FORMALIZED MATHEMATICS
Volume 8, Number 1, 1999
University of Bialystok

Bounded Domains and Unbounded Domains

Yatsuka Nakamura Andrzej Trybulec
Shinshu University University of Biatystok
Nagano

Czestaw Bylinski
University of Bialystok

Summary. First, notions of inside components and outside components
are introduced for any subset of n-dimensional Euclid space. Next, notions of
the bounded domain and the unbounded domain are defined using the above
components. If the dimension is larger than 1, and if a subset is bounded, a
unbounded domain of the subset coincides with an outside component (which is
unique) of the subset. For a sphare in n-dimensional space, the similar fact is
true for a bounded domain. In 2 dimensional space, any rectangle also has such
property. We discussed relations between the Jordan property and the concept
of boundary, which are necessary to find points in domains near a curve. In the
last part, we gave the sufficient criterion for belonging to the left component of
some clockwise oriented finite sequences.

MML Identifier: JORDAN2C.

The articles [44], [51], [12], [50], [53], [9], [10], [7], [22], [2], [1], [40], [54], [16],
[27], [15], [24], [5], [38], [39], [20], [35], [32], [18], [42], 3], [8], [49], [46], [41], [21],
[4], [26], [34], [37], [43], [6], [30], [52], [11], [25], [13], [17], [33], [14], [48], [47],
[19], [23], [28], [29], [36], [45], and [31] provide the notation and terminology for
this paper.

1. DEFINITIONS OF BOUNDED DOMAIN AND UNBOUNDED DOMAIN

We follow the rules: m, n are natural numbers, r, s are real numbers, and
x, y are sets.
The following propositions are true:

@ 1999 University of Bialystok
1 ISSN 1426-2630

2 YATSUKA NAKAMURA et al.

(1) If r <O, then |r| =

(2) Foralln,msuchthatn mand m <n+2holdsm=norm=n+1
orm=mn-+2.

(3) For all n, m such that n <mand m <n+3 holdsm=norm=n+1
orm=n-+2orm=n-+3.

(4) For all n, m such that n < mand m <n+4holdsm=norm=n+1
orm=n+2orm=n+3orm=n+4.

(5) For all real numbers a, b such that a > 0 and

(6) For all real numbers a, b such that a > 0 and
holds a + b > 0.

(7) For every finite sequence f such that rng f = {x,y} and len f = 2 holds
f(1) == and f(2) =y or f(1) =y and f(2) =

(8) Let f be an increasing finite sequence of elements of R. If rng f = {r, s}
and len f = 2 and r < s, then f(1) =r and f(2) =

In the sequel p, p1, p2, P3, ¢, q1, g2 denote points of £F.

b>0holdsa+b>0
b>0

ora>0andb>0

We now state several propositions:

(9) (1 +p2) —p3 = (p1 — p3) + pa.
(10) |lgll = lql-
(1) @] = laell < lar — gal-
(12) |[[r]lf = Ir]-
(13) ¢ —0gn =g and Ogn — g = —q.

Let us consider n and let P be a subset of £. We say that P is n-convex if
and only if:

(Def. 1) For all points wi, wy of &} such that w; € P and wy € P holds
E(wl, wg) Q P.
The following propositions are true:
(14) For every non empty subset P of £} such that P is n-convex holds P is
connected.

(15) Let G be a non empty topological space, P be a subset of G, A be a
subset of the carrier of G, and Q be a subset of GIA. If P # () and P = QQ
and P is connected, then () is connected.

Let us consider n and let A be a subset of £F. We say that A is Bounded if
and only if:
(Def. 2) There exists a subset C' of the carrier of £ such that C' = A and C is
bounded.
One can prove the following proposition

(16) For all subsets A, B of £} such that B is Bounded and A C B holds A
is Bounded.

BOUNDED DOMAINS AND UNBOUNDED DOMAINS

Let us consider n, let A be a subset of the carrier of £, and let B be a
subset of £F. We say that B is inside component of A if and only if:
(Def. 3) B is a component of A° and Bounded.
Next we state the proposition
(17) Let A be a subset of the carrier of £ and B be a subset of £F. Then B
is inside component of A if and only if there exists a subset C of (EF)[A°

such that C = B and C is a component of (EF)[A° and for every subset
D of the carrier of €™ such that D = C holds D is bounded.

Let us consider n, let A be a subset of the carrier of £F, and let B be a
subset of £F. We say that B is outside component of A if and only if:

(Def. 4) B is a component of A° and B is not Bounded.
Next we state three propositions:

(18) Let A be a subset of the carrier of £ and B be a subset of £}. Then B
is outside component of A if and only if there exists a subset C of (EF)[A°
such that C' = B and C is a component of (E})[A° and it is not true
that for every subset D of the carrier of £ such that D = C holds D is
bounded.

(19) For all subsets A, B of £} such that B is inside component of A holds
B C A°.
(20) For all subsets A, B of £} such that B is outside component of A holds
B C A°.
Let us consider n and let A be a subset of the carrier of £f. The functor
BDD A yields a subset of £f and is defined by:
(Def. 5) BDD A = |J{B; B ranges over subsets of £: B is inside component of
A}.
Let us consider n and let A be a subset of the carrier of £F. The functor
UBD A yielding a subset of £} is defined by:
(Def. 6) UBD A = [J{B; B ranges over subsets of £}: B is outside component of
A}.
One can prove the following propositions:
(21) Qgn is n-convex.
(22) Qg is connected.
Let us consider n. One can check that Qg% is connected.
We now state several propositions:
(23) Qgn is a component of EF.
(24) For every subset A of the carrier of £ holds BDD A is a union of com-
ponents of (E})[AC.
(25) For every subset A of the carrier of £} holds UBD A is a union of com-
ponents of (EF)[AC.

4 YATSUKA NAKAMURA et al.

(26) Let A be a subset of the carrier of £ and B be a subset of &}. If B is
inside component of A, then B C BDD A.

(27) Let A be a subset of the carrier of £ and B be a subset of &}. If B is
outside component of A, then B C UBD A.

(28) For every subset A of the carrier of £ holds BDD ANUBD A = 0.
(29) For every subset A of the carrier of £ holds BDD A C A°.

(30) For every subset A of the carrier of &} holds UBD A C A°.

(31) For every subset A of the carrier of £} holds BDD AU UBD A = A°.
In the sequel u is a point of £".

One can prove the following propositions:

(32) Let G be a non empty topological space, w;, wg, w3 be points of G,
hi be a map from I into G, and hy be a map from I into G. Suppose
hi is continuous and w; = h1(0) and we = hi(1) and hg is continuous
and wy = h2(0) and ws = ha(1). Then there exists a map hz from I
into G such that hs is continuous and wy = h3(0) and w3y = h3(1) and
rng hg C rng hy U rng ha.

(33) For every subset P of £F such that P = R" holds P is connected.

Let us consider n. The functor 1*n yielding a finite sequence of elements of
R is defined by:
(Def. 7) 1% n =n— (1 qua real number).

Let us consider n. Then 1 % n is an element of R™.
Let us consider n. The functor 1.REALn yielding a point of £F is defined
by:

(Def. 8) 1.REALn =1xn.

One can prove the following propositions:
(34
(35
(36
(
(
(

|1 % n| =n+— (1 qua real number).
|1 %n|=+/n.

1.REAL1 = ((1 qua real number)).
| LREALn| = y/n.

If 1 < n, then 1 <|1.REALn|.

For every subset W of the carrier of £ such that n > 1 and W = R"
holds W is not bounded.

(40) Let A be a subset of £. Then A is Bounded if and only if there exists
a real number 7 such that for every point ¢ of £} such that ¢ € A holds
lg| <.

(41) If n > 1, then Qgn is not Bounded.

>
(42) Ifn > 1, then UBD {gr = R".

37
38
39

— Y ~— — ~— —

BOUNDED DOMAINS AND UNBOUNDED DOMAINS 5

(43) Let wq, we, w3 be points of £}, P be a non empty subset of the carrier
of &f, and hi, hy be maps from I into (E})[P. Suppose hy is continuous
and w; = h1(0) and we = h1(1) and hg is continuous and we = hs(0) and
w3 = ha(1). Then there exists a map hsz from I into (EF)[P such that hs
is continuous and w; = h3(0) and ws = hg(1).

(44) Let P be a subset of the carrier of £} and w;, wa, ws be points of
ER. Suppose wy; € P and wy € P and w3 € P and L(w;,wz) C P and
L(w2,w3) C P. Then there exists a map h from I into (EF)[P such that h
is continuous and w; = h(0) and w3 = h(1).

(45) Let P be a subset of the carrier of £F and w1, wa, w3, wy be points of EF.
Suppose w; € P and we € P and ws € P and wy € P and L(wy,w2) C P
and L(wg,ws) C P and L(ws,ws) C P. Then there exists a map h from I
into (&%) [P such that h is continuous and w; = h(0) and ws = h(1).

(46) Let P be a subset of the carrier of &} and wy, wa, w3, wa, ws, we,
wy be points of £F. Suppose w; € P and we € P and w3 € P and
wy € P and ws € P and wg € P and w; € P and L(wy,w2) C P and
L(we,w3) € P and L(ws,ws) C P and L(wyg,ws) C P and L(ws,ws) C P
and L(we,wr7) € P. Then there exists a map h from I into (EF)[P such
that A is continuous and w; = h(0) and wy = h(1).

(47) For all points wq, we of £} such that it is not true that there exists a
real number r such that wy = r - wg or wy =7 -w; holds Ogn ¢ L(wy,ws).

(48) Let wq, wo be points of £} and P be a subset of (£")iop. Suppose P =
L(wy, wz) and Ogn ¢ L(wy,wz). Then there exists a point wy of & such
that wo € L(w1,ws) and |wo| > 0 and |wo| = (distuin(P))(Ogz)-

(49) Let a be a real number, () be a subset of the carrier of £F, and wq, wy
be points of £F. Suppose Q@ = {¢q : |¢| > a} and w; € Q and ws € Q and
it is not true that there exists a real number r such that w; = r - w4 or
wy = 7 - wi. Then there exist points wo, w3 of £} such that wy € @ and
ws € Q and L(w1,w2) € Q and L(wz,ws3) C Q and L(ws, wy) C Q.

(50) Let a be a real number, @ be a subset of the carrier of £, and w1, wy
be points of £, Suppose @ = R"\ {q : |¢| < a} and w; € Q and wy € Q
and it is not true that there exists a real number r such that w; = r - w4

or wy = r-wi. Then there exist points wg, w3 of £} such that ws € @ and
ws € Q and L(wy,wz) € Q and L(wy, w3) € Q and L(ws,ws) C Q.
(51) Let x be an element of R™. Then =z is a finite sequence of elements of R

and for every finite sequence f such that f = x holds len f = n.

(52) Every finite sequence f of elements of R is an element of R'"/ and a

point of Eé‘f‘nf.

(53) Let be an element of R™, f, g be finite sequences of elements of R, and
r be a real number. Suppose f = x and g = r-x. Then len f = len g and for

YATSUKA NAKAMURA et al.

every natural number ¢ such that 1 < ¢ and 7 < len f holds m;g = r - m; f.

(54) Let x be an element of R™ and f be a finite sequence. Suppose = #
(0,...,0) and = = f. Then there exists a natural number i such that 1 < ¢
——

and ¢ < n and f(i) # 0.

(55) Let x be an element of R™. Suppose n > 2 and x # (0,...,0). Then it
———

n
is not true that there exists an element y of R™ and there exists a real
number r such that y =r-x orx =7 -y.

(56) Let a be a real number, @ be a subset of the carrier of £}, and wy, wy be
points of . Suppose n > 2 and Q = {q : |¢| > a} and w1 € Q and wy € Q
and there exists a real number r such that wqy = r - w7y or wy = r - wy.
Then there exist points ws, w3, w4, ws, we of £ such that wy € @ and
wg € Q and wy € Q and ws € @ and wg € @ and L(wy,w2) C @ and
L(wz,w3) € Q and L(ws,ws) C Q and L(w4,ws) C Q and L(ws, ws) C Q
and L(wg,w7) C Q.

(57) Let a be a real number, @ be a subset of the carrier of £}, and w1, wy be
points of £F. Suppose n > 2 and Q = R" \ {¢: |¢| < a} and w; € Q and
wy €) and there exists a real number r such that wy = r-w7 or wy = r-w;.
Then there exist points wsa, w3, w4, ws, we of £F such that we € Q and
wg € Q and wy € @ and w5 € @ and wg € @ and L(wy,w2) C @ and
L(wa,ws) € Q and L(ws,ws) € Q and L(wy, ws) C Q and L(ws, ws) C Q
and L(wg,w7) C Q.

(58) For every real number a such that n > 1 holds {q : |¢| > a} # 0.

(59) For every real number a and for every subset P of £} such that n > 2
and P = {q: |¢| > a} holds P is connected.

(60) For every real number a such that n > 1 holds R™\ {q : |q| < a} # 0.

(61) For every real number a and for every subset P of £} such that n > 2
and P =R"\ {q: |qg| < a} holds P is connected.

(62) Let a be a real number, n be a natural number, and P be a subset of
EL.Ifn>1and P=R"\{q;q ranges over points of &}: |¢| < a}, then P
is not Bounded.

(63) Let a be a real number and P be a subset of S%. Suppose P = {q;q
ranges over points of £-:\/, (¢ = (r) A r > a)}. Then P is n-convex.

(64) Let a be a real number and P be a subset of £}. Suppose P = {¢;q
ranges over points of £1:\/, (¢ = (r) A r < —a)}. Then P is n-convex.

(65) Let a be a real number and P be a subset of &+. Suppose P = {g; ¢
ranges over points of EL:\/, (¢ = (r) A r > a)}. Then P is connected.

(66) Let a be a real number and P be a subset of E%. Suppose P = {q;q
ranges over points of £-:\/, (¢ = (r) A r < —a)}. Then P is connected.

BOUNDED DOMAINS AND UNBOUNDED DOMAINS

(67) Let W be a subset of the carrier of £!, a be a real number, and P be
a subset of 5%. Suppose W = {q; q ranges over points of 5%: V., (¢ =
(r)y AN r>a)} and P =W. Then P is connected and W is not bounded.

(68) Let W be a subset of the carrier of £!, a be a real number, and P be
a subset of 5%. Suppose W = {q; q ranges over points of 6’%: V, (¢ =
(ry A r<—a)} and P =W. Then P is connected and W is not bounded.

(69) Let W be a subset of the carrier of £", a be a real number, and P be
a subset of EL. If n > 2 and W = {q : |¢| > a} and P = W, then P is
connected and W is not bounded.

(70) Let W be a subset of the carrier of £, a be a real number, and P be a
subset of EF. If n > 2 and W = R" \ {¢ : |¢| < a} and P = W, then P is
connected and W is not bounded.

(71) Let P, P; be subsets of £F, Q be a subset of the carrier of £}, and W
be a subset of the carrier of £". Suppose P = W and P is connected and
W is not bounded and P, = Component(Down(P,Q)) and W N Q = 0.
Then P; is outside component of Q.

Let S be a 1-sorted structure and let A be a subset of the carrier of S. The
functor RAC A yields a subset of S and is defined as follows:

(Def. 9) RACA = A.
The following propositions are true:

(72) Let A be a subset of the carrier of £", B be a non empty subset of the
carrier of £, and C be a subset of the carrier of £"[B. If A C B and
A = C and C is bounded, then A is bounded.

(73) For every subset A of £} such that A is compact holds A is Bounded.

(74) For every subset A of &} such that 1 < n and A is Bounded holds A° # (.

(75) Let r be a real number. Then

(i) there exists a subset B of the carrier of £" such that B = {q: |¢| <},
and

(ii) for every subset A of the carrier of £ such that A = {q1 : |¢1| < r}
holds A is bounded.

(76) Let A be a subset of E. Suppose n > 2 and A is Bounded. Then there
exists a subset B of £} such that B is outside component of A and B =
UBD A.

(77) For every real number a and for every subset P of £} such that P = {q :
lg] < a} holds P is n-convex.

(78) For every real number a and for every subset P of £} such that P =
Ball(u, a) holds P is n-convex.

(79) For every real number a and for every subset P of £} such that a > 0
and P = {q: |q| < a} holds P is connected.

8 YATSUKA NAKAMURA et al.

In the sequel R denotes a subset of £}, P denotes a subset of the carrier of
&L, and f denotes a finite sequence of elements of £F.
Next we state a number of propositions:

(80) Suppose p # g and p € Ball(u,r) and g € Ball(u,r). Then there exists a
map h from I into £} such that A is continuous and h(0) = p and h(1) = ¢
and rng h C Ball(u, r).

(81) Let f be a map from I into £&F. Suppose f is continuous and f(0) = py
and f(1) = p2 and p € Ball(u,r) and py € Ball(u,r). Then there exists a
map h from I into £} such that h is continuous and h(0) = p; and h(1) = p
and rng h C rng f U Ball(u, r).

(82) Let f be a map from I into EL. Suppose p # p; and f is continuous
and rmmg f € P and f(0) = p; and f(1) = py and p € Ball(u,r) and
p2 € Ball(u,r) and Ball(u,r) C P. Then there exists a map f; from I
into &} such that f; is continuous and rng fi € P and f1(0) = p; and

fi(1) =p.
et given p an e a subset o . duppose that
(83) Let gi dPb b fEL. S h
(i) R is connected and open, and
(11) P = {q - g 7é p N q € R A _'Vf:mapfrom]Iinto EL (f is
continuous A tng f C R A f(0)=p A f(1)=4q)}.
Then P is open.
(84) Let P be a subset of £F. Suppose that
(i) R is connected and open,
(i) pe R, and
iii) P={g:q=p V \/f:][nap from T into £2 (f is continuous A rng f C
R A fO)=p A f(1)=0q)}
Then P is open.
(85) Let R be a subset of the carrier of £}. Suppose p € R and P = {q :
g=p V \/f:map from T into &2 (f is continuous A rng f C R A f(0) =
p N f(1)=¢q)}. Then P C R.
(86) Let R be a subset of £} and p be a point of £F. Suppose that
(i) R is connected and open,
(i) pe€ R, and
(i) P={q:9=p V V. map from I into en (f is continuous A rng f C
R A f0O)=p A f(1)=q)}
Then R C P.
(87) Let R be a subset of £} and p, ¢ be points of £F. Suppose R is connected
and open and p € R and ¢ € R and p # q. Then there exists a map f
from I into £ such that f is continuous and rng f C R and f(0) = p and

f(1)=gq

BOUNDED DOMAINS AND UNBOUNDED DOMAINS 9

(88) For every subset A of £F and for every real number a such that A = {q¢ :
|g| = a} holds —A is open and A is closed.

(89) For every non empty subset B of £} such that B is open holds (£})[B
is locally connected.

(90) Let B be a non empty subset of the carrier of £, A be a subset of the
carrier of £F, and a be a real number. If A = {q : |¢| = a} and A° = B,
then (E1)[B is locally connected.

(91) For every map f from £ into R! such that for every ¢ holds f(g) = |q|
holds f is continuous.

(92) There exists a map f from E into R such that for every ¢ holds f(q) =
|g| and f is continuous.

Let X, Y be non empty l-sorted structures, let f be a map from X into
Y, and let x be a set. Let us assume that x is a point of X. The functor . f
yielding a point of Y is defined as follows:
(Def. 10) m,f = f(z).
We now state four propositions:

(93) Let g be amap from Iinto EF. Suppose g is continuous. Then there exists
amap f from I into R such that for every point ¢ of I holds f(t) = |g(t)|
and f is continuous.

(94) Let g be a map from I into £} and a be a real number. Suppose g is
continuous and |mpg| < a and a < |mg|. Then there exists a point s of I
such that |7sg| = a.

(95) If g = (r), then |q| = |r|.

(96) Let A be a subset of the carrier of £} and a be a real number. Suppose
n>1and a>0and A= {q: |q] = a}. Then there exists a subset B of
&L such that B is inside component of A and B = BDD A.

2. BOUNDED AND UNBOUNDED DOMAINS OF RECTANGLES

In the sequel D is a non vertical non horizontal non empty compact subset

of 5%.
Next we state several propositions:
(97) lenthe Go-board of SpStSeqD = 2 and widththe Go-board of

SpStSeq D = 2 and m; SpStSeq D = (the Go-board of SpStSeqD); 2
and 7y SpStSeq D = (the Go-board of SpStSeq D)2 2 and 73 SpStSeq D =
(the Go-board of SpStSeq D)2 and m4 SpStSeq D = (the Go-board of
SpStSeq D)1,1 and 75 SpStSeq D = (the Go-board of SpStSeq D) 2.

(98) LeftComp(SpStSeq D) is not Bounded.

10 YATSUKA NAKAMURA et al.

(99) LeftComp(SpStSeq D) € UBD L(SpStSeq D).

(100) Let G be a topological space and A, B, C' be subsets of G. Suppose A
is a component of G and B is a component of G and C' is connected and
ANC # (0 and BNC # (). Then A = B.

(101) For every subset B of £2 such that B is a component of (L(SpStSeq D))e
and B is not Bounded holds B = LeftComp(SpStSeq D).

(102) RightComp(SpStSeq D) € BDD L£(SpStSeq D) and
RightComp(SpStSeq D) is Bounded.

(103) LeftComp(SpStSeq D) = UBD L(SpStSeq D) and
RightComp(SpStSeq D) = BDD L£(SpStSeq D).

(104) UBD L(SpStSeq D) # () and UBD L(SpStSeq D) is outside component
of £(SpStSeq D) and BDD £(SpStSeq D) # § and BDD L (SpStSeq D) is
inside component of E(SpStSeq D).

3. JORDAN PROPERTY AND BOUNDARY PROPERTY

One can prove the following propositions:

(105) Let G be a non empty topological space and A be a subset of G. Suppose
A¢ # (). Then A is boundary if and only if for every set x and for every
subset V of G such that x € A and =z € V and V is open there exists
a subset B of the carrier of G such that B is a component of A° and
VNB#(.

(106) Let A be a subset of 5%. Suppose A€ # (). Then A is boundary and Jordan
if and only if there exist subsets Ay, As of 5% such that A° = A; U Ay and
A1NAy =0 and A1\ Ay = A3\ Ay and A = A;\ A; and for all subsets Cf,
Cy of (5%) A€ such that C7 = Ay and Cy = As holds C is a component
of (E2)[A° and C3 is a component of (£2)[A°.

(107) For every point p of £F and for every subset P of £} such that n > 1
and P = {p} holds P is boundary.

(108) For all points p, g of £2 and for every r such that p; = g2 and —p2 = ¢1
andp:r'qholdspl:0andp2:Oandp:O&2F.

(109) For all points qi, g2 of £% holds £(q1, ¢2) is boundary.
Let ¢1, g2 be points of 2. Observe that £(qi1, g2) is boundary.
One can prove the following proposition

(110) For every finite sequence f of elements of £2 holds EN(f) is boundary.
Let f be a finite sequence of elements of £2. Note that E(f) is boundary.
We now state several propositions:

BOUNDED DOMAINS AND UNBOUNDED DOMAINS

(111) For every point e; of £" and for all points p, ¢ of £F such that p = e
and ¢ € Ball(ey,) holds [p —¢| < r and |¢ — p| < 7.

(112) Let a be a real number and p be a point of 5%. Suppose a > 0
and p € ~E(SpStSqu). Then there exists a point ¢ of £ such that
q € UBD L(SpStSeq D) and |p — q| < a.

(113) R% = {0z}

(114) For every subset A of £ such that A is Bounded holds BDD A is Boun-
ded.

(115) Let G be a non empty topological space and A, B, C', D be subsets of
G. Suppose A is a component of G and B is a component of G and C is
a component of G and AU B = the carrier of G and C N A = (). Then
C=B8B.

(116) For every subset A of £% such that A is Bounded and Jordan holds
BDD A is inside component of A.

(117) Let a be a real number and p be a point of 6’%. Suppose a > 0
and p € NE(SpStSqu). Then there exists a point g of 5% such that
g € BDD L(SpStSeq D) and |p — ¢| < a.

4. PoINTS IN LEFTCOMP

In the sequel f denotes a clockwise oriented non constant standard special
circular sequence.
Next we state four propositions:

(118) For every point p of €% such that mf = N—minE(f) and p1 <
W-bound £(f) holds p € LeftComp(f).

(119) For every point p of €% such that mf = N—minEN(f) and p; >
E-bound £(f) holds p € LeftComp(f).

(120) For every point p of £F such that mf = N-min £(f) and py <
S-bound L(f) holds p € LeftComp(f).

(121) For every point p of &2 such that mf = N-min £(f) and py >
N-bound £L(f) holds p € LeftComp(f).

REFERENCES

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

[4] Jézef Biatas and Yatsuka Nakamura. The theorem of Weierstrass. Formalized Mathema-
tics, 5(3):353-359, 1996.

11

[10]
[11]
[12]
[13]
[14]

[15]
[16]

[17]
[18]

[19]

[20]
21]

22]
23]
[24]
[25]
[26]
[27]
28]
[29]
[30]
31]
32]
[33]
[34]

[35]

YATSUKA NAKAMURA et al.

Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481—
485, 1991.

Czestaw Bylinski. Basic functions and operations on functions. Formalized Mathematics,
1(1):245-254, 1990.

Czestaw Byliniski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
Czestaw Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529-536, 1990.

Czestaw Byliniski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

Czestaw Byliniski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,

1990.
Czestaw Bylinski. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
Czestaw Bylifiski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53,

1990.
Czestaw Bylinski. The sum and product of finite sequences of real numbers. Formalized

Mathematics, 1(4):661-668, 1990.

Czestaw Bylinski and Piotr Rudnicki. Bounding boxes for compact sets in £2. Formalized
Mathematics, 6(3):427-440, 1997.

Agata Darmochwal. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
Agata Darmochwal. Families of subsets, subspaces and mappings in topological spaces.
Formalized Mathematics, 1(2):257-261, 1990.

Agata Darmochwal. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
Agata Darmochwal and Yatsuka Nakamura. Metric spaces as topological spaces - funda-
mental concepts. Formalized Mathematics, 2(4):605-608, 1991.

Agata Darmochwatl and Yatsuka Nakamura. The topological space £2. Arcs, line segments
and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.

Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559-562,

1991.
Adam Grabowski. Introduction to the homotopy theory. Formalized Mathematics,

6(4):449-454, 1997.

Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.

Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics,
2(4):475-480, 1991.

Stanistawa Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathe-
matics, 1(3):607-610, 1990.

Zbigniew Karno. Continuity of mappings over the union of subspaces. Formalized Ma-
thematics, 3(1):1-16, 1992.

Jarostaw Kotowicz. Convergent real sequences. Upper and lower bound of sets of real
numbers. Formalized Mathematics, 1(3):477-481, 1990.

Jarostaw Kotowicz. Real sequences and basic operations on them. Formalized Mathema-
tics, 1(2):269-272, 1990.

Jarostaw Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized
Mathematics, 3(1):107-115, 1992.

Jarostaw Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part II. Formalized
Mathematics, 3(1):117-121, 1992.

FEugeniusz Kusak, Wojciech Leonczuk, and Michal Muzalewski. Abelian groups, fields
and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.

Roman Matuszewski and Yatsuka Nakamura. Projections in n-dimensional Euclidean
space to each coordinates. Formalized Mathematics, 6(4):505-509, 1997.

Yatsuka Nakamura. Graph theoretical properties of arcs in the plane and Fashoda Meet
Theorem. Formalized Mathematics, 7(2):193-201, 1998.

Yatsuka Nakamura and Czeslaw Bylinski. Extremal properties of vertices on special
polygons. Part 1. Formalized Mathematics, 5(1):97-102, 1996.

Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. For-
malized Mathematics, 6(2):255-263, 1997.

Yatsuka Nakamura and Andrzej Trybulec. Components and unions of components. For-
malized Mathematics, 5(4):513-517, 1996.

BOUNDED DOMAINS AND UNBOUNDED DOMAINS

Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized
Mathematics, 5(3):323-328, 1996.

Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83-86, 1993.

Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.
Beata Padlewska and Agata Darmochwat. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223-230, 1990.

Jan Popiotek. Some properties of functions modul and signum. Formalized Mathematics,
1(2):263-264, 1990.

Konrad Raczkowski and Pawel Sadowski. Topological properties of subsets in real num-
bers. Formalized Mathematics, 1(4):777-780, 1990.

Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
1(2):329-334, 1990.

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.
Andrzej Trybulec. Left and right component of the complement of a special closed curve.

Formalized Mathematics, 5(4):465-468, 1996.

Andrzej Trybulec and Czestaw Bylinski. Some properties of real numbers. Formalized
Mathematics, 1(3):445-449, 1990.

Andrzej Trybulec and Yatsuka Nakamura. On the order on a special polygon. Formalized
Mathematics, 6(4):541-548, 1997.

Andrzej Trybulec and Yatsuka Nakamura. On the rectangular finite sequences of the
points of the plane. Formalized Mathematics, 6(4):531-539, 1997.

Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579,
1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17-23, 1990.

Toshihiko Watanabe. The Brouwer fixed point theorem for intervals. Formalized Mathe-
matics, 3(1):85-88, 1992.

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Mirostaw Wysocki and Agata Darmochwal. Subsets of topological spaces. Formalized
Mathematics, 1(1):231-237, 1990.

Received January 7, 1999

14

YATSUKA NAKAMURA et al.

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Bialystok

Rotating and Reversing

Andrzej Trybulec
University of Bialtystok

Summary. Quite a number of lemmas for the Jordan curve theorem, as
yet in the case of the special polygonal curves, have been proved. By ”special”
we mean, that it is a polygonal curve with edges parallel to axes and actually the
lemmas have been proved, mostly, for the triangulations i.e. for finite sequences
that define the curve. Moreover some of the results deal only with a special case:

- finite sequences are clockwise oriented,

- the first member of the sequence is the member with the lowest ordinate
among those with the highest abscissa (N-min f, where { is a finite sequence,
in the Mizar jargon).

In the change of the orientation one has to reverse the sequence (the operation
introduced in [7]) and to change the second restriction one has to rotate the sequ-
ence (the operation introduced in [26]). The goal of the paper is to prove, mostly
simple, facts about the relationship between properties and attributes of the fi-
nite sequence and its rotation (similar results about reversing had been proved
in [7]). Some of them deal with recounting parameters, others with properties
that are invariant under the rotation. We prove also that the finite sequence is
either clockwise oriented or it is such after reversing. Everything is proved for
the so called standard finite sequences, which means that if a point belongs to it
then every point with the same abscissa or with the same ordinate, that belongs
to the polygon, belongs also to the finite sequence. It does not seem that this
requirement causes serious technical obstacles.

MML Identifier: REVROT_1.

The terminology and notation used here are introduced in the following articles:
[24], [29], [12], [2], [23], [20], (1], [4], [6], [3], [5], [13], [28], [14], [7], [26], [22], [30],
[21], [9], [10], [11], [15], [16], [18], [25], [8], [17], [27], and [19].

@ 1999 University of Bialystok
15 ISSN 1426-2630

16 ANDRZEJ TRYBULEC

1. PRELIMINARIES

For simplicity, we use the following convention: ¢, k, m, n are natural num-
bers, D is a non empty set, p is an element of D, and f is a finite sequence of
elements of D.

Let S be a non trivial 1-sorted structure. Observe that the carrier of S is
non trivial.

Let D be a non empty set and let f be a finite sequence of elements of D.
Let us observe that f is constant if and only if:

(Def. 1) For all n, m such that n € dom f and m € dom f holds 7, f = 7, f.

One can prove the following three propositions:

(1) Let D be a non empty set and f be a finite sequence of elements of D.
If f yields ien £ f just once, then (7en ¢ f) <P f =len f.

(2) For every non empty set D and for every finite sequence f of elements
of D holds leenf = @

(3) For every non empty set D and for every non empty finite sequence f of
elements of D holds ey rf € 10g f.

Let D be a non empty set, let f be a finite sequence of elements of D, and
let y be a set. Let us observe that f yields y just once if and only if:

(Def. 2) There exists a set « such that = € dom f and y = 7, f and for every set
z such that z € dom f and z # x holds 7, f # y.

The following propositions are true:

(4) Let D be a non empty set and f be a finite sequence of elements of D.
If f yields mien ¢ f just once, then f —: 7y rf = f.

(5) Let D be a non empty set and f be a finite sequence of elements of D.
If f yields Tien s f just once, then f:— ey ff = (Men £.f)-

(6) 1<len(f:—p).

(7) Let D be a non empty set, p be an element of D, and f be a finite
sequence of elements of D. If p € rng f, then len(f :— p) <len f.

(8) For every non empty set D and for every circular non empty finite se-
quence f of elements of D holds Rev(f) is circular.

2. ABOUT THE ROTATION

In the sequel D denotes a non empty set, p denotes an element of D, and f
denotes a finite sequence of elements of D.
We now state several propositions:

ROTATING AND REVERSING

) Ifperngfand1<iandi<len(f:—p),then mff = m;_n)pperf.
0) Ifperngfandpr f<iandi<lenf, then mf = 71y _rpepsfl.
) 1t p € rng f, then Tn(se_py 5 = men 1.

) If p € mgf and len(f :—p) < i and ¢ < lenf, then mf% =
T(itperf)~"len f [-
(13) Ifperngfand 1 <iandi<p <P f, then mf = T(; 1en f)—rpeps fio-
(14) len(f%) =len f.
(15) dom(f%) = dom f.
(16) Let D be a non empty set, f be a circular finite sequence of elements of

D, and p be an element of D. If for every ¢ such that 1 < 7 and 7 < len f
holds m; f # 1 f, then (f2)%/ = f.

3. RoTATING CIRCULAR ONES

In the sequel f is a circular finite sequence of elements of D.
The following propositions are true:
(17) If p € mgf and len(f :—p) < ¢ and ¢ < lenf, then mf% =
T (i+p<Pf)—'len ff
(18) Ifperngfand 1<iandi<p < f, then mf = T(itien f)—pesf &5
Let D be a non trivial set. Note that there exists a finite sequence of elements
of D which is non constant and circular.
Let D be a non trivial set, let p be an element of D, and let f be a non
constant circular finite sequence of elements of D. Note that f% is non constant.

4. FINITE SEQUENCE ON THE PLANE

The following proposition is true
(19) For every non empty natural number n holds Ogn # 1.REALn.

Let n be a non empty natural number. Note that &7 is non trivial.
In the sequel f, g are finite sequences of elements of 5%.
Next we state four propositions:

If rng f = rng g, then rng X-coordinate(f

23

(20) If rng f C rng g, then rng X-coordinate(f) C rng X-coordinate(g).
(21) (f) = rng X-coordinate(g).
(22) If rng f C rngg, then rng Y-coordinate(f) C rng Y-coordinate(g).
(23) (f) (9)

If rng f = rng g, then rng Y-coordinate(f) = rng Y-coordinate(g).

18 ANDRZEJ TRYBULEC

5. ROTATING FINITE SEQUENCE ON THE PLANE

In the sequel p denotes a point of £% and f denotes a finite sequence of
elements of £2.
Let p be a point of 5% and let f be a special circular finite sequence of
elements of 5%. Observe that fg is special.
The following propositions are true:
(24) Ifperngfand1<iandi<len(f:—p), then L(f5,1) =L(f,(1—"1)+
p P f)
(25) Ifperngfandp P f<iandi<lenf, then L(f,i) =L(f5, (i —"p P
f)+1).
(26) For every circular finite sequence f of elements of &2 holds
Inc(X-coordinate(f)) = Inc(X-coordinate(f5)).
(27) For every circular finite sequence f of elements of 5% holds
Inc(Y-coordinate(f)) = Inc(Y-coordinate(f5)).
(28) For every non empty circular finite sequence f of elements of £2 holds
the Go-board of f% = the Go-board of f.

(29) For every non constant standard special circular sequence f holds
Rev(/2) = (Rev(/))%.

6. ROTATING CIRCULAR ONES (ON THE PLANE)

In the sequel f is a circular finite sequence of elements of 5%.
We now state two propositions:
(30) For every circular s.c.c. finite sequence f of elements of £2 such that
len f >4 holds L(f,len f =" 1)NL(f,1) = {mif}.
(31) Ifp € rng fandlen(f:—p) < iandi < len f, then L(f5,i) = L(f, (i4+p <P
f) —"len f).
Let p be a point of S% and let f be a circular s.c.c. finite sequence of elements
of £2. One can check that fX is s.c.c..
Let p be a point of 5% and let f be a non constant standard special circular
sequence. Observe that f(pD is unfolded.
Next we state three propositions:
(32) Ifperngfandl<iandi<p«pf, then L(f, i) =L(f5,(i+]lenf) '
pPf)
(33) L(f&) = L(f).
(34) Let G be a Go-board. Then f is a sequence which elements belong to G
if and only if f% is a sequence which elements belong to G.

ROTATING AND REVERSING

Let p be a point of 5% and let f be a standard non empty circular finite
sequence of elements of 5%. One can verify that f5 is standard.
One can prove the following three propositions:

(35) Let f be anon constant standard special circular sequence and given p, k.
Ifperng fand1<kandk < p <P f, then leftcell(f, k) = leftcell(f5, (k+
len f) =" p <P f).

(36) For every non constant standard special circular sequence f holds
LeftComp(%) = LeftComp(f).

(37) For every non constant standard special circular sequence f holds
RightComp(f%) = RightComp(f).

7. THE ORIENTATION

Let p be a point of 5% and let f be a clockwise oriented non constant standard
special circular sequence. One can verify that fg is clockwise oriented.
One can prove the following proposition

(38) Let f be a non constant standard special circular sequence. Then f is
clockwise oriented or Rev(f) is clockwise oriented.

REFERENCES

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Jézef Biatas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[6] Czestaw Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529-536, 1990.
[6] Czestaw Byliniski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.
[7] Czestaw Byliniski. Some properties of restrictions of finite sequences. Formalized Mathe-
matics, 5(2):241-245, 1996.
[8] Czestaw Bylifiski and Piotr Rudnicki. Bounding boxes for compact sets in £2. Formalized
Mathematics, 6(3):427-440, 1997.
[9] Agata Darmochwal. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[10] Agata Darmochwal. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[11] Agata Darmochwal and Yatsuka Nakamura. The topological space E2. Arcs, line segments
and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.
[13] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics,
2(4):475-480, 1991.
[14] Jarostaw Kotowicz. Functions and finite sequences of real numbers. Formalized Mathe-
matics, 3(2):275-278, 1992.
[15] Jarostaw Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized
Mathematics, 3(1):107-115, 1992.

20

[16]
[17]
[18]
[19]
[20]

[21]
[22]

23]
24]
25]
26]
27]
28]

[29]
[30]

ANDRZEJ TRYBULEC

Jarostaw Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I1. Formalized
Mathematics, 3(1):117-121, 1992.

Yatsuka Nakamura and Adam Grabowski. Bounding boxes for special sequences in £2.
Formalized Mathematics, 7(1):115-121, 1998.

Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized
Mathematics, 5(3):323-328, 1996.

Yatsuka Nakamura, Andrzej Trybulec, and Czestaw Bylifiski. Bounded domains and
unbounded domains. Formalized Mathematics, 8(1):1-13, 1999.

Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83-86, 1993.

Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223-230, 1990.

Jan Popiotek. Some properties of functions modul and signum. Formalized Mathematics,
1(2):263-264, 1990.

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.
Andrzej Trybulec. Left and right component of the complement of a special closed curve.

Formalized Mathematics, 5(4):465-468, 1996.

Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics,
5(3):317-322, 1996.

Andrzej Trybulec and Yatsuka Nakamura. On the order on a special polygon. Formalized
Mathematics, 6(4):541-548, 1997.

Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579,

1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Mirostaw Wysocki and Agata Darmochwal. Subsets of topological spaces. Formalized
Mathematics, 1(1):231-237, 1990.

Received January 21, 1999

FORMALIZED MATHEMATICS
Volume 8, Number 1, 1999
University of Bialystok

On the Components of the Complement of a
Special Polygonal Curve

Andrzej Trybulec! Yatsuka Nakamura
University of Bialystok Shinshu University
Nagano

Summary. By the special polygonal curve we meana simple closed curve,
that is a polygone and moreover has edges parallel to axes. We continue the
formalization of the Takeuti-Nakamura proof [21] of the Jordan curve theorem. In
the paper we prove that the complement of the special polygonal curve consists of
at least two components. With the theorem which has at most two components
we completed the theorem that a special polygonal curve cuts the plane into
exactly two components.

MML Identifier: SPRECT_4.

The articles [22], [29], [1], [11], [3], [2], [27], [28], [19], [12], [20], [30], [7], [8], [9],
[16], [4], [24], [13], [14], [15], [5], [18], [23], [17], [6], [10], [26], and [25] provide
the terminology and notation for this paper.
In this paper j denotes a natural number.
One can prove the following propositions:
(1) Let f be a S-sequence in R? and @ be a non empty compact subset of 5%.
If £(f) meets Q and 71 f ¢ Q, then L(| f, FPoint(L(f), 71 f, Men 1 £, Q)) N
Q@ = {FPoint(L(f), m1.f, Men ¢ f, Q) }-
(2) Let f be a finite sequence of elements of é:% and p be a point of £2. If f
is a special sequence and p = e £ f, then L(] p, f) = {p}.
(3) Let f be a finite sequence of elements of €% and p be a point of E4. If f
is a special sequence and p € E(f)7 then Z(J p, f) C Z(f)
(4) Let f be a S-sequence in R?, p be a point of 8%, and given 7. If 1 < j and
j <len f and p € L(mid(f,j,len f)), then LE 7; f, p, L(f), 71.f, Tien /-

The work had been done when the first author visited Nagano in fall of 1998.

@ 1999 University of Bialystok
21 ISSN 1426-2630

22

ANDRZEJ TRYBULEC AND YATSUKA NAKAMURA

(5) Let f be a S-sequence in R?, p, ¢ be points of €2, and given j. If 1 < j
and j < len f and p € L(f,j) and ¢ € L(p,mj41f), then LE p, ¢, E(f),
1S, Ten ff

(6) Let f be a S-sequence in R? and @ be a non empty com-
pact subset of &%. If Z(f) meets @ and mensf ¢ @, then

L(] LPoint(L(f), m1.f, Men s f, Q), f) N Q = {LPoint(L(f), T1.f, Mien 1 f, Q) }-
(7) For every non constant standard special circular sequence f holds

LeftComp(f) # RightComp(f).

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41-46, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107-114, 1990.

[3] Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—

65, 1990.

[4] Czestaw Byliniski. Some properties of restrictions of finite sequences. Formalized Mathe-

matics, 5(2):241-245, 1996.

[6] Czestaw Bylinski and Yatsuka Nakamura. Special polygons. Formalized Mathematics,

5(2):247-252, 1996.

6] Czestaw Bylifiski and Piotr Rudnicki. Bounding boxes for compact sets in £2. Formalized
[y g P

Mathematics, 6(3):427-440, 1997.

[7] Agata Darmochwal. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[8] Agata Darmochwal. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[9] Agata Darmochwal and Yatsuka Nakamura. The topological space E2. Arcs, line segments

and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.

[10] Adam Grabowski and Yatsuka Nakamura. The ordering of points on a curve. Part II.

Formalized Mathematics, 6(4):467-473, 1997.

[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35-40, 1990.

[12] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics,

2(4):475-480, 1991.

[13] Jarostaw Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized

Mathematics, 3(1):107-115, 1992.

[14] Jarostaw Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part II. Formalized

Mathematics, 3(1):117-121, 1992.

[15] Yatsuka Nakamura and Czestaw Bylinski. Extremal properties of vertices on special

polygons. Part I. Formalized Mathematics, 5(1):97-102, 1996.

[16] Yatsuka Nakamura and Jarostaw Kotowicz. Connectedness conditions using polygonal

arcs. Formalized Mathematics, 3(1):101-106, 1992.

[17] Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. For-

malized Mathematics, 6(2):255-263, 1997.

[18] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized

Mathematics, 5(3):323-328, 1996.

[19] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,

4(1):83-86, 1993.

[20] Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223-230, 1990.

[21] Yukio Takeuchi and Yatsuka Nakamura. On the Jordan curve theorem. Technical Report

19804, Dept. of Information Eng., Shinshu University, 500 Wakasato, Nagano city, Japan,
April 1980.

[22] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.

ON THE COMPONENTS OF THE COMPLEMENT OF A ...

Andrzej Trybulec. Left and right component of the complement of a special closed curve.
Formalized Mathematics, 5(4):465-468, 1996.

Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics,
5(3):317-322, 1996.

Andrzej Trybulec and Yatsuka Nakamura. On the order on a special polygon. Formalized
Mathematics, 6(4):541-548, 1997.

Andrzej Trybulec and Yatsuka Nakamura. On the rectangular finite sequences of the
points of the plane. Formalized Mathematics, 6(4):531-539, 1997.

Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579,
1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17-23, 1990.

Mirostaw Wysocki and Agata Darmochwal. Subsets of topological spaces. Formalized
Mathematics, 1(1):231-237, 1990.

Received January 21, 1999

23

24

ANDRZEJ TRYBULEC AND YATSUKA NAKAMURA

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Bialystok

Gauges

Czestaw Bylinski
University of Bialystok

MML Identifier: JORDANS.

The papers [20]7 [5]7 [23]7 [22]7 [10]7 [1]7 [17]7 [19]7 [24]7 [4]7 [2]7 [3]7 [21]7 [12]7 [11]7
(18], [7], [8], [9], [13], [14], [15], [6], and [16] provide the terminology and notation
for this paper.
We follow the rules: 4, iy, io, j, j1, j2, k, m, n are natural numbers, D is a
non empty set, and f is a finite sequence of elements of D.
We now state two propositions:
(1) Iflen f > 2, then f[2 = (w1 f,maf).
(2) Ifk+1<lenf, then f[(k+1)=(flk) " (mp+1f).
In the sequel f denotes a finite sequence of elements of 5%, G denotes a
Go-board, and p denotes a point of 5%.
The following propositions are true:
(3) E(the carrier of £2) 18 @ sequence which elements belong to G.
(4) If f is a sequence which elements belong to G, then f|m is a sequence
which elements belong to G.
(5) If f is a sequence which elements belong to G, then f|,, is a sequence
which elements belong to G.
(6) Suppose 1 < k and k+ 1 < len f and f is a sequence which elements
belong to G. Then there exist natural numbers i1, ji, 72, jo such that
(i) (i1, j1) € the indices of G,
(ii) mef = Gihjl?
(iii) (d2, j2) € the indices of G,
(IV) 7Tk+1f = Giz,jga and
(V) i1 =13 and j1+1=jyori;+1=1i9 and j; = jy or i1 =12 + 1 and
j1 = jo or i1 = i and j; = jo + 1.
(7) Let f be a non empty finite sequence of elements of 5%. Suppose f is a
sequence which elements belong to G. Then f is standard and special.

@ 1999 University of Bialystok
25 ISSN 1426-2630

26 CZESEAW BYLINSKI

(8) Let f be anon empty finite sequence of elements of £%. Suppose len f > 2
and f is a sequence which elements belong to G. Then f is non constant.

(9) Let f be a non empty finite sequence of elements of £2. Suppose that
(i) f is a sequence which elements belong to G,
(ii) there exist ¢, j such that (i, j) € the indices of G and p = G, ;, and
(iii) for all iy, j1, 72, jo such that (i1, 71) € the indices of G and (i2, j2) € the
indices of G and Wlenff = Gil,jl and p = GZ‘QJQ holds |’i2—i1‘+‘j2—j1| =1.
Then f ™ (p) is a sequence which elements belong to G.
(10) If i+ k < lenG and 1 < j and j < widthG and cell(G,1,j) meets
cell(G,i+ k,j), then k < 1.
(11) For every non empty compact subset C' of €2 holds C is vertical iff
E-bound C < W-bound C.

(12) For every non empty compact subset C' of £2 holds C is horizontal iff
N-bound C' < S-bound C.

Let C be a non empty subset of £2 and let n be a natural number. The func-
tor Gauge(C,n) yielding a matrix over £2 is defined by the conditions (Def. 1).
(Def. 1)(i) len Gauge(C,n) = 2"+ 3,
(ii) len Gauge(C,n) = width Gauge(C,n), and
(iii) for all i, j such that (i, j) € the indices of Gauge(C,n) holds

(Gauge(C,n)); ; = [W-bound C + Ebownd CoW=bound € . (j _9) 'S hound C'+
N-bound C2ZS-b0undC . (] . 2)]

Let C' be a compact non empty subset of 5% and let n be a natural number.
Note that Gauge(C,n) is non trivial line X-constant and column Y-constant.
In the sequel C is a compact non vertical non horizontal non empty subset
of 2.
Let us consider C, n. Observe that Gauge(C,n) is line Y-increasing and
column X-increasing.
The following propositions are true:
(13) len Gauge(C,n) > 4.
(14) If 1 < j and j < lenGauge(C,n), then ((Gauge(C,n))2)1 =
W-bound C.
(15) If1 < jandj <lenGauge(C,n), then ((Gauge(C,n))ien Gauge(Cn)—1,j)1 =
E-bound C.
(16) If 1 <i and i < len Gauge(C,n), then ((Gauge(C,n));2)2 = S-bound C.
(17) If1 <iandi < len Gauge(C,n), then ((Gauge(C,n)); jen Gauge(C,n)—'1)2 =
N-bound C.
(18) Ifi < len Gauge(C, n), then cell(Gauge(C, n), i,len Gauge(C,n))NC = .
(19) If j < len Gauge(C,n), then cell(Gauge(C,n),len Gauge(C,n),j) N C =
0.
(20) If ¢ < len Gauge(C,n), then cell(Gauge(C,n),i,0) N C = 0.

GAUGES

(21) If j < len Gauge(C,n), then cell(Gauge(C,n),0,5) N C = 0.

REFERENCES

Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

Grzegorz Bancerek. Countable sets and Hessenberg’s theorem. Formalized Mathematics,
2(1):65-69, 1991.

Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

Czestaw Byliniski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

Czestaw Bylifiski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53,
1990.

Czestaw Bylinski and Piotr Rudnicki. Bounding boxes for compact sets in £2. Formalized
Mathematics, 6(3):427-440, 1997.

Agata Darmochwal. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
Agata Darmochwal. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
Agata Darmochwal and Yatsuka Nakamura. The topological space £2. Arcs, line segments
and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.

Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.

Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics,
2(4):475-480, 1991.

Jarostaw Kotowicz. Functions and finite sequences of real numbers. Formalized Mathe-
matics, 3(2):275-278, 1992.

Jarostaw Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized
Mathematics, 3(1):107-115, 1992.

Jarostaw Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I1. Formalized
Mathematics, 3(1):117-121, 1992.

Yatsuka Nakamura and Czestaw Bylinski. Extremal properties of vertices on special
polygons. Part I. Formalized Mathematics, 5(1):97-102, 1996.

Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized
Mathematics, 5(3):323-328, 1996.

Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83-86, 1993.

Beata Padlewska and Agata Darmochwat. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223-230, 1990.

Jan Popiotek. Some properties of functions modul and signum. Formalized Mathematics,
1(2):263-264, 1990.

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
1990.

Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579,
1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17-23, 1990.

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Received January 22, 1999

27

28

CZESLAW BYLINSKI

FORMALIZED MATHEMATICS
Volume 8, Number 1, 1999
University of Bialystok

The Ring of Integers, Euclidean Rings and
Modulo Integers

Christoph Schwarzweller
University of Tiibingen

Summary. In this article we introduce the ring of Integers, Euclidean
rings and Integers modulo p. In particular we prove that the Ring of Integers is
an Euclidean ring and that the Integers modulo p constitutes a field if and only
if p is a prime.

MML Identifier: INT_3.

The notation and terminology used here are introduced in the following papers:
[16], [21], [20], [17], [22], [4], [5], [14], [10], [12], [13], [3], [8], [7], [15], [18], [2], [6],
[11], [9], [1], and [19].

1. THE RING OF INTEGERS

The binary operation multint on Z is defined as follows:
(Def. 1) For all elements a, b of Z holds (multint)(a, b) = ‘r(a, b).
The unary operation compint on Z is defined as follows:
(Def. 2) For every element a of Z holds (compint)(a) = —gr(a).
The double loop structure INT.Ring is defined by:
(Def. 3) INT.Ring = (Z, 4z, multint, 1(€ Z),0(€ Z)).

Let us mention that INT.Ring is strict and non empty.

