
FORMALIZED MATHEMATICS

Volume 6, Number 1, 1997

Warsaw University - Bia lystok

Conditional Branch Macro Instructions of

SCMFSA. Part II

Noriko Asamoto

Ochanomizu University

Tokyo

MML Identifier: SCMFSA8B.

The papers [22], [31], [16], [7], [29], [11], [32], [13], [14], [10], [6], [8], [12], [30],
[15], [21], [17], [18], [25], [20], [27], [28], [23], [24], [3], [9], [26], [19], [5], [4], [2],
and [1] provide the terminology and notation for this paper.

One can prove the following propositions:

(1) For every state s of SCMFSA holds ICSCMFSA
∈ dom s.

(2) For every state s of SCMFSA and for every instruction-location l of
SCMFSA holds l ∈ dom s.

(3) For every macro instruction I and for every state s of SCMFSA such
that I is closed on s holds insloc(0) ∈ dom I.

(4) For every state s of SCMFSA and for all instructions-locations l1, l2 of
SCMFSA holds s+· Start-At(l1)+· Start-At(l2) = s+· Start-At(l2).

(5) For every state s of SCMFSA and for every macro instruction I holds
Initialize(s) � (Int-Locations∪FinSeq-Locations) = (s+· Initialized(I)) �
(Int-Locations∪FinSeq-Locations).

(6) Let s1, s2 be states of SCMFSA and let I be a macro
instruction. If s1 � (Int-Locations∪FinSeq-Locations) = s2 �
(Int-Locations∪FinSeq-Locations), then if I is closed on s1, then I is
closed on s2.

(7) Let s1, s2 be states of SCMFSA and let I, J be macro in-
structions. Suppose s1 � (Int-Locations∪FinSeq-Locations) = s2 �
(Int-Locations∪FinSeq-Locations). Then s1+·(I+·Start-At(insloc(0)))
and s2+·(J+·Start-At(insloc(0))) are equal outside the instruction lo-
cations of SCMFSA.

(8) Let s1, s2 be states of SCMFSA and let I be a macro in-
struction. Suppose s1 � (Int-Locations∪FinSeq-Locations) = s2 �

73
c© 1997 Warsaw University - Bia lystok

ISSN 1426–2630



74 noriko asamoto

(Int-Locations∪FinSeq-Locations). Suppose I is closed on s1 and halt-
ing on s1. Then I is closed on s2 and halting on s2.

(9) For every state s of SCMFSA and for all macro instructions I, J holds
I is closed on Initialize(s) iff I is closed on s+· Initialized(J).

(10) Let s be a state of SCMFSA, and let I, J be macro instructions, and
let l be an instruction-location of SCMFSA. Then I is closed on s if and
only if I is closed on s+·(I+· Start-At(l)).

(11) Let s1, s2 be states of SCMFSA and let I be a macro instruction.
Suppose I+· Start-At(insloc(0)) ⊆ s1 and I is closed on s1. Let n

be a natural number. Suppose ProgramPart(Relocated(I, n)) ⊆ s2

and IC(s2) = insloc(n) and s1 � (Int-Locations∪FinSeq-Locations) =
s2 � (Int-Locations∪FinSeq-Locations). Let i be a natural num-
ber. Then IC(Computation(s1))(i) + n = IC(Computation(s2))(i) and
IncAddr(CurInstr((Computation(s1))(i)), n) = CurInstr((Computation

(s2))(i)) and (Computation(s1))(i) � (Int-Locations∪FinSeq-Locations)

= (Computation(s2))(i) � (Int-Locations∪FinSeq-Locations).

(12) Let s be a state of SCMFSA, and let i be a keeping 0 parahalt-
ing instruction of SCMFSA, and let J be a parahalting macro in-
struction, and let a be an integer location. Then (IExec(i;J, s))(a) =
(IExec(J,Exec(i, Initialize(s))))(a).

(13) Let s be a state of SCMFSA, and let i be a keeping 0 parahalt-
ing instruction of SCMFSA, and let J be a parahalting macro instruc-
tion, and let f be a finite sequence location. Then (IExec(i;J, s))(f) =
(IExec(J,Exec(i, Initialize(s))))(f).

