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The articles [20], [15], [14], [8], [6], [1], [18], [13], [19], [17], [3], [11], [4], [12], [2],

[10], [16], [5], and [7] provide the notation and terminology for this paper.

1. Lower Topology

Let T be a non empty FR-structure. We say that T is lower if and only if:

(Def. 1) {−↑x : x ranges over elements of T} is a prebasis of T .

Let us note that every non empty reflexive topological space-like FR-structure

which is trivial is also lower.

One can verify that there exists a top-lattice which is lower, trivial, complete,

and strict.

We now state the proposition

(1) For every non empty relational structure L1 holds there exists a strict

correct topological augmentation of L1 which is lower.

We now state the proposition

(2) Let L2, L3 be topological space-like lower non empty FR-structures.

Suppose the relational structure of L2 = the relational structure of L3.

Then the topology of L2 = the topology of L3.
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Let R be a non empty relational structure. The functor ω(R) yielding a

family of subsets of R is defined by:

(Def. 2) For every lower correct topological augmentation T of R holds ω(R) =

the topology of T .

Next we state a number of propositions:

(3) Let R1, R2 be non empty relational structures. Suppose the relational

structure of R1 = the relational structure of R2. Then ω(R1) = ω(R2).

(4) For every lower non empty FR-structure T and for every point x of T

holds −↑x is open and ↑x is closed.

(5) For every transitive lower non empty FR-structure T and for every subset

A of T such that A is open holds A is lower.

(6) For every transitive lower non empty FR-structure T and for every subset

A of T such that A is closed holds A is upper.

(7) Let T be a non empty topological space-like FR-structure. Then T is

lower if and only if {−↑F ; F ranges over subsets of T : F is finite} is a

basis of T .

(8) Let S, T be lower complete top-lattices and f be a map from S into T .

Suppose that for every non empty subset X of S holds f preserves inf of

X. Then f is continuous.

(9) Let S, T be lower complete top-lattices and f be a map from S into T .

If f is infs-preserving, then f is continuous.

(10) Let T be a lower complete top-lattice, B1 be a prebasis of T , and F be a

non empty filtered subset of T . Suppose that for every subset A of T such

that A ∈ B1 and inf F ∈ A holds F meets A. Then inf F ∈ F.

(11) Let S, T be lower complete top-lattices and f be a map from S into T .

If f is continuous, then f is filtered-infs-preserving.

(12) Let S, T be lower complete top-lattices and f be a map from S into

T . Suppose f is continuous and for every finite subset X of S holds f

preserves inf of X. Then f is infs-preserving.

(13) Let T be a lower topological space-like reflexive transitive non empty

FR-structure and x be a point of T . Then {x} = ↑x.

A top-poset is a topological space-like reflexive transitive antisymmetric FR-

structure.

One can check that every non empty top-poset which is lower is also T0.

Let R be a lower-bounded non empty relational structure. One can verify

that every topological augmentation of R is lower-bounded.

We now state four propositions:

(14) Let S, T be non empty relational structures, s be an element of S, and t

be an element of T . Then −↑〈〈s, t〉〉 = [:−↑s, the carrier of T :]∪ [: the carrier

of S, −↑t :].
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(15) Let S, T be lower-bounded non empty posets, S′ be a lower correct

topological augmentation of S, and T ′ be a lower correct topological au-

gmentation of T . Then ω([:S, T :]) = the topology of [:S′, (T ′ qua non

empty topological space) :].

(16) Let S, T be lower lower-bounded non empty top-posets. Then ω([:S,

(T qua poset) :]) = the topology of [:S, (T qua non empty topological

space) :].

(17) Let T , T2 be lower complete top-lattices. Suppose T2 is a topological

augmentation of [:T, (T qua lattice) :]. Let f be a map from T2 into T . If

f = ⊓T , then f is continuous.

2. Refinements Revisited

The scheme TopInd deals with a top-lattice A and and states that:

For every subset A of A such that A is open holds P[A]

provided the following conditions are met:

• There exists a prebasis K of A such that for every subset A of A

such that A ∈ K holds P[A],

• For every family F of subsets of A such that for every subset A

of A such that A ∈ F holds P[A] holds P[
⋃

F ],

• For all subsets A1, A2 of A such that P[A1] and P[A2] holds

P[A1 ∩A2], and

• P[ΩA].

One can prove the following proposition

(18) Let L2, L3 be up-complete antisymmetric non empty reflexive relational

structures. Suppose that

(i) the relational structure of L2 = the relational structure of L3, and

(ii) for every element x of L2 holds ↓↓x is directed and non empty.

If L2 satisfies axiom of approximation, then L3 satisfies axiom of approxi-

mation.

Let T be a continuous non empty poset. One can verify that every topological

augmentation of T is continuous.

The following propositions are true:

(19) Let T , S be topological spaces, R be a refinement of T and S, and W be

a subset of R. If W ∈ the topology of T or W ∈ the topology of S, then

W is open.

