On the Categories Without Uniqueness of cod and dom . Some Properties of the Morphisms and the Functors

Artur Korniłowicz University of Białystok

MML Identifier: $ALTCAT_4$.

The notation and terminology used here are introduced in the following papers: [9], [4], [10], [16], [2], [3], [1], [7], [8], [11], [15], [5], [12], [13], [6], and [14].

1. Preliminaries

In this paper C denotes a category and o_1 , o_2 , o_3 denote objects of C.

Let C be a non empty category structure with units and let o be an object of C. Observe that $\langle o, o \rangle$ is non empty.

The following propositions are true:

- (1) Let v be a morphism from o_1 to o_2 , u be a morphism from o_1 to o_3 , and f be a morphism from o_2 to o_3 . If $u = f \cdot v$ and $f^{-1} \cdot f = \mathrm{id}_{(o_2)}$ and $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_3 \rangle \neq \emptyset$ and $\langle o_3, o_2 \rangle \neq \emptyset$, then $v = f^{-1} \cdot u$.
- (2) Let v be a morphism from o_2 to o_3 , u be a morphism from o_1 to o_3 , and f be a morphism from o_1 to o_2 . If $u = v \cdot f$ and $f \cdot f^{-1} = \mathrm{id}_{(o_2)}$ and $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$ and $\langle o_2, o_3 \rangle \neq \emptyset$, then $v = u \cdot f^{-1}$.
- (3) For every morphism m from o_1 to o_2 such that $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$ and m is iso holds m^{-1} is iso.
- (4) For every non empty category structure C with units and for every object o of C holds id_o is epi and mono.

C 1997 University of Białystok ISSN 1426-2630

Let C be a non empty category structure with units and let o be an object of C. One can verify that id_o is epi mono retraction and coretraction.

Let C be a category and let o be an object of C. Note that id_o is iso. We now state two propositions:

- (5) Let f be a morphism from o_1 to o_2 and g, h be morphisms from o_2 to o_1 . If $h \cdot f = \mathrm{id}_{(o_1)}$ and $f \cdot g = \mathrm{id}_{(o_2)}$ and $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$, then g = h.
- (6) Suppose that for all objects o₁, o₂ of C holds every morphism from o₁ to o₂ is coretraction. Let a, b be objects of C and g be a morphism from a to b. If ⟨a, b⟩ ≠ Ø and ⟨b, a⟩ ≠ Ø, then g is iso.
 - 2. Some properties of the initial and terminal objects

The following propositions are true:

- (7) For all morphisms m, m' from o_1 to o_2 such that m is zero and m' is zero and there exists an object of C which is zero holds m = m'.
- (8) Let C be a non empty category structure, O, A be objects of C, and M be a morphism from O to A. If O is terminal, then M is mono.
- (9) Let C be a non empty category structure, O, A be objects of C, and M be a morphism from A to O. If O is initial, then M is epi.
- (10) If o_2 is terminal and o_1 , o_2 are iso, then o_1 is terminal.
- (11) If o_1 is initial and o_1 , o_2 are iso, then o_2 is initial.
- (12) If o_1 is initial and o_2 is terminal and $\langle o_2, o_1 \rangle \neq \emptyset$, then o_2 is initial and o_1 is terminal.

3. The properties of the functors

One can prove the following propositions:

- (13) Let A, B be transitive non empty category structures with units, F be a contravariant functor from A to B, and a be an object of A. Then $F(id_a) = id_{F(a)}$.
- (14) Let C_1 , C_2 be non empty category structures and F be a precontravariant functor structure from C_1 to C_2 . Then F is full if and only if for all objects o_1 , o_2 of C_1 holds Morph-Map_F (o_2, o_1) is onto.
- (15) Let C_1 , C_2 be non empty category structures and F be a precontravariant functor structure from C_1 to C_2 . Then F is faithful if and only if for all objects o_1 , o_2 of C_1 holds Morph-Map_F (o_2, o_1) is one-to-one.

