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Summary. We examine the topological property of cells (rect-
angles) in a plane. First, some Fraenkel expressions of cells are shown.
Second, it is proved that cells are closed. The last theorem asserts that
the closure of the interior of a cell is the same as itself.

MML Identifier: GOBRD11.

The articles [7], [11], [19], [20], [24], [23], [8], [1], [21], [15], [25], [17], [18], [5],
[4], [2], [22], [9], [10], [26], [16], [3], [6], [12], [14], and [13] provide the notation
and terminology for this paper.

We adopt the following convention: i, j, j1, j2 will be natural numbers, r, s,
r2, s1, s2 will be real numbers, and G1 will be a non empty topological space.

Next we state two propositions:

(1) For every subset A of the carrier of G1 and for every point p of G1 such
that p ∈ A and A is connected holds A ⊆ Component(p).

(2) Let A, B, C be subsets of the carrier of G1. Suppose C is a component
of G1 and A ⊆ C and B is connected and A ∩ B 6= ∅. Then B ⊆ C.

In the sequel G2 denotes a non empty topological space.
Next we state three propositions:

(3) Let A, B be subsets of the carrier of G2. Suppose A is a component of
G2 and B is a component of G2. Then A ∪ B is a union of components
of G2.

(4) For all subsets B1, B2, V of the carrier of G1 such that V 6= ∅ holds
Down(B1 ∪ B2, V ) = Down(B1, V ) ∪ Down(B2, V ).

(5) For all subsets B1, B2, V of the carrier of G1 such that V 6= ∅ holds
Down(B1 ∩ B2, V ) = Down(B1, V ) ∩ Down(B2, V ).

In the sequel f will denote a non constant standard special circular sequence
and G will denote a Go-board.

We now state a number of propositions:
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(6) (L̃(f))c 6= ∅.

(7) Given j1, j2. Suppose j1 = len the Go-board of f and j2 = width the
Go-board of f . Then the carrier of E2

T =
⋃
{cell(the Go-board of f ,

i, j) : i ≤ j1 ∧ j ≤ j2}.

(8) For all subsets P1, P2 of the carrier of E2
T such that P1 = {[r, s] : s ≤ s1}

and P2 = {[r2, s2] : s2 > s1} holds P1 = −P2.

(9) For all subsets P1, P2 of the carrier of E2
T such that P1 = {[r, s] : s ≥ s1}

and P2 = {[r2, s2] : s2 < s1} holds P1 = −P2.

(10) For all subsets P1, P2 of the carrier of E2
T such that P1 = {[s, r] : s ≥ s1}

and P2 = {[s2, r2] : s2 < s1} holds P1 = −P2.

(11) For all subsets P1, P2 of the carrier of E2
T such that P1 = {[s, r] : s ≤ s1}

and P2 = {[s2, r2] : s2 > s1} holds P1 = −P2.

(12) For every subset P of the carrier of E 2
T and for every s1 such that

P = {[r, s] : s ≤ s1} holds P is closed.

(13) For every subset P of the carrier of E 2
T and for every s1 such that

P = {[r, s] : s1 ≤ s} holds P is closed.

(14) For every subset P of the carrier of E 2
T and for every s1 such that

P = {[s, r] : s ≤ s1} holds P is closed.

(15) For every subset P of the carrier of E 2
T and for every s1 such that

P = {[s, r] : s1 ≤ s} holds P is closed.

(16) For every j holds hstrip(G, j) is closed.

(17) For every i holds vstrip(G, i) is closed.

(18) vstrip(G, 0) = {[r, s] : r ≤ (G1,1)1}.

(19) vstrip(G, len G) = {[r, s] : (Glen G,1)1 ≤ r}.

(20) If 1 ≤ i and i < len G, then vstrip(G, i) = {[r, s] : (Gi,1)1 ≤ r ∧ r ≤
(Gi+1,1)1}.

(21) hstrip(G, 0) = {[r, s] : s ≤ (G1,1)2}.

(22) hstrip(G,width G) = {[r, s] : (G1,width G)2 ≤ s}.

(23) If 1 ≤ j and j < width G, then hstrip(G, j) = {[r, s] : (G1,j)2 ≤ s ∧ s ≤
(G1,j+1)2}.

(24) cell(G, 0, 0) = {[r, s] : r ≤ (G1,1)1 ∧ s ≤ (G1,1)2}.

(25) cell(G, 0,width G) = {[r, s] : r ≤ (G1,1)1 ∧ (G1,width G)2 ≤ s}.

(26) If 1 ≤ j and j < widthG, then cell(G, 0, j) = {[r, s] : r ≤ (G1,1)1 ∧
(G1,j)2 ≤ s ∧ s ≤ (G1,j+1)2}.

(27) cell(G, len G, 0) = {[r, s] : (Glen G,1)1 ≤ r ∧ s ≤ (G1,1)2}.

(28) cell(G, len G,width G) = {[r, s] : (Glen G,1)1 ≤ r ∧ (G1,width G)2 ≤ s}.

(29) If 1 ≤ j and j < widthG, then cell(G, len G, j) = {[r, s] : (Glen G,1)1 ≤
r ∧ (G1,j)2 ≤ s ∧ s ≤ (G1,j+1)2}.

(30) If 1 ≤ i and i < len G, then cell(G, i, 0) = {[r, s] : (Gi,1)1 ≤ r ∧ r ≤
(Gi+1,1)1 ∧ s ≤ (G1,1)2}.
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(31) If 1 ≤ i and i < len G, then cell(G, i,width G) = {[r, s] : (Gi,1)1 ≤
r ∧ r ≤ (Gi+1,1)1 ∧ (G1,width G)2 ≤ s}.

(32) If 1 ≤ i and i < len G and 1 ≤ j and j < widthG, then cell(G, i, j) = {[r,
s] : (Gi,1)1 ≤ r ∧ r ≤ (Gi+1,1)1 ∧ (G1,j)2 ≤ s ∧ s ≤ (G1,j+1)2}.

(33) For all i, j holds cell(G, i, j) is closed.

(34) 1 ≤ len G and 1 ≤ widthG.

(35) For all i, j such that i ≤ len G and j ≤ width G holds cell(G, i, j) =
Int cell(G, i, j).
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