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Summary. Equational theories of an algebra, i.e. the equivalence
relation closed under translations and endomorphisms, are formalized.
The correspondence between equational theories and term rewriting sys-
tems is discussed in the paper. We get as the main result that any pair
of elements of an algebra belongs to the equational theory generated by
a set A of axioms iff the elements are convertible w.r.t. term rewriting
reduction determined by A.

The theory is developed according to [24].
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The papers [20], [23], [9], [10], [1], [21], [25], [26], [17], [11], [3], [6], [7], [4], [8],
[2], [22], [14], [19], [15], [18], [12], [13], [16], and [5] provide the terminology and
notation for this paper.

1. Endomorphisms and translations

Let S be a non empty many sorted signature, let A be an algebra over S,
and let s be a sort symbol of S. An element of A, s is an element of (the sorts
of A)(s).

Let I be a set, let A be a many sorted set indexed by I, and let h1, h2 be
many sorted functions from A into A. Then h2 ◦ h1 is a many sorted function
from A into A.

The following two propositions are true:

(1) Let S be a non empty non void many sorted signature, and let A be an
algebra over S, and let o be an operation symbol of S, and let a be a set.
If a ∈ Args(o,A), then a is a function.
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(2) Let S be a non empty non void many sorted signature, and let A be
an algebra over S, and let o be an operation symbol of S, and let a be
a function. Suppose a ∈ Args(o,A). Then dom a = domArity(o) and for
every natural number i such that i ∈ domArity(o) holds a(i) ∈ (the sorts
of A)(πi Arity(o)).

Let S be a non empty non void many sorted signature and let A be an algebra
over S. We say that A is feasible if and only if:

(Def. 1) For every operation symbol o of S such that Args(o,A) 6= ∅ holds
Result(o,A) 6= ∅.

Next we state the proposition

(3) Let S be a non empty non void many sorted signature, and let o be an
operation symbol of S, and let A be an algebra over S. Then Args(o,A) 6=
∅ if and only if for every natural number i such that i ∈ dom Arity(o) holds
(the sorts of A)(πi Arity(o)) 6= ∅.

Let S be a non empty non void many sorted signature. One can check that
every algebra over S which is non-empty is also feasible.

Let S be a non empty non void many sorted signature. One can check that
there exists an algebra over S which is non-empty.

Let S be a non empty non void many sorted signature and let A be an algebra
over S. A many sorted function from A into A is called an endomorphism of A

if:

(Def. 2) It is a homomorphism of A into A.

In the sequel S is a non empty non void many sorted signature and A is an
algebra over S.

Next we state three propositions:

(4) id(the sorts of A) is an endomorphism of A.

(5) Let h1, h2 be many sorted functions from A into A, and let o be an
operation symbol of S, and let a be an element of Args(o,A). If a ∈
Args(o,A), then h2#(h1#a) = (h2 ◦ h1)#a.

(6) For all endomorphisms h1, h2 of A holds h2 ◦h1 is an endomorphism of
A.

Let S be a non empty non void many sorted signature, let A be an algebra
over S, and let h1, h2 be endomorphisms of A. Then h2 ◦h1 is an endomorphism
of A.

Let S be a non empty non void many sorted signature. The functor
TranslRel(S) is a binary relation on the carrier of S and is defined by the
condition (Def. 3).

(Def. 3) Let s1, s2 be sort symbols of S. Then 〈〈s1, s2〉〉 ∈ TranslRel(S) if and
only if there exists an operation symbol o of S such that the result sort
of o = s2 and there exists a natural number i such that i ∈ domArity(o)
and πi Arity(o) = s1.

We now state three propositions:



translations, endomorphisms, and stable . . . 555

(7) Let S be a non empty non void many sorted signature, and let o be an
operation symbol of S, and let A be an algebra over S, and let a be a
function. Suppose a ∈ Args(o,A). Let i be a natural number and let x be
an element of A, πi Arity(o). Then a +· (i, x) ∈ Args(o,A).

