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1. PRELIMINARIES

Let L be a non empty relational structure. One can check that id;, is mono-
tone.

Let S, T' be non empty relational structures and let f be a map from .S into
T. Let us observe that f is antitone if and only if:

(Def. 1) For all elements x, y of S such that = < y holds f(x) > f(y).
Next we state several propositions:

(1) Let S, T be relational structures, K, L be non empty relational structu-
res, f be a map from S into T', and g be a map from K into L. Suppose
that

(i)  the relational structure of S = the relational structure of K,
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(ii)  the relational structure of 7' = the relational structure of L,

(i) f =g, and

(iv)  f is monotone.

Then ¢ is monotone.

(2) Let S, T be relational structures, K, L be non empty relational structu-
res, f be a map from S into T', and g be a map from K into L. Suppose
that

(i)  the relational structure of S = the relational structure of K,
(ii)  the relational structure of T' = the relational structure of L,
(iii) f =g, and

) [ is antitone.

Then g is antitone.

(3) Let A, B be 1-sorted structures, F' be a family of subsets of A, and G
be a family of subsets of B. Suppose the carrier of A = the carrier of B
and F' = G and F'is a cover of A. Then G is a cover of B.

(4) For every antisymmetric reflexive relational structure L with L.u.b.’s and
for every element x of L holds Tz = {x} LI Qp.

(iv

(5) For every antisymmetric reflexive relational structure L with g.l.b.’s and
for every element x of L holds |z = {x} M Qy.

(6) For every antisymmetric reflexive relational structure L with g.1.b.’s and
for every element y of L holds (y MO)°Ty = {y}.

(7) For every antisymmetric reflexive relational structure L with g.1.b.’s and
for every element z of L holds (z MO)~!({z}) = Tz.

(8) For every non empty l-sorted structure T holds every non empty net
structure N over T is eventually in rng (the mapping of N).

Let L be a non empty reflexive relational structure, let D be a non empty
directed subset of L, and let n be a function from D into the carrier of L. One
can verify that (D, (the internal relation of L) |2 D,n) is directed.

Let L be a non empty reflexive transitive relational structure, let D be a
non empty directed subset of L, and let n be a function from D into the carrier
of L. One can check that (D, (the internal relation of L) |? D, n) is transitive.

The following propositions are true:

(9) For every non empty reflexive transitive relational structure L such that
for every element x of L and for every net NV in L such that N is eventually-
directed holds x Msup N = sup{x} M rngnetmap(N, L) holds L satisfies
MC.

(10) Let L be a non empty relational structure, a be an element of L, and N
be anet in L. Then al N is a net in L.

Let L be a non empty relational structure, let z be an element of L, and let
N be anet in L. Then x M N is a strict net in L.

Let L be a non empty relational structure, let z be an element of L, and let
N be a non empty reflexive net structure over L. Observe that M N is reflexive.
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Let L be a non empty relational structure, let x be an element of L, and
let N be a non empty antisymmetric net structure over L. Note that z M N is
antisymmetric.

Let L be a non empty relational structure, let x be an element of L, and let
N be a non empty transitive net structure over L. Note that z M N is transitive.

Let L be a non empty relational structure, let J be a set, and let f be a
function from J into the carrier of L. Observe that FinSups(f) is transitive.

2. THE OPERATIONS DEFINED ON NETS

Let L be a non empty relational structure and let NV be a net structure over
L. The functor inf N yielding an element of L is defined as follows:

(Def. 2) inf N = Inf(the mapping of V).
Let L be a relational structure and let N be a net structure over L. We say
that sup N exists if and only if:

(Def. 3) Sup rng (the mapping of N) exists in L.
We say that inf N exists if and only if:
(Def. 4) Inf rng (the mapping of N) exists in L.

