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1. Preliminaries

In this paper C denotes a category and o1, o2, o3 denote objects of C.

Let C be a non empty category structure with units and let o be an object

of C. Observe that 〈o, o〉 is non empty.

The following propositions are true:

(1) Let v be a morphism from o1 to o2, u be a morphism from o1 to o3,

and f be a morphism from o2 to o3. If u = f · v and f−1 · f = id(o2) and

〈o1, o2〉 6= ∅ and 〈o2, o3〉 6= ∅ and 〈o3, o2〉 6= ∅, then v = f−1 · u.

(2) Let v be a morphism from o2 to o3, u be a morphism from o1 to o3,

and f be a morphism from o1 to o2. If u = v · f and f · f−1 = id(o2) and

〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅ and 〈o2, o3〉 6= ∅, then v = u · f−1.

(3) For every morphismm from o1 to o2 such that 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6=

∅ and m is iso holds m−1 is iso.

(4) For every non empty category structure C with units and for every object

o of C holds ido is epi and mono.
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Let C be a non empty category structure with units and let o be an object

of C. One can verify that ido is epi mono retraction and coretraction.

Let C be a category and let o be an object of C. Note that ido is iso.

We now state two propositions:

(5) Let f be a morphism from o1 to o2 and g, h be morphisms from o2 to

o1. If h · f = id(o1) and f · g = id(o2) and 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅, then

g = h.

(6) Suppose that for all objects o1, o2 of C holds every morphism from o1

to o2 is coretraction. Let a, b be objects of C and g be a morphism from

a to b. If 〈a, b〉 6= ∅ and 〈b, a〉 6= ∅, then g is iso.

2. Some properties of the initial and terminal objects

The following propositions are true:

(7) For all morphisms m, m′ from o1 to o2 such that m is zero and m′ is

zero and there exists an object of C which is zero holds m = m′.

(8) Let C be a non empty category structure, O, A be objects of C, and M

be a morphism from O to A. If O is terminal, then M is mono.

(9) Let C be a non empty category structure, O, A be objects of C, and M

be a morphism from A to O. If O is initial, then M is epi.

(10) If o2 is terminal and o1, o2 are iso , then o1 is terminal.

(11) If o1 is initial and o1, o2 are iso , then o2 is initial.

(12) If o1 is initial and o2 is terminal and 〈o2, o1〉 6= ∅, then o2 is initial and

o1 is terminal.

3. The properties of the functors

One can prove the following propositions:

(13) Let A, B be transitive non empty category structures with units, F

be a contravariant functor from A to B, and a be an object of A. Then

F (ida) = idF (a) .

(14) Let C1, C2 be non empty category structures and F be a precontravariant

functor structure from C1 to C2. Then F is full if and only if for all objects

o1, o2 of C1 holds Morph-MapF (o2, o1) is onto.

(15) Let C1, C2 be non empty category structures and F be a precontravariant

functor structure from C1 to C2. Then F is faithful if and only if for all

objects o1, o2 of C1 holds Morph-MapF (o2, o1) is one-to-one.
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(16) Let C1, C2 be non empty category structures, F be a precovariant functor

structure from C1 to C2, o1, o2 be objects of C1, and F1 be a morphism

from F (o1) to F (o2). Suppose 〈o1, o2〉 6= ∅ and F is full and feasible. Then

there exists a morphism m from o1 to o2 such that F1 = F (m).

(17) Let C1, C2 be non empty category structures, F be a precontravariant

functor structure from C1 to C2, o1, o2 be objects of C1, and F1 be a

morphism from F (o2) to F (o1). Suppose 〈o1, o2〉 6= ∅ and F is full and

feasible. Then there exists a morphism m from o1 to o2 such that F1 =

F (m).

(18) Let A, B be transitive non empty category structures with units, F be a

covariant functor from A to B, o1, o2 be objects of A, and a be a morphism

from o1 to o2. If 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅ and a is retraction, then F (a)

is retraction.

(19) Let A, B be transitive non empty category structures with units, F be a

covariant functor from A to B, o1, o2 be objects of A, and a be a morphism

from o1 to o2. If 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅ and a is coretraction, then

F (a) is coretraction.

(20) Let A, B be categories, F be a covariant functor from A to B, o1, o2

be objects of A, and a be a morphism from o1 to o2. If 〈o1, o2〉 6= ∅ and

〈o2, o1〉 6= ∅ and a is iso, then F (a) is iso.

(21) Let A, B be categories, F be a covariant functor from A to B, and o1,

o2 be objects of A. If o1, o2 are iso , then F (o1), F (o2) are iso .

(22) Let A, B be transitive non empty category structures with units, F be

a contravariant functor from A to B, o1, o2 be objects of A, and a be a

morphism from o1 to o2. If 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅ and a is retraction,

then F (a) is coretraction.

(23) Let A, B be transitive non empty category structures with units, F

be a contravariant functor from A to B, o1, o2 be objects of A, and a

be a morphism from o1 to o2. If 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅ and a is

coretraction, then F (a) is retraction.

