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Summary. Notation and facts necessary to start with the formal-
ization of continuous lattices according to [8] are introduced. The article
contains among other things, the definition of directed and filtered sub-
sets of a poset (see 1.1 in [8, p. 2]), the definition of nets on the poset
(see 1.2 in [8, p. 2]), the definition of ideals and filters and the definition
of maps preserving arbitrary and directed sups and arbitrary and filtered
infs (1.9 also in [8, p. 4]). The concepts of semilattices, sup-semiletices
and poset lattices (1.8 in [8, p. 4]) are also introduced. A number of
facts concerning the above notion and including remarks 1.4, 1.5, and
1.10 from [8, pp. 3–5] is presented.
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The notation and terminology used in this paper are introduced in the following
papers: [13], [15], [16], [18], [17], [7], [5], [6], [11], [4], [10], [19], [3], [2], [12], [1],
[14], and [9].

1. Directed subsets

Let L be a relational structure and let X be a subset of L. We say that X

is directed if and only if:

(Def. 1) For all elements x, y of L such that x ∈ X and y ∈ X there exists an
element z of L such that z ∈ X and x ≤ z and y ≤ z.

We say that X is filtered if and only if:

(Def. 2) For all elements x, y of L such that x ∈ X and y ∈ X there exists an
element z of L such that z ∈ X and z ≤ x and z ≤ y.
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Next we state two propositions:

(1) Let L be a non empty transitive relational structure and X be a subset
of L. Then X is non empty directed if and only if for every finite subset
Y of X there exists an element x of L such that x ∈ X and x ≥ Y.

(2) Let L be a non empty transitive relational structure and X be a subset
of L. Then X is non empty filtered if and only if for every finite subset
Y of X there exists an element x of L such that x ∈ X and x ≤ Y.

Let L be a relational structure. One can verify that ∅L is directed and filtered.

Let L be a relational structure. Observe that there exists a subset of L which
is directed and filtered.

One can prove the following three propositions:

(3) Let L1, L2 be relational structures. Suppose the relational structure of
L1 = the relational structure of L2. Let X1 be a subset of L1 and X2 be
a subset of L2. If X1 = X2 and X1 is directed, then X2 is directed.

(4) Let L1, L2 be relational structures. Suppose the relational structure of
L1 = the relational structure of L2. Let X1 be a subset of L1 and X2 be
a subset of L2. If X1 = X2 and X1 is filtered, then X2 is filtered.

(5) For every non empty reflexive relational structure L and for every ele-
ment x of L holds {x} is directed and filtered.

Let L be a non empty reflexive relational structure. Note that there exists a
subset of L which is directed, filtered, non empty, and finite.

Let L be a relational structure with l.u.b.’s. Note that ΩL is directed.

Let L be an upper-bounded non empty relational structure. Observe that
ΩL is directed.

Let L be a relational structure with g.l.b.’s. One can check that ΩL is filtered.

Let L be a lower-bounded non empty relational structure. Note that ΩL is
filtered.

Let L be a non empty relational structure and let S be a relational substruc-
ture of L. We say that S is filtered-infs-inheriting if and only if:

(Def. 3) For every filtered subset X of S such that X 6= ∅ and inf X exists in L

holds ⌈−⌉LX ∈ the carrier of S.

We say that S is directed-sups-inheriting if and only if:

(Def. 4) For every directed subset X of S such that X 6= ∅ and sup X exists in
L holds

⊔
L X ∈ the carrier of S.

Let L be a non empty relational structure. Observe that every relational
substructure of L which is infs-inheriting is also filtered-infs-inheriting and ev-
ery relational substructure of L which is sups-inheriting is also directed-sups-
inheriting.

Let L be a non empty relational structure. Observe that there exists a
relational substructure of L which is infs-inheriting, sups-inheriting, non empty,
full, and strict.