Let a be an integer location and let I, J be macro instructions. The functor
if = 0(a, I, J) yields a macro instruction and is defined by:

(Def. 1) if = 0(a, I, J) = (if a = 0 goto insloc(card J+3));J ; Goto(insloc(card

I + 1));I;StopSCMFSA
.

The functor if > 0(a, I, J) yields a macro instruction and is defined by:

(Def. 2) if > 0(a, I, J) = (if a > 0 goto insloc(card J+3));J ; Goto(insloc(card

I + 1));I;StopSCMFSA
.

Let a be an integer location and let I, J be macro instructions. The functor
if < 0(a, I, J) yields a macro instruction and is defined as follows:

(Def. 3) if < 0(a, I, J) = if = 0(a, J, if > 0(a, J, I)).

The following propositions are true:

(14) For all macro instructions I, J and for every integer location a holds
card if = 0(a, I, J) = card I + card J + 4.

(15) For all macro instructions I, J and for every integer location a holds
card if > 0(a, I, J) = card I + card J + 4.

(16) Let s be a state of SCMFSA, and let I, J be macro instructions, and
let a be a read-write integer location. Suppose s(a) = 0 and I is closed on



conditional branch macro instructions of . . . 75

s and halting on s. Then if = 0(a, I, J) is closed on s and if = 0(a, I, J)
is halting on s.

(17) Let s be a state of SCMFSA, and let I, J be macro instructions, and
let a be a read-write integer location. Suppose s(a) = 0 and I is closed on
Initialize(s) and halting on Initialize(s). Then IExec(if = 0(a, I, J), s) =
IExec(I, s)+·Start-At(insloc(card I + card J + 3)).

(18) Let s be a state of SCMFSA, and let I, J be macro instructions, and let
a be a read-write integer location. Suppose s(a) 6= 0 and J is closed on s

and halting on s. Then if = 0(a, I, J) is closed on s and if = 0(a, I, J)
is halting on s.

(19) Let I, J be macro instructions, and let a be a read-write integer location,
and let s be a state of SCMFSA. Suppose s(a) 6= 0 and J is closed on
Initialize(s) and halting on Initialize(s). Then IExec(if = 0(a, I, J), s) =
IExec(J, s)+·Start-At(insloc(card I + card J + 3)).

(20) Let s be a state of SCMFSA, and let I, J be parahalting macro
instructions, and let a be a read-write integer location. Then if =
0(a, I, J) is parahalting and if s(a) = 0, then IExec(if = 0(a, I, J), s) =
IExec(I, s)+·Start-At(insloc(card I + card J + 3)) and if s(a) 6= 0, then
IExec(if = 0(a, I, J), s) = IExec(J, s)+· Start-At(insloc(card I + card J +
3)).

(21) Let s be a state of SCMFSA, and let I, J be parahalting macro instruc-
tions, and let a be a read-write integer location. Then

(i) ICIExec(if=0(a,I,J),s) = insloc(card I + card J + 3),

(ii) if s(a) = 0, then for every integer location d holds (IExec(if =
0(a, I, J), s))(d) = (IExec(I, s))(d) and for every finite sequence location
f holds (IExec(if = 0(a, I, J), s))(f) = (IExec(I, s))(f), and

(iii) if s(a) 6= 0, then for every integer location d holds (IExec(if =
0(a, I, J), s))(d) = (IExec(J, s))(d) and for every finite sequence location
f holds (IExec(if = 0(a, I, J), s))(f) = (IExec(J, s))(f).

(22) Let s be a state of SCMFSA, and let I, J be macro instructions, and
let a be a read-write integer location. Suppose s(a) > 0 and I is closed on
s and halting on s. Then if > 0(a, I, J) is closed on s and if > 0(a, I, J)
is halting on s.

(23) Let I, J be macro instructions, and let a be a read-write integer location,
and let s be a state of SCMFSA. Suppose s(a) > 0 and I is closed on
Initialize(s) and halting on Initialize(s). Then IExec(if > 0(a, I, J), s) =
IExec(I, s)+·Start-At(insloc(card I + card J + 3)).

(24) Let s be a state of SCMFSA, and let I, J be macro instructions, and let
a be a read-write integer location. Suppose s(a) ≤ 0 and J is closed on s

and halting on s. Then if > 0(a, I, J) is closed on s and if > 0(a, I, J)
is halting on s.