Let us mention that INT.Ring is Abelian add-associative right zeroed ri-
ght complementable well unital distributive commutative associative integral
domain-like and non degenerated.

Let a, b be elements of the carrier of INT.Ring. The predicate a < b is
defined by:

@ 1999 University of Bialystok
29 ISSN 1426-2630

30 CHRISTOPH SCHWARZWELLER

(Def. 4) There exist integers a’, b’ such that @’ = a and b’ = b and o’ < ¥'.

Let us notice that the predicate a < b is reflexive and connected. We introduce
b > a as a synonym of a < b. We introduce b < a and a > b as antonyms of
a<b.

Let a be an element of the carrier of INT.Ring. The functor |a| yields an
element of the carrier of INT.Ring and is defined as follows:

a, if a > OINT Rin
Def. = ’ -
(Def. 5) a| { —a, otherwise.

The function absint from the carrier of INT.Ring into N is defined as follows:

(Def. 6) For every element a of the carrier of INT.Ring holds (absint)(a) =
0[r(a).
One can prove the following two propositions:
(1) For every element a of the carrier of INT.Ring holds (absint)(a) = |a|.
(2) Let a, b, q1, g2, 71, T2 be elements of the carrier of INT.Ring. Suppose
b 75 OINT.Ring and a = ¢q1 - b+ r; and OINTARing < rpand rp < |b| and
a=q2-b+ 72 and OINTRing < 72 and rg < |b]. Then ¢; = g2 and r1 = 5.
Let a, b be elements of the carrier of INT.Ring. Let us assume that b #
OINT.Ring- The functor a < b yields an element of the carrier of INT.Ring and is
defined by:
(Def. 7) There exists an element r of the carrier of INT.Ring such that a =
(a+Db)-b+r and OiNT.Ring < 7 and r < |b|.
Let a, b be elements of the carrier of INT.Ring. Let us assume that b #

OINT.Ring- The functor a mod b yields an element of the carrier of INT.Ring and
is defined as follows:

(Def. 8) There exists an element ¢ of the carrier of INT.Ring such that a =
q- b+ (amodb) and OiNT Ring < a mod b and a mod b < |b|.
Next we state the proposition

(3) For all elements a, b of the carrier of INT.Ring such that b # OiNT Ring
holds a = (a + b) - b+ (a mod b).

2. EUCLIDEAN RINGS

Let I be a non empty double loop structure. We say that I is Euclidian if
and only if the condition (Def. 9) is satisfied.

(Def. 9) There exists a function f from the carrier of I into N such that for all
elements a, b of the carrier of I if b # 07, then there exist elements ¢, r of
the carrier of I such that a = ¢- b+ but r =07 or f(r) < f(b).

THE RING OF INTEGERS, EUCLIDEAN RINGS AND ... 31

One can check that INT.Ring is Euclidian.

Let us observe that there exists a ring which is strict, Euclidian, integral
domain-like, non degenerated, well unital, and distributive.

A EuclidianRing is a Euclidian integral domain-like non degenerated well
unital distributive ring.

Let us mention that there exists a EuclidianRing which is strict.

Let E be a Euclidian non empty double loop structure. A function from the
carrier of F into N is said to be a DegreeFunction of F if it satisfies the condition
(Def. 10).

(Def. 10) Let a, b be elements of the carrier of E. Suppose b # 0g. Then there
exist elements ¢, r of the carrier of F such that a = ¢-b+r but r = 0g
or it(r) < it(b).

Next we state the proposition

(4) Every EuclidianRing is a gcdDomain.

Let us note that every integral domain-like non degenerated Abelian add-
associative right zeroed right complementable associative commutative right
unital right-distributive non empty double loop structure which is Euclidian is
also ged-like.

absint is a DegreeFunction of INT.Ring.

One can prove the following proposition

(5) Every commutative associative left unital field-like right zeroed non
empty double loop structure is Euclidian.

Let us observe that every non empty double loop structure which is com-
mutative, associative, left unital, field-like, right zeroed, and field-like is also
Euclidian.

One can prove the following proposition

(6) Let F be a commutative associative left unital field-like right zeroed non
empty double loop structure. Then every function from the carrier of F
into N is a DegreeFunction of F'.

3. SOME THEOREMS ABOUT DI1v AND MOD

The following propositions are true:
(7) Let n be a natural number. Suppose n > 0. Let a be an integer and a’ be
a natural number. If a’ = a, then a +n = a’ = n and a mod n = @’ mod n.
(8) For every natural number n such that n > 0 and for all integers a, k
holds (a +n-k)+n=(a+n)+k and (a+n-k)modn = amodn.
(9) For every natural number n such that n > 0 and for every integer a
holds a modn > 0 and a mod n < n.

32 CHRISTOPH SCHWARZWELLER

(10) Let n be a natural number. Suppose n > 0. Let a be an integer. Then
(i) if0<aanda<n,then amodn = a, and
(i) if 0> a and a > —n, then amod n =n + a.
(11) For every natural number n such that n > 0 and for every integer a
holds amod n = 0 iff n | a.
(12) For every natural number n such that n > 0 and for all integers a, b
holds a mod n = bmod n iff a = b(mod n).
(13) For every natural number n such that n > 0 and for every integer a
holds @ mod n mod n = a mod n.
(14) For every natural number n such that n > 0 and for all integers a, b
holds (a + b) mod n = ((@ mod n) + (b mod n)) mod n.
(15) For every natural number n such that n > 0 and for all integers a, b
holds a - bmod n = (a mod n) - (b mod n) mod n.

(16) For all integers a, b there exist integers s, ¢ such that agedb = s-a+1¢-b.

4. MoDULO INTEGERS

Let n be a natural number. Let us assume that n > 0. The functor multint n
yielding a binary operation on Z, is defined as follows:
(Def. 11) For all elements k, [of Z,, holds (multintn)(k, {) = k -l mod n.
Let n be a natural number. Let us assume that n > 0. The functor compint n
yielding a unary operation on Z, is defined by:
(Def. 12) For every element k of Z,, holds (compintn)(k) = (n — k) mod n.
Next we state three propositions:
(17) Let n be a natural number. Suppose n > 0. Let a, b be elements of Z,,.
Then
(i) a+b<niff +,(a, b) =a+b, and
(i) a+b>=niff +,(a, b) = (a+b) —n.
(18) Let n be a natural number. Suppose n > 0. Let a, b be elements of Z,
and k be a natural number. Then k-n <a-band a-b < (k+1)-nif and
only if (multintn)(a, b) =a-b— k- n.
(19) Let n be a natural number. Suppose n > 0. Let a be an element of Z,.
Then
(i) a=0iff (compintn)(a) =0, and
(i) a # 0 iff (compintn)(a) =n — a.
Let n be a natural number. The functor INT.Ringn yields a double loop
structure and is defined by:

(Def. 13) INT.Ringn = (Zy, +n, multint n, 1(€ Z,), 0(€ Z,)).

THE RING OF INTEGERS, EUCLIDEAN RINGS AND ... 33

Let n be a natural number. Observe that INT.Ring n is strict and non empty.
We now state the proposition

(20) INT.Ring1 is degenerated and INT.Ring1 is a ring and INT.Ring1 is
field-like, well unital, and distributive.

Let us note that there exists a ring which is strict, degenerated, well unital,
distributive, and field-like.
One can prove the following propositions:

(21) For every natural number n such that n > 1 holds INT.Ringn is non
degenerated and INT.Ringn is a well unital distributive ring.

(22) Let p be a natural number. Suppose p > 1. Then INT.Ringp is an
add-associative right zeroed right complementable Abelian commutative
associative left unital distributive field-like non degenerated non empty
double loop structure if and only if p is a prime number.

Let p be a prime number. Observe that INT.Ring p is add-associative ri-
ght zeroed right complementable Abelian commutative associative left unital
distributive field-like and non degenerated.

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

[2] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485-492, 1996.

[3] Czestaw Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.

[4] Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

[5] Czestaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,

1990.
[6] Marek Chmur. The lattice of natural numbers and the sublattice of it. The set of prime

numbers. Formalized Mathematics, 2(4):453-459, 1991.
[7] Agata Darmochwal. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.
[9] Krzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics, 1(2):321-328,

1990.
[10] Eugeniusz Kusak, Wojciech Leoniczuk, and Michal Muzalewski. Abelian groups, fields

and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.

[11] Rafal Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes.
Formalized Mathematics, 1(5):829-832, 1990.

[12] Michal Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring.
Formalized Mathematics, 2(1):3-11, 1991.

[13] Henryk Oryszczyszyn and Krzysztof Prazmowski. Real functions spaces. Formalized
Mathematics, 1(3):555-561, 1990.

[14] Christoph Schwarzweller. The correctness of the generic algorithms of Brown and Hen-
rici concerning addition and multiplication in fraction fields. Formalized Mathematics,
6(3):381-388, 1997.

[15] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathe-
matics, 2(5):623-627, 1991.

[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.
[17] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97-105, 1990.

34 CHRISTOPH SCHWARZWELLER

] Michat J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

| Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.

[20] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296,
]
]

1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Received February 4, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Bialystok

Logic Gates and Logical Equivalence of
Adders

Yatsuka Nakamura
Shinshu University
Nagano

Summary. This is an experimental article which shows that logical cor-
rectness of logic circuits can be easily proven by the Mizar system. First, we
define the notion of logic gates. Then we prove that an MSB carry of '4 Bit
Carry Skip Adder’ is equivalent to an MSB carry of a normal 4 bit adder. In the
last theorem, we show that outputs of the '4 Bit Carry Look Ahead Adder’ are
equivalent to the corresponding outputs of the normal 4 bits adder. The policy
here is as follows: when the functional (semantic) correctness of a system is al-
ready proven, and the correspondence of the system to a (normal) logic circuit
is given, it is enough to prove the correctness of the new circuit if we only prove
the logical equivalence between them. Although the article is very fundamental
(it contains few environment files), it can be applied to real problems. The key
of the method introduced here is to put the specification of the logic circuit into
the Mizar propositional formulae, and to use the strong inference ability of the
Mizar checker. The proof is done formally so that the automation of the proof
writing is possible. Even in the 5.3.07 version of Mizar, it can handle a formulae
of more than 100 lines, and a formula which contains more than 100 variables.
This means that the Mizar system is enough to prove logical correctness of middle
scaled logic circuits.

MML Identifier: GATE_1.

The articles [2] and [1] provide the terminology and notation for this paper.

1. DEFINITION OF LOGICAL VALUES AND LOGIC GATES

Let a be a set. We introduce NE a as an antonym of a is empty.
We now state three propositions:

@ 1999 University of Bialystok
35 ISSN 1426-2630

36 YATSUKA NAKAMURA

(1) For every set a such that a = {(} holds NE a.
(2) There exists a set a such that NE a.
(3) NE 0 iff contradiction.
let a be a set. The functor NOT1 a yielding a set is defined by:
(), if NE a,
{0}, otherwise.
The following proposition is true

(4) For every set a holds NE NOT1a iff not NE a.

In the sequel a, b are sets.

(Def. 1) NOTla = {

We now state the proposition
(5) NE NOT1.
Let a, b be sets. The functor AND2(a,b) yields a set and is defined by:

NOT10, if NE a and NE b,

(Def. 2) - AND2(a,b) = { (), otherwise.
Next we state the proposition
(6) For all sets a, b holds NE AND2(a, b) iff NE a and NE b.
Let a, b be sets. The functor OR2(a, b) yielding a set is defined as follows:

NOT10, if NE a or NE b,

(Def. 3) OR2(a,b) = { (), otherwise.
Next we state the proposition
(7) For all sets a, b holds NE OR2(a,b) iff NE a or NE b.
Let a, b be sets. The functor XOR2(a, b) yields a set and is defined by:

NOT10, if NE a and not NE b or not NE a and NE b,

Def. 4) XOR2 =
(Def. 4) - XOR2(a, b) { (), otherwise.
The following four propositions are true:

(8) For all sets a, b holds NE XOR2(a,b) iff NE a and not NE b or not NE
a and NE b.

(9) NE XOR2(a,a) iff contradiction.
(10) NE XOR2(a,0) iff NE a.
(11) NE XOR2(a,b) iff NE XOR2(b,).

Let a, b be sets. The functor EQV2(a, b) yielding a set is defined by:

NOT10, if NE a iff NE b,
(), otherwise.

(Def. 5) EQV2(a,b) = {

We now state two propositions:
(12) For all sets a, b holds NE EQV2(a,b) iff NE a iff NE b.
(13) NE EQV2(a,b) iff not NE XOR2(a, b).
Let a, b be sets. The functor NAND2(a, b) yielding a set is defined by:

LOGIC GATES AND LOGICAL EQUIVALENCE OF ADDERS 37

(Def. 6) NAND2(a,b) — { NOT10, i.f not NE a or not NE b,
(), otherwise.
One can prove the following proposition
(14) For all sets a, b holds NE NAND2(a, b) iff not NE a or not NE b.
Let a, b be sets. The functor NOR2(a, b) yielding a set is defined as follows:

NOT10, if not NE a and not NE b,

(Def. 7) NOR2(a,b) = { 0. otherwise.
We now state the proposition

(15) For all sets a, b holds NE NOR2(a, b) iff not NE a and not NE b.
Let a, b, ¢ be sets. The functor AND3(a, b, ¢) yields a set and is defined by:

(Def. 8) AND3(a, b, c) = { NOT1 0, i'f NE a and NE b and NE ¢,
(), otherwise.
One can prove the following proposition
(16) For all sets a, b, ¢ holds NE AND3(a, b, c¢) iff NE a and NE b and NE c.
Let a, b, ¢ be sets. The functor OR3(a, b, ¢) yielding a set is defined by:

NOT10, if NE a or NE b or NE ¢,
(), otherwise.

(Def. 9) OR3(a,b,c) = {
One can prove the following proposition
(17) For all sets a, b, ¢ holds NE OR3(a, b, ¢) iff NE a or NE b or NE c.
Let a, b, ¢ be sets. The functor XOR3(a, b, ¢) yielding a set is defined by:

NOT10, if NE a and not NE b or not NE a and NE
b but not NE ¢ or not NE a or not NE b but not
NE a or not NE b and NE c,

(), otherwise.

(Def. 10) XOR3(a, b, c) =

We now state the proposition
(18) Let a, b, ¢ be sets. Then NE XOR3(a, b, c) if and only if one of the
following conditions is satisfied:
(i) NE a and not NE b or not NE a and NE b but not NE ¢, or
(i) not NE a or not NE b but not NE a or not NE b and NE c.
Let a, b, ¢ be sets. The functor MAJ3(a, b, ¢) yields a set and is defined as
follows:
NOT1(, if NE a and NE b or NE b and NE ¢ or NE
(Def. 11) MAJ3(a,b,c) = c and NE a,
(), otherwise.
The following proposition is true
(19) For all sets a, b, ¢ holds NE MAJ3(a,b,c) iff NE a and NE b or NE b
and NE c or NE ¢ and NE a.

Let a, b, ¢ be sets. The functor NAND3(a, b, ¢) yielding a set is defined by:

38 YATSUKA NAKAMURA

(Def. 12) NAND3(a, b, c) = { NOT10, i.f not NE a or not NE b or not NE ¢,
Y (0, otherwise.
The following proposition is true
(20) For all sets a, b, ¢ holds NE NAND3(a, b, ¢) iff not NE a or not NE b or
not NE c.
Let a, b, ¢ be sets. The functor NOR3(a, b,) yields a set and is defined by:

(Def. 13) NORS3(a, b, c) = { NOT10, i.f not NE a and not NE b and not NE ¢,
T (), otherwise.
We now state the proposition
(21) For all sets a, b, ¢ holds NE NOR3(a, b, ¢) iff not NE @ and not NE b and
not NE c.
Let a, b, ¢, d be sets. The functor AND4(a, b, ¢, d) yields a set and is defined
by:
(Def. 14) ANDA(a, b, ¢, d) — { NOT10, i.f NE a and NE b and NE ¢ and NE d,
T (), otherwise.
One can prove the following proposition
(22) For all sets a, b, ¢, d holds NE AND4(a,b,c,d) iff NE a and NE b and
NE ¢ and NE d.

Let a, b, ¢, d be sets. The functor OR4(a, b, ¢, d) yielding a set is defined as
follows:

(Def. 15) ORA(a, b, ¢, d) { NOT10, if NE a or NE b or NE ¢ or NE d,

(), otherwise.
The following proposition is true
(23) For all sets a, b, ¢, d holds NE OR4(a, b, c,d) iff NE a or NE b or NE ¢
or NE d.
Let a, b, ¢, d be sets. The functor NAND4(a, b, ¢, d) yielding a set is defined
by:
NOT10, if not NE a or not NE b or not NE ¢ or
(Def. 16) NANDA4(a,b,c,d) = { not NE d,
(), otherwise.
Next we state the proposition
(24) For all sets a, b, ¢, d holds NE NAND4(a, b, ¢,d) iff not NE a or not NE
b or not NE ¢ or not NE d.
Let a, b, ¢, d be sets. The functor NOR4(a, b, ¢, d) yielding a set is defined
by:
NOT10, if not NE a and not NE b and not NE
(Def. 17) NOR4(a, b, c,d) = ¢ and not NE d,
(0, otherwise.
The following proposition is true

LOGIC GATES AND LOGICAL EQUIVALENCE OF ADDERS 39

(25) For all sets a, b, ¢, d holds NE NOR4(a, b, ¢, d) iff not NE a and not NE
b and not NE ¢ and not NE d.

Let a, b, ¢, d, e be sets. The functor AND5(a, b, ¢, d, e) yielding a set is defined
as follows:

NOT1(, if NE a and NE b and NE ¢ and NE d

(Def. 18) AND5(a, b, c,d,e) = and NE e,

(0, otherwise.

Next we state the proposition
(26) For all sets a, b, ¢, d, e holds NE AND5(a, b, c,d,e) iff NE a and NE b
and NE ¢ and NE d and NE e.

Let a, b, ¢, d, e be sets. The functor OR5(a,b,c,d,e) yields a set and is
defined by:
(Def. 19) OR5(a,b, ¢, d, ¢) — { NOT10, 1'f NE a or NE b or NE c or NE d or NE e,
(), otherwise.

The following proposition is true

(27) For all sets a, b, ¢, d, e holds NE OR5(a,b,c,d,e) iff NE a or NE b or
NE c or NE d or NE e.

Let a, b, ¢, d, e be sets. The functor NAND5(a, b, ¢, d, e) yields a set and is
defined as follows:
NOT1(, if not NE a or not NE b or not NE ¢
(Def. 20) NAND5(a,b,c,d, e) = or not NE d or not NE e,
(), otherwise.
The following proposition is true
(28) For all sets a, b, ¢, d, e holds NE NANDb5(a, b, ¢, d,) iff not NE a or not
NE b or not NE ¢ or not NE d or not NE e.

Let a, b, ¢, d, e be sets. The functor NOR5(a, b, ¢, d, e) yielding a set is defined
as follows:
NOT1(, if not NE a and not NE b and not NE ¢
(Def. 21) NORb5(a, b, c,d,e) = and not NE d and not NE e,

(0, otherwise.

We now state the proposition

(29) For all sets a, b, ¢, d, e holds NE NOR5(a, b, ¢, d,) iff not NE a and not
NE b and not NE ¢ and not NE d and not NE e.

Let a, b, ¢, d, e, f be sets. The functor ANDG6(a, b, ¢, d, e, f) yielding a set is
defined by:

NOT10, if NE a and NE b and NE ¢ and NE d
(Def. 22) ANDG6(a,b,c,d,e,) = and NE e and NE f,
(), otherwise.

Next we state the proposition

40 YATSUKA NAKAMURA

(30) Let a, b, ¢, d, e, f be sets. Then NE ANDG6(a, b, ¢,d, e, f) if and only if
the following conditions are satisfied:

(i) NEa,
(i) NEb,
(i) NE ¢,
(iv) NEd,
(v) NE e, and
(vi) NE f.

Let a, b, ¢, d, e, f be sets. The functor OR6(a, b, ¢, d, e, f) yielding a set is
defined by:
NOT10, if NE a or NE b or NE ¢ or NE d or
(Def. 23) OR6(a,b,c,d,e, f) = NE e or NE f,
(), otherwise.
The following proposition is true
(31) Leta,b,c, d, e, fbesets. Then NE OR6(a, b, ¢, d, e, f) if and only if one
of the following conditions is satisfied:

(i) NE a, or
(il) NE b, or
(iii) NE ¢, or
(iv) NE d, or
(v) NE e, or
(vi) NE f.

Let a, b, ¢, d, e, f be sets. The functor NANDG6(a, b, ¢, d, e, f) yields a set
and is defined by:
NOT10, if not NE a or not NE b or not NE
(Def. 24) NANDG6(a,b,c,d, e, f) = c or not NE d or not NE e or not NE f,
(), otherwise.
The following proposition is true

(32) Leta,b,c, d,e, fbesets. Then NE NANDG6(a, b, ¢, d, e, f) if and only if

one of the following conditions is satisfied:

(i) not NE a, or
(il) not NE b, or
(iii) not NE ¢, or
(iv) not NE d, or
(v) not NE e, or

(vi) not NE f.
Let a, b, ¢, d, e, f be sets. The functor NOR6(a, b, ¢, d, e, f) yields a set and

is defined as follows:
NOT10, if not NE a and not NE b and not NE

(Def. 25) NORG6(a, b, c,d,e, f) = ¢ and not NE d and not NE e and not NE f,

(), otherwise.

LOGIC GATES AND LOGICAL EQUIVALENCE OF ADDERS 41

One can prove the following proposition

(33) Let a, b, ¢, d, e, f be sets. Then NE NOR6(a, b, ¢, d, e, f) if and only if
the following conditions are satisfied:

(i) not NE a,
(i) not NE b,
(iii) not NE ¢,
(iv) not NE d,
(v) not NE e, and

(vi) not NE f.
Let a, b, ¢, d, e, f, g be sets. The functor AND7(a, b, c,d, e, f,g) yields a set
and is defined by:
NOT10, if NE a and NE b and NE ¢ and
(Def. 26) AND7(a,b,c,d,e, f,g) = NE d and NE e and NE f and NE g,
(), otherwise.
Next we state the proposition
(34) Leta,b, c d, e, f, gbesets. Then NE AND7(a,b,c,d, e, f,g) if and only
if the following conditions are satisfied:
NE a and NE b and NE ¢ and NE d and NE e and NE f and NE g¢.
Let a, b, ¢, d, e, f, g be sets. The functor OR7(a,b,c,d, e, f, g) yielding a set
is defined as follows:
NOT10, if NE a or NE b or NE ¢ or NE d or
(Def. 27) OR7(a,b,c,d,e, f,g) = NE e or NE f or NE g,
(0, otherwise.
Next we state the proposition
(35) Let a, b, ¢, d, e, f, g be sets. Then NE OR7(a, b, c,d,e, f,g) if and only
if one of the following conditions is satisfied:
NE a or NE bor NE cor NE d or NE e or NE f or NE g.
Let a, b, ¢, d, e, f, g be sets. The functor NAND7(a, b, c,d, e, f,g) yielding
a set is defined as follows:
NOT10, if not NE a or not NE b or
not NE ¢ or not NE d or not NE e or not
NE f or not NE g,
(), otherwise.

(Def. 28) NAND7(a,b,c,d,e, f,g9) =

One can prove the following proposition
(36) Let a, b, ¢, d, e, f, g be sets. Then NE NAND7(a, b, c,d, e, f,g) if and
only if one of the following conditions is satisfied:
not NE a or not NE b or not NE ¢ or not NE d or not NE e or not NE f
or not NE g.

Let a, b, ¢, d, e, f, g be sets. The functor NOR7(a,b,c,d, e, f, g) yielding a
set is defined as follows:

42 YATSUKA NAKAMURA

NOT10, if not NE a and not NE b and
not NE ¢ and not NE d and not NE e and
not NE f and not NE g,

(), otherwise.

(Def. 29) NORT(a,b,c,d,e, f,g) =

Next we state the proposition

(37) Leta,b, c d, e, f, gbesets. Then NE NORT7(a,b,c,d, e, f,g) if and only
if the following conditions are satisfied:
not NE a and not NE b and not NE ¢ and not NE d and not NE e and
not NE f and not NE g.
Let a, b, ¢, d, e, f, g, h be sets. The functor ANDS8(a,b,c,d, e, f,g,h) yields

a set and is defined by:

NOT10, if NE @ and NE b and NE ¢ and
NE d and NE e and NE f and NE g and
NE h,

(0, otherwise.

(Def. 30) ANDS8(a,b,c,d,e, f,g,h) =

The following proposition is true
(38) Leta,b,c d, e f,g, hbesets. Then NE ANDS8(a, b, c,d,e, f, g, h) if and
only if the following conditions are satisfied:
NE a and NE b and NE ¢ and NE d and NE e and NE f and NE ¢ and
NE h.

Let a, b, ¢, d, e, f, g, h be sets. The functor OR8(a, b, c,d, e, f, g, h) yielding

a set is defined as follows:
NOT10, if NE a or NE b or NE ¢ or NE d

(Def. 31) ORS8(a,b,c,d,e, f,g,h) = or NE e or NE f or NE g or NE h,
(), otherwise.
One can prove the following proposition
(39) Leta, b, ¢, d, e, f, g, h be sets. Then NE ORS8(a, b, c,d, e, f, g, h) if and
only if one of the following conditions is satisfied:
NE a or NE b or NE c or NE d or NE e or NE f or NE g or NE h.

Let a, b, ¢, d, e, f, g, h be sets. The functor NANDS&(a, b, c,d, e, f,g,h)
yielding a set is defined as follows:

NOT1(, if not NE a or not NE b or
not NE ¢ or not NE d or not NE e or
not NE f or not NE g or not NE h,

(), otherwise.

(Def. 32) NANDS8(a,b,c,d, e, f,g,h) =

Next we state the proposition
(40) Let a, b, ¢, d, e, f, g, h be sets. Then NE NANDS(a, b, c,d, e, f,g,h) if
and only if one of the following conditions is satisfied:
not NE a or not NE b or not NE ¢ or not NE d or not NE e or not NE f
or not NE g or not NE h.

