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The articles [8], [7], [1], [16], [10], [13], [17], [15], [11], [6], [3], [4], [12], [2], [18],

[14], and [5] provide the terminology and notation for this paper.

1. Semilattice Homomorphism and Inheritance

Let S, T be semilattices. Let us assume that if S is upper-bounded, then T

is upper-bounded. A map from S into T is said to be a semilattice morphism

from S into T if:

(Def. 1) For every finite subset X of S holds it preserves inf of X.

Let S, T be semilattices. One can check that every map from S into T which

is meet-preserving is also monotone.

Let S be a semilattice and let T be an upper-bounded semilattice. One can

check that every semilattice morphism from S into T is meet-preserving.

Next we state a number of propositions:

(1) For all upper-bounded semilattices S, T and for every semilattice mor-

phism f from S into T holds f(⊤S) = ⊤T .

(2) Let S, T be semilattices and f be a map from S into T . Suppose f is

meet-preserving. LetX be a finite non empty subset of S. Then f preserves

inf of X.
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(3) Let S, T be upper-bounded semilattices and f be a meet-preserving map

from S into T . If f(⊤S) = ⊤T , then f is a semilattice morphism from S

into T .

(4) Let S, T be semilattices and f be a map from S into T . Suppose f is

meet-preserving and for every filtered non empty subset X of S holds f

preserves inf of X. Let X be a non empty subset of S. Then f preserves

inf of X.

(5) Let S, T be semilattices and f be a map from S into T . Suppose f is

infs-preserving. Then f is a semilattice morphism from S into T .

(6) Let S1, T1, S2, T2 be non empty relational structures. Suppose that

(i) the relational structure of S1 = the relational structure of S2, and

(ii) the relational structure of T1 = the relational structure of T2.

Let f1 be a map from S1 into T1 and f2 be a map from S2 into T2 such

that f1 = f2. Then

(iii) if f1 is infs-preserving, then f2 is infs-preserving, and

(iv) if f1 is directed-sups-preserving, then f2 is directed-sups-preserving.

(7) Let S1, T1, S2, T2 be non empty relational structures. Suppose that

(i) the relational structure of S1 = the relational structure of S2, and

(ii) the relational structure of T1 = the relational structure of T2.

Let f1 be a map from S1 into T1 and f2 be a map from S2 into T2 such

that f1 = f2. Then

(iii) if f1 is sups-preserving, then f2 is sups-preserving, and

(iv) if f1 is filtered-infs-preserving, then f2 is filtered-infs-preserving.

(8) Let T be a complete lattice and S be an infs-inheriting full non empty

relational substructure of T . Then incl(S, T ) is infs-preserving.

(9) Let T be a complete lattice and S be a sups-inheriting full non empty

relational substructure of T . Then incl(S, T ) is sups-preserving.

(10) Let T be an up-complete non empty poset and S be a directed-sups-

inheriting full non empty relational substructure of T . Then incl(S, T ) is

directed-sups-preserving.

(11) Let T be a complete lattice and S be a filtered-infs-inheriting full

non empty relational substructure of T . Then incl(S, T ) is filtered-infs-

preserving.

(12) Let T1, T2, R be relational structures and S be a relational substructure

of T1. Suppose that

(i) the relational structure of T1 = the relational structure of T2, and

(ii) the relational structure of S = the relational structure of R.

Then R is a relational substructure of T2 and if S is full, then R is a full

relational substructure of T2.
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(13) Every non empty relational structure T is an infs-inheriting sups-

inheriting full relational substructure of T .

Let T be a complete lattice. Observe that there exists a continuous subframe

of T which is complete.

We now state a number of propositions:

(14) Let T be a semilattice and S be a full non empty relational substructure

of T . Then S is meet-inheriting if and only if for every finite non empty

subset X of S holds ⌈−⌉T X ∈ the carrier of S.

(15) Let T be a sup-semilattice and S be a full non empty relational sub-

structure of T . Then S is join-inheriting if and only if for every finite non

empty subset X of S holds
⊔

T
X ∈ the carrier of S.

(16) Let T be an upper-bounded semilattice and S be a meet-inheriting full

non empty relational substructure of T . Suppose ⊤T ∈ the carrier of S

and S is filtered-infs-inheriting. Then S is infs-inheriting.

(17) Let T be a lower-bounded sup-semilattice and S be a join-inheriting full

non empty relational substructure of T . Suppose ⊥T ∈ the carrier of S

and S is directed-sups-inheriting. Then S is sups-inheriting.

(18) Let T be a complete lattice and S be a full non empty relational sub-

structure of T . If S is infs-inheriting, then S is complete.

(19) Let T be a complete lattice and S be a full non empty relational sub-

structure of T . If S is sups-inheriting, then S is complete.