(8) Let A1, A2 be algebras over S, and let h be a many sorted func-
tion from A1 into A2, and let o be an operation symbol of S. Suppose
Args(o,A1) 6= ∅ and Args(o,A2) 6= ∅. Let i be a natural number. Sup-
pose i ∈ dom Arity(o). Let x be an element of A1, πi Arity(o). Then
h(πi Arity(o))(x) ∈ (the sorts of A2)(πi Arity(o)).

(9) Let S be a non empty non void many sorted signature, and let o be
an operation symbol of S, and let i be a natural number. Suppose
i ∈ dom Arity(o). Let A1, A2 be algebras over S, and let h be a many
sorted function from A1 into A2, and let a, b be elements of Args(o,A1).
Suppose a ∈ Args(o,A1) and h#a ∈ Args(o,A2). Let f , g1, g2 be func-
tions. Suppose f = a and g1 = h#a and g2 = h#b. Let x be an element
of A1, πi Arity(o). If b = f +· (i, x), then g2(i) = h(πi Arity(o))(x) and
h#b = g1 +· (i, g2(i)).

Let S be a non empty non void many sorted signature, let o be an operation
symbol of S, let i be a natural number, let A be an algebra over S, and let
a be a function. The functor oA

i (a,−) yields a function and is defined by the
conditions (Def. 4).

(Def. 4) (i) dom(oA
i (a,−)) = (the sorts of A)(πi Arity(o)), and

(ii) for every set x such that x ∈ (the sorts of A)(πi Arity(o)) holds
oA
i (a,−)(x) = (Den(o,A))(a +· (i, x)).

One can prove the following proposition

(10) Let S be a non empty non void many sorted signature, and let o be
an operation symbol of S, and let i be a natural number. Suppose i ∈
dom Arity(o). Let A be a feasible algebra over S and let a be a function.
Suppose a ∈ Args(o,A). Then oA

i
(a,−) is a function from (the sorts of

A)(πi Arity(o)) into (the sorts of A)(the result sort of o).

Let S be a non empty non void many sorted signature, let s1, s2 be sort
symbols of S, let A be an algebra over S, and let f be a function. We say that
f is an elementary translation in A from s1 into s2 if and only if the condition
(Def. 5) is satisfied.

(Def. 5) There exists an operation symbol o of S such that
(i) the result sort of o = s2, and
(ii) there exists a natural number i such that i ∈ dom Arity(o) and

πi Arity(o) = s1 and there exists a function a such that a ∈ Args(o,A)
and f = oA

i (a,−).

One can prove the following propositions:

(11) Let S be a non empty non void many sorted signature, and let s1, s2

be sort symbols of S, and let A be a feasible algebra over S, and let f be
a function. Suppose f is an elementary translation in A from s1 into s2.
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Then
(i) f is a function from (the sorts of A)(s1) into (the sorts of A)(s2),
(ii) (the sorts of A)(s1) 6= ∅, and
(iii) (the sorts of A)(s2) 6= ∅.

(12) Let S be a non empty non void many sorted signature, and let s1, s2

be sort symbols of S, and let A be an algebra over S, and let f be a
function. If f is an elementary translation in A from s1 into s2, then 〈〈s1,

s2〉〉 ∈ TranslRel(S).

(13) Let S be a non empty non void many sorted signature, and let s1, s2

be sort symbols of S, and let A be a non-empty algebra over S. If 〈〈s1,

s2〉〉 ∈ TranslRel(S), then there exists function which is an elementary
translation in A from s1 into s2.

(14) Let S be a non empty non void many sorted signature, and let A be
a feasible algebra over S, and let s1, s2 be sort symbols of S. Sup-
pose TranslRel(S) reduces s1 to s2. Let q be a reduction sequence w.r.t.
TranslRel(S) and let p be a function yielding finite sequence. Suppose
that

(i) len q = len p + 1,
(ii) s1 = q(1),
(iii) s2 = q(len q), and
(iv) for every natural number i and for every function f and for all sort

symbols s1, s2 of S such that i ∈ dom p and f = p(i) and s1 = q(i) and
s2 = q(i + 1) holds f is an elementary translation in A from s1 into s2.
Then

(v) compose(the sorts of A)(s1) p is a function from (the sorts of A)(s1) into
(the sorts of A)(s2), and

(vi) if p 6= ∅, then (the sorts of A)(s1) 6= ∅ and (the sorts of A)(s2) 6= ∅.