LOGIC GATES AND LOGICAL EQUIVALENCE OF ADDERS 43

Let a, b, ¢, d, e, f, g, h be sets. The functor NORS&(a, b, ¢, d, e, f, g, h) yielding
a set is defined as follows:
NOT10, if not NE a and not NE b and
not NE ¢ and not NE d and not NE e
(Def. 33) NORS8(a,b,c,d,e, f,g,h) = and not NE f and not NE g and not
NE h,
(), otherwise.
One can prove the following proposition
(41) Leta, b, ¢, d, e, f, g, h be sets. Then NE NORS8(a,b,¢,d, e, f, g, h) if and
only if the following conditions are satisfied:
not NE a and not NE b and not NE ¢ and not NE d and not NE e and
not NE f and not NE ¢ and not NE h.

2. LogicAL EQUIVALENCE OF 4 BITS ADDERS

We now state the proposition
(42) Let c1, 21, T2, 3, T4, Y1, Y2, Y3, Y4, C2, C3, C4, C5, N1, N2, N3, N4, N, Cg be
sets. Suppose that
NE ¢y iff NE MAJ3(z1,y1,¢1) and NE ¢3 iff NE MAJ3(x2,y2,c2) and
NE ¢4 iff NE MAJ3(z3,y3,c3) and NE ¢5 iff NE MAJ3(x4,y4,c4) and
NE ny iff NE OR2(z1,y1) and NE ng iff NE OR2(x2,y2) and NE ng
ifft NE OR2(z3,y3) and NE ny iff NE OR2(x4,y4) and NE n iff NE
ANDS5(eq,n1,n9,n3,n4) and NE ¢ iff NE OR2(c5,n). Then NE ¢5 if and
only if NE ¢g.
Let a, b be sets. The functor MODADD2(a, b) yields a set and is defined as
follows:
(Def. 34) MODADD2(a, b) = { NOT10, if NE a or NE b but NE a but NE b,
’ (), otherwise.
Next we state the proposition
(43) For all sets a, b holds NE MODADD2(a, b) iff NE a or NE b but NE a
but NE b.

Let a, b, ¢ be sets. The functor ADD1(a, b,) yields a set and is defined by:
(Def. 35) ADDI1(a,b,c) = XOR3(a,b,c).
Let a, b, ¢ be sets. The functor CARR1(a, b, ¢) yielding a set is defined by:
(Def. 36) CARRI1(a,b,c) = MAJ3(a,b,c).
Let a1, b1, ag, ba, ¢ be sets. The functor ADD2(aq, be, a1, b1, ¢) yielding a set
is defined as follows:

(Def. 37) ADDQ(QQ, bg, ai, bl, C) = XORB(GQ, bQ, CARRl(al, bl, C))

44 YATSUKA NAKAMURA

Let ay, b1, ag, ba, ¢ be sets. The functor CARR2(ag, be, a1, b1, ¢) yields a set
and is defined as follows:

(Def 38) CARRQ(CLQ, bg, aj, bl, C) == MAJ?)(CLQ, bg, CARRl(al, bl, C))
Let aq, by, ag, be, as, b3, ¢ be sets. The functor ADD3(as, b3, ag, ba, a1, by, c)
yields a set and is defined by:

(Def. 39) ADD3(CL3, b3, ag, b2, ay, bl, C) = XOR3(a3, b3, CARRQ(&Q, bg, ai, bl, C))

Let a1, by, ag, ba, as, bs, ¢ be sets. The functor CARR3(as, b3, ag, ba, a1, by, c)
yields a set and is defined as follows:

(Def. 40) CARR3(a3, bg, ag, b2, ai, bl, C) = MAJ3(a3, bg, CARR2(CL2, bz, ai, bl, C))

Let ay, b1, ao, bo, as, b3, ay, by, c be sets.

The functor ADD4(ay, by, as, b3, az, ba, a1, by, c) yielding a set is defined by:
(Def. 41) ADD4(CL4, b4, as, bg, ag, bz, ai, bl, C) =

XORB(CM, b4, CARRS(ag, bg, as, bg, ay, bl, C))
Let a1, b1, asg, bo, as, bs, a4, by, c be sets.
The functor CARR4(ay, by, as, b3, az, ba,a1,b1,c) yields a set and is defined
as follows:

(Def 42) CARR4(CL4, b4, as, bg, ag, b2, ai, bl, C) ==
MAJ3(ay4, by, CARR3(as, b3, az, b2, a1,by,c)).
One can prove the following proposition

(44) Let c1, w1, y1, T2, Y2, T3, Y3, T4, Y4, C4, q1, P1, 51, G2, P2, 52, 43, P3, 53, 4,
P4, S4, C7, C8, l2, tQ, l3, ms, t3, l4, my, N4, t4, l5, ms, N5, 05, S5, S, S7, S8 be
sets such that NE ¢; iff NE NOR2(z1, y1) and NE py iff NE NAND2(21, 1)
and NE s; iff NE MODADD2(z1,y1) and NE ¢o iff NE NOR2(z9,y2)
and NE po iff NE NAND2(z9,y2) and NE s iff NE MODADD2(z2, y2)
and NE g3 iff NE NOR2(z3,y3) and NE ps iff NE NAND2(z3,y3) and
NE s3 iff NE MODADD2(z3,y3) and NE ¢4 iff NE NOR2(z4,y4) and
NE p4 iff NE NAND2(z4,y4) and NE s4 iff NE MODADD2(z4,y4) and
NE c7 iff NE NOT1e¢; and NE ¢g iff NE NOT1e¢; and NE s5 iff NE
XOR2(cs, s1) and NE I3 iff NE AND2(c7, p1) and NE ¢9 iff NE NOR2(l2, ¢1)
and NE sg iff NE XOR2(t2, s2) and NE I3 iff NE AND2(q1,p2) and NE
ms iff NE AND3(p2,p1,c7) and NE t3 iff NE NOR3(l3,m3,q2) and NE
s7 iff NE XOR2(t3,s3) and NE Iy iff NE AND2(g2,p3) and NE my iff
NE AND3(q1,ps,p2) and NE ny4 iff NE AND4(p3, p2, p1,c¢7) and NE #4
iff NE NOR4(l4,m4,n4, Q3) and NE S8 iff NE XORQ(t4, 84) and NE l5 iff
NE AND2(g3,p4) and NE mg iff NE AND3(q2, ps, p3) and NE nj iff NE
AND4(q1,p4, p3,p2) and NE o5 ifft NE AND5(p4, p3, p2, p1,¢7) and NE ¢4
iff NE NOR5(q4, l5, m5,n5,05). Then

(1) NE S5 iff NE ADDl(.’El, yl,Cl),
(i) NE s¢ iff NE ADD2(z2,y2, 1,91, 1),
(iii) NE S7 iff NE ADD3($3, Y3, x2,Y2,T1, Y1, 61),

LOGIC GATES AND LOGICAL EQUIVALENCE OF ADDERS 45

(iv) NE sg iff NE ADD4(z4, y4, 3, Y3, T2, ¥2, T1, Y1, 1), and
(V) NE C4 iff NE CARR4($47y47$37y3a$27y2amlaylacl)‘

REFERENCES

[1] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[2] Zinaida Trybulec and Halina Swigczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17-23, 1990.

Received February 4, 1999

46

YATSUKA NAKAMURA

FORMALIZED MATHEMATICS
Volume 8, Number 1, 1999
University of Bialystok

The Sequential Closure Operator in
Sequential and Frechet Spaces

Barttomiej Skorulski
University of Bialtystok

MML Identifier: FRECHET2.

The articles [26], [30], [2], [21], [10], [3], [11], [29], [9], [31], [6], [7], [23], [8], [4],
[13], [1], [20], [19], [24], [18], [17], [14], [16], [5], [12], [22], [28], [15], [27], and [25]
provide the notation and terminology for this paper.

1. THE PROPERTIES OF SEQUENCES AND SUBSEQUENCES

Let T be a non empty 1-sorted structure, let f be a function from N into N,
and let S be a sequence of T. Then S - f is a sequence of T'.
One can prove the following two propositions:

(1) Let T be a non empty 1-sorted structure, S be a sequence of T', and N;
be an increasing sequence of naturals. Then S - N; is a sequence of T'.

(2) For every sequence R; of real numbers such that R; = idy holds R; is
an increasing sequence of naturals.

Let T be a non empty 1-sorted structure and let S be a sequence of T'. A
sequence of T is called a subsequence of §' if:

(Def. 1) There exists an increasing sequence N; of naturals such that it = 5 Nj.
The following two propositions are true:

(3) For every non empty 1-sorted structure 7' holds every sequence S of T
is a subsequence of S.

(4) For every non empty 1-sorted structure 7' and for every sequence S of T'
and for every subsequence Sy of S holds rng S; C rng S.

@ 1999 University of Bialystok
47 ISSN 1426-2630

48 BARTLOMIEJ SKORULSKI

Let T be a non empty 1-sorted structure, let N7 be an increasing sequence
of naturals, and let S be a sequence of T. Then S - N7 is a subsequence of S.
One can prove the following proposition

(5) Let T be a non empty 1-sorted structure, S; be a sequence of T', and So

be a subsequence of S7. Then every subsequence of S5 is a subsequence of
S1.

In this article we present several logical schemes. The scheme SubSeqChoice
deals with a non empty 1-sorted structure A, a sequence B of A, and and states
that:

There exists a subsequence S7 of B such that for every natural
number n holds P[S1(n)]
provided the following requirement is met:
e For every natural number n there exists a natural number m and
there exists a point x of A such that n < m and x = B(m) and
Plx].

The scheme SubSeqChoicel deals with a non empty topological structure A,

a sequence B of A, and and states that:
There exists a subsequence S7 of B such that for every natural
number n holds P[S1(n)]
provided the parameters have the following property:
e For every natural number n there exists a natural number m and
there exists a point x of A such that n < m and x = B(m) and
Plz].
One can prove the following propositions:

(6) Let T be a non empty 1-sorted structure, S be a sequence of T', and A
be a subset of the carrier of T. Suppose that for every subsequence Sy of
S holds rng S; € A. Then there exists a natural number n such that for
every natural number m such that n < m holds S(m) ¢ A.

(7) Let T be a non empty 1-sorted structure, S be a sequence of T', and A,
B be subsets of the carrier of T. If rngS C A U B, then there exists a
subsequence Sy of S such that rng S; C A or rng S; C B.

(8) Let T be a non empty topological space. Suppose that for every sequence
S of T and for all points x1, x9 of T such that 71 € Lim S and x5 € Lim S
holds 1 = xo. Then T is a T} space.

(9) Let T be a non empty topological space. Suppose T is a T, space. Let S
be a sequence of T and x1, x2 be points of T. If 1 € Lim S and x5 € Lim S,
then 1 = xs.

(10) Let T be a non empty topological space. Suppose T is first-countable.
Then T is a Tb space if and only if for every sequence S of T" and for all
points x1, xo of T such that ;1 € Lim S and x5 € Lim S holds z1 = .

THE SEQUENTIAL CLOSURE OPERATOR IN ... 49

(11) For every non empty topological structure T and for every sequence S
of T such that S is not convergent holds Lim S = ().

(12) Let T be a non empty topological space and A be a subset of T'. If
A is closed, then for every sequence S of T such that rngS C A holds
Lim S C A.

(13) Let T be a non empty topological structure, S be a sequence of T', and
x be a point of T'. Suppose S is not convergent to x. Then there exists a
subsequence S of S such that every subsequence of S; is not convergent
to x.

2. THE CONTINUOUS MAPS

One can prove the following two propositions:

(14) Let Ty, T> be non empty topological spaces and f be a map from T}
into T5. Suppose f is continuous. Let S be a sequence of 77 and S5 be a
sequence of Ty. If So = f - .51, then f°Lim S; C Lim So.

(15) Let T1, T» be non empty topological spaces and f be a map from T} into
Ts. Suppose 17 is sequential. Then f is continuous if and only if for every
sequence S1 of T1 and for every sequence Sy of 15 such that So = f -5
holds f°Lim.S; C Lim Ss.

3. THE SEQUENTIAL CLOSURE OPERATOR

Let T be a non empty topological structure and let A be a subset of the
carrier of T'. The functor Clgeq A yielding a subset of T is defined by:
(Def. 2) For every point of T holds = € Clgeq A iff there exists a sequence S of
T such that rngS C A and z € Lim S.
The following propositions are true:
(16) Let T be a non empty topological structure, A be a subset of T', S be a
sequence of T, and x be a point of T. If rng S C A and x € Lim S, then
x €A
(17) For every non empty topological structure T and for every subset A of
T holds Clgeq A C A.
(18) Let T be a non empty topological structure, S be a sequence of T, Sy be
a subsequence of S, and = be a point of T'. If S is convergent to x, then
S1 is convergent to x.
(19) Let T be a non empty topological structure, S be a sequence of T', and
S7 be a subsequence of S. Then Lim S C Lim 5.

50 BARTEOMIEJ SKORULSKI

(20) For every non empty topological structure T holds Clgeq(07) = 0.

(21) For every non empty topological structure 7" and for every subset A of
T holds A C Clgeq A.

(22) For every non empty topological structure 7" and for all subsets A, B of
T holds Clgeq A U Clgeq B = Clgeq(A U B).

(23) Let T be a non empty topological structure. Then T is Frechet if and
only if for every subset A of the carrier of T holds A = Clgeq A.

(24) Let T be a non empty topological space. Suppose T is Frechet. Let A, B
be subsets of T'. Then Clgeq (A7) = 0 and A C Clgeq A and Clgeq(AUB) =
Clseq AU ClSeq B and ClSeq ClSeq A= ClSeq A.

(25) Let T be a non empty topological space. Suppose T' is sequential. If for
every subset A of T holds Clgeq Clgeq A = Clgeq A, then T is Frechet.

(26) Let T be a non empty topological space. Suppose T is sequential. Then
T is Frechet if and only if for all subsets A, B of T holds Clgeq(07) = 0
and A C ClSeq A and Clseq(AUB) = ClSeq AUC]Seq B and ClSeq ClSeq A=
Clgeq A.

4. THE LiMmiT

Let T be a non empty topological space and let S be a sequence of T'. Let
us assume that there exists a point = of T" such that Lim S = {x}. The functor
lim S yields a point of 1" and is defined as follows:

(Def. 3) S is convergent to lim S.

The following propositions are true:

(27) Let T be a non empty topological space. Suppose T is a T» space. Let
S be a sequence of T'. If S is convergent, then there exists a point x of T
such that Lim S = {z}.

(28) Let T be a non empty topological space. Suppose T' is a Ty space. Let
S be a sequence of T" and = be a point of T. Then S is convergent to x if
and only if S is convergent and x = lim S.

(29) For every metric structure M holds every sequence of M is a sequence
of Mtop-

(30) For every non empty metric structure M holds every sequence of Moy,
is a sequence of M.

(31) Let M be a non empty metric space, S be a sequence of M, z be a point
of M, S’ be a sequence of Miop, and 2’ be a point of M. Suppose S = S’
and z = z’. Then S is convergent to z if and only if S’ is convergent to x’.

(32) Let M be a non empty metric space, S3 be a sequence of M, and Sy be
a sequence of Miqp. If S3 = 5y, then S3 is convergent iff Sy is convergent.

THE SEQUENTIAL CLOSURE OPERATOR IN ...

(33) Let M be a non empty metric space, Ss be a sequence of M, and Sy be
a sequence of M. If S3 =S4 and S3 is convergent, then lim S3 = lim Sy.

5. THE CLUSTER POINTS

Let T be a topological structure, let S be a sequence of T', and let x be a
point of T. We say that x is a cluster point of S if and only if the condition
(Def. 4) is satisfied.

(Def. 4) Let O be a subset of 7" and n be a natural number. Suppose O is open
and z € O. Then there exists a natural number m such that n < m and
S(m) € O.
Next we state several propositions:

(34) Let T be a non empty topological structure, S be a sequence of T', and
x be a point of T. If there exists a subsequence of S which is convergent
to x, then z is a cluster point of S.

(35) Let T be a non empty topological structure, S be a sequence of T', and
x be a point of T'. If S is convergent to x, then x is a cluster point of S.

(36) Let T be a non empty topological structure, S be a sequence of T', = be
a point of 7', and Y be a subset of the carrier of 7. If Y = {y; y ranges
over points of T: z € {y}} and rng S C Y, then S is convergent to z.

(37) Let T be a non empty topological structure, S be a sequence of T', and =z,
y be points of T'. Suppose that for every natural number n holds S(n) =y
and S is convergent to z. Then x € {y}.

(38) Let T be a non empty topological structure, x be a point of 7', Y be a
subset of the carrier of T', and S be a sequence of T'. Suppose Y = {y;y
ranges over points of T: 2 € {y}} and rng SNY = and S is convergent
to x. Then there exists a subsequence of S which is one-to-one.

(39) Let T be a non empty topological structure and S, S2 be sequences
of T. Suppose rng Sy C rng S; and S5 is one-to-one. Then there exists a
permutation P of N such that S5 - P is a subsequence of 5.

Now we present two schemes. The scheme PermSeq deals with a non empty
1-sorted structure A, a sequence B of A, a permutation C of N, and and states
that:

There exists a natural number n such that for every natural num-
ber m such that n < m holds P[(B - C)(m)]
provided the following condition is satisfied:
e There exists a natural number n such that for every natural num-
ber m and for every point z of A if n < m and x = B(m), then

Plz].

52 BARTLOMIEJ SKORULSKI

The scheme PermSeq2 deals with a non empty topological structure A, a
sequence B of A, a permutation C of N, and and states that:
There exists a natural number n such that for every natural num-
ber m such that n < m holds P[(B - C)(m)]
provided the parameters meet the following condition:
e There exists a natural number n such that for every natural num-
ber m and for every point x of A if n < m and = = B(m), then
Px].
We now state several propositions:
(40) Let T be a non empty topological structure, S be a sequence of T', P be
a permutation of N, and z be a point of T'. If S is convergent to x, then
S - P is convergent to x.

(41) Let no be a natural number. Then there exists an increasing sequence
Nj of naturals such that for every natural number n holds Ny(n) = n+ng.

(42) Let T be a non empty 1l-sorted structure, S be a sequence of 7', and ng
be a natural number. Then there exists a subsequence S7 of S such that
for every natural number n holds S;(n) = S(n + ng).

(43) Let T be a non empty topological structure, S be a sequence of T', x be a
point of T', and S7 be a subsequence of S. Suppose z is a cluster point of S
and there exists a natural number ng such that for every natural number
n holds S1(n) = S(n + ng). Then x is a cluster point of S;.

(44) Let T be a non empty topological structure, S be a sequence of T', and
x be a point of T. If z is a cluster point of S, then x € rng S.

(45) Let T be a non empty topological structure. Suppose 7" is Frechet. Let
S be a sequence of T and x be a point of T'. If x is a cluster point of 5,
then there exists a subsequence of S which is convergent to x.

6. AUXILIARY THEOREMS

We now state several propositions:

(46) Let T be a non empty topological space. Suppose T is first-countable.
Let x be a point of T'. Then there exists a basis B of x and there exists
a function S such that domS = N and rngS = B and for all natural
numbers n, m such that m > n holds S(m) C S(n).

(47) For every non empty topological space T' holds T is a T3 space iff for
every point p of T holds {p} = {p}.

(48) For every non empty topological space T such that T is a T space holds
T is a T7 space.

THE SEQUENTIAL CLOSURE OPERATOR IN ...

(49) Let T be a non empty topological space. Suppose T' is not a T} space.

Then there exist points x1, xo of T" and there exists a sequence S of T
such that S =N +—— x; and x1 # x2 and S is convergent to xs.

(50) For every function f such that dom f is infinite and f is one-to-one holds

rng f is infinite.

(51) For every non empty finite subset X of N and for every natural number

x such that x € X holds x < max X.

REFERENCES

Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
Grzegorz Bancerek. Countable sets and Hessenberg’s theorem. Formalized Mathematics,
2(1):65-69, 1991.

Jozef Bialas and Yatsuka Nakamura. Dyadic numbers and T4 topological spaces. Forma-
lized Mathematics, 5(3):361-366, 1996.

Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481—
485, 1991.

Czestaw Byliniski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

Czestaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,

1990.
Agata Darmochwal. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.

Agata Darmochwal. Families of subsets, subspaces and mappings in topological spaces.
Formalized Mathematics, 1(2):257-261, 1990.

Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

Agata Darmochwal and Andrzej Trybulec. Similarity of formulae. Formalized Mathema-
tics, 2(5):635-642, 1991.

Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559-562,

1991.
Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35-40, 1990.
Krzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics, 1(2):321-328,

1990.
Stanistawa Kanas and Adam Lecko. Sequences in metric spaces. Formalized Mathematics,

2(5):657-661, 1991.

Stanistawa Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathe-
matics, 1(3):607-610, 1990.

Jarostaw Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics,
1(8):471-475, 1990.

Jarostaw Kotowicz. Real sequences and basic operations on them. Formalized Mathema-
tics, 1(2):269-272, 1990.

Jarostaw Kotowicz. The limit of a real function at infinity. Formalized Mathematics,
2(1):17-28, 1991.

Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preli-
minaries to circuits, I. Formalized Mathematics, 5(2):167-172, 1996.

Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.

Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223-230, 1990.

Jan Popiotek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics,
5(2):233-236, 1996.

Barttomiej Skorulski. First-countable, sequential, and Frechet spaces. Formalized Mathe-
matics, 7(1):81-86, 1998.

54

[26]
[27]
[28]

[29]
[30]

31]

BARTELOMIEJ SKORULSKI

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
1990.
Andrzej Trybulec. Baire spaces, Sober spaces. Formalized Mathematics, 6(2):289-294,
1997.
Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics,

1(5):979-981, 1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17-23, 1990.

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Received February 13, 1999

FORMALIZED MATHEMATICS
Volume 8, Number 1, 1999
University of Bialystok

Properties of the Product of Compact
Topological Spaces

Adam Grabowski
University of Biatystok

MML Identifier: BORSUK_3.

The notation and terminology used in this paper are introduced in the following
articles: [12], [16], [15], [4], [17], [9], [2], [11], [6], [18], [5], [13], [19], [14], [7], [1],
[3], [10], and [8].

1. PRELIMINARIES

One can prove the following proposition
(1) For all topological spaces .S, T holds Q; g 73 = [Qs, Qr 1.
Let X be a set and let Y be an empty set. Note that [X, Y | is empty.
Let X be an empty set and let Y be a set. Observe that [X, Y] is empty.
We now state the proposition
(2) Let X, Y be non empty topological spaces and x be a point of X. Then
Y —— z is a continuous map from Y into X [{z}.
Let T be a non empty topological structure. One can verify that idp is
homeomorphism.
Let S, T be non empty topological structures. Let us notice that the predi-
cate S and T are homeomorphic is reflexive and symmetric.
The following proposition is true
(3) Let S, T, V be non empty topological spaces. Suppose S and T are
homeomorphic and 7" and V' are homeomorphic. Then S and V' are home-
omorphic.

@ 1999 University of Bialystok
55 ISSN 1426-2630

56 ADAM GRABOWSKI

2. ON THE PROJECTIONS AND EMPTY TOPOLOGICAL SPACES

Let T be a topological structure and let P be an empty subset of the carrier
of T'. One can verify that T'[P is empty.

One can check that there exists a topological space which is strict and empty.

One can prove the following propositions:

(4) For every topological space T7 and for every empty topological space T
holds [T3, To] is empty and [T%, T}] is empty.

(5) Every empty topological space is compact.

Let us note that every topological space which is empty is also compact.

Let T7 be a topological space and let T5 be an empty topological space.
Observe that [Th, T3] is empty.

One can prove the following propositions:

(6) Let X, Y be non empty topological spaces, x be a point of X, and f be
a map from [Y, X[{z}] into Y. If f = 71 ((the carrier of Y) x {z}), then
f is one-to-one.

(7) Let X, Y be non empty topological spaces, x be a point of X, and f be
amap from [X[{z}, Y]into Y. If f = ma({z} x the carrier of Y'), then f
is one-to-one.

(8) Let X, Y be non empty topological spaces, x be a point of X, and f be
amap from [Y, X[{z}]into Y. If f = 7 ((the carrier of Y') x {x}), then
f~t=(idy,Y).

(9) Let X, Y be non empty topological spaces, x be a point of X, and f be
a map from [X [{z}, Y] into Y. If f = ma({z} X the carrier of Y), then
Fh= (Y — 2,idy).

(10) Let X, Y be non empty topological spaces, x be a point of X, and f be
a map from [Y, X[{x}]into Y. If f = 71 ((the carrier of Y') x {z}), then
f is a homeomorphism.

(11) Let X, Y be non empty topological spaces, x be a point of X, and f be
a map from [X [{z}, Y]into Y. If f = mo({x} X the carrier of V), then f
is a homeomorphism.

3. ON THE PropucT OF COMPACT SPACES

One can prove the following propositions:
(12) Let X be a non empty topological space, Y be a compact non empty
topological space, G be an open subset of | X, Y], and x be a set. Suppose
x € {a';2' ranges over points of X: [{z'}, the carrier of Y| C G}. Then

PROPERTIES OF THE PRODUCT OF COMPACT ... 57

there exists a many sorted set f indexed by the carrier of Y such that for
every set ¢ if ¢ € the carrier of Y, then there exists a subset G1 of X and
there exists a subset H; of Y such that f(i) = (G1, H1) and (z, i) € [Gy,
H,] and G, is open and H; is open and [Gy, H1] C G.

(13) Let X be a non empty topological space, ¥ be a compact non empty
topological space, G’ be an open subset of [Y, X {, and x be a set. Suppose
x € {y;y ranges over points of X: [Qy, {y}] C G}. Then there exists an
open subset R of X such that x € R and R C {y;y ranges over points of
X: (Qy, {y}] C G}

(14) Let X be a non empty topological space, Y be a compact non empty
topological space, and G be an open subset of [Y, X |. Then {z;z ranges
over points of X: [Qy, {z}] C G} € the topology of X.

(15) For all non empty topological spaces X, Y and for every point x of X
holds [X[{z}, Y] and Y are homeomorphic.

