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Summary. The paper introduces some preliminary notions concerning the
homotopy theory according to [15]: paths and arcwise connected to topological
spaces. The basic operations on paths (addition and reversing) are defined. In the
last section the predicate: P, Q are homotopic is defined. We also showed some
properties of the product of two topological spaces needed to prove reflexivity
and symmetry of the above predicate.

MML Identifier: BORSUK 2.

The articles [27], [30], [26], [16], [10], [32], [7], [23], [13], [12], [25], [28], [24], [4],

[1], [33], [11], [21], [31], [9], [19], [29], [17], [8], [34], [14], [6], [5], [22], [20], [2],

[18], and [3] provide the notation and terminology for this paper.

1. Preliminaries

In this paper T , T1, T2, S denote non empty topological spaces.

The scheme FrCard deals with a non empty set A, a set B, a unary functor

F yielding a set, and a unary predicate P, and states that:

{F(w);w ranges over elements of A :w ∈ B ∧ P[w]} ¬ B

for all values of the parameters.

The following proposition is true

(1) Let f be a map from T1 into S and g be a map from T2 into S. Suppose

that

(i) T1 is a subspace of T ,

(ii) T2 is a subspace of T ,

(iii) Ω(T1) ∪ Ω(T2) = ΩT ,

(iv) T1 is compact,

449
c© 1997 University of Białystok

ISSN 1426–2630



450 adam grabowski

(v) T2 is compact,

(vi) T is a T2 space,

(vii) f is continuous,

(viii) g is continuous, and

(ix) for every set p such that p ∈ Ω(T1) ∩ Ω(T2) holds f(p) = g(p).

Then there exists a map h from T into S such that h = f+·g and h is

continuous.

Let S, T be non empty topological spaces. One can verify that there exists

a map from S into T which is continuous.

One can prove the following proposition

(2) For all non empty topological spaces S, T holds every continuous map-

ping from S into T is a continuous map from S into T .

Let T be a non empty topological structure. Note that idT is open and

continuous.

Let T be a non empty topological structure. Observe that there exists a map

from T into T which is continuous and one-to-one.

We now state the proposition

(3) Let S, T be non empty topological spaces and f be a map from S into

T . If f is a homeomorphism, then f−1 is open.

2. Paths and arcwise connected spaces

Let T be a topological structure and let a, b be points of T . Let us assume

that there exists a map f from I into T such that f is continuous and f(0) = a

and f(1) = b. A map from I into T is said to be a path from a to b if:

(Def. 1) It is continuous and it(0) = a and it(1) = b.

Next we state the proposition

(4) Let T be a non empty topological space and a be a point of T . Then

there exists a map f from I into T such that f is continuous and f(0) = a

and f(1) = a.

Let T be a non empty topological space and let a be a point of T . Note that

there exists a path from a to a which is continuous.

Let T be a topological structure. We say that T is arcwise connected if and

only if:

(Def. 2) For all points a, b of T there exists a map f from I into T such that f

is continuous and f(0) = a and f(1) = b.

Let us observe that there exists a topological space which is arcwise connec-

ted and non empty.
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Let T be an arcwise connected topological structure and let a, b be points of

T . Let us note that the path from a to b can be characterized by the following

(equivalent) condition:

(Def. 3) It is continuous and it(0) = a and it(1) = b.

Let T be an arcwise connected topological structure and let a, b be points

of T . Note that every path from a to b is continuous.

Next we state the proposition

(5) For every non empty topological space G1 such that G1 is arcwise con-

nected holds G1 is connected.

Let us mention that every non empty topological space which is arcwise

connected is also connected.

3. Basic operations on paths

Let T be a non empty topological space, let a, b, c be points of T , let P be a

path from a to b, and let Q be a path from b to c. Let us assume that there exist

maps f , g from I into T such that f is continuous and f(0) = a and f(1) = b

and g is continuous and g(0) = b and g(1) = c. The functor P + Q yielding a

path from a to c is defined by the condition (Def. 4).

