Lattice of Congruences in Many Sorted Algebra

Robert Milewski Warsaw University Białystok

MML Identifier: MSUALG_5.

The articles [19], [21], [10], [22], [24], [7], [8], [23], [16], [5], [18], [17], [4], [13], [14], [25], [11], [2], [15], [3], [6], [20], [9], [12], and [1] provide the terminology and notation for this paper.

1. More on Equivalence Relations

For simplicity we adopt the following convention: I, X denote sets, M denotes a many sorted set indexed by I, R_1 denotes a binary relation on X, and E_1 , E_2 , E_3 denote equivalence relations of X.

We now state the proposition

 $(1) \quad (E_1 \sqcup E_2) \sqcup E_3 = E_1 \sqcup (E_2 \sqcup E_3).$

Let X be a set and let R be a binary relation on X. The functor EqCl(R) yielding an equivalence relation of X is defined as follows:

(Def. 1) $R \subseteq \text{EqCl}(R)$ and for every equivalence relation E_2 of X such that $R \subseteq E_2$ holds $\text{EqCl}(R) \subseteq E_2$.

One can prove the following propositions:

- (2) $E_1 \sqcup E_2 = \operatorname{EqCl}(E_1 \cup E_2).$
- $(3) \quad \text{EqCl}(E_1) = E_1.$
- (4) $\nabla_X \cup R_1 = \nabla_X.$

C 1996 Warsaw University - Białystok ISSN 1426-2630

2. Lattice of Equivalence Relations

Let X be a set. The functor EqRelLatt(X) yields a strict lattice and is defined by the conditions (Def. 2).

(Def. 2) (i) The carrier of EqRelLatt
$$(X) = \{x : x \text{ ranges over relations between } X \text{ and } X, x \text{ is an equivalence relation of } X\}$$
, and

(ii) for all equivalence relations x, y of X holds (the meet operation of EqRelLatt(X)) $(x, y) = x \cap y$ and (the join operation of EqRelLatt(X)) $(x, y) = x \sqcup y$.

3. MANY SORTED EQUIVALENCE RELATIONS

Let us consider I, M. Note that there exists a many sorted relation of M which is equivalence.

Let us consider I, M. An equivalence relation of M is an equivalence many sorted relation of M.

We adopt the following convention: I will denote a non empty set, M will denote a many sorted set indexed by I, and E_4 , E_1 , E_2 , E_3 will denote equivalence relations of M.

Let I be a non empty set, let M be a many sorted set indexed by I, and let R be a many sorted relation of M. The functor EqCl(R) yields an equivalence relation of M and is defined as follows:

(Def. 3) For every element *i* of *I* holds (EqCl(R))(i) = EqCl(R(i)).

The following proposition is true

(5) $\operatorname{EqCl}(E_4) = E_4.$

4. LATTICE OF MANY SORTED EQUIVALENCE RELATIONS

Let I be a non empty set, let M be a many sorted set indexed by I, and let E_1 , E_2 be equivalence relations of M. The functor $E_1 \sqcup E_2$ yielding an equivalence relation of M is defined as follows:

(Def. 4) There exists a many sorted relation E_3 of M such that $E_3 = E_1 \cup E_2$ and $E_1 \sqcup E_2 = \text{EqCl}(E_3)$.

Let us observe that the functor introduced above is commutative.

Next we state several propositions:

- $(6) \quad E_1 \cup E_2 \subseteq E_1 \sqcup E_2.$
- (7) For every equivalence relation E_4 of M such that $E_1 \cup E_2 \subseteq E_4$ holds $E_1 \sqcup E_2 \subseteq E_4$.

- (8) If $E_1 \cup E_2 \subseteq E_3$ and for every equivalence relation E_4 of M such that $E_1 \cup E_2 \subseteq E_4$ holds $E_3 \subseteq E_4$, then $E_3 = E_1 \sqcup E_2$.
- $(9) \quad E_4 \sqcup E_4 = E_4.$
- $(10) \quad (E_1 \sqcup E_2) \sqcup E_3 = E_1 \sqcup (E_2 \sqcup E_3).$
- (11) $E_1 \cap (E_1 \sqcup E_2) = E_1.$
- (12) For every equivalence relation E_4 of M such that $E_4 = E_1 \cap E_2$ holds $E_1 \sqcup E_4 = E_1$.
- (13) For all equivalence relations E_1 , E_2 of M holds $E_1 \cap E_2$ is an equivalence relation of M.

Let I be a non empty set and let M be a many sorted set indexed by I. The functor EqRelLatt(M) yielding a strict lattice is defined by the conditions (Def. 5).

- (Def. 5) (i) For arbitrary x holds $x \in$ the carrier of EqRelLatt(M) iff x is an equivalence relation of M, and
 - (ii) for all equivalence relations x, y of M holds (the meet operation of EqRelLatt(M)) $(x, y) = x \cap y$ and (the join operation of EqRelLatt(M)) $(x, y) = x \sqcup y$.

