⊆ id(the carrier of B).

We say that F is coreflexive if and only if:

(Def. 10) id(the carrier of B) ⊆ (the object map of F )◦(id(the carrier of A)).

Let A, B be non empty graphs and let F be a bimap structure from A into
B. Let us observe that F is reflexive if and only if:

(Def. 11) For every object o of A holds (the object map of F )(o, o) = 〈〈F (o),
F (o)〉〉.

We now state the proposition

(21) Let A, B be reflexive non empty graphs and let F be a bimap structure
from A into B. Suppose F is coreflexive. Let o be an object of B. Then
there exists an object o′ of A such that F (o′) = o.

Let C1, C2 be non empty graphs and let F be a bimap structure from C1

into C2. We say that F is feasible if and only if:

(Def. 12) For all objects o1, o2 of C1 such that 〈o1, o2〉 6= ∅ holds (the arrows of
C2)((the object map of F )(o1, o2)) 6= ∅.

Let C1, C2 be graphs. We introduce functor structures from C1 to C2 which
are extensions of bimap structure from C1 into C2 and are systems

〈 an object map, a morphism map 〉,
where the object map is a bifunction from the carrier of C1 into the carrier of
C2 and the morphism map is a the object map-transformation from the arrows
of C1 to the arrows of C2.

Let C1, C2 be 1-sorted structures and let I4 be a bimap structure from C1

into C2. We say that I4 is precovariant if and only if:

(Def. 13) The object map of I4 is precovariant.

We say that I4 is precontravariant if and only if:

(Def. 14) The object map of I4 is precontravariant.

Let C1, C2 be graphs. One can verify that there exists a functor structure
from C1 to C2 which is precovariant and there exists a functor structure from
C1 to C2 which is precontravariant.

Let C1, C2 be graphs, let F be a functor structure from C1 to C2, and let
o1, o2 be objects of C1. The functor Morph-MapF (o1, o2) is defined as follows:

(Def. 15) Morph-MapF (o1, o2) = (the morphism map of F )(o1, o2).

Let C1, C2 be graphs, let F be a functor structure from C1 to C2, and let
o1, o2 be objects of C1. Observe that Morph-MapF (o1, o2) is relation-like and
function-like.

Let C1, C2 be non empty graphs, let F be a precovariant functor structure
from C1 to C2, and let o1, o2 be objects of C1. Then Morph-MapF (o1, o2) is a
function from 〈o1, o2〉 into 〈F (o1), F (o2)〉.
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Let C1, C2 be non empty graphs, let F be a precovariant functor structure
from C1 to C2, and let o1, o2 be objects of C1. Let us assume that 〈o1, o2〉 6= ∅
and 〈F (o1), F (o2)〉 6= ∅. Let m be a morphism from o1 to o2. The functor F (m)
yielding a morphism from F (o1) to F (o2) is defined as follows:

(Def. 16) F (m) = (Morph-MapF (o1, o2))(m).

Let C1, C2 be non empty graphs, let F be a precontravariant functor struc-
ture from C1 to C2, and let o1, o2 be objects of C1. Then Morph-MapF (o1, o2)
is a function from 〈o1, o2〉 into 〈F (o2), F (o1)〉.

Let C1, C2 be non empty graphs, let F be a precontravariant functor struc-
ture from C1 to C2, and let o1, o2 be objects of C1. Let us assume that
〈o1, o2〉 6= ∅ and 〈F (o2), F (o1)〉 6= ∅. Let m be a morphism from o1 to o2. The
functor F (m) yielding a morphism from F (o2) to F (o1) is defined as follows:

(Def. 17) F (m) = (Morph-MapF (o1, o2))(m).

Let C1, C2 be non empty graphs and let o be an object of C2. Let us assume
that 〈o, o〉 6= ∅. Let m be a morphism from o to o. The functor C1 7−→ m

yields a strict functor structure from C1 to C2 and is defined by the conditions
(Def. 18).

(Def. 18) (i) The object map of C1 7−→ m = [: the carrier of C1, the carrier of
C1 :] 7−→ 〈〈o, o〉〉, and

(ii) the morphism map of C1 7−→ m = {〈〈〈〈o1, o2〉〉, (〈o1, o2〉) 7−→ m〉〉 : o1

ranges over objects of C1, o2 ranges over objects of C1}.

We now state the proposition

(22) Let C1, C2 be non empty graphs and let o2 be an object of C2. Suppose
〈o2, o2〉 6= ∅. Let m be a morphism from o2 to o2 and let o1 be an object
of C1. Then (C1 7−→ m)(o1) = o2.