We now state two propositions:



directed sets, nets, ideals, filters, and . . . 95

(6) Let L be a non empty transitive relational structure, S be a filtered-
infs-inheriting non empty full relational substructure of L, and X be a
filtered subset of S. Suppose X 6= ∅ and inf X exists in L. Then inf X

exists in S and ⌈−⌉SX = ⌈−⌉LX.

(7) Let L be a non empty transitive relational structure, S be a directed-
sups-inheriting non empty full relational substructure of L, and X be a
directed subset of S. Suppose X 6= ∅ and sup X exists in L. Then sup X

exists in S and
⊔

S X =
⊔

L X.

2. Nets

Let L1, L2 be non empty 1-sorted structures, let f be a map from L1 into
L2, and let x be an element of L1. Then f(x) is an element of L2.

Let L1, L2 be relational structures and let f be a map from L1 into L2. We
say that f is antitone if and only if:

(Def. 5) For all elements x, y of L1 such that x ≤ y and for all elements a, b of
L2 such that a = f(x) and b = f(y) holds a ≥ b.

Let L be a 1-sorted structure. We consider net structures over L as extensions
of relational structure as systems

〈 a carrier, a internal relation, a mapping 〉,
where the carrier is a set, the internal relation is a binary relation on the carrier,
and the mapping is a function from the carrier into the carrier of L.

Let L be a 1-sorted structure, let X be a non empty set, let O be a binary
relation on X, and let F be a function from X into the carrier of L. Note that
〈X,O,F 〉 is non empty.

Let N be a relational structure. We say that N is directed if and only if:

(Def. 6) ΩN is directed.

Let L be a 1-sorted structure. Note that there exists a strict net structure
over L which is non empty, reflexive, transitive, antisymmetric, and directed.

Let L be a 1-sorted structure. A prenet over L is a directed non empty net
structure over L.

Let L be a 1-sorted structure. A net in L is a transitive prenet over L.
Let L be a non empty 1-sorted structure and let N be a non empty net

structure over L. The functor netmap(N,L) yields a map from N into L and is
defined by:

(Def. 7) netmap(N,L) = the mapping of N .

Let i be an element of the carrier of N . The functor N(i) yielding an element
of L is defined by:

(Def. 8) N(i) = (the mapping of N)(i).

Let L be a non empty relational structure and let N be a non empty net
structure over L. We say that N is monotone if and only if:

(Def. 9) netmap(N,L) is monotone.
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We say that N is antitone if and only if:

(Def. 10) netmap(N,L) is antitone.

Let L be a non empty 1-sorted structure, let N be a non empty net structure
over L, and let X be a set. We say that N is eventually in X if and only if:

(Def. 11) There exists an element i of N such that for every element j of N such
that i ≤ j holds N(j) ∈ X.

We say that N is often in X if and only if:

(Def. 12) For every element i of N there exists an element j of N such that i ≤ j

and N(j) ∈ X.

Next we state three propositions:

(8) Let L be a non empty 1-sorted structure, N be a non empty net struc-
ture over L, and X, Y be sets such that X ⊆ Y. Then

(i) if N is eventually in X, then N is eventually in Y , and
(ii) if N is often in X, then N is often in Y .

(9) Let L be a non empty 1-sorted structure, N be a non empty net struc-
ture over L, and X be a set. Then N is eventually in X if and only if N

is not often in (the carrier of L) \ (X).

(10) Let L be a non empty 1-sorted structure, N be a non empty net struc-
ture over L, and X be a set. Then N is often in X if and only if N is not
eventually in (the carrier of L) \ (X).

Let L be a non empty relational structure and let N be a non empty net
structure over L. We say that N is eventually-directed if and only if:

(Def. 13) For every element i of N holds N is eventually in {N(j) : j ranges over
elements of N , N(i) ≤ N(j)}.

We say that N is eventually-filtered if and only if:

(Def. 14) For every element i of N holds N is eventually in {N(j) : j ranges over
elements of N , N(i) ≥ N(j)}.

One can prove the following propositions:

(11) Let L be a non empty relational structure and N be a non empty net
structure over L. Then N is eventually-directed if and only if for every
element i of N there exists an element j of N such that for every element
k of N such that j ≤ k holds N(i) ≤ N(k).

