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Summary. The article deals with a rather technical concept – rectangular
sequences of the points of the plane. We mean by that a finite sequence consisting
of five elements, that is circular, i.e. the first element and the fifth one of it are
equal, and such that the polygon determined by it is a non degenerated rectangle,
with sides parallel to axes. The main result is that for the rectangle determined
by such a sequence the left and the right component of the complement of it are
different and disjoint.

MML Identifier: SPRECT 1.

The terminology and notation used in this paper are introduced in the following

papers: [29], [35], [34], [28], [7], [36], [13], [2], [25], [1], [27], [32], [5], [6], [3], [33],

[31], [17], [16], [14], [15], [4], [26], [24], [37], [10], [23], [11], [12], [21], [18], [19],

[22], [30], [20], [8], and [9].

1. General preliminaries

One can prove the following proposition

(1) For every trivial set A and for every set B such that B ⊆ A holds B is

trivial.

One can verify that every function which is non constant is also non trivial.

Let us observe that every function which is trivial is also constant.

One can prove the following proposition

(2) For every function f such that rng f is trivial holds f is constant.
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Let f be a constant function. One can verify that rng f is trivial.

Let us observe that there exists a finite sequence which is non empty and

constant.

We now state three propositions:

(3) For all finite sequences f , g such that f ag is constant holds f is constant

and g is constant.

(4) For all sets x, y such that 〈x, y〉 is constant holds x = y.

(5) For all sets x, y, z such that 〈x, y, z〉 is constant holds x = y and y = z

and z = x.

2. Preliminaries (general topology)

One can prove the following four propositions:

(6) Let G1 be a non empty topological space, A be a subset of the carrier of

G1, and B be a non empty subset of the carrier of G1. If A is a component

of B, then A 6= ∅.

(7) Let G1 be a non empty topological space, A be a subset of the carrier of

G1, and B be a non empty subset of the carrier of G1. If A is a component

of B, then A ⊆ B.

(8) Let T be a non empty topological space, A be a non empty subset of the

carrier of T , and B1, B2, C be subsets of the carrier of T . Suppose B1 is

a component of A and B2 is a component of A and C is a component of

A and B1 ∪B2 = A. Then C = B1 or C = B2.

(9) Let T be a non empty topological space, A be a non empty subset of the

carrier of T , and B1, B2, C1, C2 be subsets of the carrier of T . Suppose B1

is a component of A and B2 is a component of A and C1 is a component

of A and C2 is a component of A and B1∪B2 = A and C1∪C2 = A. Then

{B1, B2} = {C1, C2}.

3. Preliminaries (the topology of the plane)

We follow the rules: C, C1, C2 are non empty compact subsets of E
2

T
and p,

q are points of E2

T
.

Next we state the proposition

(10) For all points p, q, r of E2

T
holds L̃(〈p, q, r〉) = L(p, q) ∪ L(q, r).

Let n be a natural number and let f be a non trivial finite sequence of

elements of En

T
. Observe that L̃(f) is non empty.
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Let f be a finite sequence of elements of E2

T
. Note that L̃(f) is compact.

We now state two propositions:

(11) For all subsets A, B of the carrier of E2

T
such that A ⊆ B and B is

horizontal holds A is horizontal.

(12) For all subsets A, B of the carrier of E2

T
such that A ⊆ B and B is

vertical holds A is vertical.

Let us observe that ¤E2 is special polygonal.

One can check that ¤E2 is non horizontal and non vertical.

One can check that there exists a subset of E2

T
which is non vertical, non

horizontal, non empty, and compact.

4. Special points of a compact non empty subset of the plane

The following propositions are true:

(13) N-minC ∈ C and N-maxC ∈ C.

(14) S-minC ∈ C and S-maxC ∈ C.

(15) W-minC ∈ C and W-maxC ∈ C.

(16) E-minC ∈ C and E-maxC ∈ C.

(17) C is vertical iff W-boundC = E-boundC.

(18) C is horizontal iff S-boundC = N-boundC.

(19) For every C such that NW-cornerC = NE-cornerC holds C is vertical.

(20) For every C such that SW-cornerC = SE-cornerC holds C is vertical.

(21) For every C such that NW-cornerC = SW-cornerC holds C is horizon-

tal.

(22) For every C such that NE-cornerC = SE-cornerC holds C is horizontal.

In the sequel t, r1, r2, s1, s2 are real numbers.

The following propositions are true:

(23) W-boundC ¬ E-boundC.

(24) S-boundC ¬ N-boundC.

(25) L(SE-cornerC,NE-cornerC) = {p : p1 = E-boundC ∧ p2 ¬

N-boundC ∧ p2 ­ S-boundC}.

(26) L(SW-cornerC, SE-cornerC) = {p : p1 ¬ E-boundC ∧ p1 ­

W-boundC ∧ p2 = S-boundC}.

