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Summary. The aim of this work is the formalization of Chapter 0
Section 4 of [11]. In this paper the definition of meet-continuous lattices
is introduced. Theorem 4.2 and Remark 4.3 are proved.
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The terminology and notation used in this paper are introduced in the following
papers: [18], [21], [9], [22], [24], [23], [19], [6], [4], [14], [10], [7], [17], [5], [20], [2],
[12], [1], [3], [13], [25], [8], [15], and [16].

1. Preliminaries

Let X, Y be non empty sets, let f be a function from X into Y , and let Z

be a non empty subset of X. One can verify that f ◦Z is non empty.
One can check that every non empty relational structure which is reflexive

and connected has g.l.b.’s and l.u.b.’s.
Let C be a chain. One can verify that ΩC is directed.
Let X be a set. Note that every binary relation on X which is ordering is

also reflexive, antisymmetric, and transitive.
Let X be a non empty set. One can verify that there exists a binary relation

on X which is ordering.
The following propositions are true:

(1) Let L be an up-complete semilattice, and let D be a non empty directed
subset of L, and let x be an element of L. Then sup {x} ⊓ D exists in L.

(2) Let L be an up-complete sup-semilattice, and let D be a non empty
directed subset of L, and let x be an element of L. Then sup {x} ⊔ D

exists in L.
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(3) For every up-complete sup-semilattice L and for all non empty directed
subsets A, B of L holds A ≤ sup(A ⊔ B).

(4) For every up-complete sup-semilattice L and for all non empty directed
subsets A, B of L holds sup(A ⊔ B) = supA ⊔ supB.

(5) Let L be an up-complete semilattice and let D be a non empty directed
subset of [:L, L :]. Then {sup({x} ⊓ π2(D)) : x ranges over elements of L,
x ∈ π1(D)} = {sup X : X ranges over non empty directed subsets of L,
∨

x : element of L X = {x} ⊓ π2(D) ∧ x ∈ π1(D)}.

(6) Let L be a semilattice and let D be a non empty directed subset of
[:L, L :]. Then

⋃
{X : X ranges over non empty directed subsets of L,

∨
x : element of L X = {x} ⊓ π2(D) ∧ x ∈ π1(D)} = π1(D) ⊓ π2(D).

(7) Let L be an up-complete semilattice and let D be a non empty directed
subset of [:L, L :]. Then sup

⋃
{X : X ranges over non empty directed

subsets of L,
∨

x : element of L X = {x} ⊓ π2(D) ∧ x ∈ π1(D)} exists in L.

(8) Let L be an up-complete semilattice and let D be a non empty directed
subset of [: L, L :]. Then sup {supX : X ranges over non empty directed
subsets of L,

∨
x : element of L X = {x} ⊓ π2(D) ∧ x ∈ π1(D)} exists in L.

(9) Let L be an up-complete semilattice and let D be a non empty directed
subset of [:L, L :]. Then

⊔
L{supX : X ranges over non empty directed

subsets of L,
∨

x : element of L X = {x}⊓π2(D) ∧ x ∈ π1(D)} ≤
⊔

L

⋃
{X :

X ranges over non empty directed subsets of L,
∨

x : element of L X = {x}⊓
π2(D) ∧ x ∈ π1(D)}.

(10) Let L be an up-complete semilattice and let D be a non empty directed
subset of [:L, L :]. Then

⊔
L{supX : X ranges over non empty directed

subsets of L,
∨

x : element of L X = {x}⊓π2(D) ∧ x ∈ π1(D)} =
⊔

L

⋃
{X :

X ranges over non empty directed subsets of L,
∨

x : element of L X = {x}⊓
π2(D) ∧ x ∈ π1(D)}.

Let S, T be up-complete non empty reflexive relational structures. One can
verify that [: S, T :] is up-complete.

The following four propositions are true:

(11) Let S, T be non empty reflexive antisymmetric relational structures. If
[:S, T :] is up-complete, then S is up-complete and T is up-complete.

(12) Let L be an up-complete antisymmetric non empty reflexive relational
structure and let D be a non empty directed subset of [: L, L :]. Then
supD = 〈〈 supπ1(D), supπ2(D)〉〉.

(13) Let S1, S2 be non empty relational structures, and let D be a subset
of S1, and let f be a map from S1 into S2. If f is monotone, then
f◦↓D ⊆ ↓(f ◦D).