- (16) Let C_1 , C_2 be non empty category structures, F be a precovariant functor structure from C_1 to C_2 , o_1 , o_2 be objects of C_1 , and F_1 be a morphism from $F(o_1)$ to $F(o_2)$. Suppose $\langle o_1, o_2 \rangle \neq \emptyset$ and F is full and feasible. Then there exists a morphism m from o_1 to o_2 such that $F_1 = F(m)$.
- (17) Let C_1 , C_2 be non empty category structures, F be a precontravariant functor structure from C_1 to C_2 , o_1 , o_2 be objects of C_1 , and F_1 be a morphism from $F(o_2)$ to $F(o_1)$. Suppose $\langle o_1, o_2 \rangle \neq \emptyset$ and F is full and feasible. Then there exists a morphism m from o_1 to o_2 such that $F_1 = F(m)$.
- (18) Let A, B be transitive non empty category structures with units, F be a covariant functor from A to B, o_1, o_2 be objects of A, and a be a morphism from o_1 to o_2 . If $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$ and a is retraction, then F(a) is retraction.
- (19) Let A, B be transitive non empty category structures with units, F be a covariant functor from A to B, o_1 , o_2 be objects of A, and a be a morphism from o_1 to o_2 . If $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$ and a is coretraction, then F(a) is coretraction.
- (20) Let A, B be categories, F be a covariant functor from A to B, o_1 , o_2 be objects of A, and a be a morphism from o_1 to o_2 . If $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$ and a is iso, then F(a) is iso.
- (21) Let A, B be categories, F be a covariant functor from A to B, and o_1 , o_2 be objects of A. If o_1 , o_2 are iso, then $F(o_1)$, $F(o_2)$ are iso.
- (22) Let A, B be transitive non empty category structures with units, F be a contravariant functor from A to B, o_1 , o_2 be objects of A, and a be a morphism from o_1 to o_2 . If $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$ and a is retraction, then F(a) is coretraction.
- (23) Let A, B be transitive non empty category structures with units, F be a contravariant functor from A to B, o_1 , o_2 be objects of A, and a be a morphism from o_1 to o_2 . If $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$ and a is coretraction, then F(a) is retraction.
- (24) Let A, B be categories, F be a contravariant functor from A to B, o_1 , o_2 be objects of A, and a be a morphism from o_1 to o_2 . If $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$ and a is iso, then F(a) is iso.
- (25) Let A, B be categories, F be a contravariant functor from A to B, and o_1, o_2 be objects of A. If o_1, o_2 are iso, then $F(o_2), F(o_1)$ are iso.
- (26) Let A, B be transitive non empty category structures with units, F be a covariant functor from A to B, o_1 , o_2 be objects of A, and a be a morphism from o_1 to o_2 . Suppose F is full and faithful and $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$ and F(a) is retraction. Then a is retraction.
- (27) Let A, B be transitive non empty category structures with units, F

be a covariant functor from A to B, o_1 , o_2 be objects of A, and a be a morphism from o_1 to o_2 . Suppose F is full and faithful and $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$ and F(a) is coretraction. Then a is coretraction.

- (28) Let A, B be categories, F be a covariant functor from A to B, o_1, o_2 be objects of A, and a be a morphism from o_1 to o_2 . Suppose F is full and faithful and $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$ and F(a) is iso. Then a is iso.
- (29) Let A, B be categories, F be a covariant functor from A to B, and o_1 , o_2 be objects of A. Suppose F is full and faithful and $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$ and $F(o_1), F(o_2)$ are iso. Then o_1, o_2 are iso.
- (30) Let A, B be transitive non empty category structures with units, F be a contravariant functor from A to B, o_1 , o_2 be objects of A, and a be a morphism from o_1 to o_2 . Suppose F is full and faithful and $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$ and F(a) is retraction. Then a is coretraction.
- (31) Let A, B be transitive non empty category structures with units, F be a contravariant functor from A to B, o_1 , o_2 be objects of A, and a be a morphism from o_1 to o_2 . Suppose F is full and faithful and $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$ and F(a) is coretraction. Then a is retraction.
- (32) Let A, B be categories, F be a contravariant functor from A to B, o_1, o_2 be objects of A, and a be a morphism from o_1 to o_2 . Suppose F is full and faithful and $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$ and F(a) is iso. Then a is iso.
- (33) Let A, B be categories, F be a contravariant functor from A to B, and o_1, o_2 be objects of A. Suppose F is full and faithful and $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$ and $F(o_2), F(o_1)$ are iso. Then o_1, o_2 are iso.

4. The subcategories of the morphisms

We now state two propositions:

- (34) Let C be a category structure and D be a substructure of C. Suppose the carrier of C = the carrier of D and the arrows of C = the arrows of D. Then D is full.
- (35) Let C be a non empty category structure with units and D be a substructure of C. Suppose the carrier of C = the carrier of D and the arrows of C = the arrows of D. Then D is full and id-inheriting.

Let C be a category. Observe that there exists a subcategory of C which is full, non empty, and strict.

