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Summary. A. Abian [1] proved the following theorem:

Let f be a mapping from a finite set D. Then f has a fixed point
if and only if D is not a union of three mutually disjoint sets A, B
and C such that

A ∩ f [A] = B ∩ f [B] = C ∩ f [C] = ∅.

(The range of f is not necessarily the subset of its domain). The proof of the
sufficiency is by induction on the number of elements of D. A.Ma̧kowski and
K.Wiśniewski [12] have shown that the assumption of finiteness is superfluous.
They proved their version of the theorem for f being a function from D into D.
In the proof, the required partition was constructed and the construction used
the axiom of choice. Their main point was to demonstrate that the use of this
axiom in the proof is essential. We have proved in Mizar the generalized version
of Abian’s theorem, i.e. without assuming finiteness of D. We have simplified the
proof from [12] which uses well-ordering principle and transfinite ordinals—our
proof does not use these notions but otherwise is based on their idea (we employ
choice functions).

MML Identifier: ABIAN.

The terminology and notation used here are introduced in the following articles:

[18], [21], [9], [6], [19], [17], [7], [13], [8], [22], [3], [4], [5], [16], [20], [2], [14], [10],

[11], and [15].

1This work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368.
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1. Preliminaries

For simplicity, we adopt the following rules: x, y, E, E1, E2, E3 are sets, s1

is a family of subsets of E, f is a function from E into E, and k, l, n are natural

numbers.

Let i be an integer. We say that i is even if and only if:

(Def. 1) There exists an integer j such that i = 2 · j.

We introduce i is odd as an antonym of i is even.

Let n be a natural number. Let us observe that n is even if and only if:

(Def. 2) There exists k such that n = 2 · k.

We introduce n is odd as an antonym of n is even.

One can check the following observations:

∗ there exists a natural number which is even,

∗ there exists a natural number which is odd,

∗ there exists an integer which is even, and

∗ there exists an integer which is odd.

One can prove the following proposition

(1) For every integer i holds i is odd iff there exists an integer j such that

i = 2 · j + 1.

Let i be an integer. Note that 2 · i is even.

Let i be an even integer. Note that i + 1 is odd.

Let i be an odd integer. Observe that i + 1 is even.

Let i be an even integer. One can verify that i− 1 is odd.

Let i be an odd integer. Note that i− 1 is even.

Let i be an even integer and let j be an integer. One can check that i · j is

even and j · i is even.

Let i, j be odd integers. Note that i · j is odd.

Let i, j be even integers. One can check that i + j is even.

Let i be an even integer and let j be an odd integer. Note that i + j is odd

and j + i is odd.

Let i, j be odd integers. Observe that i + j is even.

Let i be an even integer and let j be an odd integer. Observe that i − j is

odd and j − i is odd.

Let i, j be odd integers. One can verify that i− j is even.

Let us consider E, f , n. Then fn is a function from E into E.

Let A be a set and let B be a set with a non-empty element. One can verify

that there exists a function from A into B which is non-empty.
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Let A be a non empty set, let B be a set with a non-empty element, let f

be a non-empty function from A into B, and let a be an element of A. One can

verify that f(a) is non empty.

Let X be a non empty set. Note that 2X has a non-empty element.

We now state two propositions:

(2) For every non empty subset S of N such that 0 ∈ S holds minS = 0.

(3) For every non empty set E and for every function f from E into E and

for every element x of E holds f0(x) = x.

Let f be a function. We say that f has a fixpoint if and only if:

(Def. 3) There exists x which is a fixpoint of f .

We introduce f has no fixpoint as an antonym of f has a fixpoint.

Let X be a set and let x be an element of X. We say that x is covering if

and only if:

(Def. 4)
⋃

x =
⋃ ⋃

X.

One can prove the following proposition

(4) s1 is covering iff
⋃

s1 = E.

Let us consider E. One can verify that there exists a family of subsets of E

which is non empty, finite, and covering.

2. Abian’s Theorem

One can prove the following proposition

(5) Let E be a set, f be a function from E into E, and s1 be a non empty

covering family of subsets of E such that for every element X of s1 holds

X misses f◦X. Then f has no fixpoint.

Let us consider E, f . The functor f≡ yielding an equivalence relation of E

is defined by:

(Def. 5) For all x, y such that x ∈ E and y ∈ E holds 〈〈x, y〉〉 ∈ f≡ iff there exist

k, l such that fk(x) = f l(y).

One can prove the following three propositions:

(6) Let E be a non empty set, f be a function from E into E, c be an element

of Classes(f≡), and e be an element of c. Then f(e) ∈ c.

(7) Let E be a non empty set, f be a function from E into E, c be an element

of Classes(f≡), e be an element of c, and given n. Then fn(e) ∈ c.

(8) Let E be a non empty set and f be a function from E into E. Suppose f

has no fixpoint. Then there exist E1, E2, E3 such that E1 ∪E2 ∪E3 = E

and f◦E1 misses E1 and f◦E2 misses E2 and f◦E3 misses E3.
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