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Summary.We present the Mizar formalization of theorem 4.17, Chapter I
from [11]: a free continuous lattice with m generators is isomorphic to the lattice

of filters of 2X (X = m) which is freely generated by {↑ x : x ∈ X} (the set of

ultrafilters).

MML Identifier: WAYBEL22.

The papers [1], [6], [7], [15], [2], [17], [12], [10], [19], [20], [18], [16], [9], [14], [4],

[8], [5], [3], and [13] provide the terminology and notation for this paper.

1. Preliminaries

The following propositions are true:

(1) For every upper-bounded semilattice L and for every non empty directed

subset F of 〈Filt(L),⊆〉 holds supF =
⋃

F.

(2) Let L, S, T be complete non empty posets, f be a CLHomomorphism

of L, S, and g be a CLHomomorphism of S, T . Then g · f is a CLHomo-

morphism of L, T .

(3) For every non empty relational structure L holds idL is infs-preserving.

(4) For every non empty relational structure L holds idL is directed-sups-

preserving.

(5) For every complete non empty poset L holds idL is a CLHomomorphism

of L, L.
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(6) For every upper-bounded non empty poset L with g.l.b.’s holds

〈Filt(L),⊆〉 is a continuous subframe of 2the carrier of L
⊆ .

Let L be an upper-bounded non empty poset with g.l.b.’s. Observe that

〈Filt(L),⊆〉 is continuous.

Let L be an upper-bounded non empty poset. One can check that every

element of the carrier of 〈Filt(L),⊆〉 is non empty.

2. Free Generators of Continuous Lattices

Let S be a continuous complete non empty poset and let A be a set. We say

that A is a set of free generators of S if and only if the condition (Def. 1) is

satisfied.

(Def. 1) Let T be a continuous complete non empty poset and f be a function

from A into the carrier of T . Then there exists a CLHomomorphism h of

S, T such that h↾A = f and for every CLHomomorphism h′ of S, T such

that h′↾A = f holds h′ = h.

Next we state two propositions:

(7) Let S be a continuous complete non empty poset and A be a set. If A is

a set of free generators of S, then A is a subset of S.

(8) Let S be a continuous complete non empty poset and A be a set. Suppose

A is a set of free generators of S. Let h′ be a CLHomomorphism of S, S.

If h′↾A = idA, then h′ = idS .

3. Representation Theorem for Free Continuous Lattices

In the sequel X is a set, F is a filter of 2X
⊆ , x is an element of 2

X
⊆ , and z is

an element of X.

Let us consider X. The fixed ultrafilters of X is a family of subsets of 2X
⊆

and is defined as follows:

(Def. 2) The fixed ultrafilters of X = {↑x :
∨

z x = {z}}.

One can prove the following three propositions:

(9) The fixed ultrafilters of X ⊆ Filt(2X
⊆ ).

(10) the fixed ultrafilters of X = X .

(11) F =
⊔

(〈Filt(2X

⊆
),⊆〉){⌈

−⌉(〈Filt(2X

⊆
),⊆〉){↑x :

∨
z (x = {z} ∧ z ∈ Y )}; Y ranges

over subsets of X: Y ∈ F}.

Let us considerX, let L be a continuous complete non empty poset, and let f

be a function from the fixed ultrafilters of X into the carrier of L. The extension
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of f to homomorphism is a map from 〈Filt(2X
⊆ ),⊆〉 into L and is defined by the

condition (Def. 3).

(Def. 3) Let F1 be an element of the carrier of (〈Filt(2
X
⊆ ),⊆〉). Then (the exten-

sion of f to homomorphism)(F1) =
⊔

L{⌈
−⌉L{f(↑x) :

∨
z (x = {z} ∧ z ∈

Y )};Y ranges over subsets of X: Y ∈ F1}.

One can prove the following propositions:

(12) Let L be a continuous complete non empty poset and f be a function

from the fixed ultrafilters of X into the carrier of L. Then the extension

of f to homomorphism is monotone.

(13) Let L be a continuous complete non empty poset and f be a function

from the fixed ultrafilters of X into the carrier of L. Then (the extension

of f to homomorphism)(⊤〈Filt(2X

⊆
),⊆〉) = ⊤L.

Let us consider X, let L be a continuous complete non empty poset, and let

f be a function from the fixed ultrafilters of X into the carrier of L. Observe

that the extension of f to homomorphism is directed-sups-preserving.

Let us consider X, let L be a continuous complete non empty poset, and let

f be a function from the fixed ultrafilters of X into the carrier of L. Note that

the extension of f to homomorphism is infs-preserving.

The following propositions are true:

(14) Let L be a continuous complete non empty poset and f be a function

from the fixed ultrafilters of X into the carrier of L. Then (the extension

of f to homomorphism)↾(the fixed ultrafilters of X) = f.

(15) Let L be a continuous complete non empty poset, f be a function from

the fixed ultrafilters of X into the carrier of L, and h be a CLHomomor-

phism of 〈Filt(2X
⊆ ),⊆〉, L. Suppose h↾the fixed ultrafilters of X = f. Then

h = the extension of f to homomorphism.

(16) The fixed ultrafilters of X is a set of free generators of 〈Filt(2X
⊆ ),⊆〉.

(17) Let L, M be continuous complete lattices and F , G be sets. Suppose F

is a set of free generators of L and G is a set of free generators of M and

F = G. Then L and M are isomorphic.

(18) Let L be a continuous complete lattice and G be a set. Suppose G is

a set of free generators of L and G = X . Then L and 〈Filt(2X
⊆ ),⊆〉 are

isomorphic.
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