(16) For all non empty topological spaces S, T such that S and T are home-
omorphic and S is compact holds 7' is compact.
(17) For all topological spaces X, Y and for every subspace X; of X holds
FY, X] is a subspace of [Y, X {.
(18) Let X be a non empty topological space, Y be a compact non empty
topological space, z be a point of X, and Z be a subset of [V, X]. If
Z = [Qy, {z}{, then Z is compact.
(19) Let X be a non empty topological space, Y be a compact non empty
topological space, and x be a point of X. Then [Y, X [{z}] is compact.
(20) Let X, Y be compact non empty topological spaces and R be a family
of subsets of X. Suppose R = {Q; Q ranges over open subsets of X: [Qy,
Q1 C UBaseAppr(Qy, x3)}- Then R is open and a cover of {2x.
(21) Let X, Y be compact non empty topological spaces, R be a family of
subsets of X, and F be a family of subsets of [Y, X]. Suppose that
(i) Fisacover of [Y, X] and open, and
(i) R = {Q;Q ranges over open subsets of X: \/F1 family of subsets of [Y, X
(Fl C F A Iy is finite A [ZQy, Q] - UFI)}
Then R is open and a cover of X.
(22) Let X, Y be compact non empty topological spaces, R be a family of
subsets of X, and F be a family of subsets of [Y, X |. Suppose that
(i) Fisacover of [Y, X | and open, and
(i) R ={Q;Q ranges over open subsets of X: \/, . pamily of subsets of [, X]
(Fl C F A Fj is finite A [:Qy, Q] - UFl)}
Then there exists a family C' of subsets of X such that C C R and C' is
finite and a cover of X.

(23) Let X, Y be compact non empty topological spaces and F' be a family of

58 ADAM GRABOWSKI

subsets of [Y, X]. Suppose F'is a cover of [Y, X | and open. Then there
exists a family G of subsets of [Y, X | such that G C F and G is a cover
of ['Y, X | and finite.
(24) For all topological spaces 11, T5 such that T3 is compact and 75 is com-
pact holds [Ty, T5] is compact.
Let T1, T be compact topological spaces. Observe that [71, T» | is compact.
Next we state two propositions:

(25) Let X, Y be non empty topological spaces, X; be a non empty subspace
of X, and Y] be a non empty subspace of Y. Then [X1, Y]] is a subspace
of [X, Y.

(26) Let X, Y be non empty topological spaces, Z be a non empty subset of
FY, X], V be a non empty subset of X, and W be a non empty subset
of Y. Suppose Z = [W, V{|. Then the topological structure of [Y [W,
X[V] = the topological structure of [Y, X {[Z.

Let T be a topological space. Observe that there exists a subset of T" which
is compact.

Let T be a topological space and let P be a compact subset of T'. Note that
TP is compact.

We now state the proposition

(27) Let T, T> be topological spaces, S7 be a subset of 177, and S be a subset
of Ty. If Sy is compact and S is compact, then [S, So] is a compact
subset of [T7, Tb].

REFERENCES

[1] Czestaw Bylinski. Basic functions and operations on functions. Formalized Mathematics,
1(1):245-254, 1990.

[2] Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

[3] Czestaw Bylinski. Introduction to categories and functors. Formalized Mathematics,
1(2):409-420, 1990.

[4] Czestaw Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53,

1990.
[6] Agata Darmochwal. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.

[6] Agata Darmochwal. Families of subsets, subspaces and mappings in topological spaces.
Formalized Mathematics, 1(2):257-261, 1990.
] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
| Michal Muzalewski. Categories of groups. Formalized Mathematics, 2(4):563-571, 1991.
[9] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
| Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.
| Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223-230, 1990.
[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.
[13] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics,

2(4):535-545, 1991.
[14] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[16]
[17]
[18]

[19]

PROPERTIES OF THE PRODUCT OF COMPACT ... 59

Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17-23, 1990.

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Mirostaw Wysocki and Agata Darmochwal. Subsets of topological spaces. Formalized
Mathematics, 1(1):231-237, 1990.

Mariusz Zynel and Adam Guzowski. Tp topological spaces. Formalized Mathematics,
5(1):75-77, 1996.

Received February 13, 1999

60

ADAM GRABOWSKI

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Bialystok

Compactness of the Bounded Closed
Subsets of £2

Artur Kornitowicz!
University of Bialystok

Summary. This paper contains theorems which describe the correspon-
dence between topological properties of real numbers subsets introduced in [40]
and introduced in [38], [16]. We also show the homeomorphism between the car-
tesian product of two R* and £2. The compactness of the bounded closed subset
of £2 is proven.

MML Identifier: TOPREALG.

The articles [41], [48], [12], [49], [10], [11], [6], [47], [7], 18], [24], [43], [1], [39],
[35], [8], [14], [28], [27], [26], [45], [25], [23], (3], [9], [13], [29], [2], [46], [40], [38],
[50], [17], [36], [37], [16], [42], [5], [19], [4], [20], [21], [22], [51], [33], [32], [15],
[31], [30], [44], and [34] provide the notation and terminology for this paper.

1. REAL NUMBERS

For simplicity, we use the following convention: a, b are real numbers, 7 is a
real number, ¢, j, n are natural numbers, M is a non empty metric space, p, q,
s are points of 5%, e is a point of £2, w is a point of £", z is a point of M, A,
B are subsets of &7, P is a subset of 5%, and D is a non empty subset of S%.

One can prove the following propositions:

(2? a—2-a=—a.
(3) —a+2-a=a.

IThis paper was written while the author visited Shinshu University, winter 1999.
2The proposition (1) has been removed.

@ 1999 University of Bialystok
61 ISSN 1426-2630

62 ARTUR KORNILOWICZ

4) a—5=73.
(5) Ifa#0andb+#0, then ¢ = 0.

b

(6) For all real numbers a, b such that 0 < @ and 0 < b holds va+b <
Va+Vb.

(7) If0<aanda<b,then |a| < [b].

(8) Ifb<aanda<0,then |a| < |b].

9) [10—r)=1
(10) [[@—r)=r.
(1) M@= =r-r
(12) [I((n+1)—nr)=]I(n—r71)-r
(13) j#0and r=0iff [[(j — r) =0. o
(14) Ifr #0 and j < 4, then []((i -])»—w“) Q((;LHZ))
(15) Ifr#0 and j <4, then =7 = ﬁ

In the sequel a, b denote real numbers.
The following propositions are true:
(16) 2{a,b) = (a2, b?).
(17) For every finite sequence F' of elements of R such that i € dom|F| and
a = F(i) holds |F|(i) = |al.
(18) [(a, b)| = (Jal,[b]).
(19) For all real numbers a, b, ¢, d such that a < b and ¢ < d holds |b — a| +
|d—c|=(b—a)+(d—c).

(20) Ifr >0, thenac€]a—ra+r[

(21) Ifr >0, thena€fa—r,a+r|.

(22) If a < b, then infla, b] = a and sup|a, b] = b.

(23) Ja,b[C [a,b].

(24) For every bounded subset A of R holds A C [inf A, sup A].

2. TOPOLOGICAL PRELIMINARIES

Let T be a topological structure and let A be a finite subset of the carrier
of T. One can verify that T[A is finite.

Let us observe that there exists a topological space which is finite, non empty,
and strict.

Let T be a topological structure. Note that every subset of 7" which is empty
is also connected.

Let T be a topological space. Observe that every subset of T which is finite
is also compact.

COMPACTNESS OF THE BOUNDED CLOSED SUBSETS OF . ..

Let T" be T> non empty topological space. Observe that every subset of T’
which is compact is also closed.
The following two propositions are true:

(25) For all topological spaces S, T' such that S and T are homeomorphic
and S is connected holds T is connected.

(26) Let T be a topological space and F' be a finite family of subsets of T'.
Suppose that for every subset X of T' such that X € F holds X is compact.
Then |J F is compact.

3. POINTS AND SUBSETS IN £2

The following propositions are true:

(27) For every non empty set X and for every set Y such that X C Y holds
X meets Y.

(28) For all sets A, B, C, D, X such that AUB = X and CUD = X and
ANB=0and CND =0 and B= D holds A= C.

(29) For all sets A, B, C, D, a, b such that A C B and C C D holds
[lla— A,b— C] C []la — B,b+~— D|.

(30) For all subsets A, B of R holds [[[1 — A,2 —— B] is a subset of £2.

(31) [[0,a]| = [a] and |[[a,0]| = |a].

(32) For every point p of £ and for every point g of 5% such that p = OggF
and p = ¢ holds ¢ = (0,0) and ¢1 = 0 and g2 = 0.

(33) For all points p, g of £2 and for every point z of £2 such that p = 05%
and g = z holds p(p,q) = |z|.

(34) r-p=[r-p1,7-p2].

(35) Ifs=(1—7r)-p+r-qand s+# pand 0 <7, then 0 <.

(36) If s=(1—r)-p+r-qand s# qandr <1, thenr <1.

(37) If s € L(p,q) and s # p and s # ¢ and p1 < ¢1, then p1 < s1 and
s$1<q1.

(38) If s € L(p,q) and s # p and s # ¢ and p2 < g2, then pa < sg and
S2 < Q2.

(39) For every point p of 5% there exists a point g of 5% such that ¢1 <
W-bound D and p # q.

(40) For every point p of €% there exists a point ¢ of €% such that g1 >
E-bound D and p # q.

(41) For every point p of €% there exists a point ¢ of €2 such that ga >
N-bound D and p # gq.

63

64 ARTUR KORNILOWICZ

(42) For every point p of £% there exists a point ¢ of €% such that gz <
S-bound D and p # q.

One can verify the following observations:

x every subset of 5% which is convex and non empty is also connected,
x every subset of 8% which is non horizontal is also non empty,

x every subset of 8% which is non vertical is also non empty,

x every subset of E% which is region is also open and connected, and

x every subset of 8% which is open and connected is also region.

Let us observe that every subset of 5% which is empty is also horizontal and
every subset of 5% which is empty is also vertical.

Let us mention that there exists a subset of 5% which is non empty and
convex.

Let a, b be points of 5%. Observe that L(a,b) is convex and connected.

Let us mention that [g2 is connected.

Let us observe that every subset of 5% which is simple closed curve is also
connected and compact.

One can prove the following propositions:

(43) L£(NE-corner P,SE-corner P) C £(SpStSeq P).
(44) L£(SW-corner P, SE-corner P) C L(SpStSeq P).
(45) L(SW-corner P, NW-corner P) C L(SpStSeq P).
(46)

46) For every subset C' of 8% holds {p;p ranges over points of 5%: p1 <

W-bound C} is a non empty convex connected subset of 5%.

4. BALLS AS SUBSETS OF &

We now state a number of propositions:
(47) If e=gq and p € Ball(e,7), then ¢ — 7 < p1 and p1 < g1 + 7.
(48) If e =q and p € Ball(e,), then g2 — r < p2 and p2 < g2 + .
T

(49) Ifp =e, then [Tl +—Ip1 = J5pa+ 52— Ip2 — vz + Fll C
Ball(e, 7).

(50) If p=e, then Ball(e,r) C [[[1 — |p1 —7,p1+7[,2 — |p2 — r,p2 +7]].
(51) If P = Ball(e,r) and p = e, then (projl)°P = |p1 — r,p1 +r].

(52) If P = Ball(e,r) and p = e, then (proj2)°P = |p2 — r,p2 + r|.

(53) If D = Ball(e,r) and p = e, then W-bound D = p; — .

(54) 1If D = Ball(e,r) and p = e, then E-bound D = p; + .

(55) If D = Ball(e,r) and p = e, then S-bound D = pa — r.

(56) If D = Ball(e,r) and p = e, then N-bound D = pa + 7.

COMPACTNESS OF THE BOUNDED CLOSED SUBSETS OF . .. 65

(57) If D = Ball(e,r), then D is non horizontal.

(58) If D = Ball(e,), then D is non vertical.

(59) For every point f of £% and for every point x of £2 such that z €
Ball(f,a) holds [z1 — 2 - a,z2] ¢ Ball(f,a).

(60) Let X be a non empty compact subset of 5% and p be a point of £2.
If p = Ogz and @ > 0, then X C Ball(p, | E-bound X[+ | N-bound X| +
| W-bound X | 4 | S-bound X| + a).

(61) Let M be a Reflexive symmetric triangle non empty metric structure
and z be a point of M. If r < 0, then Sphere(z,r) = 0.

(62) For every Reflexive discernible non empty metric structure M and for
every point z of M holds Sphere(z,0) = {z}.

(63) Let M be a Reflexive symmetric triangle non empty metric structure
and z be a point of M. If r < 0, then Ball(z,r) = 0.

Ball(z,0) = {z}.

For every subset A of M, such that A = Ball(z,r) holds A is closed.
If A= Ball(w,r), then A is closed.

Ball(z,r) is bounded.

For every subset A of M;p, such that A = Sphere(z,) holds A is closed.

S O D
S Ot

A~ N N~ N~~~ —~
S Oy
o

—_— — T D D e D D

69) If A = Sphere(w,r), then A is closed.

70) Sphere(z,r) is bounded.

71) If A is Bounded, then A is Bounded.

72) For every non empty metric structure M holds M is bounded iff every

subset of the carrier of M is bounded.

(73) Let M be a Reflexive symmetric triangle non empty metric structure and
X, Y be subsets of the carrier of M. Suppose the carrier of M = X UY
and M is non bounded and X is bounded. Then Y is non bounded.

(74) For all subsets X, Y of £} such that n > 1 and the carrier of & = XUY
and X is Bounded holds Y is non Bounded.

(76)3 1If A is Bounded and B is Bounded, then A U B is Bounded.

5. TOPOLOGICAL PROPERTIES OF REAL NUMBERS SUBSETS

Let X be a non empty subset of R. Observe that X is non empty.

Let D be a lower bounded subset of R. One can verify that D is lower
bounded.

3The proposition (75) has been removed.

66 ARTUR KORNILOWICZ

Let D be an upper bounded subset of R. One can verify that D is upper
bounded.
We now state two propositions:
(77) For every non empty lower bounded subset D of R holds inf D = inf D.
(78) For every non empty upper bounded subset D of R holds sup D = sup D.
Let us observe that R is Tb.
The following three propositions are true:
(79) For every subset A of R and for every subset B of R! such that A = B
holds A is closed iff B is closed.
(80) For every subset A of R and for every subset B of Rl such that A = B
holds A = B.
(81) For every subset A of R and for every subset B of R such that A = B
holds A is compact iff B is compact.
One can check that every subset of R which is finite is also compact.
Let a, b be real numbers. Note that [a,b] is compact.
Next we state the proposition
(82) a#biff |a,b] = [a,b].
Let us observe that there exists a subset of R which is non empty, finite, and
bounded.
The following propositions are true:

(83) Let T be a topological structure, f be a real map of T', and g be a map
from T into RY. If f = g, then f is continuous iff g is continuous.

(84) Let A, B be subsets of R and f be a map from [R, R!] into £2. If for
all real numbers z, y holds f({z, y)) = (x,y), then f°} A, B] =[]l —
A,2+— BJ.

(85) For every map f from [R!, R1] into £2 such that for all real numbers
x, y holds f({z, y)) = (z,y) holds f is a homeomorphism.

(86) [R', R']and £2 are homeomorphic.

6. BOUNDED SUBSETS

One can prove the following propositions:

(87) For all compact subsets A, B of R holds [[[1 — A,2 —— B] is a
compact subset of 5%.

(88) If P is Bounded and closed, then P is compact.

(89) If P is Bounded, then for every continuous real map g of £2 holds g°P C
g°P.

(90) (proj1)°P C (projl)°P.

© © ©

Ne)

S
N e e e S N N

~ Y~~~ —~ —~ —~
NeJ NeJ

Ne}

COMPACTNESS OF THE BOUNDED CLOSED SUBSETS OF ...

(proj2)°P C (proj2)°P.

If P is Bounded, then (proj1)°P = (projl1)°P.
If P is Bounded, then (proj2)°P = (proj2)°P.

If D is Bounded, then W-bound D = W-bound D.
If D is Bounded, then E-bound D = E-bound D.
If D is Bounded, then N-bound D = N-bound D.

If D is Bounded, then S-bound D = S-bound D.

ACKNOWLEDGMENTS

I would like to thank Professor Yatsuka Nakamura for his help in the pre-

paration of the article.

REFERENCES

Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

Grzegorz Bancerek. Konig's theorem. Formalized Mathematics, 1(3):589-593, 1990.
Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

Jozef Biatas and Yatsuka Nakamura. The theorem of Weierstrass. Formalized Mathema-
tics, 5(3):353-359, 1996.

Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481—
485, 1991.

Czestaw Bylinski. Basic functions and operations on functions. Formalized Mathematics,
1(1):245-254, 1990.

Czestaw Byliniski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
Czestaw Byliniski. A classical first order language. Formalized Mathematics, 1(4):669-676,

1990.
Czestaw Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized

Mathematics, 1(3):529-536, 1990.

Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

Czestaw Byliniski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,

1990.
Czestaw Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53,
1990.
Czestaw Bylinski. The sum and product of finite sequences of real numbers. Formalized

Mathematics, 1(4):661-668, 1990.

Czestaw Bylinski. Products and coproducts in categories. Formalized Mathematics,
2(5):701-709, 1991.

Czestaw Byliniski and Piotr Rudnicki. Bounding boxes for compact sets in £2. Formalized
Mathematics, 6(3):427-440, 1997.

Agata Darmochwal. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
Agata Darmochwal. Families of subsets, subspaces and mappings in topological spaces.
Formalized Mathematics, 1(2):257-261, 1990.

Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

Agata Darmochwal. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
Agata Darmochwal and Yatsuka Nakamura. Metric spaces as topological spaces - funda-
mental concepts. Formalized Mathematics, 2(4):605-608, 1991.

Agata Darmochwal and Yatsuka Nakamura. The topological space £%. Arcs, line segments
and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.

Agata Darmochwal and Yatsuka Nakamura. The topological space £%. Simple closed
curves. Formalized Mathematics, 2(5):663—-664, 1991.

67

ARTUR KORNILOWICZ

Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559-562,
1991.
Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35-40, 1990.

Stanistawa Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathe-
matics, 1(3):607-610, 1990.

Jarostaw Kotowicz. Convergent real sequences. Upper and lower bound of sets of real
numbers. Formalized Mathematics, 1(3):477-481, 1990.

Jarostaw Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathe-
matics, 1(2):273-275, 1990.

Jarostaw Kotowicz. Real sequences and basic operations on them. Formalized Mathema-
tics, 1(2):269-272, 1990.

Rafal Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890,

1990.
Yatsuka Nakamura. Graph theoretical properties of arcs in the plane and Fashoda Meet

Theorem. Formalized Mathematics, 7(2):193-201, 1998.

Yatsuka Nakamura and Czestaw Bylinski. Extremal properties of vertices on special
polygons. Part 1. Formalized Mathematics, 5(1):97-102, 1996.

Yatsuka Nakamura and Jarostaw Kotowicz. Connectedness conditions using polygonal
arcs. Formalized Mathematics, 3(1):101-106, 1992.

Yatsuka Nakamura and Jarostaw Kotowicz. The Jordan’s property for certain subsets of
the plane. Formalized Mathematics, 3(2):137-142, 1992.

Yatsuka Nakamura, Andrzej Trybulec, and Czestaw Byliniski. Bounded domains and
unbounded domains. Formalized Mathematics, 8(1):1-13, 1999.

Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83-86, 1993.

Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.
Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223-230, 1990.

Jan Popiotek. Some properties of functions modul and signum. Formalized Mathematics,
1(2):263-264, 1990.

Konrad Raczkowski and Pawel Sadowski. Topological properties of subsets in real num-
bers. Formalized Mathematics, 1(4):777-780, 1990.

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.
Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics,

2(4):535-545, 1991.

Andrzej Trybulec and Czestaw Bylinski. Some properties of real numbers. Formalized
Mathematics, 1(3):445-449, 1990.

Andrzej Trybulec and Yatsuka Nakamura. On the rectangular finite sequences of the
points of the plane. Formalized Mathematics, 6(4):531-539, 1997.

Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.

Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579,
1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17-23, 1990.

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Mirostaw Wysocki and Agata Darmochwal. Subsets of topological spaces. Formalized
Mathematics, 1(1):231-237, 1990.

Mariusz Zynel and Adam Guzowski. T topological spaces. Formalized Mathematics,
5(1):75-77, 1996.

Received February 19, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Bialystok

Hilbert Positive Propositional Calculus

Adam Grabowski
University of Bialystok

MML Identifier: HILBERT1.

The papers [4], [5], [3], [1], and [2] provide the notation and terminology for this
paper.

(Def.

(Def.

(Def.

(Def.

(Def.

1. DEFINITION OF THE LANGUAGE

Let D be a set. We say that D has VERUM if and only if:

1) (0)e D.

Let D be a set. We say that D has implication if and only if:

2) For all finite sequences p, ¢ such that p € D and ¢ € D holds (1) "p~q €
D.

Let D be a set. We say that D has conjunction if and only if:

3) For all finite sequences p, ¢ such that p € D and ¢ € D holds (2) "p~q €
D.

Let D be a set. We say that D has propositional variables if and only if:

4) For every natural number n holds (3 +n) € D.

Let D be a set. We say that D is HP-closed if and only if:

5) D C N*and D has VERUM, implication, conjunction, and propositional
variables.

Let us note that every set which is HP-closed is also non empty and has

VERUM, implication, conjunction, and propositional variables and every subset
of N* which has VERUM, implication, conjunction, and propositional variables
is HP-closed.

The set HP-WFF is defined as follows:

@ 1999 University of Bialystok
69 ISSN 1426-2630

70 ADAM GRABOWSKI

(Def. 6) HP-WFF is HP-closed and for every set D such that D is HP-closed
holds HP-WFF C D.
Let us note that HP-WFF is HP-closed.
Let us mention that there exists a set which is HP-closed and non empty.
One can verify that every element of HP-WFF is relation-like and function-
like.
Let us mention that every element of HP-WFF is finite sequence-like.
A HP-formula is an element of HP-WFF.
The HP-formula VERUM is defined by:
(Def. 7) VERUM = (0).
Let p, ¢ be elements of HP-WFF. The functor p = ¢ yielding a HP-formula is
defined by:
(Def. 8) p=q=(1)"p~q.
The functor p A q yielding a HP-formula is defined as follows:
(Def. 9) pAg=(2)"p~q.
We follow the rules: T', X, Y denote subsets of HP-WFF and p, ¢, , s denote
elements of HP-WFF.
Let T be a subset of HP-WFF. We say that T is Hilbert theory if and only
if the conditions (Def. 10) are satisfied.
(Def. 10)(i) VERUM € T, and
(i) for all elements p, ¢, r of HP-WFF holds p = (¢ = p) € T and
p=@=r)=(p=>9q =pP=r)eTandpAq=peT and
pANq=qeT andp= (q=pAq) €T and if p e T and p = q € T, then
qeT.
Let us consider X. The functor CnPos X yields a subset of HP-WFF and is
defined by:
(Def. 11) r € CnPos X iff for every T such that T is Hilbert theory and X C T
holds r € T.

The subset HP_TAUT of HP-WFF is defined by:
(Def. 12) HP_TAUT = CnPos dgp-wrr.

The following propositions are true:

(1) VERUM € CnPos X.

(2) p=(¢=pAq) € CnPosX.

3) (p=(¢=1)=(p=q = (p=r)) € CnPos X.

(4) p=(q=p) € CnPos X.

(5) pAg=pe€ CnPos X.

(6) pAg= qe CnPosX.

(7) If p € CnPos X and p = ¢ € CnPos X, then g € CnPos X.
(8) If T is Hilbert theory and X C T, then CnPos X C T.

HILBERT POSITIVE PROPOSITIONAL CALCULUS 71

(9) X C CnPosX.
(10) If X CY, then CnPos X C CnPosY.
(11) CnPosCnPos X = CnPos X.

Let X be a subset of HP-WFF. One can verify that CnPos X is Hilbert
theory.
We now state two propositions:

(12) T is Hilbert theory iff CnPosT = T.
(13) If T is Hilbert theory, then HP_TAUT C T
Let us mention that HP_TAUT is Hilbert theory.

2. THE TAUTOLOGIES OF THE HILBERT CALCULUS - IMPLICATIONAL PART

We now state a number of propositions:

(14) p=pe HP_.TAUT.

(15) If ¢ € HP_.TAUT, then p = ¢ € HP_TAUT.

(16) p = VERUM € HP_TAUT.

(17) (p=q) = (p=p) € HP_.TAUT.

(18) (¢=p) = (p = p) € HP_TAUT.

(19) (g=7r)= ((p=q) = (p=r)) € HP.TAUT.

(20) If p= (¢ = r) € HP_.TAUT, then ¢ = (p = r) € HP_TAUT.

21) (p=¢) = ((g=r)= (p=r)) € HP.TAUT.

(22) If p= q € HP_TAUT, then (¢ =r) = (p=r) € HP_.TAUT.

(23) Ifp=q € HP_.TAUT and ¢ = r € HP_TAUT, then p = r € HP_TAUT .

24) (p=(@=>7r)=>(s=¢ = (p=(s=r))) € HP.TAUT.

(25) ((p=q)=r)= (¢=r) e HP.TAUT.

(26) (p=(¢g=7)) = (¢= (p=r)) € HP_.TAUT.

(27) (p= (p=q)) = (p = q) € HP_TAUT.

(28) ¢= ((¢ = p) = p) € HP_TAUT.

(29) If s = (¢ = p) € HP_.TAUT and ¢ € HP_TAUT, then s = p €
HP_TAUT.

3. CONJUNCTIONAL PART OF THE CALCULUS

The following propositions are true:
(30) p=pApecHP.TAUT.

~
[\]

N~ o~ o~ o~ o~ o~ o~ o~~~ o~ o~~~ o~~~ o~ o~

Tt b s b s b s R R e R W W W W W W W Ww

ADAM GRABOWSKI

1) pAge€HP.TAUT iff p € HP.TAUT and ¢ € HP_TAUT.
9) pAqeHP.TAUT iff g Ap € HP_TAUT.

3) (pAg=r)= (p= (¢=r)) € HP_.TAUT.

4) (p=(¢=r))=(pANqg=r)c HP.TAUT.

5) (r=p) = ((r=q) = (r=pAq)) € HP.TAUT.
6) (p=q)Ap=qcHP.TAUT.

7 (p=q) ApANs=qecHP.TAUT.

8) (¢q=s)=(pANq=s) € HP.TAUT.

9) (¢=s)=(¢gNp=s)c HP.TAUT.

0) (pAs=¢q)=(pAs=qgAs)cHP.TAUT.

1) (p=q¢g=((@PAs=qAs)eHPTAUT.

2) (p=q)A(pAs)=gAscHP TAUT.