(12) Let L be a non empty relational structure and N be a non empty net
structure over L. Then N is eventually-filtered if and only if for every
element i of N there exists an element j of N such that for every element
k of N such that j ≤ k holds N(i) ≥ N(k).

Let L be a non empty relational structure. Observe that every prenet over
L which is monotone is also eventually-directed and every prenet over L which
is antitone is also eventually-filtered.

Let L be a non empty reflexive relational structure. Observe that there exists
a prenet over L which is monotone, antitone, and strict.



directed sets, nets, ideals, filters, and . . . 97

3. Lower and upper subsets

Let L be a relational structure and let X be a subset of the carrier of L. The
functor ↓X yielding a subset of L is defined by:

(Def. 15) For every element x of L holds x ∈ ↓X iff there exists an element y of
L such that y ≥ x and y ∈ X.

The functor ↑X yielding a subset of L is defined as follows:

(Def. 16) For every element x of L holds x ∈ ↑X iff there exists an element y of
L such that y ≤ x and y ∈ X.

One can prove the following three propositions:

(13) Let L1, L2 be relational structures. Suppose the relational structure of
L1 = the relational structure of L2. Let X be a subset of the carrier of
L1 and Y be a subset of the carrier of L2. If X = Y, then ↓X = ↓Y and
↑X = ↑Y.

(14) Let L be a non empty relational structure and X be a subset of L. Then
↓X = {x : x ranges over elements of L,

∨
y : element of L x ≤ y ∧ y ∈ X}.

(15) Let L be a non empty relational structure and X be a subset of L. Then
↑X = {x : x ranges over elements of L,

∨
y : element of L x ≥ y ∧ y ∈ X}.

Let L be a non empty reflexive relational structure and let X be a non empty
subset of the carrier of L. Note that ↓X is non empty and ↑X is non empty.

We now state the proposition

(16) For every reflexive relational structure L and for every subset X of the
carrier of L holds X ⊆ ↓X and X ⊆ ↑X.

Let L be a non empty relational structure and let x be an element of the
carrier of L. The functor ↓x yields a subset of L and is defined by:

(Def. 17) ↓x = ↓{x}.

The functor ↑x yields a subset of L and is defined by:

(Def. 18) ↑x = ↑{x}.

Next we state several propositions:

(17) For every non empty relational structure L and for all elements x, y of
L holds y ∈ ↓x iff y ≤ x.

(18) For every non empty relational structure L and for all elements x, y of
L holds y ∈ ↑x iff x ≤ y.

(19) Let L be a non empty reflexive antisymmetric relational structure and
x, y be elements of the carrier of L. If ↓x = ↓y, then x = y.

(20) Let L be a non empty reflexive antisymmetric relational structure and
x, y be elements of the carrier of L. If ↑x = ↑y, then x = y.

(21) For every non empty transitive relational structure L and for all ele-
ments x, y of L such that x ≤ y holds ↓x ⊆ ↓y.

(22) For every non empty transitive relational structure L and for all ele-
ments x, y of L such that x ≤ y holds ↑y ⊆ ↑x.
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Let L be a non empty reflexive relational structure and let x be an element
of the carrier of L. Note that ↓x is non empty and directed and ↑x is non empty
and filtered.

Let L be a relational structure and let X be a subset of L. We say that X

is lower if and only if:

(Def. 19) For all elements x, y of L such that x ∈ X and y ≤ x holds y ∈ X.

We say that X is upper if and only if:

(Def. 20) For all elements x, y of L such that x ∈ X and x ≤ y holds y ∈ X.

Let L be a relational structure. One can check that there exists a subset of
L which is lower and upper.

Next we state several propositions:

(23) For every relational structure L and for every subset X of L holds X is
lower iff ↓X ⊆ X.

(24) For every relational structure L and for every subset X of L holds X is
upper iff ↑X ⊆ X.