(Def. 4) Let t be a point of I and t′ be a real number such that t = t′. Then

(i) if 0 ¬ t′ and t′ ¬ 1
2 , then (P + Q)(t) = P (2 · t′), and

(ii) if 1
2 ¬ t′ and t′ ¬ 1, then (P + Q)(t) = Q(2 · t′ − 1).

Let T be a non empty topological space and let a be a point of T . Note that

there exists a path from a to a which is constant.

One can prove the following two propositions:

(6) Let T be a non empty topological space, a be a point of T , and P be a

constant path from a to a. Then P = I 7−→ a.

(7) Let T be a non empty topological space, a be a point of T , and P be a

constant path from a to a. Then P + P = P.

Let T be a non empty topological space, let a be a point of T , and let P be

a constant path from a to a. Observe that P + P is constant.

Let T be a non empty topological space, let a, b be points of T , and let P

be a path from a to b. Let us assume that there exists a map f from I into T

such that f is continuous and f(0) = a and f(1) = b. The functor −P yields a

path from b to a and is defined as follows:

(Def. 5) For every point t of I and for every real number t′ such that t = t′ holds

(−P )(t) = P (1− t′).

The following proposition is true



452 adam grabowski

(8) Let T be a non empty topological space, a be a point of T , and P be a

constant path from a to a. Then −P = P.

Let T be a non empty topological space, let a be a point of T , and let P be

a constant path from a to a. One can verify that −P is constant.

4. The product of two topological spaces

One can prove the following proposition

(9) Let X, Y be non empty topological spaces, A be a family of subsets of

Y , and f be a map from X into Y . Then f−1(
⋃

A) =
⋃

(f−1(A)).

Let S1, S2, T1, T2 be non empty topological spaces, let f be a map from S1

into S2, and let g be a map from T1 into T2. Then [: f, g :] is a map from [:S1,

T1 :] into [:S2, T2 :].

Next we state three propositions:

(10) Let S1, S2, T1, T2 be non empty topological spaces, f be a continuous

map from S1 into T1, g be a continuous map from S2 into T2, and P1,

P2 be subsets of the carrier of [:T1, T2 :]. If P2 ∈ BaseAppr(P1), then [: f,

g :]−1(P2) is open.

(11) Let S1, S2, T1, T2 be non empty topological spaces, f be a continuous

map from S1 into T1, g be a continuous map from S2 into T2, and P2 be a

subset of the carrier of [:T1, T2 :]. If P2 is open, then [: f, g :]−1(P2) is open.

(12) Let S1, S2, T1, T2 be non empty topological spaces, f be a continuous

map from S1 into T1, and g be a continuous map from S2 into T2. Then

[: f, g :] is continuous.

Let us note that every topological structure which is empty is also T0.

Let T1, T2 be discernible non empty topological spaces. One can check that

[:T1, T2 :] is discernible.

We now state two propositions:

(13) For all T0-spaces T1, T2 holds [:T1, T2 :] is a T0-space.

(14) Let T1, T2 be non empty topological spaces. Suppose T1 is a T1 space

and T2 is a T1 space. Then [:T1, T2 :] is a T1 space.

Let T1, T2 be a T1 space non empty topological spaces. Observe that [:T1,

T2 :] is a T1 space.

Let T1, T2 be T2 non empty topological spaces. Observe that [:T1, T2 :] is T2.

Let us note that I is compact and T2.

Let us mention that E2
T
is T2.

Let T be a non empty arcwise connected topological space, let a, b be points

of T , and let P , Q be paths from a to b. We say that P , Q are homotopic if and

only if the condition (Def. 6) is satisfied.



introduction to the homotopy theory 453

(Def. 6) There exists a map f from [: I, I :] into T such that

(i) f is continuous, and

(ii) for every point s of I holds f(s, 0) = P (s) and f(s, 1) = Q(s) and for

every point t of I holds f(0, t) = a and f(1, t) = b.

Let us notice that the predicate P , Q are homotopic is reflexive and symmetric.
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