Let C1 be a non empty graph, let C2 be a non empty reflexive graph, let o

be an object of C2, and let m be a morphism from o to o. One can verify that
C1 7−→ m is precovariant precontravariant and feasible.

Let C1 be a non empty graph and let C2 be a non empty reflexive graph. One
can check that there exists a functor structure from C1 to C2 which is feasible
precovariant and precontravariant.

The following proposition is true

(23) Let C1, C2 be non empty graphs, and let F be a precovariant functor
structure from C1 to C2, and let o1, o2 be objects of C1 Then (the object
map of F )(o1, o2) = 〈〈F (o1), F (o2)〉〉.

Let C1, C2 be non empty graphs and let F be a precovariant functor structure
from C1 to C2. Let us observe that F is feasible if and only if:

(Def. 19) For all objects o1, o2 of C1 such that 〈o1, o2〉 6= ∅ holds 〈F (o1), F (o2)〉 6=
∅.

One can prove the following proposition

(24) Let C1, C2 be non empty graphs, and let F be a precontravariant functor
structure from C1 to C2, and let o1, o2 be objects of C1 Then (the object
map of F )(o1, o2) = 〈〈F (o2), F (o1)〉〉.
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Let C1, C2 be non empty graphs and let F be a precontravariant functor
structure from C1 to C2. Let us observe that F is feasible if and only if:

(Def. 20) For all objects o1, o2 of C1 such that 〈o1, o2〉 6= ∅ holds 〈F (o2), F (o1)〉 6=
∅.

Let C1, C2 be graphs and let F be a functor structure from C1 to C2. Observe
that the morphism map of F is function yielding.

Let us note that there exists a category structure which is non empty and
reflexive.

Let C1, C2 be non empty category structures with units and let F be a
functor structure from C1 to C2. We say that F is id-preserving if and only if:

(Def. 21) For every object o of C1 holds (Morph-MapF (o, o))(ido) = idF (o) .

We now state the proposition

(25) Let C1, C2 be non empty graphs and let o2 be an object of C2. Sup-
pose 〈o2, o2〉 6= ∅. Let m be a morphism from o2 to o2, and let o, o′ be
objects of C1 and let f be a morphism from o to o′. If 〈o, o′〉 6= ∅, then
(Morph-MapC1 7−→m(o, o′))(f) = m.

One can check that every non empty category structure which has units is
reflexive.

Let C1, C2 be non empty category structures with units and let o2 be an
object of C2. Note that C1 7−→ id(o2) is id-preserving.

Let C1 be a non empty graph, let C2 be a non empty reflexive graph, let
o2 be an object of C2, and let m be a morphism from o2 to o2. Observe that
C1 7−→ m is reflexive.

Let C1 be a non empty graph and let C2 be a non empty reflexive graph.
Observe that there exists a functor structure from C1 to C2 which is feasible
and reflexive.

Let C1, C2 be non empty category structures with units. Note that there
exists a functor structure from C1 to C2 which is id-preserving feasible reflexive
and strict.

Let C1, C2 be non empty category structures and let F be a functor structure
from C1 to C2. We say that F is comp-preserving if and only if the condition
(Def. 22) is satisfied.

(Def. 22) Let o1, o2, o3 be objects of C1 Suppose 〈o1, o2〉 6= ∅ and 〈o2, o3〉 6= ∅. Let
f be a morphism from o1 to o2 and let g be a morphism from o2 to o3.
Then there exists a morphism f ′ from F (o1) to F (o2) and there exists a
morphism g′ from F (o2) to F (o3) such that f ′ = (Morph-MapF (o1, o2))(f)
and g′ = (Morph-MapF (o2, o3))(g) and (Morph-MapF (o1, o3))(g · f) =
g′ · f ′.

Let C1, C2 be non empty category structures and let F be a functor structure
from C1 to C2. We say that F is comp-reversing if and only if the condition
(Def. 23) is satisfied.

(Def. 23) Let o1, o2, o3 be objects of C1 Suppose 〈o1, o2〉 6= ∅ and 〈o2, o3〉 6= ∅. Let
f be a morphism from o1 to o2 and let g be a morphism from o2 to o3.
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Then there exists a morphism f ′ from F (o2) to F (o1) and there exists a
morphism g′ from F (o3) to F (o2) such that f ′ = (Morph-MapF (o1, o2))(f)
and g′ = (Morph-MapF (o2, o3))(g) and (Morph-MapF (o1, o3))(g · f) =
f ′ · g′.

Let C1 be a non empty transitive category structure, let C2 be a non empty
reflexive category structure, and let F be a precovariant feasible functor struc-
ture from C1 to C2. Let us observe that F is comp-preserving if and only if the
condition (Def. 24) is satisfied.