(25) Let I, J be macro instructions, and let a be a read-write integer location,
and let s be a state of SCMFSA. Suppose s(a) ≤ 0 and J is closed on



76 noriko asamoto

Initialize(s) and halting on Initialize(s). Then IExec(if > 0(a, I, J), s) =
IExec(J, s)+·Start-At(insloc(card I + card J + 3)).

(26) Let s be a state of SCMFSA, and let I, J be parahalting macro
instructions, and let a be a read-write integer location. Then if >

0(a, I, J) is parahalting and if s(a) > 0, then IExec(if > 0(a, I, J), s) =
IExec(I, s)+·Start-At(insloc(card I + card J + 3)) and if s(a) ≤ 0, then
IExec(if > 0(a, I, J), s) = IExec(J, s)+· Start-At(insloc(card I + card J +
3)).

(27) Let s be a state of SCMFSA, and let I, J be parahalting macro instruc-
tions, and let a be a read-write integer location. Then

(i) ICIExec(if>0(a,I,J),s) = insloc(card I + card J + 3),

(ii) if s(a) > 0, then for every integer location d holds (IExec(if >

0(a, I, J), s))(d) = (IExec(I, s))(d) and for every finite sequence location
f holds (IExec(if > 0(a, I, J), s))(f) = (IExec(I, s))(f), and

(iii) if s(a) ≤ 0, then for every integer location d holds (IExec(if >

0(a, I, J), s))(d) = (IExec(J, s))(d) and for every finite sequence location
f holds (IExec(if > 0(a, I, J), s))(f) = (IExec(J, s))(f).

(28) Let s be a state of SCMFSA, and let I, J be macro instructions, and
let a be a read-write integer location. Suppose s(a) < 0 and I is closed on
s and halting on s. Then if < 0(a, I, J) is closed on s and if < 0(a, I, J)
is halting on s.

(29) Let s be a state of SCMFSA, and let I, J be macro instructions, and
let a be a read-write integer location. Suppose s(a) < 0 and I is closed on
Initialize(s) and halting on Initialize(s). Then IExec(if < 0(a, I, J), s) =
IExec(I, s)+·Start-At(insloc(card I + card J + card J + 7)).

(30) Let s be a state of SCMFSA, and let I, J be macro instructions, and let
a be a read-write integer location. Suppose s(a) = 0 and J is closed on s

and halting on s. Then if < 0(a, I, J) is closed on s and if < 0(a, I, J)
is halting on s.

(31) Let s be a state of SCMFSA, and let I, J be macro instructions, and let
a be a read-write integer location. Suppose s(a) = 0 and J is closed on
Initialize(s) and halting on Initialize(s). Then IExec(if < 0(a, I, J), s) =
IExec(J, s)+·Start-At(insloc(card I + card J + card J + 7)).

(32) Let s be a state of SCMFSA, and let I, J be macro instructions, and let
a be a read-write integer location. Suppose s(a) > 0 and J is closed on s

and halting on s. Then if < 0(a, I, J) is closed on s and if < 0(a, I, J)
is halting on s.

(33) Let s be a state of SCMFSA, and let I, J be macro instructions, and let
a be a read-write integer location. Suppose s(a) > 0 and J is closed on
Initialize(s) and halting on Initialize(s). Then IExec(if < 0(a, I, J), s) =
IExec(J, s)+·Start-At(insloc(card I + card J + card J + 7)).

(34) Let s be a state of SCMFSA, and let I, J be parahalting macro instruc-
tions, and let a be a read-write integer location. Then



conditional branch macro instructions of . . . 77

(i) if < 0(a, I, J) is parahalting,
(ii) if s(a) < 0, then IExec(if < 0(a, I, J), s) = IExec(I, s)+· Start-At(insloc

(card I + card J + card J + 7)), and
(iii) if s(a) ≥ 0, then IExec(if < 0(a, I, J), s) = IExec(J, s)+· Start-At(insloc

(card I + card J + card J + 7)).

Let I, J be parahalting macro instructions and let a be a read-write integer
location. Observe that if = 0(a, I, J) is parahalting and if > 0(a, I, J) is
parahalting.