Let S be a non empty non void many sorted signature, let A be a non-
empty algebra over S, and let s1, s2 be sort symbols of S. Let us assume that
TranslRel(S) reduces s1 to s2. A function from (the sorts of A)(s1) into (the
sorts of A)(s2) is called a translation in A from s1 into s2 if it satisfies the
condition (Def. 6).

(Def. 6) There exists a reduction sequence q w.r.t. TranslRel(S) and there exists
a function yielding finite sequence p such that

(i) it = compose(the sorts of A)(s1) p,

(ii) len q = len p + 1,
(iii) s1 = q(1),
(iv) s2 = q(len q), and
(v) for every natural number i and for every function f and for all sort

symbols s1, s2 of S such that i ∈ dom p and f = p(i) and s1 = q(i) and
s2 = q(i + 1) holds f is an elementary translation in A from s1 into s2.

We now state the proposition

(15) Let S be a non empty non void many sorted signature, and let A be
a non-empty algebra over S, and let s1, s2 be sort symbols of S. Sup-
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pose TranslRel(S) reduces s1 to s2. Let q be a reduction sequence w.r.t.
TranslRel(S) and let p be a function yielding finite sequence. Suppose
that

(i) len q = len p + 1,
(ii) s1 = q(1),
(iii) s2 = q(len q), and
(iv) for every natural number i and for every function f and for all sort

symbols s1, s2 of S such that i ∈ dom p and f = p(i) and s1 = q(i) and
s2 = q(i + 1) holds f is an elementary translation in A from s1 into s2.
Then compose(the sorts of A)(s1) p is a translation in A from s1 into s2.

In the sequel A is a non-empty algebra over S.
The following propositions are true:

(16) For every sort symbol s of S holds id(the sorts of A)(s) is a translation in
A from s into s

(17) Let s1, s2 be sort symbols of S and let f be a function. Suppose f is an
elementary translation in A from s1 into s2. Then TranslRel(S) reduces
s1 to s2 and f is a translation in A from s1 into s2.

(18) Let s1, s2, s3 be sort symbols of S. Suppose TranslRel(S) reduces s1 to
s2 and TranslRel(S) reduces s2 to s3. Let t1 be a translation in A from
s1 into s2 and let t2 be a translation in A from s2 into s3. Then t2 · t1 is
a translation in A from s1 into s3.

(19) Let s1, s2, s3 be sort symbols of S. Suppose TranslRel(S) reduces s1

to s2. Let t be a translation in A from s1 into s2 and let f be a function.
Suppose f is an elementary translation in A from s2 into s3. Then f · t is
a translation in A from s1 into s3.

(20) Let s1, s2, s3 be sort symbols of S. Suppose TranslRel(S) reduces s2

to s3. Let f be a function. Suppose f is an elementary translation in A

from s1 into s2. Let t be a translation in A from s2 into s3. Then t · f is
a translation in A from s1 into s3

The scheme TranslationInd concerns a non empty non void many sorted
signature A, a non-empty algebra B over A, and a ternary predicate P, and
states that:

Let s1, s2 be sort symbols of A. Suppose TranslRel(A) reduces s1

to s2. Let t be a translation in B from s1 into s2. Then P[t, s1, s2]
provided the parameters meet the following requirements:

• For every sort symbol s of A holds P[id(the sorts of B)(s), s, s],
• Let s1, s2, s3 be sort symbols of A. Suppose TranslRel(A) reduces

s1 to s2. Let t be a translation in B from s1 into s2. Suppose
P[t, s1, s2]. Let f be a function. If f is an elementary translation
in B from s2 into s3, then P[f · t, s1, s3].