(25) Let L1, L2 be relational structures. Suppose the relational structure of
L1 = the relational structure of L2. Let X1 be a subset of L1 and X2 be
a subset of L2 such that X1 = X2. Then

(i) if X1 is lower, then X2 is lower, and
(ii) if X1 is upper, then X2 is upper.

(26) Let L be a relational structure and A be a subset of 2the carrier of L.
Suppose that for every subset X of L such that X ∈ A holds X is lower.
Then

⋃
A is a lower subset of L.

(27) Let L be a relational structure and X, Y be subsets of L. If X is lower
and Y is lower, then X ∩ Y is lower and X ∪ Y is lower.

(28) Let L be a relational structure and A be a subset of 2the carrier of L.
Suppose that for every subset X of L such that X ∈ A holds X is upper.
Then

⋃
A is an upper subset of L.

(29) Let L be a relational structure and X, Y be subsets of L. If X is upper
and Y is upper, then X ∩ Y is upper and X ∪ Y is upper.

Let L be a non empty transitive relational structure and let X be a subset
of L. One can verify that ↓X is lower and ↑X is upper.

Let L be a non empty transitive relational structure and let x be an element
of L. Observe that ↓x is lower and ↑x is upper.

Let L be a non empty relational structure. Observe that ΩL is lower and
upper.

Let L be a non empty relational structure. Note that there exists a subset
of L which is non empty, lower, and upper.

Let L be a non empty reflexive transitive relational structure. Observe that
there exists a subset of L which is non empty, lower, and directed and there
exists a subset of L which is non empty, upper, and filtered.

Let L be a poset with g.l.b.’s and l.u.b.’s. One can verify that there exists a
subset of L which is non empty, directed, filtered, lower, and upper.
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Next we state the proposition

(30) Let L be a non empty transitive reflexive relational structure and X be
a subset of L. Then X is directed if and only if ↓X is directed.

Let L be a non empty transitive reflexive relational structure and let X be
a directed subset of L. Note that ↓X is directed.

We now state several propositions:

(31) Let L be a non empty transitive reflexive relational structure, X be a
subset of L, and x be an element of L. Then x ≥ X if and only if x ≥ ↓X.

(32) Let L be a non empty transitive reflexive relational structure and X be
a subset of L. Then sup X exists in L if and only if sup ↓X exists in L.

(33) Let L be a non empty transitive reflexive relational structure and X be
a subset of L. If sup X exists in L, then supX = sup↓X.

(34) For every non empty poset L and for every element x of L holds sup ↓x
exists in L and sup↓x = x.

(35) Let L be a non empty transitive reflexive relational structure and X be
a subset of L. Then X is filtered if and only if ↑X is filtered.

Let L be a non empty transitive reflexive relational structure and let X be
a filtered subset of L. Note that ↑X is filtered.

One can prove the following four propositions:

(36) Let L be a non empty transitive reflexive relational structure, X be a
subset of L, and x be an element of L. Then x ≤ X if and only if x ≤ ↑X.

(37) Let L be a non empty transitive reflexive relational structure and X be
a subset of L. Then inf X exists in L if and only if inf ↑X exists in L.

(38) Let L be a non empty transitive reflexive relational structure and X be
a subset of L. If inf X exists in L, then inf X = inf↑X.

(39) For every non empty poset L and for every element x of L holds inf ↑x
exists in L and inf↑x = x.

4. Ideals and filters

Let L be a non empty reflexive transitive relational structure. An ideal of L

is a directed lower non empty subset of L. A filter of L is a filtered upper non
empty subset of L.

Next we state several propositions:

(40) Let L be an antisymmetric relational structure with l.u.b.’s and X be
a lower subset of L. Then X is directed if and only if for all elements x,
y of L such that x ∈ X and y ∈ X holds x ⊔ y ∈ X.

(41) Let L be an antisymmetric relational structure with g.l.b.’s and X be
an upper subset of L. Then X is filtered if and only if for all elements x,
y of L such that x ∈ X and y ∈ X holds x ⊓ y ∈ X.
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(42) Let L be a poset with l.u.b.’s and X be a non empty lower subset of L.
Then X is directed if and only if for every finite subset Y of X such that
Y 6= ∅ holds

⊔
L Y ∈ X.