Let L be a relational structure. The functor (L;id) yields a strict net struc-
ture over L and is defined by:

(Def. 5) The relational structure of (L;id) = the relational structure of L and
the mapping of (L;id) = idy,.
Let L be a non empty relational structure. Observe that (L;id) is non empty.
Let L be a reflexive relational structure. One can check that (L;id) is refle-
xive.
Let L be an antisymmetric relational structure. Note that (L;id) is antisym-
metric.
Let L be a transitive relational structure. Observe that (L;id) is transitive.
Let L be a relational structure with L.u.b.’s. One can verify that (L;id) is
directed.
Let L be a directed relational structure. Note that (L;id) is directed.
Let L be a non empty relational structure. One can verify that (L;id) is
monotone and eventually-directed.
Let L be a relational structure. The functor (L°P;id) yields a strict net
structure over L and is defined by the conditions (Def. 6).

(Def. 6)(1) The carrier of (L°P;id) = the carrier of L,
(ii)  the internal relation of (L°P;id) = (the internal relation of L)~, and
(iii)  the mapping of (L°P;id) = idy.
Next we state the proposition

(11) For every relational structure L holds the relational structure of L~ =
the relational structure of (L°P;id).
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Let L be a non empty relational structure. One can check that (L°P;id) is
non empty.

Let L be a reflexive relational structure. Observe that (L°P;id) is reflexive.

Let L be an antisymmetric relational structure. Observe that (L°P;id) is
antisymmetric.

Let L be a transitive relational structure. Note that (L°P;id) is transitive.

Let L be a relational structure with g.1.b.’s. Note that (L°P;id) is directed.

Let L be a non empty relational structure. Note that (L°P;id) is antitone
and eventually-filtered.

Let L be a non empty 1-sorted structure, let N be a non empty net structure
over L, and let i be an element of N. The functor N [ yields a strict net structure
over L and is defined by the conditions (Def. 7).

(Def. 7)(i)  For every set = holds x € the carrier of N |7 iff there exists an element
y of N such that y =z and 7 < y,
(ii)  the internal relation of N|i = (the internal relation of N)|? (the carrier
of N|i), and
(iii)  the mapping of N|i = (the mapping of N)[(the carrier of N [7).
We now state three propositions:

(12) Let L be a non empty 1-sorted structure, N be a non empty net structure
over L, and i be an element of N. Then the carrier of N|i = {y,y ranges
over elements of N: i < y}.

(13) Let L be a non empty 1-sorted structure, N be a non empty net structure
over L, and i be an element of N. Then the carrier of N|i C the carrier

of N.

(14) Let L be a non empty 1-sorted structure, N be a non empty net structure
over L, and ¢ be an element of N. Then N i is a full structure of a subnet

of N.

Let L be a non empty 1-sorted structure, let NV be a non empty reflexive net
structure over L, and let ¢ be an element of N. Note that N7 is non empty and
reflexive.

Let L be a non empty 1-sorted structure, let N be a non empty directed net
structure over L, and let ¢ be an element of N. Note that N[i is non empty.

Let L be a non empty 1-sorted structure, let N be a non empty reflexive
antisymmetric net structure over L, and let ¢ be an element of N. Observe that
N[t is antisymmetric.

Let L be a non empty 1-sorted structure, let N be a non empty directed
antisymmetric net structure over L, and let ¢ be an element of N. Note that
N i is antisymmetric.

Let L be a non empty 1-sorted structure, let N be a non empty reflexive
transitive net structure over L, and let ¢ be an element of N. One can verify
that N i is transitive.

Let L be a non empty 1-sorted structure, let N be a net in L, and let ¢ be
an element of N. Note that N [i is transitive and directed.

Next we state three propositions:
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(15) Let L be a non empty 1-sorted structure, N be a non empty reflexive
net structure over L, i, x be elements of IV, and x1 be an element of N 3.
If x = 241, then N(z) = (NTi)(z1).

(16) Let L be a non empty l-sorted structure, N be a non empty directed
net structure over L, i, x be elements of IV, and x1 be an element of N 3.
If x = 24, then N(z) = (NTi)(z1).