(Def. 24) Let o1, o2, o3 be objects of C1 Suppose 〈o1, o2〉 6= ∅ and 〈o2, o3〉 6= ∅.
Let f be a morphism from o1 to o2 and let g be a morphism from o2 to
o3. Then F (g · f) = F (g) · F (f).

Let C1 be a non empty transitive category structure, let C2 be a non empty
reflexive category structure, and let F be a precontravariant feasible functor
structure from C1 to C2. Let us observe that F is comp-reversing if and only if
the condition (Def. 25) is satisfied.

(Def. 25) Let o1, o2, o3 be objects of C1 Suppose 〈o1, o2〉 6= ∅ and 〈o2, o3〉 6= ∅.
Let f be a morphism from o1 to o2 and let g be a morphism from o2 to
o3. Then F (g · f) = F (f) · F (g).

The following two propositions are true:

(26) Let C1 be a non empty graph, and let C2 be a non empty reflexive
graph, and let o2 be an object of C2, and let m be a morphism from o2

to o2, and let F be a precovariant feasible functor structure from C1 to
C2. Suppose F = C1 7−→ m. Let o, o′ be objects of C1 and let f be a
morphism from o to o′. If 〈o, o′〉 6= ∅, then F (f) = m.

(27) Let C1 be a non empty graph, and let C2 be a non empty reflexive
graph, and let o2 be an object of C2, and let m be a morphism from o2

to o2, and let o, o′ be objects of C1 and let f be a morphism from o to o′.
If 〈o, o′〉 6= ∅, then (C1 7−→ m)(f) = m.

Let C1 be a non empty transitive category structure, let C2 be a non empty
category structure with units, and let o be an object of C2. Note that C1 7−→ ido

is comp-preserving and comp-reversing.

Let C1 be a transitive non empty category structure with units and let C2

be a non empty category structure with units. A functor structure from C1 to
C2 is said to be a functor from C1 to C2 if:

(Def. 26) It is feasible and id-preserving but it is precovariant and comp-
preserving or it is precontravariant and comp-reversing.

Let C1 be a transitive non empty category structure with units, let C2 be a
non empty category structure with units, and let F be a functor from C1 to C2.
We say that F is covariant if and only if:

(Def. 27) F is precovariant and comp-preserving.

We say that F is contravariant if and only if:

(Def. 28) F is precontravariant and comp-reversing.
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Let A be a category structure and let B be a substructure of A. The functor
B

→֒
yields a strict functor structure from B to A and is defined by the conditions

(Def. 29).

(Def. 29) (i) The object map of B

→֒
= id[: the carrier of B, the carrier of B :], and

(ii) the morphism map of B

→֒
= id(the arrows of B).

Let A be a graph. The functor idA yielding a strict functor structure from
A to A is defined by the conditions (Def. 30).

(Def. 30) (i) The object map of idA = id[: the carrier of A, the carrier of A :], and
(ii) the morphism map of idA = id(the arrows of A).

Let A be a category structure and let B be a substructure of A. Note that
B

→֒
is precovariant.
One can prove the following propositions:

(28) Let A be a non empty category structure, and let B be a non empty

substructure of A, and let o be an object of B. Then ( B

→֒
)(o) = o.

(29) Let A be a non empty category structure, and let B be a non empty
substructure of A, and let o1, o2 be objects of B Then 〈o1, o2〉 ⊆

〈( B

→֒
)(o1), (

B

→֒
)(o2)〉.

Let A be a non empty category structure and let B be a non empty sub-
structure of A. Observe that B

→֒
is feasible.

Let A, B be graphs and let F be a functor structure from A to B. We say
that F is faithful if and only if:

(Def. 31) The morphism map of F is “1-1”.

Let A, B be graphs and let F be a functor structure from A to B. We say
that F is full if and only if the condition (Def. 32) is satisfied.

(Def. 32) There exists a many sorted set B ′ indexed by [: the carrier of A, the
carrier of A :] and there exists a many sorted function f from the arrows
of A into B′ such that B′ = (the arrows of B) · (the object map of F ) and
f = the morphism map of F and f is onto.

Let A be a graph, let B be a non empty graph, and let F be a functor
structure from A to B. Let us observe that F is full if and only if the condition
(Def. 33) is satisfied.

(Def. 33) There exists a many sorted function f from the arrows of A into (the
arrows of B) · (the object map of F ) such that f = the morphism map of
F and f is onto.

Let A, B be graphs and let F be a functor structure from A to B. We say
that F is injective if and only if:

(Def. 34) F is one-to-one and faithful.

We say that F is surjective if and only if:

(Def. 35) F is full and onto.