(27) L(NW-cornerC,NE-cornerC) = {p : p1 ¬ E-boundC ∧ p1 ­

W-boundC ∧ p2 = N-boundC}.

(28) L(SW-cornerC,NW-cornerC) = {p : p1 = W-boundC ∧ p2 ¬

N-boundC ∧ p2 ­ S-boundC}.
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(29) L(SW-cornerC,NW-cornerC) ∩ L(NW-cornerC,NE-cornerC) =

{NW-cornerC}.

(30) L(NW-cornerC,NE-cornerC) ∩ L(NE-cornerC,SE-cornerC) =

{NE-cornerC}.

(31) L(SE-cornerC,NE-cornerC) ∩ L(SW-cornerC,SE-cornerC) =

{SE-cornerC}.

(32) L(NW-cornerC,SW-cornerC) ∩ L(SW-cornerC,SE-cornerC) =

{SW-cornerC}.

5. Subsets of the plane that are neither vertical nor horizontal

In the sequel D is a non vertical non horizontal non empty compact subset

of E2

T
.

The following propositions are true:

(33) W-boundD < E-boundD.

(34) S-boundD < N-boundD.

(35) L(SW-cornerD,NW-cornerD) ∩ L(SE-cornerD,NE-cornerD) = ∅.

(36) L(SW-cornerD,SE-cornerD) ∩ L(NW-cornerD,NE-cornerD) = ∅.

6. A special sequence related to a compact non empty subset of

the plane

Let us consider C. The functor SpStSeqC yielding a finite sequence of ele-

ments of E2

T
is defined as follows:

(Def. 1) SpStSeqC = 〈NW-cornerC,NE-cornerC,SE-cornerC〉 a 〈SW-cornerC,

NW-cornerC〉.

The following propositions are true:

(37) π1 SpStSeqC = NW-cornerC.

(38) π2 SpStSeqC = NE-cornerC.

(39) π3 SpStSeqC = SE-cornerC.

(40) π4 SpStSeqC = SW-cornerC.

(41) π5 SpStSeqC = NW-cornerC.

(42) len SpStSeqC = 5.

(43) L̃(SpStSeqC) = L(NW-cornerC,NE-cornerC) ∪ L(NE-cornerC,

SE-cornerC) ∪ (L(SE-cornerC,SW-cornerC) ∪ L(SW-cornerC,

NW-cornerC)).
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Let D be a non vertical non empty compact subset of E2

T
. Note that

SpStSeqD is non constant.

Let D be a non horizontal non empty compact subset of E2

T
. Note that

SpStSeqD is non constant.

Let us consider D. One can check that SpStSeqD is special unfolded circular

s.c.c. and standard.

Next we state four propositions:

(44) L̃(SpStSeqD) = [.W-boundD,E-boundD,S-boundD,N-boundD.].

(45) Let T be a non empty topological space, X be a non empty subset of T ,

and f be a real map of T . Then rng(f ↾ X) = f◦X.

(46) Let T be a non empty topological space, X be a non empty compact

subset of T , and f be a continuous real map of T . Then f◦X is lower

bounded.

(47) Let T be a non empty topological space, X be a non empty compact

subset of T , and f be a continuous real map of T . Then f◦X is upper

bounded.

Let us observe that there exists a subset of R which is non empty, upper

bounded, and lower bounded.

We now state a number of propositions:

(48) W-boundC = inf((proj1)◦C).

(49) S-boundC = inf((proj2)◦C).

(50) N-boundC = sup((proj2)◦C).

(51) E-boundC = sup((proj1)◦C).

(52) For all non empty lower bounded subsets A, B of R holds inf(A ∪B) =

min(inf A, inf B).

(53) For all non empty upper bounded subsets A, B of R holds sup(A∪B) =

max(supA, supB).

(54) If C = C1 ∪ C2, then W-boundC = min(W-boundC1,W-boundC2).

(55) If C = C1 ∪ C2, then S-boundC = min(S-boundC1,S-boundC2).

(56) If C = C1 ∪ C2, then N-boundC = max(N-boundC1,N-boundC2).

(57) If C = C1 ∪ C2, then E-boundC = max(E-boundC1,E-boundC2).

Let us consider p, q. One can check that L(p, q) is compact.

One can verify that ∅R is bounded.

Next we state the proposition

(58) s1 ∈ [r1, r2] iff r1 ¬ s1 and s1 ¬ r2.

Let us consider r1, r2. One can check that [r1, r2] is bounded.

Let us observe that every subset of R which is bounded is also lower bounded

and upper bounded and every subset of R which is lower bounded and upper

bounded is also bounded.
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The following propositions are true:

(59) If r1 ¬ r2, then t ∈ [r1, r2] iff there exists s1 such that 0 ¬ s1 and s1 ¬ 1

and t = s1 · r1 + (1− s1) · r2.

