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The terminology and notation used in this paper are introduced in the following

articles: [13], [5], [1], [11], [8], [14], [12], [3], [6], [4], [10], [2], [9], and [15].

1. Preliminaries

The following proposition is true

(1) For every non empty poset L and for every element x of L holds

compactbelow(x) = ↓↓x ∩ the carrier of CompactSublatt(L).

Let L be a non empty reflexive transitive relational structure and let X be

a subset of 〈Ids(L),⊆〉. Then
⋃

X is a subset of L.

The following propositions are true:

(2) For every non empty relational structure L and for all subsets X, Y of

the carrier of L such that X ⊆ Y holds finsups(X) ⊆ finsups(Y ).

(3) Let L be a non empty transitive relational structure, S be a sups-

inheriting non empty full relational substructure of L, X be a subset of

the carrier of L, and Y be a subset of the carrier of S. If X = Y, then

finsups(X) ⊆ finsups(Y ).

(4) Let L be a complete transitive antisymmetric non empty relational struc-

ture, S be a sups-inheriting non empty full relational substructure of L,

X be a subset of the carrier of L, and Y be a subset of the carrier of S. If

X = Y, then finsups(X) = finsups(Y ).

1This work has been supported by KBN Grant 8 T11C 018 12.

285
c© 1998 University of Białystok

ISSN 1426–2630



286 robert milewski

(5) Let L be a complete sup-semilattice and S be a join-inheriting non empty

full relational substructure of L. Suppose ⊥L ∈ the carrier of S. Let X

be a subset of L and Y be a subset of S. If X = Y, then finsups(Y ) ⊆

finsups(X).

(6) For every lower-bounded sup-semilattice L and for every subset X of

〈Ids(L),⊆〉 holds supX = ↓finsups(
⋃

X).

(7) For every reflexive transitive relational structure L and for every subset

X of L holds ↓↓X = ↓X.

(8) For every reflexive transitive relational structure L and for every subset

X of L holds ↑↑X = ↑X.

(9) For every non empty reflexive transitive relational structure L and for

every element x of L holds ↓↓x = ↓x.

(10) For every non empty reflexive transitive relational structure L and for

every element x of L holds ↑↑x = ↑x.

(11) Let L be a non empty relational structure, S be a non empty relational

substructure of L, X be a subset of L, and Y be a subset of S. If X = Y,

then ↓Y ⊆ ↓X.

(12) Let L be a non empty relational structure, S be a non empty relational

substructure of L, X be a subset of L, and Y be a subset of S. If X = Y,

then ↑Y ⊆ ↑X.

(13) Let L be a non empty relational structure, S be a non empty relational

substructure of L, x be an element of L, and y be an element of S. If

x = y, then ↓y ⊆ ↓x.

(14) Let L be a non empty relational structure, S be a non empty relational

substructure of L, x be an element of L, and y be an element of S. If

x = y, then ↑y ⊆ ↑x.

2. Relational Subsets

Let L be a non empty relational structure and let S be a subset of L. We

say that S is meet-closed if and only if:

(Def. 1) sub(S) is meet-inheriting.

Let L be a non empty relational structure and let S be a subset of L. We

say that S is join-closed if and only if:

(Def. 2) sub(S) is join-inheriting.

Let L be a non empty relational structure and let S be a subset of L. We

say that S is infs-closed if and only if:

(Def. 3) sub(S) is infs-inheriting.
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Let L be a non empty relational structure and let S be a subset of L. We

say that S is sups-closed if and only if:

(Def. 4) sub(S) is sups-inheriting.

Let L be a non empty relational structure. Observe that every subset of L

which is infs-closed is also meet-closed and every subset of L which is sups-closed

is also join-closed.

Let L be a non empty relational structure. One can verify that there exists

a subset of L which is infs-closed, sups-closed, and non empty.

One can prove the following propositions:

(15) Let L be a non empty relational structure and S be a subset of L. Then

S is meet-closed if and only if for all elements x, y of L such that x ∈ S

and y ∈ S and inf {x, y} exists in L holds inf{x, y} ∈ S.

(16) Let L be a non empty relational structure and S be a subset of L. Then

S is join-closed if and only if for all elements x, y of L such that x ∈ S

and y ∈ S and sup {x, y} exists in L holds sup{x, y} ∈ S.

(17) Let L be an antisymmetric relational structure with g.l.b.’s and S be a

subset of L. Then S is meet-closed if and only if for all elements x, y of L

such that x ∈ S and y ∈ S holds inf{x, y} ∈ S.

(18) Let L be an antisymmetric relational structure with l.u.b.’s and S be a

subset of L. Then S is join-closed if and only if for all elements x, y of L

such that x ∈ S and y ∈ S holds sup{x, y} ∈ S.