Next we state several propositions:

(36) For every non empty subcategory B of C holds every non empty subcategory of B is a non empty subcategory of C.

- (37) Let C be a non empty transitive category structure, D be a non empty transitive substructure of C, o_1 , o_2 be objects of C, p_1 , p_2 be objects of D, m be a morphism from o_1 to o_2 , and n be a morphism from p_1 to p_2 such that $p_1 = o_1$ and $p_2 = o_2$ and m = n and $\langle p_1, p_2 \rangle \neq \emptyset$. Then
 - (i) if m is mono, then n is mono, and
- (ii) if m is epi, then n is epi.
- (38) Let *D* be a non empty subcategory of *C*, o_1 , o_2 be objects of *C*, p_1 , p_2 be objects of *D*, *m* be a morphism from o_1 to o_2 , m_1 be a morphism from o_2 to o_1 , *n* be a morphism from p_1 to p_2 , and n_1 be a morphism from p_2 to p_1 such that $p_1 = o_1$ and $p_2 = o_2$ and m = n and $m_1 = n_1$ and $\langle p_1, p_2 \rangle \neq \emptyset$ and $\langle p_2, p_1 \rangle \neq \emptyset$. Then
 - (i) m is left inverse of m_1 iff n is left inverse of n_1 , and
 - (ii) m is right inverse of m_1 iff n is right inverse of n_1 .
- (39) Let *D* be a full non empty subcategory of *C*, o_1 , o_2 be objects of *C*, p_1 , p_2 be objects of *D*, *m* be a morphism from o_1 to o_2 , and *n* be a morphism from p_1 to p_2 such that $p_1 = o_1$ and $p_2 = o_2$ and m = n and $\langle p_1, p_2 \rangle \neq \emptyset$ and $\langle p_2, p_1 \rangle \neq \emptyset$. Then
 - (i) if m is retraction, then n is retraction,
- (ii) if m is coretraction, then n is coretraction, and
- (iii) if m is iso, then n is iso.
- (40) Let *D* be a non empty subcategory of *C*, o_1 , o_2 be objects of *C*, p_1 , p_2 be objects of *D*, *m* be a morphism from o_1 to o_2 , and *n* be a morphism from p_1 to p_2 such that $p_1 = o_1$ and $p_2 = o_2$ and m = n and $\langle p_1, p_2 \rangle \neq \emptyset$ and $\langle p_2, p_1 \rangle \neq \emptyset$. Then
 - (i) if n is retraction, then m is retraction,
 - (ii) if n is coretraction, then m is coretraction, and
- (iii) if n is iso, then m is iso.

Let C be a category. The functor AllMono C yields a strict non empty transitive substructure of C and is defined by the conditions (Def. 1).

- (Def. 1)(i) The carrier of AllMono C = the carrier of C,
 - (ii) the arrows of AllMono $C \subseteq$ the arrows of C, and
 - (iii) for all objects o_1 , o_2 of C and for every morphism m from o_1 to o_2 holds $m \in (\text{the arrows of AllMono } C)(o_1, o_2)$ iff $\langle o_1, o_2 \rangle \neq \emptyset$ and m is mono.

Let C be a category. Note that AllMono C is id-inheriting.

Let C be a category. The functor AllEpi C yields a strict non empty transitive substructure of C and is defined by the conditions (Def. 2).

- (Def. 2)(i) The carrier of AllEpiC = the carrier of C,
 - (ii) the arrows of AllEpi $C \subseteq$ the arrows of C, and
 - (iii) for all objects o_1 , o_2 of C and for every morphism m from o_1 to o_2 holds $m \in (\text{the arrows of AllEpi} C)(o_1, o_2)$ iff $\langle o_1, o_2 \rangle \neq \emptyset$ and m is epi.

Let C be a category. Observe that AllEpiC is id-inheriting.

Let C be a category. The functor AllRetr C yielding a strict non empty transitive substructure of C is defined by the conditions (Def. 3).

- (Def. 3)(i) The carrier of AllRetr C = the carrier of C,
 - (ii) the arrows of AllRetr $C \subseteq$ the arrows of C, and
 - (iii) for all objects o_1 , o_2 of C and for every morphism m from o_1 to o_2 holds $m \in (\text{the arrows of AllRetr } C)(o_1, o_2)$ iff $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$ and m is retraction.

Let C be a category. One can check that AllRetr C is id-inheriting.