3) pAgq=qApeHP.TAUT.

4) (p=q)A(pAs)=sAhqecHP TAUT.

5 (p=4q)= (pPAs=sANq) € HP.TAUT.

6) (p=q)=(sAp=sAq) € HP.TAUT.

7)) pA(sANq)=pA(gNs)e HP.TAUT.

8) (p=q¢)A(p=s)= (p=qAs) e HP.TAUT.
9) pAgAs=pA(¢gNs)€HP.TAUT.

0) pA(gAs)=pAgAseHP.TAUT.

REFERENCES

Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

Czestaw Bylifiski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Received February 20, 1999

FORMALIZED MATHEMATICS
Volume 8, Number 1, 1999
University of Bialystok

Homeomorphism between [: ?r,&f:] and 5?‘7

Artur Kornitowicz!
University of Bialystok

Summary. In this paper we introduce the cartesian product of two metric
spaces. As the distance between two points in the product we take maximal
distance between coordinates of these points. In the main theorem we show the
homeomorphism between [:£%, S%:] and E%H.

MML Identifier: TOPREALT.

The notation and terminology used in this paper have been introduced in the
following articles: [20], [9], [25], [7], [8], [4], [16], [24], [21], [19], [13], [18], [23],
[1], 2], [10], [5], [17], [11], [3], [22], [14], [12], [6], [26], and [15].
We use the following convention: ¢, j, n denote natural numbers, f, g, h, k
denote finite sequences of elements of R, and M, N denote non empty metric
spaces.
We now state a number of propositions:
(1) For all real numbers a, b such that max(a,b) < a holds max(a,b) = a.
(2) For all real numbers a, b, ¢, d holds max(a + ¢,b + d) < max(a,b) +
max(c,d).
(3) For all real numbers a, b, ¢, d, e, f such that a < b+candd < e+ f
holds max(a,d) < max(b,e) + max(c, f).
(4) For all finite sequences f, g holds dom g C dom(f " g).
(5) For all finite sequences f, g such that len f < ¢ and ¢ < len f + leng
holds ¢ — len f € dom g.
(6) For all finite sequences f, g, h, k such that f g =h"k and len f =lenh
and leng =lenk holds f = h and g = k.
(7) Iflen f =leng or dom f = dom g, then len(f + g) = len f and dom(f +
g) = dom f.

IThis paper was written while the author visited Shinshu University, winter 1999.

@ 1999 University of Bialystok
73 ISSN 1426-2630

74 ARTUR KORNILOWICZ

(8) Iflen f =leng or dom f = domg, then len(f — g) = len f and dom(f —
g) = dom f.
(9) len f =len?f and dom f = dom?f.
(10) len f =len|f| and dom f = dom|f].
(11) 2(f~g9)=Cf) " (o).
12) [f gl =1f1"1gl.
(13) Iflenf =lenh and leng = lenk, then 2(f ~g+h " k) = 3(f +h)) "
(*(g + k).
(14) Iflenf =1lenh and leng =lenk, then |f ~g+h " k| =|f+h| " |g+ k|
(15) Iflenf =lenh and leng = lenk, then 2(f ~g—h " k) = (3(f — h)) "
(*(g — k).
(16) Iflenf =lenh andleng =lenk, then |f ~g—h " k| =|f—h| " |g— k|
(17) If len f = n, then f € the carrier of £".
(18) Iflen f =n, then f € the carrier of £F.
(19) For every finite sequence f such that f € the carrier of £" holds len f =
n.
Let M, N be non empty metric structures. The functor max-Prod2(M, N)
yielding a strict metric structure is defined by the conditions (Def. 1).
(Def. 1)(i) The carrier of max-Prod2(M, N) = | the carrier of M, the carrier of
N], and
(ii) for all points z, y of max-Prod2(M, N) there exist points z1, y; of M
and there exist points 3, y2 of N such that x = (z1, x2) and y = (y1,
y2) and (the distance of max-Prod2(M, N))(z, y) = max((the distance of
M)(x1, y1), (the distance of N)(z2, y2)).
Let M, N be non empty metric structures. One can verify that
max-Prod2(M, N) is non empty.
Let M, N be non empty metric structures, let x be a point of M, and let y
be a point of N. Then (x, y) is an element of max-Prod2(M, N).
Let M, N be non empty metric structures and let = be a point of

max-Prod2(M, N). Then z7 is an element of M. Then z2 is an element of
N.

The following three propositions are true:

(20) Let M, N be non empty metric structures, my, mo be points
of M, and nj, ny be points of N. Then p({mq, ni), {ma, n2)) =
max(p(mi, ma), p(ni,n2)).

(21) For all non empty metric structures M, N and for all points m, n of
max-Prod2(M, N) holds p(m,n) = max(p(m1,n1), p(mz,nz)).

(22) For all Reflexive non empty metric structures M, N holds
max-Prod2(M, N) is Reflexive.

HOMEOMORPHISM BETWEEN [:]¢, ...

Let M, N be Reflexive non empty metric structures. Observe that
max-Prod2(M, N) is Reflexive.
Next we state the proposition

(23) For all symmetric non empty metric structures M, N holds
max-Prod2(M, N) is symmetric.

Let M, N be symmetric non empty metric structures. Note that

max-Prod2(M, N) is symmetric.

Next we state the proposition

(24) For all triangle non empty metric structures M, N holds
max-Prod2(M, N) is triangle.

Let M, N be triangle non empty metric structures. One can check that

max-Prod2(M, N) is triangle.

Let M, N be non empty metric spaces. Note that max-Prod2(M,N) is

discernible.

The following three propositions are true:

(25) | Miop, Niop | = (max-Prod2(M, N))iop-
(26) Suppose that

(i) the carrier of M = the carrier of N,

(ii) for every point m of M and for every point n of N and for every real
number r such that r > 0 and m = n there exists a real number r; such
that r; > 0 and Ball(n,r) C Ball(m,r), and

(ili) for every point m of M and for every point n of N and for every real
number 7 such that » > 0 and m = n there exists a real number r; such
that 7, > 0 and Ball(m,r1) C Ball(n,r).

Then Mtop = Ntop-

(27) [EL, &_JF] and 5%“ are homeomorphic.

ACKNOWLEDGMENTS

I would like to thank Professor Yatsuka Nakamura for his help in the pre-
paration of the article.

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

[3] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481—
485, 1991.

[4] Czestaw Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.

[5] Czestaw Bylinski. Binary operations applied to finite sequences. Formalized Mathematics,
1(4):643-649, 1990.

[6] Czestaw Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529-536, 1990.

ARTUR KORNILOWICZ

Czestaw Byliniski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.
Cz’eslaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,

1990.
Czestaw Bylifiski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53,
1990.
Czestaw Bylinski. The sum and product of finite sequences of real numbers. Formalized

Mathematics, 1(4):661-668, 1990.

Agata Darmochwat. Families of subsets, subspaces and mappings in topological spaces.
Formalized Mathematics, 1(2):257-261, 1990.

Agata Darmochwal. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.

Stanistawa Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathe-
matics, 1(3):607-610, 1990.

Jarostaw Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized
Mathematics, 3(1):107-115, 1992.

Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.

Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223-230, 1990.

Jan Popiotek. Some properties of functions modul and signum. Formalized Mathematics,
1(2):263-264, 1990.

Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
1(1):115-122, 1990.

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.
Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97-105, 1990.

Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics,
2(4):535-545, 1991.

Andrzej Trybulec and Czestaw Bylinski. Some properties of real numbers. Formalized
Mathematics, 1(3):445-449, 1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Mariusz Zynel and Adam Guzowski. Tp topological spaces. Formalized Mathematics,
5(1):75-77, 1996.

Received February 21, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Bialystok

Full Subtracter Circuit. Part 1

Katsumi Wasaki Noboru Endou
Shinshu University Shinshu University
Nagano Nagano

Summary. We formalize the concept of the full subtracter circuit, define
the structures of bit subtract/borrow units for binary operations, and prove the
stability of the circuit.

MML Identifier: FSCIRC_1.

The terminology and notation used in this paper are introduced in the following
papers: [11], [14], [13], [10], [17], 3], [4], [1], [16], [9], [12], [8], [6], [7], [5], [15],
and [2].

1. BIT SUBTRACT AND BORROW CIRCUIT

In this paper z, y, c are sets.

Let z, y, ¢ be sets. The functor BitSubtracterOutput(z,y,c) yields an ele-
ment of InnerVertices(2GatesCircStr(z, y, ¢, xor)) and is defined as follows:

(Def. 1) BitSubtracterOutput(x, y, ¢) = 2GatesCircOutput(z, y, ¢, xor).

Let z, y, ¢ be sets. The functor BitSubtracterCirc(z,y,c) yields a strict
Boolean circuit of 2GatesCircStr(z, y, ¢, xor) with denotation held in gates and
is defined as follows:

(Def. 2) BitSubtracterCirc(z, y, c) = 2GatesCircuit(z, y, ¢, xor).

Let x, y, ¢ be sets. The functor BorrowIStr(z, y, ¢) yields an unsplit non void
strict non empty many sorted signature with arity held in gates and Boolean
denotation held in gates and is defined by:

(Def. 3) BorrowIStr(z,y,c) = 1GateCircStr((z,y),ands,)+- 1GateCircStr({(y,
c), anda)+- 1GateCircStr((z, ¢), anda,).

@ 1999 University of Bialystok
77 ISSN 1426-2630

78 KATSUMI WASAKI AND NOBORU ENDOU

Let z, y, ¢ be sets. The functor BorrowStr(z, y, ¢) yielding an unsplit non void
strict non empty many sorted signature with arity held in gates and Boolean
denotation held in gates is defined by:

(Def. 4) BorrowStr(z,y, ¢) = BorrowlIStr(zx, y, ¢)+- 1GateCircStr(({(z, y), anda,),
((y,c), anda), ((z,), anda,)}, ors).
Let x, y, ¢ be sets. The functor BorrowICirc(z, y, ¢) yielding a strict Boolean
circuit of BorrowIStr(x,y, ¢) with denotation held in gates is defined by:
(Def. 5) BorrowICirc(z,y, ¢) = 1GateCircuit(z, y, anda,)+ 1GateCircuit(y, ¢, ands)
+- 1GateCircuit(zx, ¢, anda,).
The following propositions are true:
(1) InnerVertices(BorrowStr(z,y,c)) is a binary relation.

(2) For all non pair sets z, y, ¢ holds InputVertices(BorrowStr(x, y, ¢)) has
no pairs.

(3) For every state s of BorrowlICirc(z,y,c) and for all elements a, b of
Boolean such that a = s(z) and b = s(y) holds (Following(s))({(z,y),
andag)) = —a A b.

(4) For every state s of BorrowICirc(z,y,c) and for all elements a, b of
Boolean such that a = s(y) and b = s(c¢) holds (Following(s))({(y,c),
andy)) =a Ab.

(5) For every state s of BorrowlICirc(z,y,c) and for all elements a, b of

Boolean such that a = s(z) and b = s(c) holds (Following(s))({(z,c),
andag)) = —a A b.

Let z, y, ¢ be sets. The functor BorrowOutput(z, y, ¢) yields an element of
InnerVertices(BorrowStr(z, y, ¢)) and is defined by:

(Def. 6) BorrowOutput(z,y,c) = (({{z,y), anda,), {(y,), anda), ((x, ¢), anda,)),
ors)
Let z, y, ¢ be sets. The functor BorrowCirc(z, y, ¢) yielding a strict Boolean
circuit of BorrowStr(z, y, ¢) with denotation held in gates is defined by:
(Def. 7) BorrowCirc(z, y, ¢) = BorrowlICirc(z, y, ¢)+- 1GateCircuit({(z, y), anda,),
((y,c), anda), ((z,), anda,), ors).
Next we state a number of propositions:
(6) = € the carrier of BorrowStr(z,y,c) and y € the carrier of
BorrowStr(z, y, ¢) and ¢ € the carrier of BorrowStr(z, y, c).
(7)) ((z,y), anda,) € InnerVertices(BorrowStr(x,y,c)) and ((y,c), ands) €
InnerVertices(BorrowStr(z, y, ¢)) and {(z, c), anda,)
€ InnerVertices(BorrowStr(z, y, c)).
(8) For all non pair sets z, y, ¢ holds = € InputVertices(BorrowStr(z, y, c))
and y € InputVertices(BorrowStr(x,y, c)) and
¢ € InputVertices(BorrowStr(z, y, ¢)).

FULL SUBTRACTER CIRCUIT. PART I

(9) For all non pair sets x, y, ¢ holds InputVertices(BorrowStr(z,y,c)) =
{z,y,c} and InnerVertices(BorrowStr(x,y,c)) = {{{x,y), andy,), {{y,),
ands), ((z, ¢), andy,) } U {BorrowOutput(z,y, c)}.

(10) Let z, y, ¢ be non pair sets, s be a state of BorrowCirc(z,y,c), and
ay, ay be elements of Boolean. If ay = s(z) and az = s(y), then
(Following(s))({(x,y), andag)) = a1 A as.

(11) Let x, y, ¢ be non pair sets, s be a state of BorrowCirc(z,y, ¢), and
az, as be elements of Boolean. If as = s(y) and az = s(c), then
(Following(s))({(y, c), andg)) = az A ag.

(12) Let x, y, ¢ be non pair sets, s be a state of BorrowCirc(z,y, c), and
a1, ag be elements of Boolean. If a; = s(x) and a3 = s(c), then
(Following(s))({(x, ¢), andag)) = —a1 A as.

(13) Let z, y, ¢ be non pair sets, s be a state of BorrowCirc(z,y,c),
and aj, ag, az be elements of Boolean. If a1 = s({{z,y), anda,))
and as = s({{y,c),andy)) and a3 = s({(z,c), andy,)), then
(Following(s))(BorrowOutput(z,y,c)) = a1 V a2 V a3.

(14) Let z, y, ¢ be non pair sets, s be a state of BorrowCirc(z,y,c), and
aj, az be elements of Boolean. If a1 = s(z) and ay = s(y), then
(Following(s, 2))({{(z,y), anda, }) = —a1 A as.

(15) Let x, y, ¢ be non pair sets, s be a state of BorrowCirc(z,y, c), and
az, ag be elements of Boolean. If as = s(y) and a3 = s(c), then
(Following(s, 2))({(y, ¢), anda)) = a2 A as.

(16) Let x, y, ¢ be non pair sets, s be a state of BorrowCirc(z,y, c), and
a1, az be elements of Boolean. If a; = s(x) and az = s(c), then
(Following(s, 2))({{(z, ¢), anda,)) = —a1 A as.

(17) Let x, y, ¢ be non pair sets, s be a state of BorrowCirc(z, y, ¢), and a1, as,
a3 be elements of Boolean. If a1 = s(z) and az = s(y) and a3 = s(c), then
(Following(s, 2))(BorrowOutput(z, y,¢)) = —a1 Aaz V ag Aaz V —aj A az.

(18) For all non pair sets z, y, ¢ and for every state s of BorrowCirc(z,y, ¢)
holds Following(s, 2) is stable.

2. BIT SUBTRACTER WITH BORROW CIRCUIT

Let z, y, ¢ be sets. The functor BitSubtracterWithBorrowStr(z, y, ¢) yields
an unsplit non void strict non empty many sorted signature with arity held in
gates and Boolean denotation held in gates and is defined by:

(Def. 8) BitSubtracterWithBorrowStr(z, y, ¢) = 2GatesCircStr(z, y, ¢, xor)
+- BorrowStr(z, y, ¢).

The following propositions are true:

80 KATSUMI WASAKI AND NOBORU ENDOU

(19) For all non pair sets z, y, ¢ holds
InputVertices(BitSubtracter WithBorrowStr(x, y, ¢)) = {z, y, c}.

(20) For all non pair sets x, y, ¢ holds
InnerVertices(BitSubtracter WithBorrowStr(z, y, ¢)) = {{({x, y), xor),
2GatesCircOutput(z, y, c,xor)} U {{{(z,y), anda,), {(y, ¢), ands), {{x,),
andg,) } U {BorrowOutput(z,y, ¢)}.

(21) Let S be a non empty many sorted signature. Suppose S =
BitSubtracterWithBorrowStr(z,y,c). Then z € the carrier of S and
y € the carrier of S and ¢ € the carrier of S.

Let z, y, ¢ be sets. The functor BitSubtracterWithBorrowCirc(z, y, ¢) yields
a strict Boolean circuit of BitSubtracterWithBorrowStr(z, y, ¢) with denotation
held in gates and is defined as follows:

(Def. 9) BitSubtracterWithBorrowCirc(z, y, ¢) = BitSubtracterCirc(z, y, ¢)
+- BorrowCirc(z, y, ¢).
We now state several propositions:
(22) InnerVertices(BitSubtracterWithBorrowStr(z,y, ¢)) is a binary relation.

(23) For all non pair sets z, y, ¢ holds
InputVertices(BitSubtracter WithBorrowStr(x, y, ¢)) has no pairs.

(24) BitSubtracterOutput(z,y,c) €
InnerVertices(BitSubtracter WithBorrowStr(x, y, ¢)) and BorrowOutput
(x,y,c) € InnerVertices(BitSubtracterWithBorrowStr(z, y, c)).

(25) Let x, y, c be non pair sets, s be a state of BitSubtracterWithBorrowCirc
(x,y,c), and a1, ag, ag be elements of Boolean. Suppose a1 = s(z) and ag =
s(y) and az = s(c). Then (Following(s, 2))(BitSubtracterOutput(z, y,c)) =
a1 ®az®asz and (Following(s, 2))(BorrowOutput(z,y, c)) = —ai AagVas A
asz VvV —ai N as.

(26) For all non pair sets =z, y, ¢ and for every state s of
BitSubtracterWithBorrowCirc(z, y, ¢) holds Following(s, 2) is stable.

REFERENCES

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

[2] Grzegorz Bancerek and Yatsuka Nakamura. Full adder circuit. Part I. Formalized Ma-
thematics, 5(3):367-380, 1996.

[3] Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

[4] Czestaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,

1990.
[5] Yatsuka Nakamura and Grzegorz Bancerek. Combining of circuits. Formalized Mathema-

tics, 5(2):283-295, 1996.

[6] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Intro-
duction to circuits, I. Formalized Mathematics, 5(2):227-232, 1996.

[7] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Intro-
duction to circuits, II. Formalized Mathematics, 5(2):273-278, 1996.

FULL SUBTRACTER CIRCUIT. PART I 81

Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preli-
minaries to circuits, II. Formalized Mathematics, 5(2):215-220, 1996.

Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83-86, 1993.

Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.
Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37-42, 1996.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17-23, 1990.

Katsumi Wasaki and Pauline N. Kawamoto. 2’s complement circuit. Formalized Mathe-
matics, 6(2):189-197, 1997.

Edmund Woronowicz. Many—argument relations. Formalized Mathematics, 1(4):733-737,

1990.
Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73-83, 1990.

Received March 13, 1999

82

KATSUMI WASAKI AND NOBORU ENDOU

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Bialystok

Correctness of Binary Counter Circuits

Yuguang Yang Katsumi Wasaki Yasushi Fuwa
Shinshu University Shinshu University Shinshu University
Nagano Nagano Nagano

Yatsuka Nakamura
Shinshu University
Nagano

Summary. This article introduces the verification of the correctness for
the operations and the specification of the 3-bit counter. Both cases: without
reset input and with reset input are considered. The proof was proposed by Y.
Nakamura in [1].

MML Identifier: GATE_2.

The paper [1] provides the terminology and notation for this paper.
In this paper a, b, ¢, d denote sets.
Next we state four propositions:

(1) Let so, s1, 52, 53, 84, 55, 86, 57, N0, 11, N2, N3, N4, N5, NG, N7, q1, G2, 43, N8,
ng, n1o be sets such that NE s iff NE AND3(NOT1 g3, NOT1 g2, NOT1 ¢y)
and NE s; iff NE AND3(NOT1¢3,NOT1¢q2,q1) and NE sy iff NE
AND3(NOT1gs,q2,NOT1¢q;) and NE s3 iff NE AND3(NOT1gs,q2,q1)
and NE s; iff NE AND3(¢3,NOT1¢2,NOT1¢q;) and NE s5 iff NE
AND3(¢3,NOT1 g2, q1) and NE s¢ iff NE AND3(g3, 2, NOT1¢q;) and NE
s7 iff NE AND3(g3, g2, q1) and NE ng iff NE AND3(NOT1n;9, NOT1 ng,
NOT1ng) and NE n; iff NE AND3(NOT1ni9,NOT1ng,ng) and
NE ny iff NE AND3(NOT1nj9,n9,NOT1ng) and NE ns iff NE
AND3(NOT1 nio, N9, ng) and NE Ty iff NE AND3(TZ10, NOT1 ng, NOT1 ng)
and NE njz iff NE AND3(ni9,NOT1ng,ng) and NE ng iff NE
AND3(n10,n9, NOT1ng) and NE ny iff NE AND3(ni0,n9,n8) and NE
ng iff NE NOT1¢; and NE ng iff NE XOR2(q1, ¢2) and NE ny iff NE
OR2(AND2(g3,NOT1 ¢1), AND2(q1, XOR2(g2,¢3))). Then

@ 1999 University of Bialystok
83 ISSN 1426-2630

84 YUGUANG YANG et al.

NE n; iff NE s,

NE ns iff NE s,

NE ng iff NE s,

NE Ty iff NE S3,

NE ns iff NE sq4,

NE ng iff NE s5,

NE n7 iff NE sg, and

NE ng iff NE s7.

(2) NE AND3(AND2(a,d), AND2(b, d), AND2(c, d))
iff NE AND2(AND3(a, b, ¢), d).

(3)i) Not NE AND2(a,b) iff NE OR2(NOT1 a, NOT1b),

(i) NE OR2(a,b) and NE OR2(c,b) iff NE OR2(AND2(a,), b),

(i) NE OR2(a,b) and NE OR2(c,b) and NE OR2(d,b) iff
OR2(AND3(a,c,d),b), and

(iv) if NE OR2(a,b) and NE a iff NE ¢, then NE OR2(c, b).

(4) Let sop, si, S2, S3, S4, S5, S6, S7, Mg, M1, N2, N3, N4,

ng, N7, qi, g2, q3, nNg, N9, nig, K be sets such that
so iff NE AND3(NOT1¢3, NOT1¢g2,NOT1¢q;) and NE s; iff

NE

ns,
NE
NE

AND3(NOT1 ¢3,NOT1 g2, q1) and NE s, iff NE AND3(NOT1 g3, g2, NOT1

q1) and NE s3 iff NE AND3(NOT1gs,q2,q1) and NE s4 iff

NE

AND3(g3,NOT1¢q2,NOT1¢q;) and NE s5 iff NE AND3(¢3, NOT1 g2, q1)

and NE s iff NE AND3(g3,q2,NOT1q;) and NE s7 iff

NE

AND3(g3, g2, q1) and NE ng iff NE AND3(NOT1 nj9, NOT1ng, NOT1 ng)

and NE n; iff NE AND3(NOT1n19,NOT1ng,ng) and NE ngy iff

NE

AND?)(NOTl nio, N9, NOT1 ng) and NE ns iff NE AND3(NOT1 n10, N9, ng)

and NE ny iff NE AND3(n19, NOT1n9,NOT1ng) and NE nj iff

NE

AND3(n19, NOT1 ng, ng) and NE ng iff NE AND3(n19,n9, NOT1ng) and
NE ny iff NE AND3(n19, ng,ns) and NE ng iff NE AND2(NOT1gqy, R)

and NE ng iff NE AND2(XOR2(qi,q2),R) and NE mnq iff
AND2(OR2(AND2(g3,NOT1¢q;), AND2(q1,XOR2(g2,43))), R). Then

) NE n; iff NE AND2(so, R),

) NE ny iff NE AND2(s;, R

) NE n3 iff NE AND2(s2, R

) NE ny iff NE AND2(s3, R
(v) NE ns iff NE AND2(s4, R

) (

)

)

)

)
)
),
),
),
NE ng iff NE AND2(ss5, R),
NE n7 iff NE AND2(sg, R), and

NE ng iff NE OR2(s7, NOT1 R).

NE

CORRECTNESS OF BINARY COUNTER CIRCUITS

REFERENCES

[1] Yatsuka Nakamura. Logic gates and logical equivalence of adders. Formalized Mathematics,
8(1):35-45, 1999.

Received March 13, 1999

85

86

YUGUANG YANG et al.

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Bialystok

Correctness of Johnson Counter Circuits

Yuguang Yang Katsumi Wasaki Yasushi Fuwa
Shinshu University Shinshu University Shinshu University
Nagano Nagano Nagano

Yatsuka Nakamura
Shinshu University
Nagano

Summary. This article introduces the verification of the correctness for
the operations and the specification of the Johnson counter. We formalize the
concepts of 2-bit, 3-bit and 4-bit Johnson counter circuits with a reset input, and
define the specification of the state transitions without the minor loop.

MML Identifier: GATE_3.

The notation and terminology used here are introduced in the paper [1].
The following propositions are true:

(1) Let so, s1, s2, s3, no, n1, N2, N3, q1, g2, N4, N5 be sets such that NE s
iff NE AND2(NOT1 g2, NOT1g;) and NE s, iff NE AND2(NOT1 g, 1)
and NE s9 iff NE AND2(g2,NOT1¢q;) and NE s3 iff NE AND2(g9,q1)
and NE ny iff NE AND2(NOT1n5,NOT1ny4) and NE n; iff NE
AND2(NOT1 ns, nq) and NE ng iff NE AND2(n5, NOT1n4) and NE ng iff
NE AND2(ns,n4) and NE ny4 iff NE NOT1 g2 and NE nj iff NE ¢;. Then

(1) NE ni iff NE S0,

(11) NE ns iff NE S1,

(ili) NE ng iff NE s3, and
) NE ng iff NE so.

(2) Let s, s1, S2, S3, No, N1, N2, N3, 1, G2, N4, N5, R be sets such that NE s
iff NE AND2(NOT1 ¢y, NOT1¢;) and NE s; iff NE AND2(NOT1 g2, ¢1)
and NE s9 iff NE AND2(q2,NOT1¢q;) and NE s3 iff NE AND2(g9, q1)
and NE ng iff NE AND2(NOT1n5,NOT1ns) and NE n; iff NE
AND2(NOT1ns5,n4) and NE ng iff NE AND2(n5, NOT1n4) and NE ns

(iv

@ 1999 University of Bialystok
87 ISSN 1426-2630

88 YUGUANG YANG et al.

iff NE AND2(ns, n4) and NE ny iff NE AND2(NOT1 o, R) and NE nj iff
NE AND2(q1, R). Then
(i) NE ny iff NE AND2(so, R),
(i) NE ng iff NE AND2(s1, R),
) NE ny iff NE AND2(s3, R), and
) NE ng iff NE OR2(AND2(s3, R), NOT1R).

