
FORMALIZED MATHEMATICS

Volume 5, Number 4, 1996

Warsaw University - Bia lystok

An Extension of SCM

Andrzej Trybulec

Warsaw University

Bia lystok

Yatsuka Nakamura

Shinshu University

Nagano

Piotr Rudnicki

University of Alberta

Edmonton

MML Identifier: SCMFSA 1.

The articles [19], [25], [9], [20], [11], [14], [2], [18], [26], [6], [7], [17], [16], [22],
[3], [8], [10], [23], [1], [15], [5], [24], [12], [13], [21], and [4] provide the notation
and terminology for this paper.

In this paper x will be arbitrary and k will denote a natural number.
The subset Data-LocSCMFSA

of � is defined as follows:

(Def. 1) Data-LocSCMFSA
= Data-LocSCM.

The subset Data∗-LocSCMFSA
of � is defined as follows:

(Def. 2) Data∗-LocSCMFSA
= � \ � .

The subset Instr-LocSCMFSA
of � is defined as follows:

(Def. 3) Instr-LocSCMFSA
= Instr-LocSCM.

One can check the following observations:

∗ Data∗-LocSCMFSA
is non empty,

∗ Data-LocSCMFSA
is non empty, and

∗ Instr-LocSCMFSA
is non empty.

For simplicity we adopt the following convention: J , K are elements of � 13,
a is an element of Instr-LocSCMFSA

, b, c, c1 are elements of Data-LocSCMFSA
,

and f , f1 are elements of Data∗-LocSCMFSA
.

The subset InstrSCMFSA
of [: � 13, (

⋃
{ � , � ∗} ∪ �)∗:] is defined by:

(Def. 4) InstrSCMFSA
= InstrSCM ∪ {〈〈J, 〈c, f, b〉〉〉 : J ∈ {9, 10}} ∪ {〈〈K, 〈c1, f1〉〉〉 :

K ∈ {11, 12}}.

The following two propositions are true:

(1) InstrSCMFSA
= InstrSCM ∪ {〈〈J, 〈c, f, b〉〉〉 : J ∈ {9, 10}} ∪ {〈〈K, 〈c1, f1〉〉〉 :

K ∈ {11, 12}}.

(2) InstrSCM ⊆ InstrSCMFSA
.

507
c© 1996 Warsaw University - Bia lystok

ISSN 1426–2630

508 andrzej trybulec et al.

Let us observe that InstrSCMFSA
is non empty.

Let I be an element of InstrSCMFSA
. The functor InsCode(I) yielding a

natural number is defined by:

(Def. 5) InsCode(I) = I1.

The following two propositions are true:

(3) For every element I of InstrSCMFSA
such that InsCode(I) ≤ 8 holds

I ∈ InstrSCM.

(4) 〈〈0, ε〉〉 ∈ InstrSCMFSA
.

The function OKSCMFSA
from � into { � , � ∗}∪{InstrSCMFSA

, Instr-LocSCMFSA
}

is defined by:

(Def. 6) OKSCMFSA
= (� 7−→ � ∗)+·OKSCM+·(InstrSCM 7−→. InstrSCMFSA

) ·
(OKSCM

�
Instr-LocSCM).

One can prove the following propositions:

(5) OKSCMFSA
= (� 7−→ � ∗)+·OKSCM+·(InstrSCM 7−→. InstrSCMFSA

) ·
(OKSCM

�
Instr-LocSCM).

(6) If x ∈ {9, 10}, then 〈〈x, 〈c, f, b〉〉〉 ∈ InstrSCMFSA
.

(7) If x ∈ {11, 12}, then 〈〈x, 〈c, f〉〉〉 ∈ InstrSCMFSA
.

(8) � = {0} ∪ Data-LocSCMFSA
∪ Data∗-LocSCMFSA

∪ Instr-LocSCMFSA
.

(9) OKSCMFSA
(0) = Instr-LocSCMFSA

.

(10) OKSCMFSA
(b) = � .

(11) OKSCMFSA
(a) = InstrSCMFSA

.

(12) OKSCMFSA
(f) = � ∗.

(13) Instr-LocSCMFSA
6= � and InstrSCMFSA

6= � and Instr-LocSCMFSA
6=

InstrSCMFSA
and Instr-LocSCMFSA

6= � ∗ and InstrSCMFSA
6= � ∗.

(14) For every integer i such that OKSCMFSA
(i) = Instr-LocSCMFSA

holds
i = 0.

(15) For every integer i such that OKSCMFSA
(i) = � holds i ∈

Data-LocSCMFSA
.

(16) For every integer i such that OKSCMFSA
(i) = InstrSCMFSA

holds i ∈
Instr-LocSCMFSA

.

(17) For every integer i such that OKSCMFSA
(i) = � ∗ holds i ∈

Data∗-LocSCMFSA
.

