FORMALIZED MATHEMATICS
Volume 6, Number 1, 1997
Warsaw University - Bialystok

Boolean Posets, Posets under Inclusion and
Products of Relational Structures !

Adam Grabowski Robert Milewski
Warsaw University Warsaw University
Bialystok Bialystok

Summary. In the paper some notions useful in formalization of
[11] are introduced, e.g. the definition of the poset of subsets of a set
with inclusion as an ordering relation. Using the theory of many sorted
sets authors formulate the definition of product of relational structures.
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The terminology and notation used in this paper are introduced in the following
articles: [19], [21], [9], [22], [24], 28], [16], [6], [7], [5], [10], [4], [13], [20], [23],

[12], [2], [17], [15], [18], [3], [14], [1], and [8].

1. BOOLEAN POSETS AND POSETS UNDER INCLUSION

In this paper X will be a set.
Let L be a lattice. Observe that Poset(L) has l.u.b.’s and g.1.b.’s.
Let L be an upper-bounded lattice. Note that Poset(L) is upper-bounded.

Let L be a lower-bounded lattice. One can check that Poset(L) is lower-

bounded.
Let L be a complete lattice. One can verify that Poset(L) is complete.

Let X be a set. Then Sx is an order in X.
Let X be a set. The functor (X, C) yielding a strict relational structure is
defined as follows:

(Def. 1)  (X,C) = (X,Sx).
Let X be a set. Observe that (X, C) is reflexive antisymmetric and transitive.

Let X be a non empty set. Observe that (X, C) is non empty.
We now state the proposition
IThis work was partially supported by Office of Naval Research Grant N00014-95-1-1336.
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(1)  The carrier of (X,C) = X and the internal relation of (X,C) = Sy.
Let X be a set. The functor 2é yielding a strict relational structure is defined
by:
(Def. 2) 2é = Poset(the lattice of subsets of X).
Let X be a set. Note that 2‘5 is non empty reflexive antisymmetric and
transitive.
Let X be a set. Note that Qé is complete.
Next we state a number of propositions:

(2)  For all elements z, 3 of 2% holds = < y iff x C y.

(3)  For every non empty set X and for all elements z, y of (X,C) holds
r<yiff x Cy.

4) 28 =(%09).

(5)  For every subset Y of 2% holds (Y, C) is a full relational substructure
of 2X.

(6) For every non empty set X such that (X,C) has L.u.b.’s and for all
elements x, y of (X,C) holds zUy C zUy.

(7)  For every non empty set X such that (X,C) has g.l.b.’s and for all
elements x, y of (X,C) holds z My CzNy.

(8)  For every non empty set X and for all elements z, y of (X, C) such that
zUy € X holdsz Uy =xzUy.

(9)  For every non empty set X and for all elements x, y of (X, C) such that
zNy € X holds x My =xzNy.

(10) Let L be a relational structure. Suppose that for all elements x, y of L
holds = < y iff # C y. Then the internal relation of L = Sy carrier of L-

(11)  For every non empty set X such that for all sets x, y such that x € X
and y € X holds x Uy € X holds (X, C) has L.u.b.’s.

(12)  For every non empty set X such that for all sets z, y such that x € X
and y € X holds x Ny € X holds (X, C) has g.l.b.’s.

(13)  For every non empty set X such that () € X holds L x cy = 0.
(14)  For every non empty set X such that JX € X holds T x ¢y =UX.
(15)  For every non empty set X such that (X, C) is upper-bounded holds

UX € X.

(16) For every non empty set X such that (X, C) is lower-bounded holds
NX e X.

(17)  For all elements z, y of Zé holds z Uy =ozUy and x Ny =2 Ny.

(19) Tox = X.

(20)  For every non empty subset Y of 2*5 holds inf Y = Y.

(21)  For every subset Y of Zé holds supY =Y.
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(22)  For every non empty topological space T and for every subset X of (the
topology of T', C) holds sup X = J X.
(23)  For every non empty topological space T holds L (e topology of T, <) = -
(24)  For every non empty topological space T" holds T (e topology of T, C) =
the carrier of T'.
Let T be a non empty topological space. Observe that (the topology of T,
C) is complete and non trivial.
We now state the proposition
(25) Let T be a topological space and let F' be a family of subsets of 7. Then
F is open if and only if F' is a subset of (the topology of T', C).

2. PRODUCTS OF RELATIONAL STRUCTURES

Let R be a binary relation. We say that R is relational structure yielding if
and only if:

(Def. 3)  For every set v such that v € rng R holds v is a relational structure.

One can check that every function which is relational structure yielding is
also 1-sorted yielding.

Let I be a set. One can verify that there exists a many sorted set indexed
by I which is relational structure yielding.

Let J be a non empty set, let A be a relational structure yielding many
sorted set indexed by J, and let j be an element of J. Then A(j) is a relational
structure.

Let I be a set and let J be a relational structure yielding many sorted set
indexed by I. The functor [ J yields a strict relational structure and is defined
by the conditions (Def. 4).

(Def. 4) (i)  The carrier of []J = []support J, and
(ii)  for all elements z, y of the carrier of [[J such that z € [][supportJ
holds x < y iff there exist functions f, g such that f = z and ¢ = y and
for every set i such that ¢ € I there exists a relational structure R and
there exist elements 1, y; of R such that R = J(i) and x1 = f(i) and
y1 = ¢g(i) and =1 < y1.

Let X be a set and let L be a relational structure. One can verify that
X —— L is relational structure yielding.

Let I be a set and let T' be a relational structure. The functor T/ yielding a
strict relational structure is defined by:

(Def. 5)  T! =T1[(I —T).

Next we state three propositions:

(26)  For every relational structure yielding many sorted set J indexed by ()
holds HJ = <{®}, A{@}>
(27)  For every relational structure Y holds Y? = ({0}, Dggy)-
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(28)  For every set X and for every relational structure Y holds (the carrier
of Y)X = the carrier of YX,

Let X be a set and let Y be a non empty relational structure. Note that ¥ X
is non empty.

Let X be a set and let Y be a reflexive non empty relational structure.
Observe that YX is reflexive.

Let Y be a non empty relational structure. Observe that Y? is trivial.

Let Y be a non empty reflexive relational structure. Note that Y is anti-
symmetric and has g.l.b.’s and Lu.b.’s.

Let X be a set and let Y be a transitive non empty relational structure. Note
that YX is transitive.

Let X be a set and let Y be an antisymmetric non empty relational structure.
Note that Y is antisymmetric.

Let X be a non empty set and let Y be a non empty antisymmetric relational
structure with g.1.b.’s. Observe that Y has g.1.b.’s.

Let X be a non empty set and let Y be a non empty antisymmetric relational
structure with Lu.b.’s. Observe that Y X has L.u.b.’s.

Let S, T be relational structures. The functor MonMaps(S,T') yielding a
strict full relational substructure of T'the carrier of S js defined by the condition
(Def. 6).

(Def. 6) Let f be a map from S into T'. Then f € the carrier of MonMaps(S,T")

if and only if f € (the carrier of T)the carrier of S and f is monotone.
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