Let C be a category. The functor AllCoretr C yielding a strict non empty transitive substructure of C is defined by the conditions (Def. 4).

- (Def. 4)(i) The carrier of AllCoretr C = the carrier of C,
 - (ii) the arrows of AllCoretr $C \subseteq$ the arrows of C, and
 - (iii) for all objects o_1 , o_2 of C and for every morphism m from o_1 to o_2 holds $m \in (\text{the arrows of AllCoretr } C)(o_1, o_2)$ iff $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$ and m is coretraction.

Let C be a category. One can verify that AllCoretr C is id-inheriting.

Let C be a category. The functor AllIso C yields a strict non empty transitive substructure of C and is defined by the conditions (Def. 5).

(Def. 5)(i) The carrier of AllIso C = the carrier of C,

- (ii) the arrows of AllIso $C \subseteq$ the arrows of C, and
- (iii) for all objects o_1 , o_2 of C and for every morphism m from o_1 to o_2 holds $m \in (\text{the arrows of AllIso } C)(o_1, o_2)$ iff $\langle o_1, o_2 \rangle \neq \emptyset$ and $\langle o_2, o_1 \rangle \neq \emptyset$ and m is iso.

Let C be a category. Note that AllIso C is id-inheriting.

Next we state a number of propositions:

- (41) AllIso C is a non empty subcategory of AllRetr C.
- (42) AllIso C is a non empty subcategory of AllCoretr C.
- (43) AllCoretr C is a non empty subcategory of AllMono C.
- (44) AllRetr C is a non empty subcategory of AllEpiC.
- (45) If for all objects o_1 , o_2 of C holds every morphism from o_1 to o_2 is mono, then the category structure of C = AllMono C.
- (46) If for all objects o_1 , o_2 of C holds every morphism from o_1 to o_2 is epi, then the category structure of C = AllEpi C.
- (47) Suppose that for all objects o_1 , o_2 of C and for every morphism m from o_1 to o_2 holds m is retraction and $\langle o_2, o_1 \rangle \neq \emptyset$. Then the category structure of C = AllRetr C.
- (48) Suppose that for all objects o_1 , o_2 of C and for every morphism m from o_1 to o_2 holds m is coretraction and $\langle o_2, o_1 \rangle \neq \emptyset$. Then the category structure of C = AllCoretr C.

- (49) Suppose that for all objects o_1 , o_2 of C and for every morphism m from o_1 to o_2 holds m is iso and $\langle o_2, o_1 \rangle \neq \emptyset$. Then the category structure of C = AllIso C.
- (50) For all objects o_1 , o_2 of AllMono C and for every morphism m from o_1 to o_2 such that $\langle o_1, o_2 \rangle \neq \emptyset$ holds m is mono.
- (51) For all objects o_1 , o_2 of AllEpi C and for every morphism m from o_1 to o_2 such that $\langle o_1, o_2 \rangle \neq \emptyset$ holds m is epi.
- (52) For all objects o_1 , o_2 of AllIso C and for every morphism m from o_1 to o_2 such that $\langle o_1, o_2 \rangle \neq \emptyset$ holds m is iso and $m^{-1} \in \langle o_2, o_1 \rangle$.
- (53) AllMono AllMono C =AllMono C.
- (54) AllEpi AllEpi C = AllEpi C.
- (55) AllIso AllIso C =AllIso C.
- (56) AllIso AllMono C = AllIso C.
- (57) AllIso AllEpi C =AllIso C.
- (58) AllIso AllRetr C = AllIso C.
- (59) AllIso AllCoretr C = AllIso C.

References

- [1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [2] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [4] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [5] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathematics, 5(1):61-65, 1996.
- [6] Beata Madras. Basic properties of objects and morphisms. Formalized Mathematics, 6(3):329–334, 1997.
- [7] Michał Muzalewski and Wojciech Skaba. Three-argument operations and four-argument operations. *Formalized Mathematics*, 2(2):221–224, 1991.
- [8] Yozo Toda. The formalization of simple graphs. Formalized Mathematics, 5(1):137-144, 1996.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [10] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [11] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [12] Andrzej Trybulec. Categories without uniqueness of cod and dom. Formalized Mathematics, 5(2):259–267, 1996.
- [13] Andrzej Trybulec. Examples of category structures. Formalized Mathematics, 5(4):493– 500, 1996.
- [14] Andrzej Trybulec. Functors for alternative categories. *Formalized Mathematics*, 5(4):595–608, 1996.
- [15] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
- [16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.

Received October 3, 1997

482