The following propositions are true:

(21) Let A1, A2 be non-empty algebras over S and let h be a many sorted
function from A1 into A2. Suppose h is a homomorphism of A1 into A2
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Let o be an operation symbol of S and let i be a natural number. Suppose
i ∈ dom Arity(o). Let a be an element of Args(o,A1). Then h(the result

sort of o) · oA1

i
(a,−) = oA2

i
(h#a,−) · h(πi Arity(o)).

(22) Let h be an endomorphism of A, and let o be an operation symbol
of S, and let i be a natural number. Suppose i ∈ dom Arity(o). Let a

be an element of Args(o,A). Then h(the result sort of o) · oA
i (a,−) =

oA
i (h#a,−) · h(πi Arity(o)).

(23) Let A1, A2 be non-empty algebras over S and let h be a many sorted
function from A1 into A2. Suppose h is a homomorphism of A1 into A2

Let s1, s2 be sort symbols of S and let t be a function. Suppose t is an
elementary translation in A1 from s1 into s2. Then there exists a function
T from (the sorts of A2)(s1) into (the sorts of A2)(s2) such that T is an
elementary translation in A2 from s1 into s2 and T · h(s1) = h(s2) · t.

(24) Let h be an endomorphism of A, and let s1, s2 be sort symbols of S,
and let t be a function. Suppose t is an elementary translation in A from
s1 into s2. Then there exists a function T from (the sorts of A)(s1) into
(the sorts of A)(s2) such that T is an elementary translation in A from
s1 into s2 and T · h(s1) = h(s2) · t.

(25) Let A1, A2 be non-empty algebras over S and let h be a many sorted
function from A1 into A2. Suppose h is a homomorphism of A1 into A2

Let s1, s2 be sort symbols of S. Suppose TranslRel(S) reduces s1 to s2.
Let t be a translation in A1 from s1 into s2. Then there exists a translation
T in A2 from s1 into s2 such that T · h(s1) = h(s2) · t.

(26) Let h be an endomorphism of A and let s1, s2 be sort symbols of S.
Suppose TranslRel(S) reduces s1 to s2. Let t be a translation in A from
s1 into s2. Then there exists a translation T in A from s1 into s2 such
that T · h(s1) = h(s2) · t.

2. Compatibility, invariantness, and stability

Let S be a non empty non void many sorted signature, let A be an algebra
over S, and let R be a many sorted relation of A. We say that R is compatible
if and only if the condition (Def. 7) is satisfied.

(Def. 7) Let o be an operation symbol of S and let a, b be functions. Sup-
pose a ∈ Args(o,A) and b ∈ Args(o,A) and for every natural number
n such that n ∈ dom Arity(o) holds 〈〈a(n), b(n)〉〉 ∈ R(πn Arity(o)). Then
〈〈(Den(o,A))(a), (Den(o,A))(b)〉〉 ∈ R(the result sort of o).

We say that R is invariant if and only if the condition (Def. 8) is satisfied.

(Def. 8) Let s1, s2 be sort symbols of S and let t be a function. Suppose t is
an elementary translation in A from s1 into s2. Let a, b be sets. If 〈〈a,

b〉〉 ∈ R(s1), then 〈〈t(a), t(b)〉〉 ∈ R(s2).

We say that R is stable if and only if the condition (Def. 9) is satisfied.
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(Def. 9) Let h be an endomorphism of A, and let s be a sort symbol of S, and
let a, b be sets. If 〈〈a, b〉〉 ∈ R(s), then 〈〈h(s)(a), h(s)(b)〉〉 ∈ R(s).

The following propositions are true:

(27) Let R be an equivalence many sorted relation of A. Then R is compat-
ible if and only if R is a congruence of A.

(28) Let R be a many sorted relation of A. Then R is invariant if and only
if for all sort symbols s1, s2 of S such that TranslRel(S) reduces s1 to s2

and for every translation f in A from s1 into s2 and for all sets a, b such
that 〈〈a, b〉〉 ∈ R(s1) holds 〈〈f(a), f(b)〉〉 ∈ R(s2).

