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The notation and terminology used in this paper are introduced in the following

papers: [11], [6], [2], [13], [3], [9], [12], [8], [1], [10], [7], [16], [14], [4], [15], and [5].

1. Convex and Internal Metric Spaces

Let V be a non empty metric structure. We say that V is convex if and only

if the condition (Def. 1) is satisfied.

(Def. 1) Let x, y be elements of the carrier of V and r be a real number. Suppose

0 ¬ r and r ¬ 1. Then there exists an element z of the carrier of V such

that ρ(x, z) = r · ρ(x, y) and ρ(z, y) = (1− r) · ρ(x, y).

Let V be a non empty metric structure. We say that V is internal if and

only if the condition (Def. 2) is satisfied.

(Def. 2) Let x, y be elements of the carrier of V and p, q be real numbers. Suppose

p > 0 and q > 0. Then there exists a finite sequence f of elements of the

carrier of V such that

(i) π1f = x,

(ii) πlen ff = y,

(iii) for every natural number i such that 1 ¬ i and i ¬ len f − 1 holds

ρ(πif, πi+1f) < p, and

(iv) for every finite sequence F of elements of R such that lenF = len f − 1

and for every natural number i such that 1 ¬ i and i ¬ lenF holds

πiF = ρ(πif, πi+1f) holds |ρ(x, y)−
∑

F | < q.

One can prove the following proposition
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(1) Let V be a non empty metric space. Suppose V is convex. Let x, y be

elements of the carrier of V and p be a real number. Suppose p > 0. Then

there exists a finite sequence f of elements of the carrier of V such that

(i) π1f = x,

(ii) πlen ff = y,

(iii) for every natural number i such that 1 ¬ i and i ¬ len f − 1 holds

ρ(πif, πi+1f) < p, and

(iv) for every finite sequence F of elements of R such that lenF = len f − 1

and for every natural number i such that 1 ¬ i and i ¬ lenF holds

πiF = ρ(πif, πi+1f) holds ρ(x, y) =
∑

F.

Let us observe that every non empty metric space which is convex is also

internal.

One can verify that there exists a non empty metric space which is convex.

A Geometry is a Reflexive discernible symmetric triangle internal non empty

metric structure.

2. Isometric Functions

Let V be a non empty metric structure and let f be a map from V into V .

We say that f is isometric if and only if:

(Def. 3) rng f = the carrier of V and for all elements x, y of the carrier of V

holds ρ(x, y) = ρ(f(x), f(y)).

Let V be a non empty metric structure. The functor ISOMV yields a set

and is defined as follows:

(Def. 4) For every set x holds x ∈ ISOMV iff there exists a map f from V into

V such that f = x and f is isometric.

Let V be a non empty metric structure. Then ISOMV is a subset of (the

carrier of V )the carrier of V .

One can prove the following proposition

(2) Let V be a discernible Reflexive non empty metric structure and f be a

map from V into V . If f is isometric, then f is one-to-one.

Let V be a discernible Reflexive non empty metric structure. One can check

that every map from V into V which is isometric is also one-to-one.

Let V be a non empty metric structure. Observe that there exists a map

from V into V which is isometric.

The following three propositions are true:

(3) Let V be a discernible Reflexive non empty metric structure and f be

an isometric map from V into V . Then f−1 is isometric.



real linear-metric space and isometric . . . 275

(4) For every non empty metric structure V and for all isometric maps f , g

from V into V holds f · g is isometric.

(5) For every non empty metric structure V holds idV is isometric.

Let V be a non empty metric structure. Note that ISOMV is non empty.

3. Real Linear-Metric Spaces

We introduce RLSMetrStruct which are extensions of RLS structure and

metric structure and are systems

〈 a carrier, a distance, a zero, an addition, an external multiplication 〉,

where the carrier is a set, the distance is a function from [: the carrier, the carrier :]

into R, the zero is an element of the carrier, the addition is a binary operation on

the carrier, and the external multiplication is a function from [: R, the carrier :]

into the carrier.

One can verify that there exists a RLSMetrStruct which is non empty and

strict.