(17) Let L be a non empty l-sorted structure, N be a net in L, and i be an
element of N. Then NJi is a subnet of N.

Let T be a non empty 1-sorted structure and let N be a net in T. Observe
that there exists a subnet of N which is strict.

Let L be a non empty 1-sorted structure, let N be a net in L, and let ¢ be
an element of V. Then N |7 is a strict subnet of N.

Let S be a non empty 1-sorted structure, let T be a 1-sorted structure, let
f be a map from S into T, and let N be a net structure over S. The functor
f+ N yielding a strict net structure over 7' is defined by the conditions (Def. 8).

(Def. 8)() The relational structure of f- N = the relational structure of N, and

(ii)  the mapping of f- N = f - the mapping of N.

Let S be a non empty 1-sorted structure, let 7" be a 1-sorted structure, let
f be amap from S into T', and let NV be a non empty net structure over .S. One
can verify that f - N is non empty.

Let S be a non empty 1-sorted structure, let T be a 1-sorted structure, let f
be a map from S into 7', and let N be a reflexive net structure over S. Observe
that f - IV is reflexive.

Let S be a non empty 1-sorted structure, let T be a 1-sorted structure, let
f be a map from S into T, and let N be an antisymmetric net structure over
S. Observe that f - N is antisymmetric.

Let S be a non empty 1-sorted structure, let T be a 1-sorted structure, let
f be a map from S into T', and let N be a transitive net structure over S. Note
that f - N is transitive.

Let S be a non empty 1-sorted structure, let 7" be a 1-sorted structure, let
f be a map from S into T, and let NV be a directed net structure over S. Note
that f- N is directed.

One can prove the following proposition

(18) Let L be a non empty relational structure, N be a non empty net struc-
ture over L, and x be an element of L. Then (z 1 0)- N =z M N.

3. THE PROPERTIES OF TOPOLOGICAL SPACES

The following two propositions are true:

(19) Let S, T be topological structures, F' be a family of subsets of S, and G
be a family of subsets of T'. Suppose the topological structure of S = the
topological structure of 7" and F' = G and F is open. Then G is open.
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(20) Let S, T be topological structures, F' be a family of subsets of S, and G
be a family of subsets of 1. Suppose the topological structure of S = the
topological structure of 7" and F' = GG and F' is closed. Then G is closed.

Let a be a set. Note that {a}p is discrete.

We consider FR-structures as extensions of topological structure and rela-
tional structure as systems

( a carrier, a internal relation, a topology ),
where the carrier is a set, the internal relation is a binary relation on the carrier,
and the topology is a family of subsets of the carrier.

Let A be a non empty set, let R be a relation between A and A, and let T
be a family of subsets of A. Note that (A, R,T) is non empty.

Let x be a set, let R be a binary relation on {z}, and let T be a family of
subsets of {z}. Note that ({z}, R,T) is trivial.

Let X be a set, let O be an order in X, and let T" be a family of subsets of
X. Observe that (X,0,T) is reflexive transitive and antisymmetric.

Let us observe that there exists a FR-structure which is trivial, reflexive,
non empty, discrete, strict, and finite.

A TopLattice is a reflexive transitive antisymmetric topological space-like
FR-structure with g.l.b.’s and Lu.b.’s.

Let us observe that there exists a non empty TopLattice which is strict,
trivial, discrete, finite, compact, and Hausdorff.

Let T be a Hausdorff non empty topological space. One can check that every
non empty subspace of T" is Hausdorff.

One can prove the following propositions:

(21) For every non empty topological space 1" and for every point p of 7" holds
every element of the open neighbourhoods of p is a neighbourhood of p.

(22) Let T be a non empty topological space, p be a point of T, and A, B be
elements of the open neighbourhoods of p. Then A N B is an element of
the open neighbourhoods of p.

(23) Let T be a non empty topological space, p be a point of T, and A, B be
elements of the open neighbourhoods of p. Then A U B is an element of
the open neighbourhoods of p.

