The Correspondence Between Lattices of Subalgebras of Universal Algebras and Many Sorted Algebras

Adam Naumowicz University of Białystok Agnieszka Julia Marasik Warsaw University of Technology

Summary. The main goal of this paper is to show some properties of subalgebras of universal algebras and many sorted algebras, and then the isomorphic correspondence between lattices of such subalgebras.

MML Identifier: MSSUBLAT.

The articles [16], [5], [1], [6], [7], [8], [10], [14], [4], [9], [13], [2], [17], [15], [12], [11], and [3] provide the notation and terminology for this paper.

1. Preliminaries

In this paper a denotes a set and i denotes a natural number. We now state several propositions:

- (1) $(\Box \mapsto a)(0) = \varepsilon.$
- (2) $(\Box \longmapsto a)(1) = \langle a \rangle.$
- $(3) \quad (\Box \longmapsto a)(2) = \langle a, a \rangle.$
- $(4) \quad (\Box \longmapsto a)(3) = \langle a, a, a \rangle.$
- (5) For every finite sequence f of elements of $\{0\}$ holds $f = i \mapsto 0$ iff len f = i.
- (6) For every finite sequence f such that $f = (\Box \mapsto 0)(i)$ holds len f = i.

C 1998 University of Białystok ISSN 1426-2630

2. Some Properties of Subalgebras of Universal and Many Sorted Algebras

We now state the proposition

(7) For all universal algebras U_1 , U_2 such that U_1 is a subalgebra of U_2 holds $MSSign(U_1) = MSSign(U_2).$

Let U_0 be a universal algebra. One can verify that the characteristic of U_0 is function yielding.

One can prove the following propositions:

- (8) Let U_1 , U_2 be universal algebras. Suppose U_1 is a subalgebra of U_2 . Let B be a subset of $MSAlg(U_2)$. Suppose B = the sorts of $MSAlg(U_1)$. Let o be an operation symbol of $MSSign(U_2)$ and a be an operation symbol of $MSSign(U_1)$. If a = o, then $Den(a, MSAlg(U_1)) = Den(o, MSAlg(U_2)) \upharpoonright Args(a, MSAlg(U_1))$.
- (9) For all universal algebras U_1 , U_2 such that U_1 is a subalgebra of U_2 holds the sorts of $MSAlg(U_1)$ are a subset of $MSAlg(U_2)$.
- (10) Let U_1 , U_2 be universal algebras. Suppose U_1 is a subalgebra of U_2 . Let *B* be a subset of $MSAlg(U_2)$. If B = the sorts of $MSAlg(U_1)$, then *B* is operations closed.
- (11) Let U_1 , U_2 be universal algebras. Suppose U_1 is a subalgebra of U_2 . Let *B* be a subset of $MSAlg(U_2)$. If B = the sorts of $MSAlg(U_1)$, then the characteristics of $MSAlg(U_1) = Opers(MSAlg(U_2), B)$.
- (12) For all universal algebras U_1 , U_2 such that U_1 is a subalgebra of U_2 holds $MSAlg(U_1)$ is a subalgebra of $MSAlg(U_2)$.
- (13) Let U_1, U_2 be universal algebras. Suppose $MSAlg(U_1)$ is a subalgebra of $MSAlg(U_2)$. Then the carrier of U_1 is a subset of the carrier of U_2 .
- (14) Let U_1 , U_2 be universal algebras. Suppose $MSAlg(U_1)$ is a subalgebra of $MSAlg(U_2)$. Let B be a non empty subset of the carrier of U_2 . If B = the carrier of U_1 , then B is operations closed.
- (15) Let U_1 , U_2 be universal algebras. Suppose $MSAlg(U_1)$ is a subalgebra of $MSAlg(U_2)$. Let B be a non empty subset of the carrier of U_2 . If B = the carrier of U_1 , then the characteristic of $U_1 = Opers(U_2, B)$.
- (16) For all universal algebras U_1 , U_2 such that $MSAlg(U_1)$ is a subalgebra of $MSAlg(U_2)$ holds U_1 is a subalgebra of U_2 .

In the sequel M_1 is a segmental trivial non void non empty many sorted signature and A is a non-empty algebra over M_1 .

Next we state a number of propositions:

(17) For every non-empty subalgebra B of A holds the carrier of $Alg_1(B)$ is a subset of the carrier of $Alg_1(A)$.

