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The articles [7], [8], [10], [1], [2], [3], [4], [6], [5], and [9] provide the notation and

terminology for this paper.

In this paper A is a category, a is an object of A, and f is a morphism of A.

Let us consider A. The functor EnsHomA yields a category and is defined

by:

(Def. 1) EnsHomA = EnsHom(A) .

Next we state two propositions:

(1) Let f , g be functions and m1, m2 be morphisms of EnsHomA. If

codm1 = domm2 and 〈〈〈〈domm1, codm1〉〉, f〉〉 = m1 and 〈〈〈〈domm2,

codm2〉〉, g〉〉 = m2, then 〈〈〈〈domm1, codm2〉〉, g · f〉〉 = m2 ·m1.

(2) hom(a,−) is a functor from A to EnsHomA.

Let us consider A, a. The functor homF(a,−) yields a functor from A to

EnsHomA and is defined by:

(Def. 2) homF(a,−) = hom(a,−).

One can prove the following proposition

(3) For every morphism f of A holds homF(cod f,−) is naturally transfor-

mable to homF(dom f,−).

Let us consider A, f . The functor homF(f,−) yields a natural transformation

from homF(cod f,−) to homF(dom f,−) and is defined by:

(Def. 3) For every object o of A holds (homF(f,−))(o) = 〈〈〈〈hom(cod f, o),

hom(dom f, o)〉〉, hom(f, ido)〉〉.

Next we state the proposition
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(4) For every element f of the morphisms of A holds 〈〈〈〈homF(cod f,−),

homF(dom f,−)〉〉, homF(f,−)〉〉 is an element of the morphisms of

(EnsHomA)A.

Let us consider A. The functor YonedaA yielding a contravariant functor

from A into (EnsHomA)A is defined by:

(Def. 4) For every morphism f of A holds (YonedaA)(f) = 〈〈〈〈homF(cod f,−),

homF(dom f,−)〉〉, homF(f,−)〉〉.

Let A, B be categories, let F be a contravariant functor from A into B, and

let c be an object of A. The functor F (c) yields an object of B and is defined

as follows:

(Def. 5) F (c) = (ObjF )(c).

Next we state the proposition

(5) For every functor F from A to (EnsHomA)A such that ObjF is one-to-

one and F is faithful holds F is one-to-one.

Let C, D be categories and let T be a contravariant functor from C into D.

We say that T is faithful if and only if:

(Def. 6) For all objects c, c′ of C such that hom(c, c′) 6= ∅ and for all morphisms

f1, f2 from c to c′ such that T (f1) = T (f2) holds f1 = f2.

The following three propositions are true:

(6) Let F be a contravariant functor from A into (EnsHomA)A. If ObjF is

one-to-one and F is faithful, then F is one-to-one.

(7) YonedaA is faithful.

(8) YonedaA is one-to-one.

Let C, D be categories and let T be a contravariant functor from C into D.

We say that T is full if and only if the condition (Def. 7) is satisfied.

(Def. 7) Let c, c′ be objects of C. Suppose hom(T (c′), T (c)) 6= ∅. Let g be a

morphism from T (c′) to T (c). Then hom(c, c′) 6= ∅ and there exists a

morphism f from c to c′ such that g = T (f).

The following proposition is true

(9) YonedaA is full.
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