5. LATTICE OF CONGRUENCES IN MANY SORTED ALGEBRA

Let S be a non empty many sorted signature and let A be an algebra over S Note that every many sorted relation of A which is equivalence is also equivalence.

In the sequel S will denote a non void non empty many sorted signature and A will denote a non-empty algebra over S.

Next we state several propositions:

- (14) Let o be an operation symbol of S, and let C_1 , C_2 be congruences of A, and let x_1, y_1 be arbitrary, and let a_1, b_1 be finite sequences. Suppose $\langle x_1, y_1 \rangle \in C_1(\pi_{\text{len } a_1+1} \operatorname{Arity}(o)) \cup C_2(\pi_{\text{len } a_1+1} \operatorname{Arity}(o))$. Let x, y be elements of $\operatorname{Args}(o, A)$. Suppose $x = a_1 \cap \langle x_1 \rangle \cap b_1$ and $y = a_1 \cap \langle y_1 \rangle \cap b_1$. Then $\langle (\operatorname{Den}(o, A))(x), (\operatorname{Den}(o, A))(y) \rangle \in C_1$ (the result sort of $o) \cup C_2$ (the result sort of o).
- (15) Let o be an operation symbol of S, and let C_1 , C_2 be congruences of A, and let C be an equivalence many sorted relation of A. Suppose $C = C_1 \sqcup C_2$. Let x_1, y_1 be arbitrary, and let n be a natural number, and let a_1, a_2, b_1 be finite sequences. Suppose len $a_1 = n$ and len $a_1 = \text{len } a_2$ and for every natural number k such that $k \in \text{dom } a_1$ holds $\langle a_1(k), a_2(k) \rangle \in$ $C(\pi_k \operatorname{Arity}(o))$. Suppose $\langle (\operatorname{Den}(o, A))(a_1 \land \langle x_1 \rangle \land b_1), (\operatorname{Den}(o, A))(a_2 \land \langle x_1 \rangle \land$ $b_1) \rangle \in C$ (the result sort of o) and $\langle x_1, y_1 \rangle \in C(\pi_{n+1}\operatorname{Arity}(o))$. Let x be an element of $\operatorname{Args}(o, A)$. If $x = a_1 \land \langle x_1 \rangle \land b_1$, then $\langle (\operatorname{Den}(o, A))(x),$ $(\operatorname{Den}(o, A))(a_2 \land \langle y_1 \rangle \land b_1) \rangle \in C$ (the result sort of o).

- (16) Let o be an operation symbol of S, and let C_1 , C_2 be congruences of A, and let C be an equivalence many sorted relation of A. Suppose $C = C_1 \sqcup C_2$. Let x, y be elements of $\operatorname{Args}(o, A)$. Suppose that for every natural number n such that $n \in \operatorname{dom} x$ holds $\langle x(n), y(n) \rangle \in C(\pi_n \operatorname{Arity}(o))$. Then $\langle (\operatorname{Den}(o, A))(x), (\operatorname{Den}(o, A))(y) \rangle \in C(\operatorname{the result sort of } o)$.
- (17) For all congruences C_1 , C_2 of A holds $C_1 \sqcup C_2$ is a congruence of A.
- (18) For all congruences C_1 , C_2 of A holds $C_1 \cap C_2$ is a congruence of A.

Let us consider S and let A be a non-empty algebra over S. The functor CongrLatt(A) yielding a strict sublattice of EqRelLatt(the sorts of A) is defined by:

(Def. 6) For arbitrary x holds $x \in$ the carrier of CongrLatt(A) iff x is a congruence of A.

We now state four propositions:

- (19) $\operatorname{id}_{(\text{the sorts of }A)}$ is a congruence of A.
- (20) [[the sorts of A, the sorts of A]] is a congruence of A.
- (21) $\perp_{\text{CongrLatt}(A)} = \text{id}_{(\text{the sorts of } A)}.$
- (22) $\top_{\text{CongrLatt}(A)} = \llbracket \text{the sorts of } A, \text{ the sorts of } A \rrbracket.$

Let us consider S and let us consider A. One can check that CongrLatt(A) is bounded.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Formalized Mathematics, 5(1):47–54, 1996.
- [5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [11] Marek Chmur. The lattice of natural numbers and the sublattice of it. The set of prime numbers. *Formalized Mathematics*, 2(4):453–459, 1991.
- [12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [13] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathematics, 5(1):61–65, 1996.
- [14] Małgorzata Korolkiewicz. Many sorted quotient algebra. Formalized Mathematics, 5(1):79–84, 1996.
- [15] Beata Madras. Products of many sorted algebras. Formalized Mathematics, 5(1):55–60, 1996.

- [16] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441–444, 1990.
- [17] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
- [18] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [20] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [21] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
- [24] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85–89, 1990.
- [25] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215– 222, 1990.

Received January 11, 1996