An SCMFSA-state is an element of
∏

(OKSCMFSA
).

Next we state two propositions:

(18) For every SCMFSA-state s and for every element I of InstrSCM holds
s

�
� +·(Instr-LocSCM 7−→ I) is a state SCM .

(19) For every SCMFSA-state s and for every state SCM s′ holds s+·s′+·s
�

Instr-LocSCMFSA
is an SCMFSA-state.

In the sequel s is an SCMFSA-state.
Let s be an SCMFSA-state and let u be an element of Instr-LocSCMFSA

. The
functor ChgSCMFSA

(s, u) yields an SCMFSA-state and is defined as follows:

an extension of SCM 509

(Def. 7) ChgSCMFSA
(s, u) = s+·(07−→. u).

Let s be an SCMFSA-state, let t be an element of Data-LocSCMFSA
, and let

u be an integer. The functor ChgSCMFSA
(s, t, u) yielding an SCMFSA-state is

defined as follows:

(Def. 8) ChgSCMFSA
(s, t, u) = s+·(t 7−→. u).

Let s be an SCMFSA-state, let t be an element of Data∗-LocSCMFSA
, and let

u be a finite sequence of elements of � The functor ChgSCMFSA
(s, t, u) yielding

an SCMFSA-state is defined as follows:

(Def. 9) ChgSCMFSA
(s, t, u) = s+·(t 7−→. u).

Let s be an SCMFSA-state and let a be an element of Data-LocSCMFSA
. Then

s(a) is an integer.
Let s be an SCMFSA-state and let a be an element of Data∗-LocSCMFSA

.
Then s(a) is a finite sequence of elements of � .

Let x be an element of InstrSCMFSA
. Let us assume that there exist c, f , b,

J such that x = 〈〈J, 〈c, f, b〉〉〉. The functor x int-addr1 yielding an element of
Data-LocSCMFSA

is defined by:

(Def. 10) There exist c, f , b such that 〈c, f, b〉 = x2 and x int-addr1 = c.

The functor x int-addr2 yielding an element of Data-LocSCMFSA
is defined as

follows:

(Def. 11) There exist c, f , b such that 〈c, f, b〉 = x2 and x int-addr2 = b.

The functor x coll-addr1 yields an element of Data∗-LocSCMFSA
and is defined

as follows:

(Def. 12) There exist c, f , b such that 〈c, f, b〉 = x2 and x coll-addr1 = f.

Let x be an element of InstrSCMFSA
. Let us assume that there exist c, f ,

J such that x = 〈〈J, 〈c, f〉〉〉. The functor x int-addr3 yielding an element of
Data-LocSCMFSA

is defined as follows:

(Def. 13) There exist c, f such that 〈c, f〉 = x2 and x int-addr3 = c.

The functor x coll-addr2 yields an element of Data∗-LocSCMFSA
and is defined

as follows:

(Def. 14) There exist c, f such that 〈c, f〉 = x2 and x coll-addr2 = f.

Let l be an element of Instr-LocSCMFSA
. The functor Next(l) yielding an

element of Instr-LocSCMFSA
is defined as follows:

(Def. 15) There exists an element L of Instr-LocSCM such that L = l and
Next(l) = Next(L).

Let s be an SCMFSA-state. The functor ICs yielding an element of
Instr-LocSCMFSA

is defined by:

(Def. 16) ICs = s(0).

Let x be an element of InstrSCMFSA
and let s be an SCMFSA-state. The

functor Exec-ResSCMFSA
(x, s) yielding an SCMFSA-state is defined by:

(Def. 17) (i) There exists an element x′ of InstrSCM and there exists a state SCM

s′ such that x = x′ and s′ = s
�

� +·(Instr-LocSCM 7−→ x′) and

510 andrzej trybulec et al.

Exec-ResSCMFSA
(x, s) = s+·Exec-ResSCM(x′, s′)+·s

�
Instr-LocSCMFSA

if
InsCode(x) ≤ 8,

(ii) there exists an integer i and there exists k such that k =
|s(x int-addr2)| and i = πks(x coll-addr1) and Exec-ResSCMFSA

(x, s) =
ChgSCMFSA

(ChgSCMFSA
(s, x int-addr1, i),Next(ICs)) if InsCode(x) = 9,

(iii) there exists a finite sequence f of elements of � and
there exists k such that k = |s(x int-addr2)| and f =
s(x coll-addr1) +· (k, s(x int-addr1)) and Exec-ResSCMFSA

(x, s) =
ChgSCMFSA

(ChgSCMFSA
(s, x coll-addr1, f),Next(ICs)) if InsCode(x) =

10,
(iv) Exec-ResSCMFSA

(x, s) = ChgSCMFSA
(ChgSCMFSA

(s, x int-addr3,
len s(x coll-addr2)),Next(ICs)) if InsCode(x) = 11,

(v) there exists a finite sequence f of elements of � and there exists k such
that k = |s(x int-addr3)| and f = k 7→ 0 and Exec-ResSCMFSA

(x, s) =
ChgSCMFSA

(ChgSCMFSA
(s, x coll-addr2, f),Next(ICs)) if InsCode(x) =

12,
(vi) Exec-ResSCMFSA

(x, s) = s, otherwise.

