Algebraic and Arithmetic Lattices. Part II^1

Robert Milewski University of Białystok

Summary. The article is a translation of [13, pp. 89–92]

 ${\rm MML} \ {\rm Identifier:} \ {\tt WAYBEL15}.$

The articles [21], [22], [1], [8], [9], [12], [20], [19], [18], [3], [11], [17], [2], [4], [14], [24], [6], [5], [10], [7], [23], [15], and [16] provide the notation and terminology for this paper.

1. Preliminaries

The following propositions are true:

- (1) Let R be a relational structure and S be a full relational substructure of R. Then every full relational substructure of S is a full relational substructure of R.
- (2) Let X, Y, Z be non empty 1-sorted structures, f be a map from X into Y, and g be a map from Y into Z. If f is onto and g is onto, then $g \cdot f$ is onto.
- (3) For every non empty 1-sorted structure X and for every subset Y of the carrier of X holds $(id_X)^{\circ}Y = Y$.
- (4) For every set X and for every element a of 2_{\subseteq}^X holds $\uparrow a = \{Y; Y \text{ ranges over subsets of } X: a \subseteq Y\}.$
- (5) Let L be an upper-bounded non empty antisymmetric relational structure and a be an element of L. If $\top_L \leq a$, then $a = \top_L$.

C 1997 University of Białystok ISSN 1426-2630

¹This work has been supported by KBN Grant 8 T11C 018 12.

ROBERT MILEWSKI

- (6) Let S, T be non empty posets, g be a map from S into T, and d be a map from T into S. If g is onto and (g, d) is Galois, then T and Im d are isomorphic.
- (7) Let L_1 , L_2 , L_3 be non empty posets, g_1 be a map from L_1 into L_2 , g_2 be a map from L_2 into L_3 , d_1 be a map from L_2 into L_1 , and d_2 be a map from L_3 into L_2 . If $\langle g_1, d_1 \rangle$ is Galois and $\langle g_2, d_2 \rangle$ is Galois, then $\langle g_2 \cdot g_1, d_1 \cdot d_2 \rangle$ is Galois.
- (8) Let L_1 , L_2 be non empty posets, f be a map from L_1 into L_2 , and f_1 be a map from L_2 into L_1 . Suppose $f_1 = (f$ qua function) $^{-1}$ and f is isomorphic. Then $\langle f, f_1 \rangle$ is Galois and $\langle f_1, f \rangle$ is Galois.
- (9) For every set X holds 2_{\subset}^X is arithmetic.

Next we state four propositions:

- (10) Let L_1 , L_2 be up-complete non empty posets and f be a map from L_1 into L_2 . If f is isomorphic, then for every element x of L_1 holds $f^{\circ} \downarrow x = \downarrow f(x)$.
- (11) For all non empty posets L_1 , L_2 such that L_1 and L_2 are isomorphic and L_1 is continuous holds L_2 is continuous.
- (12) Let L_1 , L_2 be lattices. Suppose L_1 and L_2 are isomorphic and L_1 is lower-bounded and arithmetic. Then L_2 is arithmetic.
- (13) Let L_1 , L_2 , L_3 be non empty posets, f be a map from L_1 into L_2 , and g be a map from L_2 into L_3 . Suppose f is directed-sups-preserving and g is directed-sups-preserving. Then $g \cdot f$ is directed-sups-preserving.
 - 2. MAPS PRESERVING SUP'S AND INF'S

One can prove the following propositions:

- (14) Let L_1 , L_2 be non empty relational structures, f be a map from L_1 into L_2 , and X be a subset of Im f. Then $(f_\circ)^\circ X = X$.
- (15) Let X be a set and c be a map from 2_{\subseteq}^X into 2_{\subseteq}^X . Suppose c is idempotent and directed-sups-preserving. Then c_{\circ} is directed-sups-preserving.
- (16) Let L be a continuous complete lattice and p be a kernel map from L into L. If p is directed-sups-preserving, then $\operatorname{Im} p$ is a continuous lattice.
- (17) Let L be a continuous complete lattice and p be a projection map from L into L. If p is directed-sups-preserving, then Im p is a continuous lattice.
- (18) Let L be a lower-bounded lattice. Then L is continuous if and only if there exists an arithmetic lower-bounded lattice A such that there exists a map from A into L which is onto, infs-preserving, and directed-supspreserving.
- (19) Let L be a lower-bounded lattice. Then L is continuous if and only if there exists an algebraic lower-bounded lattice A such that there exists

500

a map from A into L which is onto, infs-preserving, and directed-sups-preserving.

(20) Let L be a lower-bounded lattice. Then L is continuous if and only if there exists a set X and there exists a projection map p from 2_{\subseteq}^{X} into 2_{\subseteq}^{X} such that p is directed-sups-preserving and L and $\operatorname{Im} p$ are isomorphic.