Let A, B be graphs and let F be a functor structure from A to B. We say
that F is bijective if and only if:

(Def. 36) F is injective and surjective.
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Let A, B be transitive non empty category structures with units. One can
check that there exists a functor from A to B which is strict covariant con-
travariant and feasible.

The following two propositions are true:

(30) For every non empty graph A and for every object o of A holds idA(o) =
o.

(31) Let A be a non empty graph and let o1, o2 be objects of A

If 〈o1, o2〉 6= ∅, then for every morphism m from o1 to o2 holds
(Morph-MapidA

(o1, o2))(m) = m.

Let A be a non empty graph. Note that idA is feasible and precovariant.
Let A be a non empty graph. Note that there exists a functor structure from

A to A which is precovariant and feasible.
One can prove the following proposition

(32) Let A be a non empty graph and let o1, o2 be objects of A Suppose
〈o1, o2〉 6= ∅. Let F be a precovariant feasible functor structure from A to
A. If F = idA, then for every morphism m from o1 to o2 holds F (m) = m.

Let A be a transitive non empty category structure with units. One can
check that idA is id-preserving and comp-preserving.

Let A be a transitive non empty category structure with units. Then idA is
a strict covariant functor from A to A.

Let A be a graph. One can verify that idA is bijective.

5. The Composition of Functors

Let C1 be a non empty graph, let C2, C3 be non empty reflexive graphs, let
F be a feasible functor structure from C1 to C2, and let G be a functor structure
from C2 to C3. The functor G · F yielding a strict functor structure from C1 to
C3 is defined by the conditions (Def. 37).

(Def. 37) (i) The object map of G · F = (the object map of G) · (the object map
of F ), and

(ii) the morphism map of G · F = ((the morphism map of G) · (the object
map of F )) ◦ (the morphism map of F ).

Let C1 be a non empty graph, let C2, C3 be non empty reflexive graphs, let
F be a precovariant feasible functor structure from C1 to C2, and let G be a
precovariant functor structure from C2 to C3. Observe that G·F is precovariant.

Let C1 be a non empty graph, let C2, C3 be non empty reflexive graphs,
let F be a precontravariant feasible functor structure from C1 to C2, and let
G be a precovariant functor structure from C2 to C3. Observe that G · F is
precontravariant.

Let C1 be a non empty graph, let C2, C3 be non empty reflexive graphs,
let F be a precovariant feasible functor structure from C1 to C2, and let G

be a precontravariant functor structure from C2 to C3. Observe that G · F is
precontravariant.



functors for alternative categories 605

Let C1 be a non empty graph, let C2, C3 be non empty reflexive graphs,
let F be a precontravariant feasible functor structure from C1 to C2, and let G

be a precontravariant functor structure from C2 to C3. Observe that G · F is
precovariant.

Let C1 be a non empty graph, let C2, C3 be non empty reflexive graphs, let
F be a feasible functor structure from C1 to C2, and let G be a feasible functor
structure from C2 to C3. Note that G · F is feasible.

The following three propositions are true:

(33) Let C1 be a non empty graph, and let C2, C3, C4 be non empty reflexive
graphs, and let F be a feasible functor structure from C1 to C2, and let
G be a feasible functor structure from C2 to C3, and let H be a functor
structure from C3 to C4. Then (H · G) · F = H · (G · F ).

(34) Let C1 be a non empty category structure, and let C2, C3 be non empty
reflexive category structures, and let F be a feasible reflexive functor
structure from C1 to C2, and let G be a functor structure from C2 to C3,
and let o be an object of C1. Then (G · F )(o) = G(F (o)).

(35) Let C1 be a non empty graph, and let C2, C3 be non empty reflexive
graphs, and let F be a feasible reflexive functor structure from C1 to
C2, and let G be a functor structure from C2 to C3, and let o be an
object of C1. Then Morph-MapG·F (o, o) = Morph-MapG(F (o), F (o)) ·
Morph-MapF (o, o).

Let C1, C2, C3 be non empty category structures with units, let F be an
id-preserving feasible reflexive functor structure from C1 to C2, and let G be an
id-preserving functor structure from C2 to C3. Note that G ·F is id-preserving.

Let A, C be non empty reflexive category structures, let B be a non empty
substructure of A, and let F be a functor structure from A to C. The functor
F

�
B yielding a functor structure from B to C is defined as follows:

(Def. 38) F
�
B = F · ( B

→֒
).

6. The Inverse Functor

Let A, B be non empty graphs and let F be a functor structure from A to
B. Let us assume that F is bijective. The functor F −1 yielding a strict functor
structure from B to A is defined by the conditions (Def. 39).