Let S be a non empty non void many sorted signature and let A be a non-
empty algebra over S. Note that every equivalence many sorted relation of A

which is invariant is also compatible and every equivalence many sorted relation
of A which is compatible is also invariant.

Let X be a non empty set. Note that △X is non empty.
Now we present two schemes. The scheme MSRExistence deals with a non

empty set A, a non-empty many sorted set B indexed by A, and a ternary
predicate P, and states that:

There exists a many sorted relation R of B such that for every
element i of A and for all elements a, b of B(i) holds 〈〈a, b〉〉 ∈ R(i)
if and only if P[i, a, b]

for all values of the parameters.
The scheme MSRLambdaU deals with a set A, a many sorted set B indexed

by A, and a unary functor F yielding a set, and states that:
(i) There exists a many sorted relation R of B such that for every
set i such that i ∈ A holds R(i) = F(i), and
(ii) for all many sorted relations R1, R2 of B such that for every
set i such that i ∈ A holds R1(i) = F(i) and for every set i such
that i ∈ A holds R2(i) = F(i) holds R1 = R2

provided the parameters meet the following requirement:
• For every set i such that i ∈ A holds F(i) is a relation between

B(i) and B(i).
Let I be a set and let A be a many sorted set indexed by I. The functor △I

A

yielding a many sorted relation of A is defined by:

(Def. 10) For every set i such that i ∈ I holds (△I
A
)(i) = △A(i).

Let S be a non empty non void many sorted signature and let A be a non-
empty algebra over S. One can verify that every many sorted relation of A

which is equivalence is also non-empty.
Let S be a non empty non void many sorted signature and let A be a non-

empty algebra over S. Observe that there exists a many sorted relation of A

which is invariant stable and equivalence.



560 grzegorz bancerek

3. Invariant, stable, and invariant stable closure

In the sequel S will denote a non empty non void many sorted signature,
A will denote a non-empty algebra over S, and R will denote a many sorted
relation of the sorts of A.

The scheme MSRelCl concerns a non empty non void many sorted signature
A, a non-empty algebra B over A, many sorted relations Q, D of B, a unary
predicate Q, and a ternary predicate P, and states that:

Q[D] and Q ⊆ D and for every many sorted relation P of B such
that Q[P ] and Q ⊆ P holds D ⊆ P

provided the following requirements are met:
• Let R be a many sorted relation of B. Then Q[R] if and only if for

all sort symbols s1, s2 of A and for every function f from (the sorts
of B)(s1) into (the sorts of B)(s2) such that P[f, s1, s2] and for all
sets a, b such that 〈〈a, b〉〉 ∈ R(s1) holds 〈〈f(a), f(b)〉〉 ∈ R(s2),

• Let s1, s2, s3 be sort symbols of A, and let f1 be a function from
(the sorts of B)(s1) into (the sorts of B)(s2), and let f2 be a function
from (the sorts of B)(s2) into (the sorts of B)(s3). If P[f1, s1, s2]
and P[f2, s2, s3], then P[f2 · f1, s1, s3],

• For every sort symbol s of A holds P[id(the sorts of B)(s), s, s],
• Let s be a sort symbol of A and let a, b be element of B, s. Then

〈〈a, b〉〉 ∈ D(s) if and only if there exists a sort symbol s′ of A and
there exists a function f from (the sorts of B)(s′) into (the sorts of
B)(s) and there exist element x, y of B, s′ such that P[f, s′, s] and
〈〈x, y〉〉 ∈ Q(s′) and a = f(x) and b = f(y).

Let S be a non empty non void many sorted signature, let A be a non-empty
algebra over S, and let R be a many sorted relation of the sorts of A. The
functor InvCl(R) is an invariant many sorted relation of A and is defined as
follows:

(Def. 11) R ⊆ InvCl(R) and for every invariant many sorted relation Q of A such
that R ⊆ Q holds InvCl(R) ⊆ Q.