(43) Let L be a poset with g.l.b.’s and X be a non empty upper subset of L.
Then X is filtered if and only if for every finite subset Y of X such that
Y 6= ∅ holds ⌈−⌉LY ∈ X.

(44) Let L be a non empty antisymmetric relational structure. Suppose L

has l.u.b.’s or g.l.b.’s. Let X, Y be subsets of L. Suppose X is lower
directed and Y is lower directed. Then X ∩ Y is directed.

(45) Let L be a non empty antisymmetric relational structure. Suppose L

has l.u.b.’s or g.l.b.’s. Let X, Y be subsets of L. Suppose X is upper
filtered and Y is upper filtered. Then X ∩ Y is filtered.

(46) Let L be a relational structure and A be a subset of 2the carrier of L.
Suppose that

(i) for every subset X of L such that X ∈ A holds X is directed, and
(ii) for all subsets X, Y of L such that X ∈ A and Y ∈ A there exists a

subset Z of L such that Z ∈ A and X ∪ Y ⊆ Z.

Let X be a subset of L. If X =
⋃

A, then X is directed.

(47) Let L be a relational structure and A be a subset of 2the carrier of L.
Suppose that

(i) for every subset X of L such that X ∈ A holds X is filtered, and
(ii) for all subsets X, Y of L such that X ∈ A and Y ∈ A there exists a

subset Z of L such that Z ∈ A and X ∪ Y ⊆ Z.

Let X be a subset of L. If X =
⋃

A, then X is filtered.

Let L be a non empty reflexive transitive relational structure and let I be an
ideal of L. We say that I is principal if and only if:

(Def. 21) There exists an element x of L such that x ∈ I and x ≥ I.

Let L be a non empty reflexive transitive relational structure and let F be a
filter of L. We say that F is principal if and only if:

(Def. 22) There exists an element x of L such that x ∈ F and x ≤ F.

Next we state two propositions:

(48) Let L be a non empty reflexive transitive relational structure and I be
an ideal of L. Then I is principal if and only if there exists an element x

of L such that I = ↓x.

(49) Let L be a non empty reflexive transitive relational structure and F be
a filter of L. Then F is principal if and only if there exists an element x

of L such that F = ↑x.

Let L be a non empty reflexive transitive relational structure. The functor
Ids(L) yields a set and is defined by:

(Def. 23) Ids(L) = {X : X ranges over ideals of L}.

The functor Filt(L) yields a set and is defined as follows:

(Def. 24) Filt(L) = {X : X ranges over filters of L}.
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Let L be a non empty reflexive transitive relational structure. The functor
Ids0(L) yielding a set is defined by:

(Def. 25) Ids0(L) = Ids(L) ∪ {∅}.

The functor Filt0(L) yielding a set is defined as follows:

(Def. 26) Filt0(L) = Filt(L) ∪ {∅}.

Let L be a non empty relational structure and let X be a subset of the carrier
of L. The functor finsups(X) yielding a subset of L is defined as follows:

(Def. 27) finsups(X) = {
⊔

L Y : Y ranges over finite subsets of X, sup Y exists
in L}.

The functor fininfs(X) yielding a subset of L is defined as follows:

(Def. 28) fininfs(X) = {⌈−⌉LY : Y ranges over finite subsets of X, inf Y exists in
L}.

Let L be a non empty antisymmetric lower-bounded relational structure and
let X be a subset of the carrier of L. Note that finsups(X) is non empty.

Let L be a non empty antisymmetric upper-bounded relational structure and
let X be a subset of the carrier of L. Note that fininfs(X) is non empty.

Let L be a non empty reflexive antisymmetric relational structure and let X

be a non empty subset of the carrier of L. Note that finsups(X) is non empty
and fininfs(X) is non empty.