(19) Let L be a non empty relational structure and S be a subset of L. Then

S is infs-closed if and only if for every subset X of S such that inf X exists

in L holds ⌈−⌉LX ∈ S.

(20) Let L be a non empty relational structure and S be a subset of L. Then

S is sups-closed if and only if for every subset X of S such that sup X

exists in L holds
⊔

L
X ∈ S.

(21) Let L be a non empty transitive relational structure, S be an infs-closed

non empty subset of L, and X be a subset of S. If inf X exists in L, then

inf X exists in sub(S) and ⌈−⌉sub(S)X = ⌈−⌉LX.

(22) Let L be a non empty transitive relational structure, S be a sups-closed

non empty subset of L, and X be a subset of S. If sup X exists in L, then

sup X exists in sub(S) and
⊔
sub(S) X =

⊔
L

X.

(23) Let L be a non empty transitive relational structure, S be a meet-closed

non empty subset of L, and x, y be elements of S. Suppose inf {x, y} exists

in L. Then inf {x, y} exists in sub(S) and ⌈−⌉sub(S){x, y} = ⌈−⌉L{x, y}.

(24) Let L be a non empty transitive relational structure, S be a join-closed

non empty subset of L, and x, y be elements of S. Suppose sup {x, y} exists

in L. Then sup {x, y} exists in sub(S) and
⊔
sub(S){x, y} =

⊔
L
{x, y}.
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(25) Let L be an antisymmetric transitive relational structure with g.l.b.’s

and S be a non empty meet-closed subset of L. Then sub(S) has g.l.b.’s.

(26) Let L be an antisymmetric transitive relational structure with l.u.b.’s

and S be a non empty join-closed subset of L. Then sub(S) has l.u.b.’s.

Let L be an antisymmetric transitive relational structure with g.l.b.’s and

let S be a non empty meet-closed subset of L. Observe that sub(S) has g.l.b.’s.

Let L be an antisymmetric transitive relational structure with l.u.b.’s and

let S be a non empty join-closed subset of L. Observe that sub(S) has l.u.b.’s.

The following four propositions are true:

(27) Let L be a complete transitive antisymmetric non empty relational struc-

ture, S be an infs-closed non empty subset of L, and X be a subset of S.

Then ⌈−⌉sub(S)X = ⌈−⌉LX.

(28) Let L be a complete transitive antisymmetric non empty relational struc-

ture, S be a sups-closed non empty subset of L, and X be a subset of S.

Then
⊔
sub(S) X =

⊔
L

X.

(29) For every semilattice L holds every meet-closed subset of L is filtered.

(30) For every sup-semilattice L holds every join-closed subset of L is directed.

Let L be a semilattice. Observe that every subset of L which is meet-closed

is also filtered.

Let L be a sup-semilattice. One can check that every subset of L which is

join-closed is also directed.

The following propositions are true:

(31) Let L be a semilattice and S be an upper non empty subset of L. Then

S is a filter of L if and only if S is meet-closed.

(32) Let L be a sup-semilattice and S be a lower non empty subset of L.

Then S is an ideal of L if and only if S is join-closed.

(33) For every non empty relational structure L and for all join-closed subsets

S1, S2 of L holds S1 ∩ S2 is join-closed.

(34) For every non empty relational structure L and for all meet-closed sub-

sets S1, S2 of L holds S1 ∩ S2 is meet-closed.

(35) For every sup-semilattice L and for every element x of the carrier of L

holds ↓x is join-closed.

(36) For every semilattice L and for every element x of the carrier of L holds

↓x is meet-closed.

(37) For every sup-semilattice L and for every element x of the carrier of L

holds ↑x is join-closed.

(38) For every semilattice L and for every element x of the carrier of L holds

↑x is meet-closed.
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Let L be a sup-semilattice and let x be an element of L. Observe that ↓x is

join-closed and ↑x is join-closed.

Let L be a semilattice and let x be an element of L. Note that ↓x is meet-

closed and ↑x is meet-closed.

Next we state three propositions:

(39) For every sup-semilattice L and for every element x of L holds ↓↓x is

join-closed.

(40) For every semilattice L and for every element x of L holds ↓↓x is meet-

closed.

(41) For every sup-semilattice L and for every element x of L holds ↑↑x is

join-closed.

Let L be a sup-semilattice and let x be an element of L. Note that ↓↓x is

join-closed and ↑↑x is join-closed.

Let L be a semilattice and let x be an element of L. Observe that ↓↓x is

meet-closed.

3. About Bases of Continuous Lattices

Let T be a topological structure. The functor weightT yields a cardinal

number and is defined as follows:

(Def. 5) weightT =
⋂
{B : B ranges over bases of T}.

Let T be a topological structure. We say that T is second-countable if and

only if:

(Def. 6) weightT ⊆ ω.