The following propositions are true:

(29) Let R be a many sorted relation of the sorts of A, and let s be a sort
symbol of S, and let a, b be element of A, s. Then 〈〈a, b〉〉 ∈ (InvCl(R))(s)
if and only if there exists a sort symbol s′ of S and there exist element
x, y of A, s′ and there exists a translation t in A from s′ into s such that
TranslRel(S) reduces s′ to s and 〈〈x, y〉〉 ∈ R(s′) and a = t(x) and b = t(y).

(30) For every stable many sorted relation R of A holds InvCl(R) is stable.

Let S be a non empty non void many sorted signature, let A be a non-empty
algebra over S, and let R be a many sorted relation of the sorts of A. The
functor StabCl(R) is a stable many sorted relation of A and is defined by:

(Def. 12) R ⊆ StabCl(R) and for every stable many sorted relation Q of A such
that R ⊆ Q holds StabCl(R) ⊆ Q.
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We now state two propositions:

(31) Let R be a many sorted relation of the sorts of A, and let s be a sort
symbol of S, and let a, b be element of A, s. Then 〈〈a, b〉〉 ∈ (StabCl(R))(s)
if and only if there exist element x, y of A, s and there exists an endomor-
phism h of A such that 〈〈x, y〉〉 ∈ R(s) and a = h(s)(x) and b = h(s)(y).

(32) InvCl(StabCl(R)) is stable.

Let S be a non empty non void many sorted signature, let A be a non-empty
algebra over S, and let R be a many sorted relation of the sorts of A. The
functor TRS(R) is an invariant stable many sorted relation of A and is defined
by:

(Def. 13) R ⊆ TRS(R) and for every invariant stable many sorted relation Q of
A such that R ⊆ Q holds TRS(R) ⊆ Q.

Let S be a non empty non void many sorted signature, let A be a non-empty
algebra over S, and let R be a non-empty many sorted relation of A. One can
check the following observations:

∗ InvCl(R) is non-empty,

∗ StabCl(R) is non-empty, and

∗ TRS(R) is non-empty.

We now state several propositions:

(33) For every invariant many sorted relation R of A holds InvCl(R) = R.

(34) For every stable many sorted relation R of A holds StabCl(R) = R.

(35) For every invariant stable many sorted relation R of A holds TRS(R) =
R.

(36) StabCl(R) ⊆ TRS(R) and InvCl(R) ⊆ TRS(R) and StabCl(InvCl(R)) ⊆
TRS(R).

(37) InvCl(StabCl(R)) = TRS(R).

(38) Let R be a many sorted relation of the sorts of A, and let s be a sort
symbol of S, and let a, b be element of A, s. Then 〈〈a, b〉〉 ∈ (TRS(R))(s)
if and only if there exists a sort symbol s′ of S such that TranslRel(S)
reduces s′ to s and there exist element l, r of A, s′ and there exists an
endomorphism h of A and there exists a translation t in A from s′ into s

such that 〈〈l, r〉〉 ∈ R(s′) and a = t(h(s′)(l)) and b = t(h(s′)(r)).

4. Equational theory

One can prove the following propositions:

(39) Let A be a set and let R, E be binary relations on A. Suppose that for
all sets a, b such that a ∈ A and b ∈ A holds 〈〈a, b〉〉 ∈ E iff a and b are
convertible w.r.t. R. Then E is equivalence relation-like.
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(40) Let A be a set, and let R be a binary relation on A, and let E be an
equivalence relation of A. Suppose R ⊆ E. Let a, b be sets. If a ∈ A and
b ∈ A and a and b are convertible w.r.t. R, then 〈〈a, b〉〉 ∈ E.

(41) Let A be a non empty set, and let R be a binary relation on A, and let
a, b be elements of A. Then 〈〈a, b〉〉 ∈ EqCl(R) if and only if a and b are
convertible w.r.t. R.

