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Summary. We examine the topological property of cells (rect-
angles) in a plane. First, some Fraenkel expressions of cells are shown.
Second, it is proved that cells are closed. The last theorem asserts that
the closure of the interior of a cell is the same as itself.

MML Identifier: GOBRD11.

The articles [7], [11], [19], [20], [24], [23], [8], [1], [21], [15], [25], [17], [18], [5],
[4], 2], [22], [9], [10], [26], [16], [3], [6], [12], [14], and [13] provide the notation
and terminology for this paper.

We adopt the following convention: i, j, ji, jo will be natural numbers, r, s,

r9, S1, S2 will be real numbers, and G; will be a non empty topological space.

Next we state two propositions:

(1)  For every subset A of the carrier of G and for every point p of G such
that p € A and A is connected holds A C Component(p).

(2) Let A, B, C be subsets of the carrier of G;. Suppose C is a component
of G; and A C C and B is connected and AN B # (. Then B C C.

In the sequel G2 denotes a non empty topological space.

Next we state three propositions:

(3) Let A, B be subsets of the carrier of G3. Suppose A is a component of
G5 and B is a component of G3. Then AU B is a union of components
of GQ.

(4)  For all subsets B, Bg, V of the carrier of G; such that V' # () holds
Down(B; U By, V) = Down(By1, V) UDown(Bsg, V).

(5)  For all subsets By, B, V of the carrier of Gy such that V' # () holds
Down(B; N By, V) = Down (B, V) N Down(Bg, V).

In the sequel f will denote a non constant standard special circular sequence
and G will denote a Go-board.

We now state a number of propositions:
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(6)  (L(f))c #0.
(7)  Given j1, j2. Suppose j; = lenthe Go-board of f and j, = widththe
Go-board of f. Then the carrier of €2 = (J{cell(the Go-board of f,
i,J) i< g1 A J < jok
(8)  For all subsets P;, P» of the carrier of €% such that P, = {[r,s] : s < s1}
and Py = {[ra, s2] : s3> s1} holds P, = —P.
(9)  For all subsets Py, P» of the carrier of 2 such that P, = {[r,s] : s > s1}
and Py, = {[ra, s2] : s2 < s1} holds P, = —P.
(10)  For all subsets P1, P of the carrier of £2 such that Py = {[s,7] : s > s1}
and Py = {[s2,72] : 2 < s1} holds P, = —P.
(11)  For all subsets Pp, P of the carrier of €3 such that Py = {[s,7] : s < 51}
and Py = {[s2,72] : s3> s1} holds P, = —P.
(12)  For every subset P of the carrier of £2 and for every s; such that
P ={[r,s] : s < s1} holds P is closed.

(13)  For every subset P of the carrier of £2 and for every s; such that
P ={[r,s] : s1 < s} holds P is closed.

(14)  For every subset P of the carrier of £% and for every s; such that
P ={[s,r] : s < s1} holds P is closed.

(15)  For every subset P of the carrier of £2 and for every s; such that
P ={[s,r] : s1 < s} holds P is closed.

(16)  For every j holds hstrip(G, j) is closed.

(17)  For every 7 holds vstrip(G, i) is closed.

(18)  wstrip(G,0) = {[r,s] : * < (G11)1}-

(19)  wstrip(G,len G) = {[r,s] : (Gieng,1)1 < T}

(20) If1 < andi <lenG, then vstrip(G,i) = {[r,s] : (Gi1)1 <r A r <
(Git1,1)1}-

(21)  hstrip(G,0) = {[r,s] : s < (G1,1)2}-

(22)  hstrip(G, width G) = {[r, 5] : (G1 widgthc)2 < s}

(23) Ifl1 < jandj < widthG, then hstrip(G,j) = {[r,s] : (G1j)2 <s A s <
(Grj+1)2}-

(24)  cell(G,0,0) ={[r,s] : v < (G11)1 A s <(G11)2}

(25)  cell(G,0,widthG) = {[r,s] : 7 < (G11)1 N (Giwidtha)2 < s}

(26) If1 <jandj < widthG, then cell(G,0,7) = {[r,s] : r < (G11)1 A
(Grj)2 <s A s <(Gij+1)2}

(27) CGH(G, len G,O) = {[Tv 5] : (GlenG,l)l <r A s< (GI,I)Z}'

(28)  cell(G,len G, width G) = {[r,s] : (Glenc1)1 <7 A (GiwidthG)2 < S}

(29) If1<jandj < widthG, then cell(G,lenG,j) = {[r,s] : (Glenc,1)1 <
T A (Grj)2 <s A s < (Grj+1)2})
(30) If1 <iandi <lenG, then cell(G,i,0) = {[r,s] : (Gi1)1 <r A r <

(Giz1,1)1 A s < (Gi1)2}-
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(31) If1 < i and i < lenG, then cell(G,i,widthG) = {[r,s] : (Gi1)1 <
r A r < (Gip)r A (Grwiama)2 < s}

(32) Ifl<iandi<lenGand1l < jandj < widthG, then cell(G,1,j) = {[r,
s (Giar <r A r < (Gigra)1 A (Grj)e <s A s < (Grjq1)2})

(33)  For all ¢, j holds cell(G, 1, j) is closed.

(34) 1<lenG and 1 < widthG.

(35) For all 4, j such that i < lenG and j < width G holds cell(G,1i,7) =
Int cell(G, i, 7).
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