(14) Let S1, S2 be non empty relational structures, and let D be a subset
of S1, and let f be a map from S1 into S2. If f is monotone, then
f◦↑D ⊆ ↑(f ◦D).

Let us observe that every non empty reflexive relational structure which is
trivial is also distributive and complemented.
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Let us note that there exists a lattice which is strict, non empty, and trivial.

One can prove the following three propositions:

(15) Let H be a distributive complete lattice, and let a be an element of H,
and let X be a finite subset of H. Then sup({a} ⊓ X) = a ⊓ supX.

(16) Let H be a distributive complete lattice, and let a be an element of H,
and let X be a finite subset of H. Then inf({a} ⊔ X) = a ⊔ inf X.

(17) Let H be a complete distributive lattice, and let a be an element of H,
and let X be a finite subset of H. Then a ⊓ � preserves sup of X.

2. The properties of nets

The scheme ExNet concerns a non empty relational structure A, a prenet
B over A, and a unary functor F yielding an element of the carrier of A, and
states that:

There exists a prenet M over A such that
(i) the relational structure of M = the relational structure of B,

and

(ii) for every element i of the carrier of M holds (the mapping of
M)(i) = F((the mapping of B)(i))

for all values of the parameters.

The following three propositions are true:

(18) Let L be a non empty relational structure and let N be a prenet over
L. If N is eventually-directed, then rng netmap(N,L) is directed.

(19) Let L be a non empty reflexive relational structure, and let D be a non
empty directed subset of L, and let n be a function from D into the carrier
of L. Then 〈D, (the internal relation of L) |2(D), n〉 is a prenet over L.

(20) Let L be a non empty reflexive relational structure, and let D be a non
empty directed subset of L, and let n be a function from D into the carrier
of L, and let N be a prenet over L. Suppose n = idD and N = 〈D, (the
internal relation of L) |2(D), n〉. Then N is eventually-directed.

Let L be a non empty relational structure and let N be a net structure over
L. The functor supN yielding an element of L is defined by:

(Def. 1) supN = Sup(the mapping of N).

Let L be a non empty relational structure, let J be a set, and let f be a
function from J into the carrier of L. The functor FinSups(f) yields a prenet
over L and is defined by the condition (Def. 2).

(Def. 2) There exists a function g from Fin J into the carrier of L such that
for every element x of Fin J holds g(x) = sup(f ◦x) and FinSups(f) =
〈Fin J,⊆Fin J , g〉.

The following proposition is true
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(21) Let L be a non empty relational structure, and let J , x be sets, and
let f be a function from J into the carrier of L. Then x is an element of
FinSups(f) if and only if x is an element of Fin J.

Let L be a complete antisymmetric non empty reflexive relational structure,
let J be a set, and let f be a function from J into the carrier of L. Note that
FinSups(f) is monotone.

Let L be a non empty relational structure, let x be an element of L, and let
N be a non empty net structure over L. The functor x⊓N yielding a strict net
structure over L is defined by the conditions (Def. 3).

(Def. 3) (i) The relational structure of x ⊓ N = the relational structure of N ,
and

(ii) for every element i of the carrier of x⊓N there exists an element y of L

such that y = (the mapping of N)(i) and (the mapping of x⊓N)(i) = x⊓y.

We now state the proposition

(22) Let L be a non empty relational structure, and let N be a non empty
net structure over L, and let x be an element of L, and let y be a set.
Then y is an element of N if and only if y is an element of x ⊓ N.

Let L be a non empty relational structure, let x be an element of L, and let
N be a non empty net structure over L. Observe that x ⊓ N is non empty.

Let L be a non empty relational structure, let x be an element of L, and let
N be a prenet over L. Note that x ⊓ N is directed.

Next we state several propositions:

(23) Let L be a non empty relational structure, and let x be an element of L,
and let F be a non empty net structure over L. Then rng (the mapping
of x ⊓ F ) = {x} ⊓ rng (the mapping of F ).

(24) Let L be a non empty relational structure, and let J be a set, and let
f be a function from J into the carrier of L. If for every set x holds sup
f◦x exists in L, then rng netmap(FinSups(f), L) ⊆ finsups(rng f).

(25) Let L be a non empty reflexive antisymmetric relational structure, and
let J be a set, and let f be a function from J into the carrier of L. Then
rng f ⊆ rng netmap(FinSups(f), L).

(26) Let L be a non empty reflexive antisymmetric relational structure, and
let J be a set, and let f be a function from J into the carrier of L.
Suppose sup rng f exists in L and sup rng netmap(FinSups(f), L) exists
in L and for every element x of Fin J holds sup f ◦x exists in L. Then
Sup(f) = supFinSups(f).