(42) Let S be a non empty set, and let A be a non-empty many sorted set
indexed by S and let R be a many sorted relation of A, and let s be an
element of S, and let a, b be elements of A(s). Then 〈〈a, b〉〉 ∈ (EqCl(R))(s)
if and only if a and b are convertible w.r.t. R(s).

Let S be a non empty non void many sorted signature and let A be a non-
empty algebra over S. An equational theory of A is a stable invariant equivalence
many sorted relation of A. Let R be a many sorted relation of A. The func-
tor EqCl(R,A) yielding an equivalence many sorted relation of A is defined as
follows:

(Def. 14) EqCl(R,A) = EqCl(R).

We now state four propositions:

(43) For every many sorted relation R of A holds R ⊆ EqCl(R,A).

(44) Let R be a many sorted relation of A and let E be an equivalence many
sorted relation of A. If R ⊆ E, then EqCl(R,A) ⊆ E.

(45) Let R be a stable many sorted relation of A, and let s be a sort symbol
of S, and let a, b be element of A, s. Suppose a and b are convertible
w.r.t. R(s). Let h be an endomorphism of A. Then h(s)(a) and h(s)(b)
are convertible w.r.t. R(s).

(46) For every stable many sorted relation R of A holds EqCl(R,A) is stable.

Let us consider S, A and let R be a stable many sorted relation of A. Note
that EqCl(R,A) is stable.

We now state two propositions:

(47) Let R be an invariant many sorted relation of A, and let s1, s2 be sort
symbols of S, and let a, b be element of A, s1. Suppose a and b are
convertible w.r.t. R(s1). Let t be a function. Suppose t is an elementary
translation in A from s1 into s2. Then t(a) and t(b) are convertible w.r.t.
R(s2).

(48) For every invariant many sorted relation R of A holds EqCl(R,A) is
invariant.

Let us consider S, A and let R be an invariant many sorted relation of A.
One can check that EqCl(R,A) is invariant.

Next we state three propositions:

(49) Let S be a non empty set, and let A be a non-empty many sorted
set indexed by S, and let R, E be many sorted relations of A. Suppose
that for every element s of S and for all elements a, b of A(s) holds 〈〈a,

b〉〉 ∈ E(s) iff a and b are convertible w.r.t. R(s). Then E is equivalence.
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(50) Let R, E be many sorted relations of A. Suppose that for every sort
symbol s of S and for all element a, b of A, s holds 〈〈a, b〉〉 ∈ E(s) iff a and
b are convertible w.r.t. (TRS(R))(s). Then E is an equational theory of
A.

(51) Let S be a non empty set, and let A be a non-empty many sorted set
indexed by S and let R be a many sorted relation of A, and let E be
an equivalence many sorted relation of A. Suppose R ⊆ E. Let s be an
element of S and let a, b be elements of A(s). If a and b are convertible
w.r.t. R(s), then 〈〈a, b〉〉 ∈ E(s).

Let S be a non empty non void many sorted signature, let A be a non-empty
algebra over S, and let R be a many sorted relation of the sorts of A. The
functor EqTh(R) is an equational theory of A and is defined by:

(Def. 15) R ⊆ EqTh(R) and for every equational theory Q of A such that R ⊆ Q

holds EqTh(R) ⊆ Q.

Next we state three propositions:

(52) For every many sorted relation R of A holds EqCl(R,A) ⊆ EqTh(R)
and InvCl(R) ⊆ EqTh(R) and StabCl(R) ⊆ EqTh(R) and TRS(R) ⊆
EqTh(R).

(53) Let R be a many sorted relation of A, and let s be a sort symbol of S,
and let a, b be element of A, s. Then 〈〈a, b〉〉 ∈ (EqTh(R))(s) if and only
if a and b are convertible w.r.t. (TRS(R))(s).

(54) For every many sorted relation R of A holds EqTh(R) =
EqCl(TRS(R), A).

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-
ematics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[3] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469–478, 1996.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[5] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formal-

ized Mathematics, 5(4):485–492, 1996.
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