FORMALIZED MATHEMATICS

Volume 5, Number 4, 1996
Warsaw University - Bialystok

An Extension of SCM

Andrzej Trybulec Yatsuka Nakamura Piotr Rudnicki
Warsaw University Shinshu University University of Alberta
Biatystok Nagano Edmonton

MML Identifier: SCMFSA_1.

The articles [19], [25], [9], [20], [11], [14], [2], [18], [26], [6], [7], [17], [16], [22],
(3], [8], [10], [23], [1], [15], [5], [24], [12], [13], [21], and [4] provide the notation
and terminology for this paper.

In this paper x will be arbitrary and k will denote a natural number.

The subset Data-Locscmyg, of Z is defined as follows:

(Def. 1) Data-Locscmyg, = Data-Locgcm.
The subset Data*-Locsomyg, Of Z is defined as follows:
(Def. 2) Data*-Locsompg, = Z \N.
The subset Instr-Locgomygg, of Z is defined as follows:
(Def. 3) Instr-Locscmyg, = Instr-Locgcom.
One can check the following observations:
* Data*-Locscmpg, is non empty,
* Data-Locsomyg, is non empty, and
* Instr-Locscmpg, 1S non empty.
For simplicity we adopt the following convention: J, K are elements of 73,
a is an element of Instr-Locscmpg,, bs ¢, ¢1 are elements of Data-Locsompg,
and f, fi are elements of Data*-Locscmpg, -
The subset Instrgomypg, Of [Z13, (U{Z,Z*} U Z)*] is defined by:
(Def. 4) Instrscmps, = Instrsem U {(J, (¢, f,b)) : J € {9,10}} U {(K, (c1, f1)) :
K € {11,12}}.
The following two propositions are true:
(1) Instrsomps, = Instrsem U {(J, (¢, f,0)) : J € {9,10}} U {(K, (c1, f1)) :
K e {11,12}}.
(2) Instrsom C Instrsompg, -

© 1996 Warsaw University - Bialystok
507 ISSN 1426-2630

508 ANDRZEJ TRYBULEC et al.

Let us observe that Instrsomgg, is non empty.
Let I be an element of Instrscmgg,. The functor InsCode([) yielding a
natural number is defined by:
(Def. 5) InsCode(I) = I3.
The following two propositions are true:
(3) For every element I of Instrgcmgg, such that InsCode(I) < 8 holds
I € Instrscum.
(4) (0, €) € Instrgcmpg, -
The function OKgcmyg, from 7 into {7, 7*}U{Instrscnygg, , Instr-Locscmps ,
is defined by:
(Def. 6) OKSCMFSA = (Z — Z*)—l—‘OKSCM—i--(InStI‘SCMI%IHStI‘SCMFSA) .
(OKgem | Instr-Locgom).
One can prove the following propositions:
(5) OKSCMFSA = (Z — Z*)—l-‘OKSCM—F‘(IIlStI“SCMI'—>IHStI'SCMFSA) .
(OKgem T Instr-Locgom).

(6) If z € {9,10}, then (xz, (¢, f,b)) € Instrscmpg, -
(7) If z € {11,12}, then (x, (c, f)) € Instrgcmpg, -
(8) Z ={0} UData-Locscmyg, UData*-Locgcompg, U Instr-Locgompg , -
(9) OKSCMFSA (0) = InStr-LOCSCMFSA.
(10) OKscmgsa (b) = 7.
(11) OKSCMFSA (a) = InstrscMpg, -
(12) OKscmpsa (f) = 77
(13) Instr-Locscmps, 7# Z and Instrscmgs, # Z and Instr-Locsomps, 7#

Instrsomyg, and Instr-Locsompg, 7 2 and Instrsenipg, 7 Z2°
(14) For every integer i such that OKgcmypg, (i) = Instr-Locsomygg, holds
1=0.
(15) For every integer ¢ such that OKgcwmpga(?) = Z holds i €
Data-LocscMypg, -
(16) For every integer i such that OKgcwmygg, (1) = Instrgompg, holds ¢ €
Instr-LocscMpg -
(17) For every integer ¢ such that OKgscmpg, (i) = Z* holds i €
Data*-LocscMpg, -
An SCMpga-state is an element of J[T(OKscmyg,)-
Next we state two propositions:
(18) For every SCMpga-state s and for every element I of Instrgcy holds
s | N+-(Instr-Locgom ——) is a state son -
(19) For every SCMpga-state s and for every state gop 8" holds s+-s'+-s |
Instr-Locscmpg, is an SCMFpga-state.