(24) Let A, B be categories, F be a contravariant functor from A to B, o1,

o2 be objects of A, and a be a morphism from o1 to o2. If 〈o1, o2〉 6= ∅ and

〈o2, o1〉 6= ∅ and a is iso, then F (a) is iso.

(25) Let A, B be categories, F be a contravariant functor from A to B, and

o1, o2 be objects of A. If o1, o2 are iso , then F (o2), F (o1) are iso .

(26) Let A, B be transitive non empty category structures with units, F

be a covariant functor from A to B, o1, o2 be objects of A, and a be a

morphism from o1 to o2. Suppose F is full and faithful and 〈o1, o2〉 6= ∅

and 〈o2, o1〉 6= ∅ and F (a) is retraction. Then a is retraction.

(27) Let A, B be transitive non empty category structures with units, F
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be a covariant functor from A to B, o1, o2 be objects of A, and a be a

morphism from o1 to o2. Suppose F is full and faithful and 〈o1, o2〉 6= ∅

and 〈o2, o1〉 6= ∅ and F (a) is coretraction. Then a is coretraction.

(28) Let A, B be categories, F be a covariant functor from A to B, o1, o2 be

objects of A, and a be a morphism from o1 to o2. Suppose F is full and

faithful and 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅ and F (a) is iso. Then a is iso.

(29) Let A, B be categories, F be a covariant functor from A to B, and o1,

o2 be objects of A. Suppose F is full and faithful and 〈o1, o2〉 6= ∅ and

〈o2, o1〉 6= ∅ and F (o1), F (o2) are iso . Then o1, o2 are iso .

(30) Let A, B be transitive non empty category structures with units, F be

a contravariant functor from A to B, o1, o2 be objects of A, and a be a

morphism from o1 to o2. Suppose F is full and faithful and 〈o1, o2〉 6= ∅

and 〈o2, o1〉 6= ∅ and F (a) is retraction. Then a is coretraction.

(31) Let A, B be transitive non empty category structures with units, F be

a contravariant functor from A to B, o1, o2 be objects of A, and a be a

morphism from o1 to o2. Suppose F is full and faithful and 〈o1, o2〉 6= ∅

and 〈o2, o1〉 6= ∅ and F (a) is coretraction. Then a is retraction.

(32) Let A, B be categories, F be a contravariant functor from A to B, o1,

o2 be objects of A, and a be a morphism from o1 to o2. Suppose F is full

and faithful and 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅ and F (a) is iso. Then a is

iso.

(33) Let A, B be categories, F be a contravariant functor from A to B, and

o1, o2 be objects of A. Suppose F is full and faithful and 〈o1, o2〉 6= ∅ and

〈o2, o1〉 6= ∅ and F (o2), F (o1) are iso . Then o1, o2 are iso .

4. The subcategories of the morphisms

We now state two propositions:

(34) Let C be a category structure and D be a substructure of C. Suppose

the carrier of C = the carrier of D and the arrows of C = the arrows of

D. Then D is full.

(35) Let C be a non empty category structure with units and D be a sub-

structure of C. Suppose the carrier of C = the carrier of D and the arrows

of C = the arrows of D. Then D is full and id-inheriting.

Let C be a category. Observe that there exists a subcategory of C which is

full, non empty, and strict.

Next we state several propositions:

(36) For every non empty subcategory B of C holds every non empty subca-

tegory of B is a non empty subcategory of C.
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(37) Let C be a non empty transitive category structure, D be a non empty

transitive substructure of C, o1, o2 be objects of C, p1, p2 be objects of

D, m be a morphism from o1 to o2, and n be a morphism from p1 to p2

such that p1 = o1 and p2 = o2 and m = n and 〈p1, p2〉 6= ∅. Then

(i) if m is mono, then n is mono, and

(ii) if m is epi, then n is epi.

(38) Let D be a non empty subcategory of C, o1, o2 be objects of C, p1, p2

be objects of D, m be a morphism from o1 to o2, m1 be a morphism from

o2 to o1, n be a morphism from p1 to p2, and n1 be a morphism from p2 to

p1 such that p1 = o1 and p2 = o2 and m = n and m1 = n1 and 〈p1, p2〉 6= ∅

and 〈p2, p1〉 6= ∅. Then

(i) m is left inverse of m1 iff n is left inverse of n1, and

(ii) m is right inverse of m1 iff n is right inverse of n1.

(39) Let D be a full non empty subcategory of C, o1, o2 be objects of C, p1,

p2 be objects of D, m be a morphism from o1 to o2, and n be a morphism

from p1 to p2 such that p1 = o1 and p2 = o2 and m = n and 〈p1, p2〉 6= ∅

and 〈p2, p1〉 6= ∅. Then

(i) if m is retraction, then n is retraction,

(ii) if m is coretraction, then n is coretraction, and

(iii) if m is iso, then n is iso.

(40) Let D be a non empty subcategory of C, o1, o2 be objects of C, p1, p2

be objects of D, m be a morphism from o1 to o2, and n be a morphism

from p1 to p2 such that p1 = o1 and p2 = o2 and m = n and 〈p1, p2〉 6= ∅

and 〈p2, p1〉 6= ∅. Then

(i) if n is retraction, then m is retraction,

(ii) if n is coretraction, then m is coretraction, and

(iii) if n is iso, then m is iso.