Let a, b be integer locations and let I, J be macro instructions. The functor
if = 0(a, b, I, J) yields a macro instruction and is defined as follows:

(Def. 4) if = 0(a, b, I, J) = SubFrom(a, b);if = 0(a, I, J).

The functor if > 0(a, b, I, J) yields a macro instruction and is defined by:

(Def. 5) if > 0(a, b, I, J) = SubFrom(a, b);if > 0(a, I, J).

We introduce if < 0(b, a, I, J) as a synonym of if > 0(a, b, I, J).
Let I, J be parahalting macro instructions and let a, b be read-write inte-

ger locations. One can check that if = 0(a, b, I, J) is parahalting and if >

0(a, b, I, J) is parahalting.
Next we state several propositions:

(35) For every state s of SCMFSA and for every macro instruction I

holds Result(s+· Initialized(I)) � (Int-Locations∪FinSeq-Locations) =
IExec(I, s) � (Int-Locations∪FinSeq-Locations).

(36) Let s be a state of SCMFSA, and let I be a macro instruction, and let
a be an integer location. Then Result(s+· Initialized(I)) and IExec(I, s)
are equal outside the instruction locations of SCMFSA.

(37) Let s1, s2 be states of SCMFSA, and let i be an instruction of SCMFSA,
and let a be an integer location. Suppose that

(i) for every integer location b such that a 6= b holds s1(b) = s2(b),
(ii) for every finite sequence location f holds s1(f) = s2(f),
(iii) i does not refer a, and
(iv) IC(s1) = IC(s2).

Then
(v) for every integer location b such that a 6= b holds (Exec(i, s1))(b) =

(Exec(i, s2))(b),
(vi) for every finite sequence location f holds (Exec(i, s1))(f) =

(Exec(i, s2))(f), and
(vii) ICExec(i,s1) = ICExec(i,s2).

(38) Let s1, s2 be states of SCMFSA, and let I be a macro instruction, and
let a be an integer location. Suppose that

(i) I does not refer a,
(ii) for every integer location b such that a 6= b holds s1(b) = s2(b),
(iii) for every finite sequence location f holds s1(f) = s2(f), and
(iv) I is closed on s1 and halting on s1.

Let k be a natural number. Then



78 noriko asamoto

(v) for every integer location b such that a 6= b holds (Computation(s1+·

(I+·Start-At(insloc(0)))))(k)(b) = (Computation(s2+·(I+·Start-At
(insloc(0)))))(k)(b),

(vi) for every finite sequence location f holds (Computation(s1+·(I+·

Start-At(insloc(0)))))(k)(f) = (Computation(s2+·(I+·Start-At
(insloc(0)))))(k)(f),

(vii) IC(Computation(s1+·(I+· Start-At(insloc(0)))))(k) =
IC(Computation(s2+·(I+· Start-At(insloc(0)))))(k) , and

(viii) CurInstr((Computation(s1+·(I+· Start-At(insloc(0)))))(k)) =
CurInstr((Computation(s2+·(I+·Start-At(insloc(0)))))(k)).

(39) Let s be a state of SCMFSA, and let I, J be macro instructions, and
let l be an instruction-location of SCMFSA. Then I is closed on s and
halting on s if and only if I is closed on s+·(I+· Start-At(l)) and halting
on s+·(I+·Start-At(l)).

(40) Let s1, s2 be states of SCMFSA, and let I be a macro instruction, and
let a be an integer location. Suppose that

(i) I does not refer a,
(ii) for every integer location b such that a 6= b holds s1(b) = s2(b),
(iii) for every finite sequence location f holds s1(f) = s2(f), and
(iv) I is closed on s1 and halting on s1.

Then I is closed on s2 and halting on s2.

(41) Let s1, s2 be states of SCMFSA, and let I be a macro instruction, and
let a be an integer location. Suppose that

(i) for every read-write integer location d such that a 6= d holds s1(d) =
s2(d),

(ii) for every finite sequence location f holds s1(f) = s2(f),
(iii) I does not refer a, and
(iv) I is closed on Initialize(s1) and halting on Initialize(s1).

Then
(v) for every integer location d such that a 6= d holds (IExec(I, s1))(d) =

(IExec(I, s2))(d),
(vi) for every finite sequence location f holds (IExec(I, s1))(f) =

(IExec(I, s2))(f), and
(vii) ICIExec(I,s1) = ICIExec(I,s2).