3. Atoms Elements

Next we state two propositions:

- (21) For every non empty relational structure L and for every element x of L holds $x \in \text{PRIME}(L^{\text{op}})$ iff x is co-prime.
- (22) Let L be a sup-semilattice and a be an element of L. Then a is co-prime if and only if for all elements x, y of L such that $a \leq x \sqcup y$ holds $a \leq x$ or $a \leq y$.

Let L be a non empty relational structure and let a be an element of L. We say that a is an atom if and only if:

(Def. 1) $\perp_L < a$ and for every element b of L such that $\perp_L < b$ and $b \leq a$ holds b = a.

Let L be a non empty relational structure. The functor ATOM(L) yielding a subset of L is defined by:

(Def. 2) For every element x of L holds $x \in ATOM(L)$ iff x is atom.

The following proposition is true

(23) For every Boolean lattice L and for every element a of L holds a is atom iff a is co-prime and $a \neq \perp_L$.

Let L be a Boolean lattice. Observe that every element of L which is atom is also co-prime.

Next we state several propositions:

- (24) For every Boolean lattice L holds $ATOM(L) = PRIME(L^{op}) \setminus \{\perp_L\}$.
- (25) For every Boolean lattice L and for all elements x, a of L such that a is atom holds $a \leq x$ iff $a \leq \neg x$.
- (26) Let L be a complete Boolean lattice, X be a subset of L, and x be an element of L. Then $x \sqcap \sup X = \bigsqcup_L \{x \sqcap y; y \text{ ranges over elements of } L: y \in X\}.$
- (27) Let L be a lower-bounded antisymmetric non empty relational structure with g.l.b.'s and x, y be elements of L. If x is atom and y is atom and $x \neq y$, then $x \sqcap y = \bot_L$.
- (28) Let L be a complete Boolean lattice, x be an element of L, and A be a subset of L. If $A \subseteq ATOM(L)$, then $x \in A$ iff x is atom and $x \leq \sup A$.

ROBERT MILEWSKI

(29) Let L be a complete Boolean lattice and X, Y be subsets of L. If $X \subseteq ATOM(L)$ and $Y \subseteq ATOM(L)$, then $X \subseteq Y$ iff $\sup X \leq \sup Y$.

4. More on the Boolean Lattice

One can prove the following propositions:

- (30) For every Boolean lattice L holds L is arithmetic iff there exists a set X such that L and 2_{\subset}^{X} are isomorphic.
- (31) For every Boolean lattice L holds L is arithmetic iff L is algebraic.
- (32) For every Boolean lattice L holds L is arithmetic iff L is continuous.
- (33) For every Boolean lattice L holds L is arithmetic iff L is continuous and L^{op} is continuous.
- (34) For every Boolean lattice L holds L is arithmetic iff L is completelydistributive.
- (35) Let L be a Boolean lattice. Then L is arithmetic if and only if the following conditions are satisfied:
 - (i) L is complete, and
 - (ii) for every element x of L there exists a subset X of L such that $X \subseteq ATOM(L)$ and $x = \sup X$.

References

- [1] Grzegorz Bancerek. The well ordering relations. *Formalized Mathematics*, 1(1):123–129, 1990.
- [2] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
- [3] Grzegorz Bancerek. Quantales. Formalized Mathematics, 5(1):85–91, 1996.
- [4] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathematics, 6(1):81-91, 1997.
- [5] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics, 6(1):93-107, 1997.
- [6] Grzegorz Bancerek. Duality in relation structures. Formalized Mathematics, 6(2):227–232, 1997.
- [7] Grzegorz Bancerek. The "way-below" relation. Formalized Mathematics, 6(1):169–176, 1997.
 [8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
- [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
 [9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
- [9] Czesław Bylniski. Functions from a set to a set. Formatized Mathematics, 1(1):135-104.
 [10] Czesław Byliński. Galois connections. Formalized Mathematics, 6(1):131-143, 1997.
- [11] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- [12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [13] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- [14] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. Formalized Mathematics, 6(1):117-121, 1997.
- [15] Beata Madras. Irreducible and prime elements. *Formalized Mathematics*, 6(2):233–239, 1997.
- [16] Robert Milewski. Algebraic lattices. Formalized Mathematics, 6(2):249–254, 1997.

502

- [17] Michał Muzalewski. Categories of groups. Formalized Mathematics, 2(4):563–571, 1991.
 [18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [19] Yozo Toda. The formalization of simple graphs. Formalized Mathematics, 5(1):137–144, 1996.
- [20] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319, 1990.
- [21] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma*thematics*, 1(1):17–23, 1990.
- [22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [23] Mariusz Żynel. The equational characterization of continuous lattices. Formalized Mathematics, 6(2):199-205, 1997.
- [24] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices and maps. Formalized Mathematics, 6(1):123-130, 1997.

Received October 29, 1997