Let C be a category. The functor AllMonoC yields a strict non empty trans-

itive substructure of C and is defined by the conditions (Def. 1).

(Def. 1)(i) The carrier of AllMonoC = the carrier of C,

(ii) the arrows of AllMonoC ⊆̇ the arrows of C, and

(iii) for all objects o1, o2 of C and for every morphism m from o1 to o2 holds

m ∈ (the arrows of AllMonoC)(o1, o2) iff 〈o1, o2〉 6= ∅ and m is mono.

Let C be a category. Note that AllMonoC is id-inheriting.

Let C be a category. The functor AllEpiC yields a strict non empty transitive

substructure of C and is defined by the conditions (Def. 2).

(Def. 2)(i) The carrier of AllEpiC = the carrier of C,

(ii) the arrows of AllEpiC ⊆̇ the arrows of C, and

(iii) for all objects o1, o2 of C and for every morphism m from o1 to o2 holds

m ∈ (the arrows of AllEpiC)(o1, o2) iff 〈o1, o2〉 6= ∅ and m is epi.
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Let C be a category. Observe that AllEpiC is id-inheriting.

Let C be a category. The functor AllRetrC yielding a strict non empty

transitive substructure of C is defined by the conditions (Def. 3).

(Def. 3)(i) The carrier of AllRetrC = the carrier of C,

(ii) the arrows of AllRetrC ⊆̇ the arrows of C, and

(iii) for all objects o1, o2 of C and for every morphism m from o1 to o2 holds

m ∈ (the arrows of AllRetrC)(o1, o2) iff 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅ and

m is retraction.

Let C be a category. One can check that AllRetrC is id-inheriting.

Let C be a category. The functor AllCoretrC yielding a strict non empty

transitive substructure of C is defined by the conditions (Def. 4).

(Def. 4)(i) The carrier of AllCoretrC = the carrier of C,

(ii) the arrows of AllCoretrC ⊆̇ the arrows of C, and

(iii) for all objects o1, o2 of C and for every morphism m from o1 to o2 holds

m ∈ (the arrows of AllCoretrC)(o1, o2) iff 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅

and m is coretraction.

Let C be a category. One can verify that AllCoretrC is id-inheriting.

Let C be a category. The functor AllIsoC yields a strict non empty transitive

substructure of C and is defined by the conditions (Def. 5).

(Def. 5)(i) The carrier of AllIsoC = the carrier of C,

(ii) the arrows of AllIsoC ⊆̇ the arrows of C, and

(iii) for all objects o1, o2 of C and for every morphism m from o1 to o2 holds

m ∈ (the arrows of AllIsoC)(o1, o2) iff 〈o1, o2〉 6= ∅ and 〈o2, o1〉 6= ∅ and

m is iso.

Let C be a category. Note that AllIsoC is id-inheriting.

Next we state a number of propositions:

(41) AllIsoC is a non empty subcategory of AllRetrC.

(42) AllIsoC is a non empty subcategory of AllCoretrC.

(43) AllCoretrC is a non empty subcategory of AllMonoC.

(44) AllRetrC is a non empty subcategory of AllEpiC.

(45) If for all objects o1, o2 of C holds every morphism from o1 to o2 is mono,

then the category structure of C = AllMonoC.

(46) If for all objects o1, o2 of C holds every morphism from o1 to o2 is epi,

then the category structure of C = AllEpiC.

(47) Suppose that for all objects o1, o2 of C and for every morphism m from

o1 to o2 holdsm is retraction and 〈o2, o1〉 6= ∅. Then the category structure

of C = AllRetrC.

(48) Suppose that for all objects o1, o2 of C and for every morphismm from o1

to o2 holds m is coretraction and 〈o2, o1〉 6= ∅. Then the category structure

of C = AllCoretrC.
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(49) Suppose that for all objects o1, o2 of C and for every morphism m from

o1 to o2 holds m is iso and 〈o2, o1〉 6= ∅. Then the category structure of

C = AllIsoC.

(50) For all objects o1, o2 of AllMonoC and for every morphism m from o1

to o2 such that 〈o1, o2〉 6= ∅ holds m is mono.

(51) For all objects o1, o2 of AllEpiC and for every morphism m from o1 to

o2 such that 〈o1, o2〉 6= ∅ holds m is epi.

(52) For all objects o1, o2 of AllIsoC and for every morphism m from o1 to

o2 such that 〈o1, o2〉 6= ∅ holds m is iso and m−1 ∈ 〈o2, o1〉.

(53) AllMonoAllMonoC = AllMonoC.

(54) AllEpiAllEpiC = AllEpiC.

(55) AllIsoAllIsoC = AllIsoC.

(56) AllIsoAllMonoC = AllIsoC.

(57) AllIsoAllEpiC = AllIsoC.

(58) AllIsoAllRetrC = AllIsoC.

(59) AllIsoAllCoretrC = AllIsoC.
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