(20) Let T , S be topological spaces, R be a refinement of T and S, V be a

subset of T , and W be a subset of R. If W = V, then if V is open, then

W is open.
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(21) Let T , S be topological spaces. Suppose the carrier of T = the carrier

of S. Let R be a refinement of T and S, V be a subset of T , and W be a

subset of R. If W = V, then if V is closed, then W is closed.

(22) Let T be a non empty topological space and K, O be sets such that

K ⊆ O and O ⊆ the topology of T . Then

(i) if K is a basis of T , then O is a basis of T , and

(ii) if K is a prebasis of T , then O is a prebasis of T .

(23) Let T1, T2 be non empty topological spaces. Suppose the carrier of T1 =

the carrier of T2. Let T be a refinement of T1 and T2, B2 be a prebasis of

T1, and B3 be a prebasis of T2. Then B2 ∪B3 is a prebasis of T .

(24) Let T1, S1, T2, S2 be non empty topological spaces, R1 be a refinement of

T1 and S1, R2 be a refinement of T2 and S2, f be a map from T1 into T2, g

be a map from S1 into S2, and h be a map from R1 into R2. Suppose h = f

and h = g. If f is continuous and g is continuous, then h is continuous.

(25) Let T be a non empty topological space, K be a prebasis of T , N be a

net in T , and p be a point of T . Suppose that for every subset A of T such

that p ∈ A and A ∈ K holds N is eventually in A. Then p ∈ LimN.

(26) Let T be a non empty topological space, N be a net in T , and S be a

subset of T . If N is eventually in S, then LimN ⊆ S.

(27) Let R be a non empty relational structure and X be a non empty subset

of R. Then the mapping of 〈X; id〉 = idX and the mapping of 〈X
op; id〉 =

idX .

(28) For every reflexive antisymmetric non empty relational structure R and

for every element x of R holds ↑x ∩ ↓x = {x}.

3. Lawson Topology

Let T be a reflexive non empty FR-structure. We say that T is Lawson if

and only if:

(Def. 3) ω(T ) ∪ σ(T ) is a prebasis of T .

Next we state the proposition

(29) Let R be a complete lattice, L1 be a lower correct topological augmenta-

tion of R, S be a Scott topological augmentation of R, and T be a correct

topological augmentation of R. Then T is Lawson if and only if T is a

refinement of S and L1.

Let R be a complete lattice. One can check that there exists a topological

augmentation of R which is Lawson, strict, and correct.
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Let us observe that there exists a top-lattice which is Scott, complete, and

strict and there exists a complete strict top-lattice which is Lawson and conti-

nuous.

We now state three propositions:

(30) For every Lawson complete top-lattice T holds σ(T ) ∪ {−↑x : x ranges

over elements of T} is a prebasis of T .

(31) Let T be a Lawson complete top-lattice. Then σ(T )∪{W \↑x; W ranges

over subsets of T , x ranges over elements of T : W ∈ σ(T )} is a prebasis

of T .

(32) Let T be a Lawson complete top-lattice. Then {W \ ↑F ;W ranges over

subsets of T , F ranges over subsets of T : W ∈ σ(T ) ∧ F is finite} is a

basis of T .

Let T be a complete lattice. The functor λ(T ) yields a family of subsets of

T and is defined as follows:

(Def. 4) For every Lawson correct topological augmentation S of T holds λ(T ) =

the topology of S.

We now state a number of propositions:

(33) For every complete lattice R holds λ(R) = UniCl(FinMeetCl(σ(R) ∪

ω(R))).

(34) Let R be a complete lattice, T be a lower correct topological augmenta-

tion of R, S be a Scott correct topological augmentation of R, and M be

a refinement of S and T . Then λ(R) = the topology of M .

(35) For every lower up-complete top-lattice T and for every subset A of T

such that A is open holds A has the property (S).

(36) For every Lawson complete top-lattice T and for every subset A of T

such that A is open holds A has the property (S).

(37) Let S be a Scott complete top-lattice, T be a Lawson correct topological

augmentation of S, and A be a subset of S. If A is open, then for every

subset C of T such that C = A holds C is open.

(38) Let T be a Lawson complete top-lattice and x be an element of T . Then

↑x is closed and ↓x is closed and {x} is closed.

(39) For every Lawson complete top-lattice T and for every element x of T

holds −↑x is open and −↓x is open and −{x} is open.

(40) For every Lawson complete continuous top-lattice T and for every ele-

ment x of T holds ↑↑x is open and −↑↑x is closed.

(41) Let S be a Scott complete top-lattice, T be a Lawson correct topological

augmentation of S, and A be an upper subset of T . If A is open, then for

every subset C of S such that C = A holds C is open.

(42) Let T be a Lawson complete top-lattice and A be a lower subset of T .
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Then A is closed if and only if A is closed under directed sups.

(43) For every Lawson complete top-lattice T and for every non empty filtered

subset F of T holds Lim〈F op; id〉 = {inf F}.

Let us observe that every complete top-lattice which is Lawson is also T1

and compact.

Let us observe that every complete continuous top-lattice which is Lawson

is also Hausdorff.
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