Let L be a continuous sup-semilattice. A subset of L is called a CLbasis of

L if:

(Def. 7) It is join-closed and for every element x of L holds x = sup(↓↓x ∩ it).

Let L be a non empty relational structure and let S be a subset of L. We

say that S has bottom if and only if:

(Def. 8) ⊥L ∈ S.

Let L be a non empty relational structure and let S be a subset of L. We

say that S has top if and only if:

(Def. 9) ⊤L ∈ S.

Let L be a non empty relational structure. Note that every subset of L which

has bottom is non empty.

Let L be a non empty relational structure. Observe that every subset of L

which has top is non empty.

Let L be a non empty relational structure. Note that there exists a subset

of L which has bottom and there exists a subset of L which has top.
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Let L be a continuous sup-semilattice. One can verify that there exists a

CLbasis of L which has bottom and there exists a CLbasis of L which has top.

One can prove the following proposition

(42) Let L be a lower-bounded antisymmetric non empty relational structure

and S be a subset of L with bottom. Then sub(S) is lower-bounded.

Let L be a lower-bounded antisymmetric non empty relational structure and

let S be a subset of L with bottom. One can verify that sub(S) is lower-bounded.

Let L be a continuous sup-semilattice. Observe that every CLbasis of L is

join-closed.

One can check that there exists a continuous lattice which is bounded and

non trivial.

Let L be a lower-bounded non trivial continuous sup-semilattice. One can

verify that every CLbasis of L is non empty.

One can prove the following propositions:

(43) For every sup-semilattice L holds the carrier of CompactSublatt(L) is a

join-closed subset of L.

(44) For every algebraic lower-bounded lattice L holds the carrier of

CompactSublatt(L) is a CLbasis of L with bottom.

(45) Let L be a continuous lower-bounded sup-semilattice. If the carrier of

CompactSublatt(L) is a CLbasis of L, then L is algebraic.

(46) Let L be a continuous lower-bounded lattice and B be a join-closed

subset of L. Then B is a CLbasis of L if and only if for all elements x, y

of L such that y 6¬ x there exists an element b of L such that b ∈ B and

b 6¬ x and b≪ y.

(47) Let L be a continuous lower-bounded lattice and B be a join-closed

subset of L. Suppose ⊥L ∈ B. Then B is a CLbasis of L if and only if for

all elements x, y of L such that x≪ y there exists an element b of L such

that b ∈ B and x ¬ b and b≪ y.

(48) Let L be a continuous lower-bounded lattice and B be a join-closed

subset of L. Suppose ⊥L ∈ B. Then B is a CLbasis of L if and only if the

following conditions are satisfied:

(i) the carrier of CompactSublatt(L) ⊆ B, and

(ii) for all elements x, y of L such that y 6¬ x there exists an element b of

L such that b ∈ B and b 6¬ x and b ¬ y.

(49) Let L be a continuous lower-bounded lattice and B be a join-closed

subset of L. Suppose ⊥L ∈ B. Then B is a CLbasis of L if and only if for

all elements x, y of L such that y 6¬ x there exists an element b of L such

that b ∈ B and b 6¬ x and b ¬ y.

(50) Let L be a lower-bounded sup-semilattice and S be a non empty full

relational substructure of L. Suppose ⊥L ∈ the carrier of S and the carrier
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of S is a join-closed subset of L. Let x be an element of L. Then ↓↓x ∩ the

carrier of S is an ideal of S.

Let L be a non empty reflexive transitive relational structure and let S be

a non empty full relational substructure of L. The functor supMapS yielding a

map from 〈Ids(S),⊆〉 into L is defined by:

(Def. 10) For every ideal I of S holds (supMapS)(I) =
⊔

L
I.

Let L be a non empty reflexive transitive relational structure and let S be a

non empty full relational substructure of L. The functor idsMapS yields a map

from 〈Ids(S),⊆〉 into 〈Ids(L),⊆〉 and is defined by:

(Def. 11) For every ideal I of S there exists a subset J of L such that I = J and

(idsMapS)(I) = ↓J.

Let L be a non empty relational structure and let B be a non empty subset

of the carrier of L. Observe that sub(B) is non empty.

Let L be a reflexive relational structure and let B be a subset of the carrier

of L. Note that sub(B) is reflexive.

Let L be a transitive relational structure and let B be a subset of the carrier

of L. Note that sub(B) is transitive.

Let L be an antisymmetric relational structure and let B be a subset of the

carrier of L. Observe that sub(B) is antisymmetric.

Let L be a lower-bounded continuous sup-semilattice and let B be a CLba-

sis of L with bottom. The functor baseMapB yielding a map from L into

〈Ids(sub(B)),⊆〉 is defined as follows:

(Def. 12) For every element x of L holds (baseMapB)(x) = ↓↓x ∩B.