(27) Let L be an antisymmetric transitive relational structure with g.l.b.’s,
and let N be a prenet over L, and let x be an element of L. If N is
eventually-directed, then x ⊓ N is eventually-directed.

(28) Let L be an up-complete semilattice. Suppose that for every element x

of L and for every non empty directed subset E of L such that x ≤ supE

holds x ≤ sup({x} ⊓ E). Let D be a non empty directed subset of L and
let x be an element of L. Then x ⊓ supD = sup({x} ⊓ D).
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(29) Let L be a poset with l.u.b.’s. Suppose that for every directed subset
X of L and for every element x of L holds x⊓ supX = sup({x}⊓X). Let
X be a subset of L and let x be an element of L. If sup X exists in L,
then x ⊓ supX = sup({x} ⊓ finsups(X)).

(30) Let L be an up-complete lattice. Suppose that for every subset X of L

and for every element x of L holds x ⊓ supX = sup({x} ⊓ finsups(X)).
Let X be a non empty directed subset of L and let x be an element of L.
Then x ⊓ supX = sup({x} ⊓ X).

3. On the inf and sup operation

Let L be a non empty relational structure. The functor inf op(L) yields a
map from [:L, L :] into L and is defined as follows:

(Def. 4) For all elements x, y of L holds (inf op(L))(〈〈x, y〉〉) = x ⊓ y.

One can prove the following proposition

(31) For every non empty relational structure L and for every element x of
[:L, L :] holds (inf op(L))(x) = x1 ⊓ x2.

Let L be a transitive antisymmetric relational structure with g.l.b.’s. Note
that inf op(L) is monotone.

The following two propositions are true:

(32) For every non empty relational structure S and for all subsets D1, D2

of S holds (inf op(S))◦[:D1, D2 :] = D1 ⊓ D2.

(33) For every up-complete semilattice L and for every non empty directed
subset D of [: L, L :] holds sup((inf op(L))◦D) = sup(π1(D) ⊓ π2(D)).

Let L be a non empty relational structure. The functor sup op(L) yielding
a map from [: L, L :] into L is defined by:

(Def. 5) For all elements x, y of L holds (sup op(L))(〈〈x, y〉〉) = x ⊔ y.

We now state the proposition

(34) For every non empty relational structure L and for every element x of
[:L, L :] holds (sup op(L))(x) = x1 ⊔ x2.

Let L be a transitive antisymmetric relational structure with l.u.b.’s. Observe
that sup op(L) is monotone.

The following two propositions are true:

(35) For every non empty relational structure S and for all subsets D1, D2

of S holds (sup op(S))◦[:D1, D2 :] = D1 ⊔ D2.

(36) For every complete non empty poset L and for every non empty filtered
subset D of [: L, L :] holds inf((sup op(L))◦D) = inf(π1(D) ⊔ π2(D)).
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4. Meet-continuous lattices

Let R be a non empty reflexive relational structure. We say that R satisfies
MC if and only if:

(Def. 6) For every element x of R and for every non empty directed subset D of
R holds x ⊓ sup D = sup({x} ⊓ D).

Let R be a non empty reflexive relational structure. We say that R is meet-
continuous if and only if:

(Def. 7) R is up-complete and satisfies MC.

One can check that every non empty reflexive relational structure which is
trivial satisfies MC.

Let us observe that every non empty reflexive relational structure which
is meet-continuous is also up-complete and satisfies MC and every non empty
reflexive relational structure which is up-complete and satisfies MC is also meet-
continuous.

Let us observe that there exists a lattice which is strict, non empty, and
trivial.

Next we state two propositions:

(37) Let S be a non empty reflexive relational structure. Suppose that for
every subset X of S and for every element x of S holds x ⊓ supX =
⊔

S{x ⊓ y : y ranges over elements of S, y ∈ X}. Then S satisfies MC.

(38) Let L be an up-complete semilattice. If SupMap(L) is meet-preserving,
then for all ideals I1, I2 of L holds sup I1 ⊓ sup I2 = sup(I1 ⊓ I2).

Let L be an up-complete sup-semilattice. Note that SupMap(L) is join-
preserving.

One can prove the following propositions:

(39) Let L be an up-complete semilattice. If for all ideals I1, I2 of L holds
sup I1 ⊓ sup I2 = sup(I1 ⊓ I2), then SupMap(L) is meet-preserving.