One can prove the following two propositions:

(50) Let L be a non empty reflexive antisymmetric relational structure and X

be a subset of the carrier of L. Then X ⊆ finsups(X) and X ⊆ fininfs(X).

(51) Let L be a non empty transitive relational structure and X, F be subsets
of L. Suppose that

(i) for every finite subset Y of X such that Y 6= ∅ holds sup Y exists in
L,

(ii) for every element x of L such that x ∈ F there exists a finite subset Y

of X such that sup Y exists in L and x =
⊔

L Y, and
(iii) for every finite subset Y of X such that Y 6= ∅ holds

⊔
L Y ∈ F.

Then F is directed.

Let L be a poset with l.u.b.’s and let X be a subset of the carrier of L. Note
that finsups(X) is directed.

The following propositions are true:

(52) Let L be a non empty transitive reflexive relational structure and X, F

be subsets of L. Suppose that
(i) for every finite subset Y of X such that Y 6= ∅ holds sup Y exists in

L,
(ii) for every element x of L such that x ∈ F there exists a finite subset Y

of X such that sup Y exists in L and x =
⊔

L Y, and
(iii) for every finite subset Y of X such that Y 6= ∅ holds

⊔
L Y ∈ F.

Let x be an element of L. Then x ≥ X if and only if x ≥ F.

(53) Let L be a non empty transitive reflexive relational structure and X, F

be subsets of L. Suppose that
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(i) for every finite subset Y of X such that Y 6= ∅ holds sup Y exists in
L,

(ii) for every element x of L such that x ∈ F there exists a finite subset Y

of X such that sup Y exists in L and x =
⊔

L Y, and
(iii) for every finite subset Y of X such that Y 6= ∅ holds

⊔
L Y ∈ F.

Then sup X exists in L if and only if sup F exists in L.

(54) Let L be a non empty transitive reflexive relational structure and X, F

be subsets of L. Suppose that
(i) for every finite subset Y of X such that Y 6= ∅ holds sup Y exists in

L,
(ii) for every element x of L such that x ∈ F there exists a finite subset Y

of X such that sup Y exists in L and x =
⊔

L Y,

(iii) for every finite subset Y of X such that Y 6= ∅ holds
⊔

L Y ∈ F, and
(iv) sup X exists in L.

Then supF = supX.

(55) Let L be a poset with l.u.b.’s and X be a subset of L. If sup X exists
in L or L is complete, then supX = supfinsups(X).

(56) Let L be a non empty transitive relational structure and X, F be subsets
of L. Suppose that

(i) for every finite subset Y of X such that Y 6= ∅ holds inf Y exists in L,
(ii) for every element x of L such that x ∈ F there exists a finite subset Y

of X such that inf Y exists in L and x = ⌈−⌉LY, and
(iii) for every finite subset Y of X such that Y 6= ∅ holds ⌈−⌉LY ∈ F.

Then F is filtered.

Let L be a poset with g.l.b.’s and let X be a subset of the carrier of L. One
can check that fininfs(X) is filtered.

The following propositions are true:

(57) Let L be a non empty transitive reflexive relational structure and X, F

be subsets of L. Suppose that
(i) for every finite subset Y of X such that Y 6= ∅ holds inf Y exists in L,
(ii) for every element x of L such that x ∈ F there exists a finite subset Y

of X such that inf Y exists in L and x = ⌈−⌉LY, and
(iii) for every finite subset Y of X such that Y 6= ∅ holds ⌈−⌉LY ∈ F.

Let x be an element of L. Then x ≤ X if and only if x ≤ F.

(58) Let L be a non empty transitive reflexive relational structure and X, F

be subsets of L. Suppose that
(i) for every finite subset Y of X such that Y 6= ∅ holds inf Y exists in L,
(ii) for every element x of L such that x ∈ F there exists a finite subset Y

of X such that inf Y exists in L and x = ⌈−⌉LY, and
(iii) for every finite subset Y of X such that Y 6= ∅ holds ⌈−⌉LY ∈ F.