The function ExecSCMFSA
from InstrSCMFSA

into (
∏

(OKSCMFSA
))

∏
(OKSCMFSA

)

is defined by:

(Def. 18) For every element x of InstrSCMFSA
and for every SCMFSA-state y

holds (ExecSCMFSA
(x) qua element of (

∏
(OKSCMFSA

))
∏

(OKSCMFSA
))(y) =

Exec-ResSCMFSA
(x, y).

One can prove the following propositions:

(20) For every SCMFSA-state s and for every element u of Instr-LocSCMFSA

holds (ChgSCMFSA
(s, u))(0) = u.

(21) For every SCMFSA-state s and for every element u of Instr-LocSCMFSA

and for every element m1 of Data-LocSCMFSA
holds (ChgSCMFSA

(s, u))(m1) =
s(m1).

(22) For every SCMFSA-state s and for every element u of Instr-LocSCMFSA

and for every element p of Data∗-LocSCMFSA
holds (ChgSCMFSA

(s, u))(p) =
s(p).

(23) For every SCMFSA-state s and for all elements u, v of Instr-LocSCMFSA

holds (ChgSCMFSA
(s, u))(v) = s(v).

(24) For every SCMFSA-state s and for every element t of Data-LocSCMFSA

and for every integer u holds (ChgSCMFSA
(s, t, u))(0) = s(0).

(25) For every SCMFSA-state s and for every element t of Data-LocSCMFSA

and for every integer u holds (ChgSCMFSA
(s, t, u))(t) = u.

(26) Let s be an SCMFSA-state, and let t be an element of Data-LocSCMFSA
,

and let u be an integer, and let m1 be an element of Data-LocSCMFSA
. If

m1 6= t, then (ChgSCMFSA
(s, t, u))(m1) = s(m1).

(27) Let s be an SCMFSA-state, and let t be an element of Data-LocSCMFSA
,

and let u be an integer, and let f be an element of Data∗-LocSCMFSA
. Then

(ChgSCMFSA
(s, t, u))(f) = s(f).

an extension of SCM 511

(28) Let s be an SCMFSA-state, and let t be an element of Data-LocSCMFSA
,

and let u be an integer, and let v be an element of Instr-LocSCMFSA
. Then

(ChgSCMFSA
(s, t, u))(v) = s(v).

(29) Let s be an SCMFSA-state, and let t be an element of
Data∗-LocSCMFSA

, and let u be a finite sequence of elements of � . Then
(ChgSCMFSA

(s, t, u))(t) = u.

(30) Let s be an SCMFSA-state, and let t be an element of Data∗-LocSCMFSA
,

and let u be a finite sequence of elements of � , and let m1 be an element
of Data∗-LocSCMFSA

. If m1 6= t, then (ChgSCMFSA
(s, t, u))(m1) = s(m1).

(31) Let s be an SCMFSA-state, and let t be an element of Data∗-LocSCMFSA
,

and let u be a finite sequence of elements of � , and let a be an element of
Data-LocSCMFSA

. Then (ChgSCMFSA
(s, t, u))(a) = s(a).

(32) Let s be an SCMFSA-state, and let t be an element of Data∗-LocSCMFSA
,

and let u be a finite sequence of elements of � , and let v be an element of
Instr-LocSCMFSA

. Then (ChgSCMFSA
(s, t, u))(v) = s(v).

References

[1] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[2] Grzegorz Bancerek. The reflection theorem. Formalized Mathematics, 1(5):973–977,

1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[4] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formal-

ized Mathematics, 5(4):485–492, 1996.
[5] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–

676, 1990.
[6] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[7] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[8] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[9] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[10] Czes law Byliński. Subcategories and products of categories. Formalized Mathematics,

1(4):725–732, 1990.
[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[12] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151–160, 1992.
[13] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-

malized Mathematics, 3(2):241–250, 1992.
[14] Jan Popio lek. Some properties of functions modul and signum. Formalized Mathematics,

1(2):263–264, 1990.
[15] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Math-

ematics, 2(5):623–627, 1991.
[16] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[17] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics,

1(3):495–500, 1990.
[18] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.

512 andrzej trybulec et al.

[19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[20] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,
1(1):97–105, 1990.

[21] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[22] Micha l J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[23] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics,

1(5):979–981, 1990.
[24] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[25] Zinaida Trybulec and Halina Świe

‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received February 3, 1996