(20) Let T1, T2 be non empty relational structures, S1 be a non empty full

relational substructure of T1, and S2 be a non empty full relational sub-

structure of T2. Suppose that

(i) the relational structure of T1 = the relational structure of T2, and

(ii) the carrier of S1 = the carrier of S2.

If S1 is infs-inheriting, then S2 is infs-inheriting.

(21) Let T1, T2 be non empty relational structures, S1 be a non empty full

relational substructure of T1, and S2 be a non empty full relational sub-

structure of T2. Suppose that

(i) the relational structure of T1 = the relational structure of T2, and

(ii) the carrier of S1 = the carrier of S2.

If S1 is sups-inheriting, then S2 is sups-inheriting.

(22) Let T1, T2 be non empty relational structures, S1 be a non empty full

relational substructure of T1, and S2 be a non empty full relational sub-

structure of T2. Suppose that

(i) the relational structure of T1 = the relational structure of T2, and

(ii) the carrier of S1 = the carrier of S2.

If S1 is directed-sups-inheriting, then S2 is directed-sups-inheriting.
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(23) Let T1, T2 be non empty relational structures, S1 be a non empty full

relational substructure of T1, and S2 be a non empty full relational sub-

structure of T2. Suppose that

(i) the relational structure of T1 = the relational structure of T2, and

(ii) the carrier of S1 = the carrier of S2.

If S1 is filtered-infs-inheriting, then S2 is filtered-infs-inheriting.

2. Nets and Limits

The following proposition is true

(24) Let S, T be non empty topological spaces, N be a net in S, and f be a

map from S into T . If f is continuous, then f◦ LimN ⊆ Lim(f ·N).

Let T be a non empty relational structure and let N be a non empty net

structure over T . Let us observe that N is antitone if and only if:

(Def. 2) For all elements i, j of N such that i ¬ j holds N(i) ­ N(j).

Let T be a non empty reflexive relational structure and let x be an element

of T . Observe that 〈{x}op; id〉 is transitive directed monotone and antitone.

Let T be a non empty reflexive relational structure. Note that there exists

a net in T which is monotone, antitone, reflexive, and strict.

Let T be a non empty relational structure and let F be a non empty subset

of T . Note that 〈F op; id〉 is antitone.

Let S, T be non empty reflexive relational structures, let f be a monotone

map from S into T , and let N be an antitone non empty net structure over S.

Note that f ·N is antitone.

We now state a number of propositions:

(25) Let S be a complete lattice and N be a net in S. Then {⌈−⌉S{N(i); i

ranges over elements of the carrier of N : i ­ j} : j ranges over elements

of the carrier of N} is a directed non empty subset of S.

(26) Let S be a non empty poset and N be a monotone reflexive net in S.

Then {⌈−⌉S{N(i); i ranges over elements of the carrier of N : i ­ j} : j

ranges over elements of the carrier of N} is a directed non empty subset

of S.

(27) Let S be a non empty 1-sorted structure, N be a non empty net struc-

ture over S, and X be a set. If rng (the mapping of N) ⊆ X, then N is

eventually in X.

(28) For every inf-complete non empty poset R and for every non empty

filtered subset F of R holds lim inf〈F op; id〉 = inf F.
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(29) Let S, T be inf-complete non empty posets, X be a non empty filtered

subset of S, and f be a monotone map from S into T . Then lim inf(f ·

〈Xop; id〉) = inf(f◦X).

(30) Let S, T be non empty top-posets, X be a non empty filtered subset of

S, f be a monotone map from S into T , and Y be a non empty filtered

subset of T . If Y = f◦X, then f · 〈Xop; id〉 is a subnet of 〈Y op; id〉.

(31) Let S, T be non empty top-posets, X be a non empty filtered subset of

S, f be a monotone map from S into T , and Y be a non empty filtered

subset of T . If Y = f◦X, then Lim〈Y op; id〉 ⊆ Lim(f · 〈Xop; id〉).

(32) Let S be a non empty reflexive relational structure and D be a non

empty subset of S. Then the mapping of NetStr(D) = idD and the carrier

of NetStr(D) = D and NetStr(D) is a full relational substructure of S.

(33) Let S, T be up-complete non empty posets, f be a monotone map from

S into T , and D be a non empty directed subset of S. Then lim inf(f ·

NetStr(D)) = sup(f◦D).

(34) Let S be a non empty reflexive relational structure, D be a non empty

directed subset of S, and i, j be elements of NetStr(D). Then i ¬ j if and

only if (NetStr(D))(i) ¬ (NetStr(D))(j).

(35) For every Lawson complete top-lattice T and for every directed non

empty subset D of T holds supD ∈ LimNetStr(D).

Let T be a non empty 1-sorted structure, let N be a net in T , and let M

be a non empty net structure over T . Let us assume that M is a subnet of N .