(3) Let S0, 81, 82, S3, S4, S5, S6, S7, No, N1, N2, N3, Ne, N7, 18, N9, 41, 42, 43, 14,
ns, n1o be sets such that NE s iff NE AND3(NOT1 g3, NOT1 g2, NOT1¢q;)
and NE s; iff NE AND3(NOT1¢3,NOT1¢9,q1) and NE s9 iff NE
AND3(NOT1¢s,q2,NOT1¢q;) and NE s3 iff NE AND3(NOT1 g3, g2, ¢1)
and NE s4 iff NE AND3(¢g3,NOT1¢9,NOT1¢q;) and NE s;5 iff NE
AND3(¢3,NOT1 g2, q1) and NE s¢ iff NE AND3(q¢s3, g2, NOT1¢1) and NE
s7 iff NE AND3(qs3, g2, q1) and NE ng iff NE AND3(NOT1 nip, NOT1ns,
NOT1n4) and NE n; iff NE AND3(NOT1ni9,NOT1ns,ng) and
NE ny iff NE AND3(NOT1nig,n5,NOT1ng) and NE ns iff NE
AND3(NOT1 nyg,ns,n4) and NE ng iff NE AND3(n19, NOT1n;, NOT1ny)
and NE n7; iff NE AND3(ni,NOT1ns,n4) and NE ng iff NE
AND3(n10,n5,NOT1n4) and NE ng iff NE AND3(ni0,n5,n4) and NE
ng iff NE NOT1 g3 and NE ns iff NE ¢; and NE nqg iff NE ¢5. Then

) NE n1 iff NE S0,

) NE ng iff NE s,

) NE ng iff NE S3,

) NE ng iff NE s7,
(V) NE Ng iff NE S6,

)

)

)

(i
(iv

NE no iff NE S4,
NE ns iff NE s5, and
NE nr iff NE S92.

(4) Let so, Si1, S2, 83, S4, S5, S¢, St, nNnog, N1, N2, N3, Nng, N7,
ng, N9, qi, g2, g3, N4, N5, nNnig, K be sets such that NE
so iff NE AND3(NOT1¢3, NOT1¢g2,NOT1¢q;) and NE s; iff NE
AND3(NOT1 g3, NOT1 g2,q1) and NE s9 iff NE AND3(NOT1 g3, g2,
NOT1¢q;) and NE s3 iff NE AND3(NOT1gs3,q2,q1) and NE sy iff NE
AND3(¢3,NOT1¢2,NOT1¢;) and NE s;5 iff NE AND3(¢3, NOT1 g2, q1)
and NE s iff NE AND3(g3,q2,NOT1q;) and NE s7 iff NE
AND3(gs, g2, q1) and NE ng iff NE AND3(NOT1nj9, NOT1n5, NOT1ny)
and NE n; iff NE AND3(NOT1n19,NOT1ns,n4) and NE ngy iff NE
AND3(NOT1 nio, N5, NOT1 n4) and NE n3 iff NE AND3(NOT1 n1o0, N5, 77,4)
and NE ng iff NE AND3(n19,NOT1n5,NOT1n4) and NE n; iff NE
AND3(n10, NOT1ns,n4) and NE ng iff NE AND3(n19, n5, NOT1ny) and
NE ng iff NE AND3(nj9, ns,n4) and NE nyg iff NE AND2(NOT1 g3, R)
and NE nj iff NE AND2(¢;, R) and NE ny iff NE AND2(g2, R). Then

CORRECTNESS OF JOHNSON COUNTER CIRCUITS

NE ny iff NE AND2(so, R),
NE ns iff NE AND2(sy, R),
NE ng iff NE AND2(s3, R)
NE ng iff NE AND2(s7, R),
NE ng iff NE AND2(sg, R),
NE ng iff NE OR2(AND2(sy, R), NOT1 R),
NE ns iff NE AND2(s5, R), and
NE n7 iff NE AND2(sz, R).

Let so, s1, s2, 83, sS4, S5, S6, S7, S8, S9, S10, S11, S12, S13,
514, S15, TNo, N1, N2, N3, MNg, N7, N, N9, Ni11, N12, N13, N14,
nis, M6, N7, N1s, 1, G2, g3, g4, N4, N5, Nio, Nig be sets
such that NE sp iff NE AND4(NOT1 g4,NOT1g3,NOT1 g2, NOT1¢q)
and NE s; iff NE AND4(NOT1¢q4,NOT1¢3, NOT1g2,q1) and NE
sg iff NE AND4(NOT1q4,NOT1g3,q2,NOT1¢q;) and NE s3 iff NE
AND4(NOT1 g4, NOT1 g3, q2,q1) and NE s4 iff NE AND4(NOT1 g4, g3,
NOT1¢2,NOT1¢q;) and NE s5 iff NE AND4(NOT1 g4, g3, NOT1 g2, q1)
and NE sg iff NE AND4(NOT1qq4,q3,92,NOT1¢q;) and NE s7 iff NE
AND4(NOT1 g4, g3, g2, q1) and NE sg iff NE AND4(q4, NOT1 g3, NOT1 g2,
NOT1¢q;) and NE s9 iff NE AND4(qq, NOT1¢3,NOT1¢2,q1) and
NE S10 iff NE AND4(Q4,NOT1 Q3,QQ,NOT1 Q1) and NE S11 iff NE
AND4((]4, NOT1 q3,q2, Q1) and NE 512 iff NE AND4(Q4, q3, NOT1 q2, NOT1
q1) and NE s13 iff NE AND4(q4,q3,NOT1g2,q1) and NE sy iff
NE AND4(q4,q3,92,NOT1¢q;) and NE s15 iff NE AND4(qq4, g3, 92,q1)
and NE ny iff NE AND4(NOT1n19,NOT1n19,NOT1n5, NOT1ny)
and NE np; iff NE AND4(NOT1n19,NOT1n49,NOT1ns,n4) and
NE 9 iff NE AND4(NOT1 nlg,NOTl nlo,ng,,NOTl 7”L4) and NE
ns ifft NE AND4(NOT1 niog, NOT1 77,10,715,714) and NE Ne iff NE
AND4(NOT1 ni19, 110, NOT1 ns, NOT1 TL4) and NE ny iff NE AND4<NOT1
T19, 110, NOT1 ns, 77,4) and NE ne iff NE AND4(NOT1 ni19,1Mn10, N5, NOT1n
and NE ng iff NE AND4(NOT1njg,ni0,m5,n4) and NE nqq iff
NE AND4(7119,NOT1 7’L10,NOT1 n5,NOT1 ’I’L4) and NE ni9o iff NE
AND4(7”L19, NOT1 nio, NOT1 ns, n4) and NE nis iff NE AND4(7119, NOT1
nio, N5, NOT1 n4) and NE 14 iff NE AND4(H19, NOT1 nip, N5, n4) and
NE ny5 iff NE AND4(n19,n10, NOT1n5,NOT1n4) and NE nig iff NE
AND4(7119, nio0, NOT1 ns, n4) and NE nit iff NE AND4(77,19, nip, N5, NOT1
and NE nyg iff NE AND4(n19, 110, n5,n4) and NE ny4 iff NE NOT1 ¢4 and
NE nj iff NE ¢1 and NE nqq iff NE ¢ and NE ni9 iff NE ¢3. Then

NE ni iff NE S0,
NE ns3 iff NE S1,
NE ng if NE S3,
NE nig iff NE S7,
NE nit iff NE 815,

)

R
R

89

1)

ng)

(1)

YUGUANG YANG et al.

NE nis iff NE S14,
NE nii iff NE S12,
NE no iff NE S8,
NE nry iff NE S92,
NE niq4 iff NE S5,
NE ns iff NE S11,
NE nq4 iff NE sg,
NE nis iff NE 513,
NE ng iff NE s,
NE ni92 iff NE S4, and
NE ns iff NE sg.

Let so, S1, $S2, S3, S4, S5, Se, S7, S8, S9, S10, S11, S12, S13,
S14, 815, T, N1, N2, N3, Ng, N7, N8, N9, MNi11, N12, N13, N4,
nis, N6, M7, Mis, 41, 42, 43, G4, M4, M5, N1, Mg, I be sets
such that NE s¢ iff NE AND4(NOT1 g4, NOT1 g3, NOT1g2,NOT1¢;)
and NE s; iff NE AND4(NOT1q4,NOT1¢g3,NOT1¢ge,q1) and NE
so iff NE AND4(NOT1 g4, NOT1g3,q2,NOT1q;) and NE s3 iff NE
AND4(NOT1 q4,NOT1gs3,q2,q1) and NE s4 iff NE AND4(NOT1 ¢4, g3,
NOT1¢2,NOT1¢q;) and NE s5 iff NE AND4(NOT1 g4, g3, NOT1 g2, q1)
and NE sg iff NE AND4(NOT1 g4, ¢3,¢2, NOT1¢q;) and NE s; iff NE
AND4(NOT1 g4, g3, q2,q1) and NE sg iff NE AND4(q4, NOT1 g3, NOT1 g9,
NOT1q) and NE sg iff NE AND4(gs, NOT1¢3,NOT1¢q2,¢q1) and
NE S10 iff NE AND4(Q4,NOT1 Q3,QQ,NOT1 ql) and NE S11 iff NE
AND4(Q4, NOT1 q3,q2, q1) and NE 512 iff NE AND4(Q4, q3, NOT1 q2, NOT1
q1) and NE s13 iff NE AND4(q4,q3,NOT1q2,q1) and NE s14 iff
NE AND4(q4,qs3,92,NOT1¢q;) and NE s;15 iff NE AND4(q4, g3, 92, q1)
and NE no iff NE AND4(NOT1 nlg,NOTl nlo,NOTl TL5,NOT1 n4)
and NE ni iff NE AND4(NOT1 nlg,NOTl nlg,NOTl n5,n4) and
NE n9 if NE AND4(NOT1 Tllg,NOTl nlo,n5,NOT1 Tl4) and NE
ng iff NE AND4(NOT1n;9,NOT1mni9,n5,n4) and NE ng iff NE
AND4(NOT1 nig9,n10, NOT1n5, NOT1 ng) and NE n7 iff NE AND4(NOT1
T19, 110, NOT1 ns, 7’L4) and NE ng iff NE AND4(NOT1 ni19,MN10, N5, NOT1 714)
and NE ng iff NE AND4(NOT1nyg,nig,n5,n4) and NE ng; iff
NE AND4(H19,NOT1 nlo,NOTl n5,NOT1 TZ4) and NE ni92 iff NE
AND4(7119, NOT1 nio, NOT1 ns, n4) and NE ni3 iff NE AND4(77,19, NOT1
n10,n5, NOT1nyg) and NE ny4 iff NE AND4(n19, NOT1 ny9, ns,n4) and
NE nis iff NE AND4(TL19,’I?,10,NOT1 TL5,NOT1 n4) and NE nie iff NE
AND4(TL19, nio, NOT1 ns, 77,4) and NE niy iff NE AND4(77,19, ni0, N5, NOT1
ng) and NE njg iff NE AND4(ni9,n10,n5,n4) and NE n4 iff NE
AND2(NOT1 g4, R) and NE nj iff NE AND2(q1, R) and NE nyq iff NE
AND2(g2, R) and NE njg iff NE AND2(g3, R). Then

NE ni iff NE ANDQ(SQ, R),

S~
—-

e e
—-

< A~ T
—

%

e - - M v e e e

CORRECTNESS OF JOHNSON COUNTER CIRCUITS

NE ns iff NE AND2(s1, R),

NE ng iff NE AND2(s3, R),

NE nisg iff NE AND2(87, R),

NE nir iff NE AND2(815, R),

NE nis iff NE AND2(814, R),

NE nii iff NE AND2(812, R),

NE ny iff NE OR2(AND2(ss, R), NOT1 R),
NE n7 iff NE AND2(s2, R),

NE ny4 iff NE AND2(s5, R),

NE ng iff NE AND2(s11, R),

NE n1e6 iff NE AND2(S6, R),
NE nis iff NE AND2(813, R),
NE Ne iff NE ANDQ(SM),R),

NE ni2 iff NE AND2(84, R), and
NE n9 iff NE AND2(89, R)

REFERENCES

[1] Yatsuka Nakamura. Logic gates and logical equivalence of adders. Formalized Mathematics,

8(1):35-45, 1999.

Received March 13, 1999

92

YUGUANG YANG et al.

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Bialystok

The Definition of the Riemann Definite
Integral and some Related Lemmas

Noboru Endou Artur Kornitowicz!
Shinshu University University of Bialystok
Nagano

Summary. This article introduces the Riemann definite integral on the
closed interval of real. We present the definitions and related lemmas of the
closed interval. We formalize the concept of the Riemann definite integral and
the division of the closed interval of real, and prove the additivity of the integral.

MML Identifier: INTEGRA1.

The notation and terminology used in this paper are introduced in the following
papers: [28], [31], [8], [14], [2], [5], [6], [30], [22], [32], [18], [15], [7], [20], [26], [10],
[12], [3], [27], [21], [4], [29], [16], [17], [24], [9], [11], [19], [25], [13], [23], and [1].

1. DEFINITION OF CLOSED INTERVAL AND ITS PROPERTIES

For simplicity, we adopt the following rules: a, ai, az, b, by, by are real
numbers, p is a finite sequence, F, G, H are finite sequences of elements of R,
1, 7, k are natural numbers, f is a function from R into R, and z is a set.
Let I; be a subset of R. We say that I; is closed-interval if and only if:
(Def. 1) There exist real numbers a, b such that a < b and I1 = [a, b)].

Let us mention that there exists a subset of R which is closed-interval.
In the sequel A, Ay, Ay are closed-interval subsets of R.
The following propositions are true:

(1) Every closed-interval subset of R is compact.

! This paper was written while the second author visited Shinshu University, winter 1999.

@ 1999 University of Bialystok
93 ISSN 1426-2630

94 NOBORU ENDOU AND ARTUR KORNILOWICZ

(2) If Ais a closed-interval subset of R, then A is non empty.
Let us observe that every subset of R which is closed-interval is also non
empty and compact.
The following proposition is true
(3) If Ais a closed-interval subset of R, then A is lower bounded and upper
bounded.
Let us observe that every subset of R which is closed-interval is also bounded.
One can verify that there exists a subset of R which is closed-interval.
Next we state three propositions:
(4) 1If A is a closed-interval subset of R, then there exist a, b such that a < b
and a = inf A and b = sup A.
(5) If Ais a closed-interval subset of R, then A = [inf A, sup A].
(6) If A=a1,b1] and A = [ag,bs], then a; = az and by = ba.

2. DEFINITION OF DIVISION OF CLOSED INTERVAL AND ITS PROPERTIES

Let A be a closed-interval subset of R. A non empty increasing finite sequence
of elements of R is said to be a DivisionPoint of A if:
(Def. 2) rngit C A and it(lenit) = sup A.
Let A be a closed-interval subset of R. The functor divs A yielding a set is
defined by:

(Def. 3) 7 € divs A iff z; is a DivisionPoint of A.
Let A be a closed-interval subset of R. One can check that divs A is non
empty.
Let A be a closed-interval subset of R. A non empty set is called a Division
of A if:
(Def. 4) x; € it iff x; is a DivisionPoint of A.
Let A be a closed-interval subset of R. Observe that there exists a Division
of A which is non empty.
The following proposition is true
(7) For every closed-interval subset A of R and for every non empty Division
S of A holds every element of S is a DivisionPoint of A.
Let A be a closed-interval subset of R and let S be a non empty Division of
A. We see that the element of S is a DivisionPoint of A.
In the sequel S denotes a non empty Division of A and D, D1, Dy denote
elements of S.
Next we state two propositions:

(8) If i € dom D, then D(i) € A.

THE DEFINITION OF THE RIEMANN DEFINITE . .. 95

(9) If i € domD and i # 1, then i — 1 € dom D and D(i — 1) € A and
i—1eN.

Let A be a closed-interval subset of R, let S be a non empty Division of A,
let D be an element of S, and let ¢ be a natural number. Let us assume that
i € dom D. The functor divset(D,i) yielding a closed-interval subset of R is
defined as follows:
(Def. 5)(i) infdivset(D,i) = inf A and supdivset(D,:) = D(i) if i = 1,
(ii) infdivset(D,i) = D(i — 1) and sup divset(D, i) = D(i), otherwise.
Next we state the proposition
(10) If ¢ € dom D, then divset(D,i) C A.
Let A be a subset of R. The functor vol(A) yielding a real number is defined
by:
(Def. 6) vol(A) =sup A — inf A.
One can prove the following proposition
(11) For every closed-interval subset A of R holds 0 < vol(A).

3. DEFINITIONS OF INTEGRABILITY AND RELATED TOPICS

Let A be a closed-interval subset of R, let f be a partial function from A
to R, let S be a non empty Division of A, and let D be an element of S. The
functor upper_volume(f, D) yielding a finite sequence of elements of R is defined

as follows:
(Def. 7) lenupper_volume(f,D) = lenD and for every i such that i €
Seglen D holds (upper_volume(f,D))(i) = suprng(f[divset(D,i)) -

vol(divset(D,1)).
The functor lower_volume(f, D) yielding a finite sequence of elements of R is

defined by:

(Def. 8) lenlower_volume(f, D) = len D and for every i such that ¢ € Seglen D
holds (lower_volume(f, D))(i) = inf rng(f | divset(D, 1)) - vol(divset(D,1)).

Let A be a closed-interval subset of R, let f be a partial function from A
to R, let S be a non empty Division of A, and let D be an element of S. The
functor upper_sum(f, D) yields a real number and is defined by:

(Def. 9) upper_sum(f, D) =) upper_volume(f, D).
The functor lower_sum(f, D) yields a real number and is defined by:
(Def. 10) lower_sum(f, D) = 3 lower_volume(f, D).
Let A be a closed-interval subset of R. Then divs A is a Division of A.

96 NOBORU ENDOU AND ARTUR KORNILOWICZ

Let A be a closed-interval subset of R and let f be a partial function from
A to R. The functor upper_sum_set [yielding a partial function from divs A to
R is defined as follows:

(Def. 11) domupper_sum set f = divs A and for every element D of divs A
such that D € domupper_sum set f holds (upper_sumset f)(D) =
upper_sum(f, D).

The functor lower_sum_set f yields a partial function from divs A to R and is
defined as follows:

(Def. 12) domlower sum set f = divs A and for every element D of divs A
such that D € domlowersumset f holds (lower_sumset f)(D) =
lower_sum(f, D).

Let A be a closed-interval subset of R and let f be a partial function from
A to R. We say that f is upper integrable on A if and only if:

(Def. 13) rngupper_sum set f is lower bounded.
We say that f is lower integrable on A if and only if:
(Def. 14) rnglower_sum set f is upper bounded.

Let A be a closed-interval subset of R and let f be a partial function from
A to R. The functor upper_integral f yielding a real number is defined by:

(Def. 15) upper_integral f = inf rng upper_sum_ set f.

Let A be a closed-interval subset of R and let f be a partial function from A
to R. The functor lower_integral f yields a real number and is defined as follows:

(Def. 16) lower_integral f = sup rng lower_sum_set f.

Let A be a closed-interval subset of R and let f be a partial function from
A to R. We say that f is integrable on A if and only if:

(Def. 17) f is upper integrable on A and f is lower integrable on A and
upper_integral f = lower_integral f.

Let A be a closed-interval subset of R and let f be a partial function from
A to R. The functor integral f yields a real number and is defined by:

(Def. 18) integral f = upper_integral f.

4. REAL FUNCTION’S PROPERTIES

Next we state several propositions:
(12) For every non empty set X and for all partial functions f, g from X to
R holds rng(f + g) C rmg f + rngg.
(13) Let A be a closed-interval subset of R and f be a partial function from
A to R. If f is lower bounded on A, then rng f is lower bounded.

THE DEFINITION OF THE RIEMANN DEFINITE . .. 97

(14) Let A be a closed-interval subset of R and f be a partial function from
A to R. If rng f is lower bounded, then f is lower bounded on A.

(15) Let A be a closed-interval subset of R and f be a partial function from
A to R. If f is upper bounded on A, then rng f is upper bounded.

(16) Let A be a closed-interval subset of R and f be a partial function from
A to R. If rng f is upper bounded, then f is upper bounded on A.

(17) Let A be a closed-interval subset of R and f be a partial function from
A to R. If f is bounded on A, then rng f is bounded.

5. CHARACTERISTIC FUNCTION’S PROPERTIES

The following propositions are true:

(18) For every closed-interval subset A of R holds X4 4 is a constant on A.

(19) For every closed-interval subset A of R holds rng(X4.4) = {1}.

(20) For every closed-interval subset A of R and for every set B such that
BnNdom(Xa,4) # 0 holds rng(Xa 4| B) = {1}.

(21) If i € Seglen D, then vol(divset(D, 1)) = (lower_volume(X 4 4, D))(t).

(22) If i € Seglen D, then vol(divset(D, 7)) = (upper_volume(X 4,4, D))(7).

(23) Iflen F' =lenG and len F' = len H and for every k such that k € dom F
holds H(k) = Fy, + Gk, then) _H=> F+ > G.

(24) Iflen F =lenG and len F = len H and for every k such that k € dom F
holds H(k) = Fy, — Gk, then Y H=> F - > G.

(25) Let A be a closed-interval subset of R, S be a non empty Division of A,
and D be an element of S. Then) lower_volume(X4 4, D) = vol(A).

(26) Let A be a closed-interval subset of R, S be a non empty Division of A,
and D be an element of S. Then) upper_volume(X 4 4, D) = vol(A).

6. SOME PROPERTIES OF DARBOUX SUM

Let A be a closed-interval subset of R, let f be a partial function from A
to R, let S be a non empty Division of A, and let D be an element of S. Then
upper_volume(f, D) is a non empty finite sequence of elements of R.

Let A be a closed-interval subset of R, let f be a partial function from A
to R, let S be a non empty Division of A, and let D be an element of S. Then
lower_volume(f, D) is a non empty finite sequence of elements of R.

One can prove the following propositions:

98 NOBORU ENDOU AND ARTUR KORNILOWICZ

(27) Let A be a closed-interval subset of R, f be a partial function from A
to R, S be a non empty Division of A, and D be an element of S. If f is
total and lower bounded on A, then infrng f - vol(A) < lower_sum(f, D).

(28) Let A be a closed-interval subset of R, f be a partial function from
A to R, S be a non empty Division of A, D be an element of S, and 14
be a natural number. Suppose f is total and upper bounded on A and
i € Seglen D. Then suprng f - vol(divset(D, 1)) > suprng(f| divset(D,1))-
vol(divset(D, 7)).

(29) Let A be a closed-interval subset of R, f be a partial function from A to
R, S be a non empty Division of A, and D be an element of S. If f is total
and upper bounded on A, then upper_sum(f, D) < suprng f - vol(A).

(30) Let A be a closed-interval subset of R, f be a partial function from A
to R, S be a non empty Division of A, and D be an element of S. If f is
total and bounded on A, then lower_sum(f, D) < upper_sum(f, D).

Let = be a non empty finite sequence of elements of R. Then rngx is a finite
non empty subset of R.

Let A be a closed-interval subset of R and let D be an element of divs A.
The functor §p yielding a real number is defined by:

(Def. 19) 6p = maxrng upper_volume(X4 4, D).

Let A be a closed-interval subset of R, let S be a non empty Division of A,
and let D1, Dy be elements of S. The predicate D1 < Ds is defined as follows:
(Def. 20) len D; < len Dy and rng D; C rng Ds.
We introduce Do > D; as a synonym of Dy < Do.
One can prove the following propositions:

(31) Let A be a closed-interval subset of R, S be a non empty Division of A,
and Dy, D5 be elements of S. If len D1 = 1, then Dy < Ds.

(32) Let A be a closed-interval subset of R, f be a partial function from A to
R, S be a non empty Division of A, and D1, Dy be elements of S. If f is
total and upper bounded on A and len D; = 1, then upper_sum(f, D;) >
upper_sum(f, Dy).

(33) Let A be a closed-interval subset of R, f be a partial function from A to
R, S be a non empty Division of A, and D1, Dy be elements of S. If f is
total and lower bounded on A and len Dy = 1, then lower_sum(f, D;) <
lower_sum(f, D3).

(34) Let A be a closed-interval subset of R, S be a non empty Division of A,
and D be an element of S. If i € dom D, then there exist Ay, As such that
Ay = [inf A, D(i)] and Ag = [D(i),sup A] and A = A; U As.

(35) Let A be a closed-interval subset of R, S be a non empty Division of A,
and Dy, Dy be elements of S. If i € dom D1, then if D; < Ds, then there
exists j such that j € dom Dy and D (¢) = Da(j).

THE DEFINITION OF THE RIEMANN DEFINITE . .. 99

Let A be a closed-interval subset of R, let S be a non empty Division of A,
let D1, Dy be elements of S, and let ¢ be a natural number. Let us assume that
Dy < Dy. The functor indx(Ds, D1, 1) yields a natural number and is defined as

follows:
(Def. 21)(i) indX(DQ,D1,i) € dom Dy and Dl(’l) = Dg(indX(DQ,D1,i)) if 1 €
dOle,

(ii) indx(Ds2, Di,i) = 0, otherwise.
Next we state four propositions:

(36) Let p be an increasing finite sequence of elements of R and n be a natural
number. Suppose n < lenp. Then py, is an increasing finite sequence of
elements of R.

(37) Let p be an increasing finite sequence of elements of R and 4, j be natural
numbers. Suppose j € domp and ¢ < j. Then mid(p,i,7) is an increasing
finite sequence of elements of R.