Then inf X exists in L if and only if inf F exists in L.

(59) Let L be a non empty transitive reflexive relational structure and X, F

be subsets of L. Suppose that
(i) for every finite subset Y of X such that Y 6= ∅ holds inf Y exists in L,
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(ii) for every element x of L such that x ∈ F there exists a finite subset Y

of X such that inf Y exists in L and x = ⌈−⌉LY,

(iii) for every finite subset Y of X such that Y 6= ∅ holds ⌈−⌉LY ∈ F, and

(iv) inf X exists in L.

Then inf F = inf X.

(60) Let L be a poset with g.l.b.’s and X be a subset of L. If inf X exists
in L or L is complete, then inf X = inf fininfs(X).

(61) Let L be a poset with l.u.b.’s and X be a subset of the carrier of L.
Then X ⊆ ↓finsups(X) and for every ideal I of L such that X ⊆ I holds
↓finsups(X) ⊆ I.

(62) Let L be a poset with g.l.b.’s and X be a subset of the carrier of L.
Then X ⊆ ↑fininfs(X) and for every filter F of L such that X ⊆ F holds
↑fininfs(X) ⊆ F.

5. Chains

Let L be a non empty relational structure. We say that L is connected if
and only if:

(Def. 29) For all elements x, y of L holds x ≤ y or y ≤ x.

Let us observe that every non empty reflexive relational structure which is
trivial is also connected.

Let us observe that there exists a non empty poset which is connected.

A chain is a connected non empty poset.

Let L be a chain. Observe that L � is connected.

6. Semilattices

A semilattice is a poset with g.l.b.’s. A sup-semilattice is a poset with l.u.b.’s.
A lattice is a poset with g.l.b.’s and l.u.b.’s.

The following two propositions are true:

(63) Let L be a semilattice and X be an upper non empty subset of L. Then
X is a filter of L if and only if sub(X) is meet-inheriting.

(64) Let L be a sup-semilattice and X be a lower non empty subset of L.
Then X is an ideal of L if and only if sub(X) is join-inheriting.
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7. Maps

Let S, T be non empty relational structures, let f be a map from S into T ,
and let X be a subset of S. We say that f preserves inf of X if and only if:

(Def. 30) If inf X exists in S, then inf f ◦X exists in T and inf(f ◦X) = f(inf X).

We say that f preserves sup of X if and only if:

(Def. 31) If sup X exists in S, then sup f ◦X exists in T and sup(f ◦X) =
f(supX).

We now state the proposition

(65) Let S1, S2, T1, T2 be non empty relational structures. Suppose that
(i) the relational structure of S1 = the relational structure of T1, and
(ii) the relational structure of S2 = the relational structure of T2.

Let f be a map from S1 into S2 and g be a map from T1 into T2. Suppose
f = g. Let X be a subset of S1 and Y be a subset of T1 such that X = Y.

Then
(iii) if f preserves sup of X, then g preserves sup of Y , and
(iv) if f preserves inf of X, then g preserves inf of Y .

Let L1, L2 be non empty relational structures and let f be a map from L1

into L2. We say that f is infs-preserving if and only if:

(Def. 32) For every subset X of L1 holds f preserves inf of X.

We say that f is sups-preserving if and only if:

(Def. 33) For every subset X of L1 holds f preserves sup of X.

We say that f is meet-preserving if and only if:

(Def. 34) For all elements x, y of L1 holds f preserves inf of {x, y}.

We say that f is join-preserving if and only if:

(Def. 35) For all elements x, y of L1 holds f preserves sup of {x, y}.

We say that f is filtered-infs-preserving if and only if:

(Def. 36) For every subset X of L1 such that X is non empty filtered holds f

preserves inf of X.

We say that f is directed-sups-preserving if and only if:

(Def. 37) For every subset X of L1 such that X is non empty directed holds f

preserves sup of X.

Let L1, L2 be non empty relational structures. Note that every map from
L1 into L2 which is infs-preserving is also filtered-infs-preserving and meet-
preserving and every map from L1 into L2 which is sups-preserving is also
directed-sups-preserving and join-preserving.