In the sequel s is an SCMpga-state.
Let s be an SCMrpga-state and let u be an element of Instr-Locscnpg, - The
functor Chggeppg, (5, u) yields an SCMpga-state and is defined as follows:

AN EXTENSION OF SCM 509

(Def. 7) Chggoppg, (8, u) = 5+-(0——u).
Let s be an SCMFpga-state, let ¢t be an element of Data-Locscnpg,, and let

u be an integer. The functor Chggonyg, (5, 1) yielding an SCMFpga-state is
defined as follows:

(Def. 8) Chggoppg, (51, u) = s+ (t——u).
Let s be an SCMrga-state, let t be an element of Data*-Locscygg, » and let

u be a finite sequence of elements of 7 The functor Chggony,g, (5,1, u) yielding
an SCMpgga-state is defined as follows:
(Def. 9) Chggoppg, (851, u) = s+ (t——u).

Let s be an SCMpga-state and let a be an element of Data-Locscnypg, - Then
s(a) is an integer.

Let s be an SCMpgga-state and let a be an element of Data*-Locsomyg, -
Then s(a) is a finite sequence of elements of Z.

Let = be an element of Instrscmyg, - Let us assume that there exist ¢, f, b,
J such that = = (J, (¢, f,b)). The functor z int-addr; yielding an element of
Data-Locsomyg, is defined by:

(Def. 10) There exist ¢, f, b such that (¢, f,b) = x9 and z int-addr; = c.

The functor = int-addry yielding an element of Data-Locscnyg, is defined as
follows:

(Def. 11) There exist ¢, f, b such that (c, f,b) = x9 and z int-addry = b.
The functor = coll-addr; yields an element of Data*-Locscmyg, and is defined
as follows:
(Def. 12) There exist ¢, f, b such that (c, f,b) = x9 and z coll-addr; = f.
Let x be an element of Instrscmyg,- Let us assume that there exist ¢, f,
J such that x = (J, (¢, f)). The functor x int-addrs yielding an element of
Data-Locscmyg, is defined as follows:
(Def. 13) There exist ¢, f such that (¢, f) = x9 and z int-addrs = c.
The functor = coll-addrsy yields an element of Data*-Locscmyg, and is defined
as follows:
(Def. 14) There exist ¢, f such that (¢, f) = x9 and z coll-addry = f.
Let I be an element of Instr-Locscmgg,- The functor Next(l) yielding an
element of Instr-Locscmyg, is defined as follows:
(Def. 15) There exists an element L of Instr-Locgom such that L = [and
Next(l) = Next(L).
Let s be an SCMFpga-state. The functor IC; yielding an element of
Instr-Locscmpg, is defined by:
(Def. 16) ICs = s(0).
Let be an element of Instrscmgpg, and let s be an SCMpga-state. The
functor Exec-Resgompg, (2,) yielding an SCMpypga-state is defined by:

(Def. 17) (i) There exists an element z’ of Instrgoym and there exists a state gom
s’ such that x = 2/ and s’ = s | N+-(Instr-Locscy —— 2') and

510 ANDRZEJ TRYBULEC et al.

Exec-Resgcmypg, (7,) = s+-Exec-Ressom (@, s')+-s | Instr-Locgonygs, if
InsCode(z) < 8,

(ii) there exists an integer i and there exists k such that k =
|s(z int-addrs)| and ¢ = mgs(z coll-addr;) and Exec-Resscmyg, (2,5) =
Chggonpe s (Chgsenpg, (8, 7 int-addry, i), Next(ICy)) if InsCode(z) = 9,

(iii) there exists a finite sequence f of elements of Z and
there exists k such that k& = |s(z int-addre)| and [=
s(z coll-addr;) +- (k,s(z int-addr;)) and Exec-Resgompg,(2,s) =
Chggonpe s (Chgsenpg, (8; 2 coll-addry, f), Next(ICy)) if InsCode(z) =
10,

(iv) Exec-ResscMpgy (Z,5) = Chggonpg s (Chgscnpg, (5,7 int-addrs,
len s(z coll-addrs)), Next (ICy)) if InsCode(x) = 11,

(v) there exists a finite sequence f of elements of 7 and there exists k such
that k¥ = |s(z int-addrs)| and f = k — 0 and Exec-Resgcmypg, (2,5) =
Chggonpg s (Chgsenpg, (8; 2 coll-addry, f), Next(ICy)) if InsCode(z) =
12,

(vi) Exec-Resgcmpg, (2, 8) = s, otherwise.