(40) Let L be an up-complete semilattice. Suppose that for all ideals I1,
I2 of L holds sup I1 ⊓ sup I2 = sup(I1 ⊓ I2). Let D1, D2 be directed non
empty subsets of L. Then supD1 ⊓ supD2 = sup(D1 ⊓ D2).

(41) Let L be a non empty reflexive relational structure. Suppose L satisfies
MC. Let x be an element of L and let N be a non empty prenet over L. If
N is eventually-directed, then x ⊓ supN = sup({x} ⊓ rng netmap(N,L)).

(42) Let L be a non empty reflexive relational structure. Suppose that for
every element x of L and for every prenet N over L such that N is
eventually-directed holds x⊓ supN = sup({x}⊓ rng netmap(N,L)). Then
L satisfies MC.

(43) Let L be an up-complete antisymmetric non empty reflexive relational
structure. Suppose inf op(L) is directed-sups-preserving. Let D1, D2 be
non empty directed subsets of L. Then supD1 ⊓ supD2 = sup(D1 ⊓D2).
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(44) Let L be a non empty reflexive antisymmetric relational structure. If
for all non empty directed subsets D1, D2 of L holds supD1 ⊓ supD2 =
sup(D1 ⊓ D2), then L satisfies MC.

(45) Let L be an antisymmetric non empty reflexive relational structure with
g.l.b.’s, satisfying MC, and let x be an element of L, and let D be a non
empty directed subset of L. If x ≤ supD, then x = sup({x} ⊓ D).

(46) Let L be an up-complete semilattice. Suppose that for every element x

of L and for every non empty directed subset E of L such that x ≤ supE

holds x ≤ sup({x} ⊓ E). Then inf op(L) is directed-sups-preserving.

(47) Let L be a complete antisymmetric non empty reflexive relational struc-
ture. Suppose that for every element x of L and for every prenet N

over L such that N is eventually-directed holds x ⊓ supN = sup({x} ⊓
rng netmap(N,L)). Let x be an element of L, and let J be a set, and
let f be a function from J into the carrier of L. Then x ⊓ Sup(f) =
sup(x ⊓ FinSups(f)).

(48) Let L be a complete semilattice. Suppose that for every element x of
L and for every set J and for every function f from J into the carrier of
L holds x⊓ Sup(f) = sup(x⊓FinSups(f)). Let x be an element of L and
let N be a prenet over L. If N is eventually-directed, then x ⊓ supN =
sup({x} ⊓ rng netmap(N,L)).

(49) For every up-complete lattice L holds L is meet-continuous iff
SupMap(L) is meet-preserving and join-preserving.

Let L be a meet-continuous lattice. One can verify that SupMap(L) is meet-
preserving and join-preserving.

We now state four propositions:

(50) Let L be an up-complete lattice. Then L is meet-continuous if and only
if for all ideals I1, I2 of L holds sup I1 ⊓ sup I2 = sup(I1 ⊓ I2).

(51) Let L be an up-complete lattice. Then L is meet-continuous if and only
if for all non empty directed subsets D1, D2 of L holds supD1 ⊓ supD2 =
sup(D1 ⊓ D2).

(52) Let L be an up-complete lattice. Then L is meet-continuous if and only
if for every element x of L and for every non empty directed subset D of
L such that x ≤ supD holds x = sup({x} ⊓ D).

(53) For every up-complete semilattice L holds L is meet-continuous iff
inf op(L) is directed-sups-preserving.

Let L be a meet-continuous semilattice. Observe that inf op(L) is directed-
sups-preserving.

The following two propositions are true:

(54) Let L be an up-complete semilattice. Then L is meet-continuous if
and only if for every element x of L and for every non empty prenet N

over L such that N is eventually-directed holds x ⊓ supN = sup({x} ⊓
rng netmap(N,L)).
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(55) Let L be a complete semilattice. Then L is meet-continuous if and only
if for every element x of L and for every set J and for every function f

from J into the carrier of L holds x ⊓ Sup(f) = sup(x ⊓ FinSups(f)).

Let L be a meet-continuous semilattice and let x be an element of L. One
can verify that x ⊓ � is directed-sups-preserving.

The following proposition is true

(56) For every complete non empty poset H holds H is Heyting iff H is
meet-continuous and distributive.

Let us mention that every non empty poset which is complete and Heyting
is also meet-continuous and distributive and every non empty poset which is
complete, meet-continuous, and distributive is also Heyting.
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