Adjacency Concept for Pairs of Natural Numbers

Yatsuka Nakamura Shinshu University Nagano Andrzej Trybulec Warsaw University Białystok

Summary. First, we introduce the concept of adjacency for a pair of natural numbers. Second, we extend the concept for two pairs of natural numbers. The pairs represent points of a lattice in a plane. We show that if some property is infectious among adjacent points, and some points have the property, then all points have the property.

MML Identifier: GOBRD10.

The articles [8], [11], [10], [5], [1], [7], [12], [4], [3], [2], [9], and [6] provide the notation and terminology for this paper.

In this paper $i, j, k, k_1, k_2, n, m, i_1, i_2, j_1, j_2$ are natural numbers.

Let us consider i_1 , i_2 . We say that i_1 and i_2 are adjacent if and only if:

(Def. 1) $i_2 = i_1 + 1$ or $i_1 = i_2 + 1$.

One can prove the following propositions:

- (1) For all i_1 , i_2 such that i_1 and i_2 are adjacent holds $i_1 + 1$ and $i_2 + 1$ are adjacent.
- (2) For all i_1 , i_2 such that i_1 and i_2 are adjacent and $1 \le i_1$ and $1 \le i_2$ holds $i_1 1$ and $i_2 1$ are adjacent.

Let us consider i_1 , j_1 , i_2 , j_2 . We say that i_1 , j_1 , i_2 , and j_2 are adjacent if and only if:

- (Def. 2) i_1 and i_2 are adjacent and $j_1 = j_2$ or $i_1 = i_2$ and j_1 and j_2 are adjacent. The following propositions are true:
 - (3) For all i_1 , i_2 , j_1 , j_2 such that i_1 , j_1 , i_2 , and j_2 are adjacent holds $i_1 + 1$, $j_1 + 1$, $i_2 + 1$, and $j_2 + 1$ are adjacent.
 - (4) Given i_1 , i_2 , j_1 , j_2 . Suppose i_1 , j_1 , i_2 , and j_2 are adjacent and $1 \le i_1$ and $1 \le i_2$ and $1 \le j_1$ and $1 \le j_2$. Then $i_1 1$, $j_1 1$, $j_2 1$, and $j_2 1$ are adjacent.

Let us consider i, n. The functor Repeat(i, n) yields a finite sequence of elements of \mathbb{N} and is defined as follows:

(Def. 3) len Repeat(i, n) = n and for every j such that $1 \le j$ and $j \le n$ holds (Repeat(i, n))(j) = i.

Next we state four propositions:

- (5) For every i holds Repeat $(i, 0) = \varepsilon$.
- (6) Given n, i, j. Suppose $i \leq n$ and $j \leq n$. Then there exists a finite sequence f_1 of elements of \mathbb{N} such that
 - (i) $f_1(1) = i$,
- (ii) $f_1(\operatorname{len} f_1) = j,$
- (iii) $\operatorname{len} f_1 = i j' + j j' + i + 1,$
- (iv) for all k, k_1 such that $1 \le k$ and $k \le \text{len } f_1$ and $k_1 = f_1(k)$ holds $k_1 \le n$, and
- (v) for every i_1 such that $1 \le i_1$ and $i_1 < \text{len } f_1 \text{ holds } f_1(i_1+1) = \pi_{i_1} f_1 + 1$ or $f_1(i_1) = \pi_{i_1+1} f_1 + 1$.
- (7) Given n, i, j. Suppose $i \leq n$ and $j \leq n$. Then there exists a finite sequence f_1 of elements of \mathbb{N} such that
 - (i) $f_1(1) = i$,
- (ii) $f_1(\text{len } f_1) = j$,
- (iii) $\operatorname{len} f_1 = i j' + j' j' + i' + 1,$
- (iv) for all k, k_1 such that $1 \le k$ and $k \le \text{len } f_1$ and $k_1 = f_1(k)$ holds $k_1 \le n$, and
- (v) for every i_1 such that $1 \le i_1$ and $i_1 < \text{len } f_1$ holds $\pi_{i_1} f_1$ and $\pi_{i_1+1} f_1$ are adjacent.
- (8) Given n, m, i_1, j_1, i_2, j_2 . Suppose $i_1 \le n$ and $j_1 \le m$ and $i_2 \le n$ and $j_2 \le m$. Then there exist finite sequences f_1, f_2 of elements of \mathbb{N} such that
- (i) for all i, k_1 , k_2 such that $i \in \text{dom } f_1$ and $k_1 = f_1(i)$ and $k_2 = f_2(i)$ holds $k_1 \le n$ and $k_2 \le m$,
- (ii) $f_1(1) = i_1$,
- (iii) $f_1(\text{len } f_1) = i_2,$
- (iv) $f_2(1) = j_1$,
- (v) $f_2(\text{len } f_2) = j_2,$
- (vi) $\operatorname{len} f_1 = \operatorname{len} f_2$,
- (vii) $\operatorname{len} f_1 = i_1 i_2 + i_2 i_1 + j_1 j_2 + j_2 j_1 + 1$, and
- (viii) for every i such that $1 \le i$ and $i < \text{len } f_1$ holds $\pi_i f_1$, $\pi_i f_2$, $\pi_{i+1} f_1$, and $\pi_{i+1} f_2$ are adjacent.

In the sequel S is a set.

Next we state the proposition

- (9) Let Y be a subset of S and let F be a matrix over 2^S of dimension $n \times m$. Suppose that
- (i) there exist i, j such that $i \in \operatorname{Seg} n$ and $j \in \operatorname{Seg} m$ and $F_{i,j} \subseteq Y$, and
- (ii) for all i_1, j_1, i_2, j_2 such that $i_1 \in \operatorname{Seg} n$ and $i_2 \in \operatorname{Seg} n$ and $j_1 \in \operatorname{Seg} m$ and $j_2 \in \operatorname{Seg} m$ and $i_1, j_1, i_2,$ and j_2 are adjacent holds $F_{i_1,j_1} \subseteq Y$ iff

 $F_{i_2,j_2} \subseteq Y$. Given i, j. If $i \in \operatorname{Seg} n$ and $j \in \operatorname{Seg} m$, then $F_{i,j} \subseteq Y$.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [6] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.
- [7] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [9] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [11] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17–23, 1990.
- [12] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received June 10, 1996