Let X be a non empty set, let F be a function from [:X, X :] into R, let O

be an element of X, let B be a binary operation on X, and let G be a function

from [: R, X :] into X. One can verify that 〈X,F, O,B,G〉 is non empty.

Let V be a non empty RLSMetrStruct. We say that V is homogeneous if

and only if:

(Def. 5) For every real number r and for all elements v, w of the carrier of V

holds ρ(r · v, r · w) = |r| · ρ(v, w).

Let V be a non empty RLSMetrStruct. We say that V is translatible if and

only if:

(Def. 6) For all elements u, w, v of the carrier of V holds ρ(v, w) = ρ(v+u, w+u).

Let V be a non empty RLSMetrStruct and let v be an element of the carrier

of V . The functor Norm v yielding a real number is defined as follows:

(Def. 7) Norm v = ρ(0V , v).

Let us note that there exists a non empty RLSMetrStruct which is strict,

Abelian, add-associative, right zeroed, right complementable, real linear space-

like, Reflexive, discernible, symmetric, triangle, homogeneous, and translatible.

A RealLinearMetrSpace is an Abelian add-associative right zeroed right com-

plementable real linear space-like Reflexive discernible symmetric triangle ho-

mogeneous translatible non empty RLSMetrStruct.

We now state three propositions:

(6) Let V be a homogeneous Abelian add-associative right zeroed right com-

plementable real linear space-like non empty RLSMetrStruct, r be a real

number, and v be an element of the carrier of V . Then Norm(r · v) =

|r| ·Norm v.
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(7) Let V be a translatible Abelian add-associative right zeroed right com-

plementable triangle non empty RLSMetrStruct and v, w be elements of

the carrier of V . Then Norm(v + w) ¬ Norm v +Normw.

(8) Let V be a translatible add-associative right zeroed right complementa-

ble non empty RLSMetrStruct and v, w be elements of the carrier of V .

Then ρ(v, w) = Norm(w − v).

Let n be a natural number. The functor RLMSpacen yielding a strict Real-

LinearMetrSpace is defined by the conditions (Def. 8).

(Def. 8)(i) The carrier of RLMSpacen = Rn,

(ii) the distance of RLMSpacen = ρn,

(iii) the zero of RLMSpacen = 〈0, . . . , 0
︸ ︷︷ ︸

n

〉,

(iv) for all elements x, y of Rn holds (the addition of RLMSpacen)(x,

y) = x + y, and

(v) for every element x of Rn and for every element r of R holds (the

external multiplication of RLMSpacen)(r, x) = r · x.

Next we state the proposition

(9) For every natural number n and for every isometric map f from

RLMSpacen into RLMSpacen holds rng f = Rn.

4. Groups of Isometric Functions

Let n be a natural number. The functor IsomGroupn yielding a strict gro-

upoid is defined by the conditions (Def. 9).

(Def. 9)(i) The carrier of IsomGroupn = ISOMRLMSpacen, and

(ii) for all functions f , g such that f ∈ ISOMRLMSpacen and g ∈

ISOMRLMSpacen holds (the multiplication of IsomGroupn)(f, g) = f ·g.

Let n be a natural number. Note that IsomGroupn is non empty.

Let n be a natural number. Note that IsomGroupn is associative and group-

like.

The following two propositions are true:

(10) For every natural number n holds 1IsomGroupn = idRLMSpacen.

(11) Let n be a natural number, f be an element of IsomGroupn, and g be

a map from RLMSpacen into RLMSpacen. If f = g, then f−1 = g−1.

Let n be a natural number and let G be a subgroup of IsomGroupn.

The functor SubIsomGroupRelG yielding a binary relation on the carrier of

RLMSpacen is defined by the condition (Def. 10).
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(Def. 10) LetA,B be elements of RLMSpacen. Then 〈〈A, B〉〉 ∈ SubIsomGroupRelG

if and only if there exists a function f such that f ∈ the carrier of G and

f(A) = B.

Let n be a natural number and let G be a subgroup of IsomGroupn. Observe

that SubIsomGroupRelG is equivalence relation-like.
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