A map from M into N is said to be a embedding of M into N if it satisfies the

conditions (Def. 3).

(Def. 3)(i) The mapping of M = (the mapping of N) · it, and

(ii) for every element m of N there exists an element n of M such that for

every element p of M such that n ¬ p holds m ¬ it(p).

One can prove the following propositions:

(36) Let T be a non empty 1-sorted structure, N be a net in T , M be a non

empty subnet of N , e be a embedding of M into N , and i be an element

of M . Then M(i) = N(e(i)).

(37) For every complete lattice T and for every net N in T and for every

subnet M of N holds lim infN ¬ lim infM.

(38) Let T be a complete lattice, N be a net in T ,M be a subnet of N , and e

be a embedding of M into N . Suppose that for every element i of N and

for every element j of M such that e(j) ¬ i there exists an element j′ of

M such that j′ ­ j and N(i) ­M(j′). Then lim inf N = lim infM.

(39) Let T be a non empty relational structure, N be a net in T , and M be a

non empty full structure of a subnet of N . Suppose that for every element

i of N there exists an element j of N such that j ­ i and j ∈ the carrier
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of M . Then M is a subnet of N and incl(M, N) is a embedding of M into

N .

(40) Let T be a non empty relational structure, N be a net in T , and i be an

element of N . Then N↾i is a subnet of N and incl(N↾i,N) is a embedding

of N↾i into N .

(41) For every complete lattice T and for every net N in T and for every

element i of N holds lim inf(N↾i) = lim inf N.

(42) Let T be a non empty relational structure, N be a net in T , and X be

a set. Suppose N is eventually in X. Then there exists an element i of N

such that N(i) ∈ X and rng (the mapping of N↾i) ⊆ X.

(43) Let T be a Lawson complete top-lattice and N be an eventually-filtered

net in T . Then rng (the mapping of N) is a filtered non empty subset of

T .

(44) For every Lawson complete top-lattice T and for every eventually-filtered

net N in T holds LimN = {inf N}.

3. Lawson Topology Revisited

One can prove the following propositions:

(45) Let S, T be Lawson complete top-lattices and f be a meet-preserving

map from S into T . Then f is continuous if and only if the following

conditions are satisfied:

(i) f is directed-sups-preserving, and

(ii) for every non empty subset X of S holds f preserves inf of X.

(46) Let S, T be Lawson complete top-lattices and f be a semilattice mor-

phism from S into T . Then f is continuous if and only if f is infs-preserving

and directed-sups-preserving.

Let S, T be non empty relational structures and let f be a map from S into

T . We say that f is liminfs-preserving if and only if:

(Def. 4) For every net N in S holds f(lim inf N) = lim inf(f ·N).

One can prove the following propositions:

(47) Let S, T be Lawson complete top-lattices and f be a semilattice mor-

phism from S into T . Then f is continuous if and only if f is liminfs-

preserving.

(48) Let T be a Lawson complete continuous top-lattice and S be a meet-

inheriting full non empty relational substructure of T . Suppose ⊤T ∈ the

carrier of S and there exists a subset X of T such that X = the carrier of

S and X is closed. Then S is infs-inheriting.
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(49) Let T be a Lawson complete continuous top-lattice and S be a full non

empty relational substructure of T . Given a subset X of T such that

X = the carrier of S and X is closed. Then S is directed-sups-inheriting.

(50) Let T be a Lawson complete continuous top-lattice and S be an infs-

inheriting directed-sups-inheriting full non empty relational substructure

of T . Then there exists a subset X of T such that X = the carrier of S

and X is closed.

(51) Let T be a Lawson complete continuous top-lattice, S be an infs-

inheriting directed-sups-inheriting full non empty relational substructure

of T , and N be a net in T . If N is eventually in the carrier of S, then

lim inf N ∈ the carrier of S.

(52) Let T be a Lawson complete continuous top-lattice and S be a meet-

inheriting full non empty relational substructure of T . Suppose that

(i) ⊤T ∈ the carrier of S, and

(ii) for every net N in T such that rng (the mapping of N) ⊆ the carrier of

S holds lim inf N ∈ the carrier of S.

Then S is infs-inheriting.

(53) Let T be a Lawson complete continuous top-lattice and S be a full non

empty relational substructure of T . Suppose that for every net N in T

such that rng (the mapping of N) ⊆ the carrier of S holds lim inf N ∈ the

carrier of S. Then S is directed-sups-inheriting.

(54) Let T be a Lawson complete continuous top-lattice, S be a meet-

inheriting full non empty relational substructure of T , and X be a subset

of T . Suppose X = the carrier of S and ⊤T ∈ X. Then X is closed if

and only if for every net N in T such that N is eventually in X holds

lim inf N ∈ X.
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