(42) Let s be a state of SCMFSA, and let I, J be parahalting macro instruc-
tions, and let a, b be read-write integer locations. Suppose I does not
refer a and J does not refer a. Then

(i) ICIExec(if=0(a,b,I,J),s) = insloc(card I + card J + 5),
(ii) if s(a) = s(b), then for every integer location d such that a 6= d

holds (IExec(if = 0(a, b, I, J), s))(d) = (IExec(I, s))(d) and for ev-
ery finite sequence location f holds (IExec(if = 0(a, b, I, J), s))(f) =
(IExec(I, s))(f), and

(iii) if s(a) 6= s(b), then for every integer location d such that a 6= d

holds (IExec(if = 0(a, b, I, J), s))(d) = (IExec(J, s))(d) and for ev-



conditional branch macro instructions of . . . 79

ery finite sequence location f holds (IExec(if = 0(a, b, I, J), s))(f) =
(IExec(J, s))(f).

(43) Let s be a state of SCMFSA, and let I, J be parahalting macro instruc-
tions, and let a, b be read-write integer locations. Suppose I does not
refer a and J does not refer a. Then

(i) ICIExec(if>0(a,b,I,J),s) = insloc(card I + card J + 5),
(ii) if s(a) > s(b), then for every integer location d such that a 6= d

holds (IExec(if > 0(a, b, I, J), s))(d) = (IExec(I, s))(d) and for ev-
ery finite sequence location f holds (IExec(if > 0(a, b, I, J), s))(f) =
(IExec(I, s))(f), and

(iii) if s(a) ≤ s(b), then for every integer location d such that a 6= d

holds (IExec(if > 0(a, b, I, J), s))(d) = (IExec(J, s))(d) and for ev-
ery finite sequence location f holds (IExec(if > 0(a, b, I, J), s))(f) =
(IExec(J, s))(f).

References

[1] Noriko Asamoto. Conditional branch macro instructions of SCMFSA. Part I. Formalized

Mathematics, 6(1):65–72, 1997.
[2] Noriko Asamoto. Constant assignment macro instructions of SCMFSA. Part II. For-

malized Mathematics, 6(1):59–63, 1997.
[3] Noriko Asamoto. Some multi instructions defined by sequence of instructions of

SCMFSA. Formalized Mathematics, 5(4):615–619, 1996.
[4] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the

composition of macro instructions. Part III. Formalized Mathematics, 6(1):53–57, 1997.
[5] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the

composition of macro instructions. Part II. Formalized Mathematics, 6(1):41–47, 1997.
[6] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[7] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[8] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[9] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for SCM. Formal-

ized Mathematics, 4(1):61–67, 1993.
[10] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formal-

ized Mathematics, 5(4):485–492, 1996.
[11] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–

676, 1990.
[12] Czes law Byliński. Finite sequences and tuples of elements of a non-empty sets. Formal-

ized Mathematics, 1(3):529–536, 1990.
[13] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
[14] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[15] Czes law Byliński. Products and coproducts in categories. Formalized Mathematics,

2(5):701–709, 1991.
[16] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[17] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151–160, 1992.
[18] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-

malized Mathematics, 3(2):241–250, 1992.



80 noriko asamoto

[19] Piotr Rudnicki and Andrzej Trybulec. Memory handling for SCMFSA. Formalized

Mathematics, 6(1):29–36, 1997.
[20] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,

5(1):1–8, 1996.
[21] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[22] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[23] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of

SCMFSA. Formalized Mathematics, 5(4):571–576, 1996.
[24] Andrzej Trybulec and Yatsuka Nakamura. Relocability for SCMFSA. Formalized Math-

ematics, 5(4):583–586, 1996.
[25] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51–56, 1993.
[26] Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of

macro instructions. Part I. Formalized Mathematics, 6(1):21–27, 1997.
[27] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. An extension of SCM.

Formalized Mathematics, 5(4):507–512, 1996.
[28] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMFSA computer.

Formalized Mathematics, 5(4):519–528, 1996.
[29] Micha l J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[30] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[31] Zinaida Trybulec and Halina Świe

‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received August 27, 1996