- (18) Let B be a non-empty subalgebra of A and S be a non empty subset of the carrier of $Alg_1(A)$. If S = the carrier of $Alg_1(B)$, then S is operations closed.
- (19) Let B be a non-empty subalgebra of A and S be a non empty subset of the carrier of $\operatorname{Alg}_1(A)$. If S = the carrier of $\operatorname{Alg}_1(B)$, then the characteristic of $\operatorname{Alg}_1(B) = \operatorname{Opers}(\operatorname{Alg}_1(A), S)$.
- (20) For every non-empty subalgebra B of A holds $Alg_1(B)$ is a subalgebra of $Alg_1(A)$.
- (21) Let S be a non empty non void many sorted signature and A, B be algebras over S. Then A is a subalgebra of B if and only if A is a subalgebra of the algebra of B.
- (22) For all universal algebras A, B holds signature A = signature B iff MSSign(A) = MSSign(B).
- (23) Let A be a non-empty algebra over M_1 . Suppose the carrier of $M_1 = \{0\}$. Then $MSSign(Alg_1(A)) =$ the many sorted signature of M_1 .
- (24) Let A, B be non-empty algebras over M_1 . Suppose the carrier of $M_1 = \{0\}$ and $\operatorname{Alg}_1(A) = \operatorname{Alg}_1(B)$. Then the algebra of A = the algebra of B.
- (25) Let A be a non-empty algebra over M_1 . If the carrier of $M_1 = \{0\}$, then the sorts of A = the sorts of $MSAlg(Alg_1(A))$.
- (26) For every non-empty algebra A over M_1 such that the carrier of $M_1 = \{0\}$ holds $MSAlg(Alg_1(A)) =$ the algebra of A.
- (27) Let A be a universal algebra and B be a strict non-empty subalgebra of MSAlg(A). If the carrier of $MSSign(A) = \{0\}$, then $Alg_1(B)$ is a subalgebra of A.

3. The Correspondence Between Lattices of Subalgebras of Universal and Many Sorted Algebras

We now state three propositions:

- (28) Let A be a universal algebra, a_1 , b_1 be strict non-empty subalgebras of A, and a_2 , b_2 be strict non-empty subalgebras of MSAlg(A). Suppose $a_2 = \text{MSAlg}(a_1)$ and $b_2 = \text{MSAlg}(b_1)$. Then (the sorts of $a_2) \cup$ (the sorts of $b_2) = 0 \mapsto (\text{(the carrier of } a_1) \cup (\text{the carrier of } b_1)).$
- (29) Let A be a universal algebra, a_1 , b_1 be strict non-empty subalgebras of A, and a_2 , b_2 be strict non-empty subalgebras of MSAlg(A). Suppose $a_2 = \text{MSAlg}(a_1)$ and $b_2 = \text{MSAlg}(b_1)$. Then (the sorts of $a_2) \cap$ (the sorts of $b_2) = 0 \mapsto (\text{the carrier of } a_1) \cap (\text{the carrier of } b_1)$.

(30) Let A be a strict universal algebra, a_1 , b_1 be strict non-empty subalgebras of A, and a_2 , b_2 be strict non-empty subalgebras of MSAlg(A). If $a_2 =$ MSAlg(a_1) and $b_2 =$ MSAlg(b_1), then MSAlg($a_1 \sqcup b_1$) = $a_2 \sqcup b_2$.

Let A be a universal algebra with constants. One can check that MSSign(A) is non void strict segmental and trivial and has constant operations.

One can prove the following proposition

(31) Let A be a universal algebra with constants, a_1 , b_1 be strict non-empty subalgebras of A, and a_2 , b_2 be strict non-empty subalgebras of MSAlg(A). If $a_2 = MSAlg(a_1)$ and $b_2 = MSAlg(b_1)$, then $MSAlg(a_1 \cap b_1) = a_2 \cap b_2$.

Let A be a quasi total universal algebra structure. One can verify that the universal algebra structure of A is quasi total.

Let A be a partial universal algebra structure. Observe that the universal algebra structure of A is partial.

Let A be a non-empty universal algebra structure. Note that the universal algebra structure of A is non-empty.

Let A be a universal algebra with constants. Note that the universal algebra structure of A has constants.

We now state the proposition

(32) Let A be a universal algebra with constants. Then the lattice of subalgebras of the universal algebra structure of A and the lattice of subalgebras of MSAlg(the universal algebra structure of A) are isomorphic.

References

- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [2] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
- [3] Ewa Burakowska. Subalgebras of the universal algebra. Lattices of subalgebras. Formalized Mathematics, 4(1):23-27, 1993.
- [4] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Formalized Mathematics, 5(1):47–54, 1996.
- [5] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676, 1990.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [10] Jolanta Kamieńska and Jarosław Stanisław Walijewski. Homomorphisms of lattices, finite join and finite meet. Formalized Mathematics, 4(1):35–40, 1993.
- Jarosław Kotowicz, Beata Madras, and Małgorzata Korolkiewicz. Basic notation of universal algebra. *Formalized Mathematics*, 3(2):251–253, 1992.
- [12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [13] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [14] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
- [15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

230

- [16] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
 [17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):70, 1000.
- 1(1):73-83, 1990.

Received September 22, 1998