We now state a number of propositions:

(51) Let L be a non empty reflexive transitive relational structure and S be a

non empty full relational substructure of L. Then dom supMapS = Ids(S)

and rng supMapS is a subset of L.

(52) Let L be a non empty reflexive transitive relational structure, S be a

non empty full relational substructure of L, and x be a set. Then x ∈

dom supMapS if and only if x is an ideal of S.

(53) Let L be a non empty reflexive transitive relational structure and S be a

non empty full relational substructure of L. Then dom idsMapS = Ids(S)

and rng idsMapS is a subset of Ids(L).

(54) Let L be a non empty reflexive transitive relational structure, S be a

non empty full relational substructure of L, and x be a set. Then x ∈

dom idsMapS if and only if x is an ideal of S.

(55) Let L be a non empty reflexive transitive relational structure, S be a non

empty full relational substructure of L, and x be a set. If x ∈ rng idsMapS,

then x is an ideal of L.
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(56) Let L be a lower-bounded continuous sup-semilattice and B be a CLba-

sis of L with bottom. Then dombaseMapB = the carrier of L and

rng baseMapB is a subset of Ids(sub(B)).

(57) Let L be a lower-bounded continuous sup-semilattice, B be a CLbasis of

L with bottom, and x be a set. If x ∈ rng baseMapB, then x is an ideal

of sub(B).

(58) For every up-complete non empty poset L and for every non empty full

relational substructure S of L holds supMapS is monotone.

(59) Let L be a non empty reflexive transitive relational structure and S be a

non empty full relational substructure of L. Then idsMapS is monotone.

(60) For every lower-bounded continuous sup-semilattice L and for every

CLbasis B of L with bottom holds baseMapB is monotone.

Let L be an up-complete non empty poset and let S be a non empty full

relational substructure of L. Observe that supMapS is monotone.

Let L be a non empty reflexive transitive relational structure and let S be

a non empty full relational substructure of L. One can check that idsMapS is

monotone.

Let L be a lower-bounded continuous sup-semilattice and let B be a CLbasis

of L with bottom. One can check that baseMapB is monotone.

The following propositions are true:

(61) Let L be a lower-bounded continuous sup-semilattice and B be a CLbasis

of L with bottom. Then idsMap sub(B) is sups-preserving.

(62) For every up-complete non empty poset L and for every non empty full

relational substructure S of L holds supMapS = SupMap(L) · idsMapS.

(63) For every lower-bounded continuous sup-semilattice L and for every

CLbasis B of L with bottom holds 〈〈 supMap sub(B), baseMapB〉〉 is Ga-

lois.

(64) Let L be a lower-bounded continuous sup-semilattice and B be a CLbasis

of L with bottom. Then supMap sub(B) is upper adjoint and baseMapB

is lower adjoint.

(65) Let L be a lower-bounded continuous sup-semilattice and B be a CLbasis

of L with bottom. Then rng supMap sub(B) = the carrier of L.

(66) Let L be a lower-bounded continuous sup-semilattice and B be a CLba-

sis of L with bottom. Then supMap sub(B) is infs-preserving and sups-

preserving.

(67) Let L be a lower-bounded continuous sup-semilattice and B be a CLbasis

of L with bottom. Then baseMapB is sups-preserving.

Let L be a lower-bounded continuous sup-semilattice and let B be a CLbasis

of L with bottom. One can verify that supMap sub(B) is infs-preserving and

sups-preserving and baseMapB is sups-preserving.
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One can prove the following propositions:

(69)2 Let L be a lower-bounded continuous sup-semilattice and B be a CLba-

sis of L with bottom. Then the carrier of CompactSublatt(〈Ids(sub(B)),⊆

〉) = {↓b : b ranges over elements of sub(B)}.

(70) Let L be a lower-bounded continuous sup-semilattice and B be a CLbasis

of L with bottom. Then CompactSublatt(〈Ids(sub(B)),⊆〉) and sub(B)

are isomorphic.

(71) Let L be a continuous lower-bounded lattice and B be a CLbasis of L

with bottom. Suppose that for every CLbasis B1 of L with bottom holds

B ⊆ B1. Let J be an element of 〈Ids(sub(B)),⊆〉. Then J = ↓↓
⊔

L
J ∩B.

(72) Let L be a continuous lower-bounded lattice. Then L is algebraic if and

only if the following conditions are satisfied:

(i) the carrier of CompactSublatt(L) is a CLbasis of L with bottom, and

(ii) for every CLbasis B of L with bottom holds the carrier of

CompactSublatt(L) ⊆ B.

(73) Let L be a continuous lower-bounded lattice. Then L is algebraic if and

only if there exists a CLbasis B of L with bottom such that for every

CLbasis B1 of L with bottom holds B ⊆ B1.
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