(24) Let T be a non empty topological space, p be an element of the carrier
of T', and N be a net in T'. Suppose p € Lim N. Let S be a subset of the
carrier of T'. If S = rng (the mapping of N), then p € S.

(25) Let T be a Hausdorff non empty TopLattice, N be a convergent net in
T, and f be a map from T into T'. If f is continuous, then f(lim N) €
Lim(f - N).

(26) Let T be a Hausdorff non empty TopLattice, N be a convergent net in
T, and z be an element of 7. If x M is continuous, then x Mlim N &€
Lim(z 1 N).

(27) Let S be a Hausdorff non empty TopLattice and x be an element of S.
If for every element a of S holds a M is continuous, then Tz is closed.
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(28) Let S be a compact Hausdorff non empty TopLattice and x be an element
of S. If for every element b of S holds b is continuous, then |z is closed.

4. THE CLUSTER POINTS OF NETS

Let T be a TopLattice, let N be a non empty net structure over 7T, and let
p be a point of T'. We say that p is a cluster point of N if and only if:

(Def. 9) For every neighbourhood O of p holds N is often in O.
Next we state several propositions:

(29) Let L be a non empty TopLattice, N be a net in L, and ¢ be a point of
L. If ¢ € Lim N, then ¢ is a cluster point of V.

(30) Let T be a compact Hausdorff non empty TopLattice and N be a net in
T. Then there exists a point ¢ of T" such that c is a cluster point of N.

(31) Let L be a non empty TopLattice, N be a net in L, M be a subnet of
N, and c be a point of L. If ¢ is a cluster point of M, then c is a cluster
point of V.

(32) Let T be a non empty TopLattice, N be a net in T, and = be a point of
T. Suppose z is a cluster point of N. Then there exists a subnet M of N
such that z € Lim M.

(33) Let L be a compact Hausdorff non empty TopLattice and N be a net in
L. Suppose that for all points ¢, d of L such that ¢ is a cluster point of N
and d is a cluster point of N holds ¢ = d. Let s be a point of L. If s is a
cluster point of IV, then s € Lim N.

(34) Let S be a non empty TopLattice, ¢ be a point of S, N be a net in S,
and A be a subset of S. Suppose ¢ is a cluster point of N and A is closed
and rng (the mapping of N) C A. Then c € A.

(35) Let S be a compact Hausdorff non empty TopLattice, ¢ be a point of
S, and N be a net in S. Suppose for every element = of S holds x M J
is continuous and N is eventually-directed and c is a cluster point of NN.
Then ¢ = sup N.

(36) Let S be a compact Hausdorff non empty TopLattice, ¢ be a point of
S, and N be a net in S. Suppose for every element x of S holds x M is
continuous and NV is eventually-filtered and c is a cluster point of N. Then
¢ =inf N.
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5. ON THE ToPOLOGICAL PROPERTIES OF MEET-CONTINUOUS LATTICES

Next we state several propositions:

(37) Let S be a Hausdorff non empty TopLattice. Suppose that
(i)  for every net N in S such that N is eventually-directed holds sup N
exists and sup NV € Lim N, and
(ii)  for every element z of S holds = MO is continuous.
Then S is meet-continuous.

(38) Let S be a compact Hausdorff non empty TopLattice. Suppose that for
every element x of S holds x M is continuous. Let N be a net in S. If N
is eventually-directed, then sup NN exists and sup NV € Lim V.

(39) Let S be a compact Hausdorff non empty TopLattice. Suppose that for
every element x of S holds x M is continuous. Let N be a net in S. If N
is eventually-filtered, then inf NV exists and inf N € Lim N.

(40) Let S be a compact Hausdorff non empty TopLattice. If for every element
x of S holds x M is continuous, then S is bounded.

(41) Let S be a compact Hausdorff non empty TopLattice. Suppose that for
every element x of .S holds zM[ is continuous. Then S is meet-continuous.
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