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Summary. The main goal of this paper is to show some properties of sub-
algebras of universal algebras and many sorted algebras, and then the isomorphic
correspondence between lattices of such subalgebras.

MML Identifier: MSSUBLAT.

The articles [16], [5], [1], [6], [7], [8], [10], [14], [4], [9], [13], [2], [17], [15], [12],

[11], and [3] provide the notation and terminology for this paper.

1. Preliminaries

In this paper a denotes a set and i denotes a natural number.

We now state several propositions:

(1) (¤ 7−→ a)(0) = ε.

(2) (¤ 7−→ a)(1) = 〈a〉.

(3) (¤ 7−→ a)(2) = 〈a, a〉.

(4) (¤ 7−→ a)(3) = 〈a, a, a〉.

(5) For every finite sequence f of elements of {0} holds f = i 7→ 0 iff

len f = i.

(6) For every finite sequence f such that f = (¤ 7−→ 0)(i) holds len f = i.
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2. Some Properties of Subalgebras of Universal and Many Sorted

Algebras

We now state the proposition

(7) For all universal algebras U1, U2 such that U1 is a subalgebra of U2 holds

MSSign(U1) = MSSign(U2).

Let U0 be a universal algebra. One can verify that the characteristic of U0

is function yielding.

One can prove the following propositions:

(8) Let U1, U2 be universal algebras. Suppose U1 is a subalgebra of U2.

Let B be a subset of MSAlg(U2). Suppose B = the sorts of MSAlg(U1).

Let o be an operation symbol of MSSign(U2) and a be an operation

symbol of MSSign(U1). If a = o, then Den(a,MSAlg(U1)) = Den(o,

MSAlg(U2))↾Args(a,MSAlg(U1)).

(9) For all universal algebras U1, U2 such that U1 is a subalgebra of U2 holds

the sorts of MSAlg(U1) are a subset of MSAlg(U2).

(10) Let U1, U2 be universal algebras. Suppose U1 is a subalgebra of U2. Let

B be a subset of MSAlg(U2). If B = the sorts of MSAlg(U1), then B is

operations closed.

(11) Let U1, U2 be universal algebras. Suppose U1 is a subalgebra of U2. Let

B be a subset of MSAlg(U2). If B = the sorts of MSAlg(U1), then the

characteristics of MSAlg(U1) = Opers(MSAlg(U2), B).

(12) For all universal algebras U1, U2 such that U1 is a subalgebra of U2 holds

MSAlg(U1) is a subalgebra of MSAlg(U2).

(13) Let U1, U2 be universal algebras. Suppose MSAlg(U1) is a subalgebra of

MSAlg(U2). Then the carrier of U1 is a subset of the carrier of U2.

(14) Let U1, U2 be universal algebras. Suppose MSAlg(U1) is a subalgebra of

MSAlg(U2). Let B be a non empty subset of the carrier of U2. If B = the

carrier of U1, then B is operations closed.

(15) Let U1, U2 be universal algebras. Suppose MSAlg(U1) is a subalgebra of

MSAlg(U2). Let B be a non empty subset of the carrier of U2. If B = the

carrier of U1, then the characteristic of U1 = Opers(U2, B).

(16) For all universal algebras U1, U2 such that MSAlg(U1) is a subalgebra

of MSAlg(U2) holds U1 is a subalgebra of U2.

In the sequel M1 is a segmental trivial non void non empty many sorted

signature and A is a non-empty algebra over M1.

Next we state a number of propositions:

(17) For every non-empty subalgebra B of A holds the carrier of Alg1(B) is

a subset of the carrier of Alg1(A).
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(18) Let B be a non-empty subalgebra of A and S be a non empty subset of

the carrier of Alg1(A). If S = the carrier of Alg1(B), then S is operations

closed.

(19) Let B be a non-empty subalgebra of A and S be a non empty subset of

the carrier of Alg1(A). If S = the carrier of Alg1(B), then the characteri-

stic of Alg1(B) = Opers(Alg1(A), S).

(20) For every non-empty subalgebra B of A holds Alg1(B) is a subalgebra

of Alg1(A).

(21) Let S be a non empty non void many sorted signature and A, B be

algebras over S. Then A is a subalgebra of B if and only if A is a subalgebra

of the algebra of B.

(22) For all universal algebras A, B holds signatureA = signatureB iff

MSSign(A) = MSSign(B).

(23) Let A be a non-empty algebra overM1. Suppose the carrier ofM1 = {0}.

Then MSSign(Alg1(A)) = the many sorted signature of M1.

(24) Let A, B be non-empty algebras over M1. Suppose the carrier of M1 =

{0} and Alg1(A) = Alg1(B). Then the algebra of A = the algebra of B.

(25) Let A be a non-empty algebra over M1. If the carrier of M1 = {0}, then

the sorts of A = the sorts of MSAlg(Alg1(A)).

(26) For every non-empty algebraA overM1 such that the carrier ofM1 = {0}

holds MSAlg(Alg1(A)) = the algebra of A.

(27) Let A be a universal algebra and B be a strict non-empty subalgebra of

MSAlg(A). If the carrier of MSSign(A) = {0}, then Alg1(B) is a subalge-

bra of A.

3. The Correspondence Between Lattices of Subalgebras of

Universal and Many Sorted Algebras

We now state three propositions:

(28) Let A be a universal algebra, a1, b1 be strict non-empty subalgebras

of A, and a2, b2 be strict non-empty subalgebras of MSAlg(A). Suppose

a2 = MSAlg(a1) and b2 = MSAlg(b1). Then (the sorts of a2) ∪ (the sorts

of b2) = 07−→. ((the carrier of a1) ∪ (the carrier of b1)).

(29) Let A be a universal algebra, a1, b1 be strict non-empty subalgebras

of A, and a2, b2 be strict non-empty subalgebras of MSAlg(A). Suppose

a2 = MSAlg(a1) and b2 = MSAlg(b1). Then (the sorts of a2) ∩ (the sorts

of b2) = 07−→. (the carrier of a1) ∩ (the carrier of b1).
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(30) Let A be a strict universal algebra, a1, b1 be strict non-empty subalgebras

of A, and a2, b2 be strict non-empty subalgebras of MSAlg(A). If a2 =

MSAlg(a1) and b2 = MSAlg(b1), then MSAlg(a1

⊔
b1) = a2

⊔
b2.

Let A be a universal algebra with constants. One can check that MSSign(A)

is non void strict segmental and trivial and has constant operations.

One can prove the following proposition

(31) Let A be a universal algebra with constants, a1, b1 be strict non-empty

subalgebras of A, and a2, b2 be strict non-empty subalgebras of MSAlg(A).

If a2 = MSAlg(a1) and b2 = MSAlg(b1), then MSAlg(a1 ∩ b1) = a2 ∩ b2.

Let A be a quasi total universal algebra structure. One can verify that the

universal algebra structure of A is quasi total.

Let A be a partial universal algebra structure. Observe that the universal

algebra structure of A is partial.

Let A be a non-empty universal algebra structure. Note that the universal

algebra structure of A is non-empty.

Let A be a universal algebra with constants. Note that the universal algebra

structure of A has constants.

We now state the proposition

(32) Let A be a universal algebra with constants. Then the lattice of subalge-

bras of the universal algebra structure of A and the lattice of subalgebras

of MSAlg(the universal algebra structure of A) are isomorphic.
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