The function Execsomyg, from Instrscmgg, into (H(OKSCMFSA))H(OKSCMFSA)
is defined by:

(Def. 18) For every element z of Instrgomgg, and for every SCMpga-state y
holds (Execscmyg, () qua element of (H(OKSCMFSA))H(OKSCMFSA))(y) =
Exec-ResgcMpga (2, Y)-

One can prove the following propositions:

(20) For every SCMpga-state s and for every element u of Instr-Locgcompg,
holds (Chggenyg, (5,u))(0) = u.

(21) For every SCMpyga-state s and for every element u of Instr-Locgcnmpg ,
and for every element m; of Data-Locscmgs, holds (Chggonyg, (5, 4))(m1)
s(myq).

(22) For every SCMyga-state s and for every element u of Instr-Locscnpg
al(ad) for every element p of Data*-Locscmyg, holds (Chggonyg, (5,u))(p) =
s(p).

(23) For every SCMFpga-state s and for all elements u, v of Instr-Locgcmpg,
holds (CthCMFSA(s,u))(v) = s(v).

(24) For every SCMpga-state s and for every element ¢ of Data-Locgcnpg,
and for every integer u holds (Chggenyg, (5,1, 1))(0) = s(0).

(25) For every SCMyga-state s and for every element ¢ of Data-Locgcmypg,
and for every integer u holds (Chggcpypg, (5,1, 1)) (t) = u.

(26) Let s be an SCMrpga-state, and let ¢ be an element of Data-Locscmpg., »
and let u be an integer, and let m; be an element of Data-Locgcnpg, - If
my # t, then (CthCMFSA(s,t,u))(ml) = s(my).

(27) Let s be an SCMpga-state, and let ¢ be an element of Data-Locgcmpg, »
and let u be an integer, and let f be an element of Data*-Locscmypg, - Then

(Chggomypgy (5, 8u))(f) = s(f)-

AN EXTENSION OF SCM 511

(28) Let s be an SCMpga-state, and let ¢ be an element of Data-Locgcmyg, »
and let v be an integer, and let v be an element of Instr-Locscnygg, - Then
(Chggnpg, (851, u))(v) = s(v).

(29) Let s be an SCMrpga-state, and let ¢ be an element of
Data*-LocscmMpg, , and let u be a finite sequence of elements of 7. Then
(CthCMFSA (57 t, U))(t) = u.

(30) Let s be an SCMpga-state, and let ¢ be an element of Data*-LocscMyg, »
and let u be a finite sequence of elements of 7, and let mq be an element
of Data*-Locscmpgy - If m1 # ¢, then (Chggenpg, (5,1 u))(m1) = s(my).

(31) Let s be an SCMpga-state, and let ¢ be an element of Data*-Locscmyg,, »
and let u be a finite sequence of elements of 7, and let a be an element of
Data-LocscMpg, - Then (Chggonyg, (55t u))(a) = s(a).

(32) Let s bean SCMyga-state, and let ¢ be an element of Data*-Locscmygg, »
and let u be a finite sequence of elements of 7, and let v be an element of
Instr-Locsomps, - Then (Chggeongpg, (5,1 u))(v) = s(v).

REFERENCES

[1] Grzegorz Bancerek. Konig’s theorem. Formalized Mathematics, 1(3):589-593, 1990.

[2] Grzegorz Bancerek. The reflection theorem. Formalized Mathematics, 1(5):973-977,
1990.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

[4] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formal-
ized Mathematics, 5(4):485-492, 1996.

[5] Czestaw Byliniski. A classical first order language. Formalized Mathematics, 1(4):669—
676, 1990.

[6] Czestaw Byliriski. Functions and their basic properties. Formalized Mathematics,
1(1):55-65, 1990.

[7] Czestaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,
1990.

[8] Czestaw Byliniski. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521-527, 1990.

[9] Cgzestaw Byliiski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53,
1990.

[10] Czestaw Byliniski. Subcategories and products of categories. Formalized Mathematics,
1(4):725-732, 1990.

[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.

[12] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151-160, 1992.

[13] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241-250, 1992.

[14] Jan Popiotek. Some properties of functions modul and signum. Formalized Mathematics,
1(2):263-264, 1990.

[15] Dariusz Surowik. Cyclic groups and some of their properties - part 1. Formalized Math-
ematics, 2(5):623-627, 1991.

[16] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
1(2):329-334, 1990.

[17] Andrzej Trybulec. Function domains and Freenkel operator. Formalized Mathematics,
1(3):495-500, 1990.

[18] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.

512

[19]
[20]
21]

[22]
23]

24]
[25]

[26]

ANDRZEJ TRYBULEC et al.

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
1990.

Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,
1(1):97-105, 1990.

Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51-56, 1993.

Michat J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics,
1(5):979-981, 1990.

Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579,
1990.

Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17-23, 1990.
Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Received February 3, 1996