Let S, T be relational structures and let f be a map from S into T . We say
that f is isomorphic if and only if:

(Def. 38) (i) f is one-to-one monotone and there exists a map g from T into S

such that g = f−1 and g is monotone if S is non empty and T is non
empty,
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(ii) S is empty and T is empty, otherwise.

The following proposition is true

(66) Let S, T be non empty relational structures and f be a map from S

into T . Then f is isomorphic if and only if the following conditions are
satisfied:

(i) f is one-to-one,

(ii) rng f = the carrier of T , and

(iii) for all elements x, y of S holds x ≤ y iff f(x) ≤ f(y).

Let S, T be non empty relational structures. Note that every map from S

into T which is isomorphic is also one-to-one and monotone.

We now state several propositions:

(67) Let S, T be non empty relational structures and f be a map from S

into T . Suppose f is isomorphic. Then f−1 is a map from T into S and
rng(f−1) = the carrier of S.

(68) Let S, T be non empty relational structures and f be a map from S into
T . Suppose f is isomorphic. Let g be a map from T into S. If g = f−1,

then g is isomorphic.

(69) Let S, T be non empty posets and f be a map from S into T . Suppose
that for every filter X of S holds f preserves inf of X. Then f is monotone.

(70) Let S, T be non empty posets and f be a map from S into T . Suppose
that for every filter X of S holds f preserves inf of X. Then f is filtered-
infs-preserving.

(71) Let S be a semilattice, T be a non empty poset, and f be a map from
S into T . Suppose that

(i) for every finite subset X of S holds f preserves inf of X, and

(ii) for every non empty filtered subset X of S holds f preserves inf of X.

Then f is infs-preserving.

(72) Let S, T be non empty posets and f be a map from S into T . Sup-
pose that for every ideal X of S holds f preserves sup of X. Then f is
monotone.

(73) Let S, T be non empty posets and f be a map from S into T . Suppose
that for every ideal X of S holds f preserves sup of X. Then f is directed-
sups-preserving.

(74) Let S be a sup-semilattice, T be a non empty poset, and f be a map
from S into T . Suppose that

(i) for every finite subset X of S holds f preserves sup of X, and

(ii) for every non empty directed subset X of S holds f preserves sup of
X.

Then f is sups-preserving.
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8. Completeness wrt directed sets

Let L be a non empty reflexive relational structure. We say that L is up-
complete if and only if the condition (Def. 39) is satisfied.

(Def. 39) Let X be a non empty directed subset of L. Then there exists an
element x of L such that x ≥ X and for every element y of L such that
y ≥ X holds x ≤ y.

One can verify that every reflexive relational structure with l.u.b.’s which is
up-complete is also upper-bounded.

The following proposition is true

(75) Let L be a non empty reflexive antisymmetric relational structure. Then
L is up-complete if and only if for every non empty directed subset X of
L holds sup X exists in L.

Let L be a non empty reflexive relational structure. We say that L is inf-
complete if and only if the condition (Def. 40) is satisfied.

(Def. 40) Let X be a non empty subset of L. Then there exists an element x of
L such that x ≤ X and for every element y of L such that y ≤ X holds
x ≥ y.

Next we state the proposition

(76) Let L be a non empty reflexive antisymmetric relational structure. Then
L is inf-complete if and only if for every non empty subset X of L holds
inf X exists in L.

One can check the following observations:

∗ every non empty reflexive relational structure which is complete is also
up-complete and inf-complete,

∗ every non empty reflexive relational structure which is inf-complete is
also lower-bounded, and

∗ every non empty poset which is up-complete and lower-bounded and
has l.u.b.’s is also complete.

Let us note that every non empty reflexive antisymmetric relational structure
which is inf-complete has g.l.b.’s.

Let us note that every non empty reflexive antisymmetric upper-bounded
relational structure which is inf-complete has l.u.b.’s.

One can check that there exists a lattice which is complete and strict.
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