(60) If p1 ¬ q1, then (proj1)◦L(p, q) = [p1, q1].

(61) If p2 ¬ q2, then (proj2)◦L(p, q) = [p2, q2].

(62) If p1 ¬ q1, then W-boundL(p, q) = p1.

(63) If p2 ¬ q2, then S-boundL(p, q) = p2.

(64) If p2 ¬ q2, then N-boundL(p, q) = q2.

(65) If p1 ¬ q1, then E-boundL(p, q) = q1.

(66) W-bound L̃(SpStSeqD) =W-boundD.

(67) S-bound L̃(SpStSeqD) = S-boundD.

(68) N-bound L̃(SpStSeqD) = N-boundD.

(69) E-bound L̃(SpStSeqD) = E-boundD.

(70) NW-corner L̃(SpStSeqD) = NW-cornerD.

(71) NE-corner L̃(SpStSeqD) = NE-cornerD.

(72) SW-corner L̃(SpStSeqD) = SW-cornerD.

(73) SE-corner L̃(SpStSeqD) = SE-cornerD.

(74) W-most L̃(SpStSeqD) = L(SW-cornerD,NW-cornerD).

(75) N-most L̃(SpStSeqD) = L(NW-cornerD,NE-cornerD).

(76) S-most L̃(SpStSeqD) = L(SW-cornerD,SE-cornerD).

(77) E-most L̃(SpStSeqD) = L(SE-cornerD,NE-cornerD).

(78) (proj2)◦L(SW-cornerD,NW-cornerD) = [S-boundD,N-boundD].

(79) (proj1)◦L(NW-cornerD,NE-cornerD) = [W-boundD,E-boundD].

(80) (proj2)◦L(NE-cornerD,SE-cornerD) = [S-boundD,N-boundD].

(81) (proj1)◦L(SE-cornerD,SW-cornerD) = [W-boundD,E-boundD].

(82) W-min L̃(SpStSeqD) = SW-cornerD.

(83) W-max L̃(SpStSeqD) = NW-cornerD.

(84) N-min L̃(SpStSeqD) = NW-cornerD.

(85) N-max L̃(SpStSeqD) = NE-cornerD.

(86) E-min L̃(SpStSeqD) = SE-cornerD.

(87) E-max L̃(SpStSeqD) = NE-cornerD.

(88) S-min L̃(SpStSeqD) = SW-cornerD.

(89) S-max L̃(SpStSeqD) = SE-cornerD.
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7. Rectangular finite suequences of the points of the plane

Let f be a finite sequence of elements of E2

T
. We say that f is rectangular if

and only if:

(Def. 2) There exists D such that f = SpStSeqD.

Let us consider D. Note that SpStSeqD is rectangular.

Let us mention that there exists a finite sequence of elements of E2

T
which is

rectangular.

In the sequel s denotes a rectangular finite sequence of elements of E2

T
.

The following proposition is true

(90) len s = 5.

Let us note that every finite sequence of elements of E2

T
which is rectangular

is also non constant.

One can verify that every non empty finite sequence of elements of E2

T
which

is rectangular is also standard, special, unfolded, circular, and s.c.c..

In the sequel s is a rectangular finite sequence of elements of E2

T
.

Next we state four propositions:

(91) π1s = N-min L̃(s) and π1s =W-max L̃(s).

(92) π2s = N-max L̃(s) and π2s = E-max L̃(s).

(93) π3s = S-max L̃(s) and π3s = E-min L̃(s).

(94) π4s = S-min L̃(s) and π4s =W-min L̃(s).

8. Jordan property

One can prove the following proposition

(95) If r1 < r2 and s1 < s2, then [.r1, r2, s1, s2.] is Jordan.

Let f be a rectangular finite sequence of elements of E2

T
. Observe that L̃(f)

is Jordan.

Let S be a subset of the carrier of E2

T
. Let us observe that S is Jordan if and

only if the conditions (Def. 3) are satisfied.

(Def. 3)(i) Sc 6= ∅, and

(ii) there exist subsets A1, A2 of the carrier of E
2

T
such that Sc = A1 ∪A2

and A1 misses A2 and A1 \A1 = A2 \A2 and A1 is a component of S
c and

A2 is a component of S
c.

Next we state the proposition

(96) For every rectangular finite sequence f of elements of E2

T
holds

LeftComp(f) misses RightComp(f).
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Let f be a non constant standard special circular sequence. One can verify

that LeftComp(f) is non empty and RightComp(f) is non empty.

The following proposition is true

(97) For every rectangular finite sequence f of elements of E2

T
holds

LeftComp(f) 6= RightComp(f).
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