(Def. 39) (i) The object map of F−1 = (the object map of F )−1, and
(ii) there exists a many sorted function f from the arrows of A into (the

arrows of B) · (the object map of F ) such that f = the morphism map of
F and the morphism map of F−1 = f−1 · (the object map of F )−1.

One can prove the following propositions:

(36) Let A, B be transitive non empty category structures with units and
let F be a feasible functor structure from A to B. If F is bijective, then
F−1 is bijective and feasible.
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(37) Let A, B be transitive non empty category structures with units and
let F be a feasible reflexive functor structure from A to B If F is bijective
and coreflexive, then F−1 is reflexive.

(38) Let A, B be transitive non empty category structures with units and
let F be a feasible reflexive id-preserving functor structure from A to B

If F is bijective and coreflexive, then F−1 is id-preserving.

(39) Let A, B be transitive non empty category structures with units and
let F be a feasible functor structure from A to B If F is bijective and
precovariant, then F−1 is precovariant.

(40) Let A, B be transitive non empty category structures with units and
let F be a feasible functor structure from A to B If F is bijective and
precontravariant, then F−1 is precontravariant.

(41) Let A, B be transitive non empty category structures with units and
let F be a feasible reflexive functor structure from A to B Suppose
F is bijective coreflexive and precovariant. Let o1, o2 be objects of
B and let m be a morphism from o1 to o2. If 〈o1, o2〉 6= ∅, then
(Morph-MapF (F−1(o1), F

−1(o2)))((Morph-MapF−1(o1, o2))(m)) = m.

(42) Let A, B be transitive non empty category structures with units and
let F be a feasible reflexive functor structure from A to B Suppose
F is bijective coreflexive and precontravariant. Let o1, o2 be objects
of B and let m be a morphism from o1 to o2. If 〈o1, o2〉 6= ∅, then
(Morph-MapF (F−1(o2), F

−1(o1)))((Morph-MapF−1(o1, o2))(m)) = m.

(43) Let A, B be transitive non empty category structures with units and
let F be a feasible reflexive functor structure from A to B Suppose F

is bijective comp-preserving precovariant and coreflexive. Then F −1 is
comp-preserving.

(44) Let A, B be transitive non empty category structures with units and
let F be a feasible reflexive functor structure from A to B Suppose F is
bijective comp-reversing precontravariant and coreflexive. Then F −1 is
comp-reversing.

Let C1 be a 1-sorted structure and let C2 be a non empty 1-sorted structure.
One can verify that every bimap structure from C1 into C2 which is precovariant
is also reflexive.

Let C1 be a 1-sorted structure and let C2 be a non empty 1-sorted structure.
One can verify that every bimap structure from C1 into C2 which is precon-
travariant is also reflexive.

Next we state two propositions:

(45) Let C1, C2 be 1-sorted structures and let M be a bimap structure from
C1 into C2. If M is precovariant and onto, then M is coreflexive.

(46) Let C1, C2 be 1-sorted structures and let M be a bimap structure from
C1 into C2. If M is precontravariant and onto, then M is coreflexive.

Let C1 be a transitive non empty category structure with units and let C2

be a non empty category structure with units. Note that every functor from C1
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to C2 which is covariant is also reflexive.
Let C1 be a transitive non empty category structure with units and let C2 be

a non empty category structure with units. One can verify that every functor
from C1 to C2 which is contravariant is also reflexive.

The following propositions are true:

(47) Let C1 be a transitive non empty category structure with units, and let
C2 be a non empty category structure with units, and let F be a functor
from C1 to C2. If F is covariant and onto, then F is coreflexive.

(48) Let C1 be a transitive non empty category structure with units, and let
C2 be a non empty category structure with units, and let F be a functor
from C1 to C2. If F is contravariant and onto, then F is coreflexive.

(49) Let A, B be transitive non empty category structures with units and let
F be a covariant functor from A to B. Suppose F is bijective. Then there
exists a functor G from B to A such that G = F−1 and G is bijective and
covariant.

(50) Let A, B be transitive non empty category structures with units and
let F be a contravariant functor from A to B. Suppose F is bijective.
Then there exists a functor G from B to A such that G = F −1 and G is
bijective and contravariant.

Let A, B be transitive non empty category structures with units. We say
that A and B are isomorphic if and only if:

(Def. 40) There exists functor from A to B which is bijective and covariant.

Let us observe that this predicate is reflexive and symmetric. We say that A,
B are anti-isomorphic if and only if:

(Def. 41) There exists functor from A to B which is bijective and contravariant.

Let us note that the predicate introduced above is symmetric.
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‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received April 24, 1996