(38) Let A be a closed-interval subset of R, S be a non empty Division of A, D
be an element of .S, and ¢, j be natural numbers. Suppose i € dom D and
j € dom D and ¢ < j. Then there exists a closed-interval subset B of R such
that inf B = (mid(D,,7))(1) and sup B = (mid(D, 1, j))(len mid(D,1,7))
and len mid(D, 4, j) = (j — i) + 1 and mid(D, 1, j) is a DivisionPoint of B.
(39) Let A, B be closed-interval subsets of R, S be a non empty Division
of A, S1 be a non empty Division of B, D be an element of S, and i, j
be natural numbers. Suppose ¢ € dom D and j € dom D and ¢ < j and

D(i) > inf B and D(j) = sup B. Then mid(D, i, j) is an element of S;.
Let p be a finite sequence of elements of R. The functor PartSums p yielding

a finite sequence of elements of R is defined by:

(Def. 22) lenPartSumsp = lenp and for every i such that ¢ € Seglenp holds
(PartSumsp)(i) = > (pli).
We now state a number of propositions:

(40) Let A be a closed-interval subset of R, f be a partial function from A
to R, S be a non empty Division of A, and Dy, Dy be elements of S.
Suppose D1 < Dy and f is total and upper bounded on A. Let ¢ be a non
empty natural number. If i € dom Dy, then > (upper_volume(f, D1)[i) >
> (upper_volume(f, D2)[indx (D2, D1,1)).

(41) Let A be a closed-interval subset of R, f be a partial function from A
to R, S be a non empty Division of A, and Dy, Ds be elements of S.
Suppose D1 < Do and f is total and lower bounded on A. Let i be a non
empty natural number. If i € dom Dy, then) (lower_volume(f, D1)[i) <
> (lower_volume(f, D2) [indx(D2, D1, 1)).

(42) Let A be a closed-interval subset of R, f be a partial function from A
to R, S be a non empty Division of A, Dy, Ds be elements of S, and 4

100 NOBORU ENDOU AND ARTUR KORNILOWICZ

be a natural number. Suppose D1 < D and ¢ € dom D; and f is to-
tal and upper bounded on A. Then (PartSums upper_volume(f, D1))(i) >
(PartSums upper_volume(f, D)) (indx (D2, D1, 1)).

(43) Let A be a closed-interval subset of R, f be a partial function from A
to R, S be a non empty Division of A, Dy, Ds be elements of S, and
i be a natural number. Suppose D; < Dy and i € domD; and f is
total and lower bounded on A. Then (PartSums lower_volume(f, D1))(i) <
(PartSums lower_volume(f, D2))(indx(D3, D1, 1)).

(44) Let A be a closed-interval subset of R, f be a partial function from A
to R, S be a non empty Division of A, and D be an element of S. Then
(PartSums upper_volume(f, D))(len D) = upper_sum(f, D).

(45) Let A be a closed-interval subset of R, f be a partial function from A
to R, S be a non empty Division of A, and D be an element of S. Then
(PartSums lower_volume(f, D))(len D) = lower_sum(f, D).

(46) Let A be a closed-interval subset of R, S be a non empty Division of A,
and Dj, Dy be elements of S. If Dy < Dy, then indx(Ds, Dq,len D) =
len Ds.

(47) Let A be a closed-interval subset of R, f be a partial function from A
to R, S be a non empty Division of A, and D1, Dy be elements of S. If
Dy < Dj and f is total and upper bounded on A, then upper_sum(f, Dy) <
upper_sum(f, Dp).

(48) Let A be a closed-interval subset of R, f be a partial function from A
to R, S be a non empty Division of A, and D1, Dy be elements of S. If
Dy < Dy and f is total and lower bounded on A, then lower_sum(f, Dy) >
lower_sum(f, D).

(49) Let A be a closed-interval subset of R, S be a non empty Division of A,
and D1, Do be elements of S. Then there exists an element D of S such
that D1 < D and Dy < D.

(50) Let A be a closed-interval subset of R, f be a partial function from A to
R, S be a non empty Division of A, and D1, D2 be elements of S. If f is
total and bounded on A, then lower_sum(f, D1) < upper_sum(f, Ds).

7. ADDITIVITY OF INTEGRAL

One can prove the following propositions:
(51) Let A be a closed-interval subset of R and f be a partial function from
A to R. Suppose f is upper integrable on A and f is lower integrable on A
and f is total and bounded on A. Then upper_integral f > lower_integral f.

(52) For all subsets X, Y of R holds — X + -Y =—(X +Y).

THE DEFINITION OF THE RIEMANN DEFINITE . ..

(53) For all subsets X, Y of R such that X is upper bounded and Y # () and
Y is upper bounded holds X + Y is upper bounded.

(54) For all non empty subsets X, Y of R such that X is upper bounded and
Y is upper bounded holds sup(X +Y) =sup X +supY.

(55) Let A be a closed-interval subset of R, f, g be partial functions from
A to R, S be a non empty Division of A, and D be an element of S.
Suppose i € Seglen D and f is upper bounded on A and total and g¢
is upper bounded on A and total. Then (upper_volume(f + g, D))(i) <
(upper_volume(f, D))(i) + (upper_volume(g, D))(7).

(56) Let A be a closed-interval subset of R, f, g be partial functions from A
to R, S be a non empty Division of A, and D be an element of S. Suppose
1 € Seglen D and f is lower bounded on A and total and g is lower bounded
on A and total. Then (lower_volume(f, D))(i) 4 (lower_volume(g, D))(i) <
(lower_volume(f + g, D))(4).

(57) Let A be a closed-interval subset of R, f, g be partial functions from A
to R, S be a non empty Division of A, and D be an element of S. Suppose
f is upper bounded on A and total and ¢ is upper bounded on A and
total. Then upper_sum(f + g, D) < upper_sum(f, D) + upper_sum(g, D).

(58) Let A be a closed-interval subset of R, f, g be partial functions from A
to R, S be a non empty Division of A, and D be an element of S. Suppose
f is lower bounded on A and total and ¢ is lower bounded on A and total.
Then lower_sum(f, D) + lower_sum(g, D) < lower_sum(f + g, D).

(59) Let X be a non empty set and f be a partial function from X to R. If
f is upper bounded on X and total, then rng f is upper bounded.

(60) Let X be a non empty set and f be a partial function from X to R. If
rng f is upper bounded and f is total, then f is upper bounded on X.
(61) Let X be a non empty set and f be a partial function from X to R. If

f is lower bounded on X and total, then rng f is lower bounded.

(62) Let X be a non empty set and f be a partial function from X to R. If
rng f is lower bounded and f is total, then f is lower bounded on X.
(63) Let A be a closed-interval subset of R and f, g be partial functions from

A to R. Suppose that

(i) f is total and bounded on A,

(ii) g is total and bounded on A,
(iii) f is integrable on A, and

(iv) g is integrable on A.
Then f + g is integrable on A and integral f + g = integral f 4 integral g.

REFERENCES

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

101

NOBORU ENDOU AND ARTUR KORNILOWICZ

Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

Czestaw Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529-536, 1990.

Czestaw Byliniski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

Czjeslaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,

1990.
Czestaw Byliniski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
Czestaw Byliniski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53,

1990.

ng%slaw Bylinski. The sum and product of finite sequences of real numbers. Formalized
Mathematics, 1(4):661-668, 1990.

Czestaw Bylinski and Piotr Rudnicki. Bounding boxes for compact sets in £2. Formalized
Mathematics, 6(3):427-440, 1997.

Czestaw Bylinski and Andrzej Trybulec. Complex spaces. Formalized Mathematics,
2(1):151-158, 1991.

Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

Agata Darmochwal and Yatsuka Nakamura. The topological space £%. Arcs, line segments
and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.

Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.

Jarostaw Kotowicz. Convergent real sequences. Upper and lower bound of sets of real
numbers. Formalized Mathematics, 1(3):477-481, 1990.

Jarostaw Kotowicz. Partial functions from a domain to a domain. Formalized Mathema-
tics, 1(4):697-702, 1990.

Jarostaw Kotowicz. Partial functions from a domain to the set of real numbers. Formalized
Mathematics, 1(4):703-709, 1990.

Jarostaw Kotowicz. Real sequences and basic operations on them. Formalized Mathema-
tics, 1(2):269-272, 1990.

Jarostaw Kotowicz. Functions and finite sequences of real numbers. Formalized Mathe-
matics, 3(2):275-278, 1992.

Jarostaw Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized
Mathematics, 3(1):107-115, 1992.

Eugeniusz Kusak, Wojciech Leoniczuk, and Michat Muzalewski. Abelian groups, fields
and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.

Robert Milewski. Natural numbers. Formalized Mathematics, 7(1):19-22, 1998.

Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. For-
malized Mathematics, 6(2):255-263, 1997.

Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preli-
minaries to circuits, I. Formalized Mathematics, 5(2):167-172, 1996.

Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83-86, 1993.

Konrad Raczkowski and Pawel Sadowski. Topological properties of subsets in real num-
bers. Formalized Mathematics, 1(4):777-780, 1990.

Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
1(2):329-334, 1990.

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.

Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579,
1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17-23, 1990.

Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186,
1990.

Received March 13, 1999

FORMALIZED MATHEMATICS
Volume 8, Number 1, 1999
University of Bialystok

Properties of the Trigonometric Function

Takashi Mitsuishi Yuguang Yang
Shinshu University Shinshu University
Nagano Nagano

Summary. This article introduces the monotone increasing and the mo-
notone decreasing of sinus and cosine, and definitions of hyperbolic sinus, hyper-
bolic cosine and hyperbolic tangent, and some related formulas about them.

MML Identifier: SIN_C0S2.

The papers [21], [6

]
8], [16], [9], [10], [1

for this paper.

[17], [22], [4], [14], [15], [20], [2], [19], (3], [18], [13], [5], [7],

], [23], [11], and [12] provide the notation and terminology

1. MONOTONE INCREASING AND MONOTONE DECREASING OF SINUS AND
COSINE

We adopt the following rules: p, ¢, r, t1 are elements of R and n is a natural
number.
Next we state a number of propositions:

Ifp>0andr>0,thenp+r>2-/p
sin is increasing on |0, T2,
154, Pail.
2
b

]
10,

cos is decreasing on]PT, ail.
]

W NN =

sin is decreasing on

N

cos is decreasing on

(=2}

sin is decreasing on |Pai, 3 - Pail.

J

sin is increasing on |3 Pal 2 - Pail.

AN N SN N N N /N /N
co t
S N e e S N N N

cos is increasing on |Pai, 3 - Pail.

@ 1999 University of Bialystok
103 ISSN 1426-2630

104 TAKASHI MITSUISHI AND YUGUANG YANG

(9) cos is increasing on]2 - Pai, 2 - Pail.
(10) (sin)(t1) = (sin)(2 - Pai-n +t1).
(11) (cos)(t1) = (cos)(2 - Pai-n +t1).

2. HyPERBOLIC SINUS, HYPERBOLIC COSINE AND HYPERBOLIC TANGENT

The partial function sinh from R to R is defined as follows:

(Def. 1) domsinh = R and for every real number d holds (sinh)(d) =
(exp)(d)*z(exp)(*d) .

Let d be a real number. The functor sinh d yielding an element of R is defined
by:
(Def. 2) sinhd = (sinh)(d).
The partial function cosh from R to R is defined as follows:

(Def. 3) domcosh = R and for every real number d holds (cosh)(d) =

(exp)(d)+2(exp)(—d))

Let d be a real number. The functor coshd yields an element of R and is
defined as follows:

(Def. 4) coshd = (cosh)(d).
The partial function tanh from R to R is defined as follows:

(Def. 5) domtanh = R and for every real number d holds (tanh)(d) =
(exp)(d)—(exp)(—d)
(exp)(d)+(exp)(—d)*

Let d be a real number. The functor tanhd yields an element of R and is

defined as follows:
(Def. 6) tanhd = (tanh)(d).
We now state a number of propositions:
(12) (exp)(p+q) = (exp)(p) - (exp)(q)-
(13) (exp)(0) = 1.

(14) (cosh)(p)® — (sinh)(p)? = 1 and (cosh)(p) - (cosh)(p) — (sinh)(p) -
(sinh)(p) = 1

(15) (cosh)(p) # 0 and (cosh)(p) > 0 and (cosh)(0) = 1.

(16) (sinh)(0) = 0. .

(17) (tanh)(p) = S,

(18) (sinh)(p)? = - ((cosh)(2-p) — 1) and (cosh)(p)? = 3 - ((cosh)(2-p) +1).

(19) (cosh)(—p) = (cosh)(p) and (sinh)(—p) = —(sinh)(p) and (tanh)(—p) =
—(tanh) (p).

(20) (cosh)(p+1) = (cosh)(p) - (cosh)(r) + (sinh)(p) - (sinh)(r) and (cosh)(p —

r) = (cosh)(p) - (cosh)(r) — (sinh)(p) - (sinh)(r).

PROPERTIES OF THE TRIGONOMETRIC FUNCTION 105

(21) (sinh)(p+r) = (sinh)(p) - (cosh)(r) 4 (cosh)(p) - (sinh)(r) and (sinh)(p —
r) = (sinh)(p) - (cosh)(r) — (cosh)(p) - (sinh)(r).

tanh +(tanh tanh —(tanh)(r
(22) (tanh)(p+r) = 1(+(tar3£1)7%p)§(tan})1§(7)«) and (tanh)(p—r) = 1(7(tarz}(1;))zp)(-(tanl)1§(7)")'

(23) (sinh)(2-p) = 2 (sinh)(p) - (cosh)(p) and (cosh)(2-p) = 2- (cosh)(p)% —1

-(tanh
and (tanh)(2-p) = %'

(24) (sinh)(p)? — (sinh)(q)? = (sinh)(p + ¢) - (sinh)(p — ¢) and (sinh)(p +
q) - (sinh)(p — q) = (cosh)(p)?® — (cosh)(g)? and (sinh)(p)? — (sinh)(¢)* =
(cosh)(p)? — (cosh)(q)2.
(25) (sinh)(p)? + (cosh)(q)? = (cosh)(p + q) - (cosh)(p — ¢) and (cosh)(p +
q) - (cosh)(p — q) = (cosh)(p)2 + (sinh)(¢)? and (sinh)(p)? + (cosh)(q)? =
(cosh)(p)? + (sinh)(g)*.

(26) (sinh)(p) + (sinh)(r) = 2 - (sinh)(§ + %) - (cosh)(5 — %) and (sinh)(p) —
(sinh)(r) = 2 - (sinh)(§ — 5) - (cosh)(% + 3)-

(27) (cosh)(p) + (cosh)(r) 2 (cosh)(5 + %) - (cosh) (5 — %) and (cosh)(p) —
(cosh)(r) = 2 (snh)(§ —) - (sinh) (3 +).

(28) (tamh)(p) + (tanh)(r) =) and (tanh)(p) — (tanh)(r) =

(sinh) (p—r)
(cosh) (p)-(cosh) () °

(29) ((cosh)(p) -+ (sinh)(p)f = (cosh)(n - p) + (sinh)(n - p).

One can check the following observations:

% sinh is total,

* cosh is total, and

* tanh is total.

One can prove the following propositions:
domsinh = R and dom cosh = R and dom tanh = R.
sinh is differentiable in p and (sinh)’(p) = (cosh)(p).
cosh is differentiable in p and (cosh)’(p) = (sinh)(p).

(p) = W-

sinh is differentiable on R and (sinh)’(p) = (cosh)(p).
cosh is differentiable on R and (cosh)’(p) = (sinh)(p).
tanh is differentiable on R and (tanh)'(p) = —~—z
(cosh)(p) > 1.

sinh is continuous in p.

W W W w
w N = O

tanh is differentiable in p and (tanh)’

W W W
(=2 SA N

W w
O oo

cosh is continuous in p.

N
(@)

tanh is continuous in p.

N
—_

sinh is continuous on R.

N
o

cosh is continuous on R.

/\AAA,_\/\A,_\/_\/_\/_\/_\/\A
~— O Y N T N~ N N N~ N~ N~

B
w

tanh is continuous on R.

106

TAKASHI MITSUISHI AND YUGUANG YANG

(44) (tanh)(p) < 1 and (tanh)(p) > —1.

1]
2]

REFERENCES

Agnieszka Banachowicz and Anna Winnicka. Complex sequences. Formalized Mathema-
tics, 4(1):121-124, 1993.

Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

Czestaw Bylifiski. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
Czestaw Byliniski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

Czestaw Byliniski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.

Jarostaw Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathe-
matics, 1(2):273-275, 1990.

Jarostaw Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics,
1(3):471-475, 1990.

Jarostaw Kotowicz. Partial functions from a domain to the set of real numbers. Formalized
Mathematics, 1(4):703-709, 1990.

Jarostaw Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786,

1990.
Jarostaw Kotowicz. Real sequences and basic operations on them. Formalized Mathema-

tics, 1(2):269-272, 1990.

Fugeniusz Kusak, Wojciech Leoniczuk, and Michal Muzalewski. Abelian groups, fields
and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.

Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125—
130, 1991.

Konrad Raczkowski and Pawel Sadowski. Real function continuity. Formalized Mathe-
matics, 1(4):787-791, 1990.

Konrad Raczkowski and Pawet Sadowski. Real function differentiability. Formalized
Mathematics, 1(4):797-801, 1990.

Konrad Raczkowski and Pawel Sadowski. Topological properties of subsets in real num-
bers. Formalized Mathematics, 1(4):777-780, 1990.

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.
Andrzej Trybulec and Czestaw Bylinski. Some properties of real numbers. Formalized

Mathematics, 1(3):445-449, 1990.
Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579,

1990.
Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17-23, 1990.

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle
ratio. Formalized Mathematics, 7(2):255-263, 1998.

Received March 13, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Bialystok

Predicate Calculus for Boolean Valued
Functions. Part 11

Shunichi Kobayashi Yatsuka Nakamura
Shinshu University Shinshu University
Nagano Nagano

Summary. In this paper, we have proved some elementary predicate calcu-
lus formulae containing the quantifiers of Boolean valued functions with respect
to partitions. Such a theory is an analogy of usual predicate logic.

MML Identifier: BVFUNC_4.

The terminology and notation used in this paper are introduced in the following
articles: [8], [10], [11], [2], [3], [7], [6], [9], [1], [4], and [5].

1. PRELIMINARIES

In this paper Y denotes a non empty set.
Next we state a number of propositions:

For all elements a, b, ¢ of BVF(Y') such that a €@ b= c holds a A b € c.
For all elements a, b, ¢ of BVF(Y') such that a Ab € ¢ holds a € b = c.
For all elements a, b of BVF(Y') holds a VaAb=a.

For all elements a, b of BVF(Y') holds a A (a V b) = a.

For every element a of BVF(Y") holds a A —a = false(Y).

For every element a of BVF(Y') holds a V —a = true(Y).

For all elements a, b of BVF(Y') holds a < b= (a = b) A (b= a).

For all elements a, b of BVF(Y') holds @ = b = —a V b.

For all elements a, b of BVF(Y) holds a b= -aAbV aA —b.

B~ W N =

o J O

AN N N N N N N /N /N
© t
S N N e e e N N

@ 1999 University of Bialystok
107 ISSN 1426-2630

108 SHUNICHI KOBAYASHI AND YATSUKA NAKAMURA

(10) For all elements a, b of BVF(Y) holds a < b = true(Y) iff a = b =
true(Y) and b = a = true(Y).

(11) For all elements a, b, ¢ of BVF(Y) such that a < b = true(Y) and
b < c=true(Y) holds a < ¢ = true(Y).

(12) For all elements a, b of BVF(Y) such that a < b = true(Y) holds
—a < —b = true(Y).

(13) For all elements a, b, ¢, d of BVF(Y) such that a < b = true(Y’) and
c<d=true(Y) holds aAc< bAd=true(Y).

(14) For all elements a, b, ¢, d of BVF(Y') such that a < b = true(Y') and
¢ d=true(Y) holds a = c & b= d = true(Y).

(15) For all elements a, b, ¢, d of BVF(Y') such that a < b = true(Y’) and
c<d=true(Y) holds aVecs bVd=true(Y).

(16) For all elements a, b, ¢, d of BVF(Y') such that a < b = true(Y) and
c& d=true(Y) holds a & c & b < d = true(Y).

2. PREDICATE CALCULUS

Next we state a number of propositions:

(17) Let a, b be elements of BVF(Y'), G be a subset of PARTITIONS(Y'), and
Py be a partition of Y. If G is a coordinate and Py € G, then Ve, p G =
Va=b,P, G N Vp=sa,p, G.

(18) Let a be an element of BVF(Y'), G be a subset of PARTITIONS(Y'),
and P;, P> be partitions of Y. Suppose G is a coordinate and P; € G and
P, € G. Then V¥, pG € 3, p,G and ¥V, p G € 3, p,G.

(19) Let a, u be elements of BVF(Y), G be a subset of PARTITIONS(Y),
and P; be a partition of Y. Suppose G is a coordinate and P; € G and u
is independent of P;, G. If a = u = true(Y), then ¥, p G = u = true(Y').

(20) Let u be an element of BVF(Y'), G be a subset of PARTITIONS(Y),
and P; be a partition of Y. Suppose G is a coordinate and P; € G and u
is independent of P;, G. Then 3, p,G € u.

(21) Let u be an element of BVF(Y), G be a subset of PARTITIONS(Y'),
and P; be a partition of Y. Suppose G is a coordinate and P; € G and u
is independent of P, G. Then u € V,, p,G.

(22) Let u be an element of BVF(Y'), G be a subset of PARTITIONS(Y),
and P;, P, be partitions of Y. Suppose G is a coordinate and P; € G and
P, € G and u is independent of P, G. Then V, p G € V,, p,G.

(23) Let u be an element of BVF(Y'), G be a subset of PARTITIONS(Y),
and P;, P, be partitions of Y. Suppose G is a coordinate and P; € G and
P, € G and u is independent of P;, G. Then 3, p,G € 3, p,G.

PREDICATE CALCULUS FOR BOOLEAN VALUED ... 109

(24) Let a, b be elements of BVF(Y'), G be a subset of PARTITIONS(Y'), and
Py be a partition of Y. If G is a coordinate and P; € G, then V,up p G €
Va7p1G =4 beplG.

(25) Let a, b be elements of BVF(Y'), G be a subset of PARTITIONS(Y'), and
Py be a partition of Y. If G is a coordinate and Py € G, then Voa, p, G @
a V@pl G.

(26) Let a, u be elements of BVF(Y), G be a subset of PARTITIONS(Y'),
and P; be a partition of Y. Suppose G is a coordinate and P; € G and u
is independent of Pi, G. Then VY, pG = u € J4—, p, G.

(27) Let a, b be elements of BVF(Y'), G be a subset of PARTITIONS(Y),
and P; be a partition of Y. Suppose G is a coordinate and P, € G. If
a<b=true(Y), then Vo pG < Yy pG = true(Y).

(28) Let a, b be elements of BVF(Y'), G be a subset of PARTITIONS(Y),
and P; be a partition of Y. Suppose G is a coordinate and P; € G. If
a<b=true(Y), then 3, pG & 3 p,G = true(Y).

REFERENCES

[1] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485-492, 1996.

[2] Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

3] Czestaw Byliniski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,

1990.

[4] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions.
Formalized Mathematics, 7(2):249-254, 1998.

[5] Shunichi Kobayashi and Yatsuka Nakamura. A theory of Boolean valued functions and
quantifiers with respect to partitions. Formalized Mathematics, 7(2):307-312, 1998.

[6] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83-86, 1993.

[7] Konrad Raczkowski and Pawel Sadowski. Equivalence relations and classes of abstraction.

Formalized Mathematics, 1(3):441-444, 1990.

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.
Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

I
I
| Edmund Woronowicz. Many—argument relations. Formalized Mathematics, 1(4):733-737,
I

1990.
Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73-83, 1990.

Received March 13, 1999

110 SHUNICHI KOBAYASHI AND YATSUKA NAKAMURA

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Bialystok

Propositional Calculus for Boolean Valued
Functions. Part I

Shunichi Kobayashi Yatsuka Nakamura
Shinshu University Shinshu University
Nagano Nagano

Summary. In this paper, we have proved some elementary propositional
calculus formulae for Boolean valued functions.

MML Identifier: BVFUNC_5.

The terminology and notation used in this paper have been introduced in the
following articles: [6], [8], [9], [2], [3], [5], [1], [7], and [4].
In this paper Y is a non empty set.
Next we state a number of propositions:
(1) For all elements a, b of BVF(Y') holds a = true(Y) and b = true(Y') iff
aNb=true(Y).
(2) For all elements a, b of BVF(Y) such that a = true(Y) and a = b =
true(Y') holds b = true(Y).
(3) For all elements a, b of BVF(Y') such that a = true(Y’) holds a V b =

true(Y').

(5)! For all elements a, b of BVF(Y') such that b = true(Y) holds a = b =
true(Y').

(6) For all elements a, b of BVF(Y') such that —a = true(Y’) holds a = b =
true(Y).

(7) For every element a of BVF(Y') holds =(a A —a) = true(Y').
(8) For every element a of BVF(Y) holds a = a = true(Y).

(9) For all elements a, b of BVF(Y) holds a = b = true(Y) iff =b = —a =
true(Y').

~— —

!The proposition (4) has been removed.

@ 1999 University of Bialystok
111 ISSN 1426-2630

112 SHUNICHI KOBAYASHI AND YATSUKA NAKAMURA

(10) For all elements a, b, ¢ of BVF(Y) such that a = b = true(Y) and
b= c=true(Y) holds a = ¢ = true(Y).

(11) For all elements a, b of BVF(Y) such that a = b = true(Y) and a =
—b = true(Y') holds —a = true(Y).

(12) For every element a of BVF(Y') holds —a = a = a = true(Y).

(13) For all elements a, b, ¢ of BVF(Y') holds a = b= —=(bA¢) = —(aNc) =
true(Y').

(14) For all elements a, b, cof BVF(Y) holds a = b=b=c=a = c=
true(Y').

(15) For all elements a, b, ¢ of BVF(Y) such that a = b = true(Y’) holds
b=c=a=c=true(Y).

(16) For all elements a, b of BVF(Y') holds b = a = b = true(Y).

(17) For all elements a, b, c of BVF(Y') holds a = b= ¢ = b = ¢ = true(Y).

(18) For all elements a, b of BVF(Y) holds b = b = a = a = true(Y').

(19) For all elements a, b, cof BVF(Y) holds c == b=a=b=c= a =
true(Y').

(20) For all elements a, b, cof BVF(Y) holds b = c=a=b=a= c=
true(Y).

(21) For all elements a, b, ¢ of BVF(Y) holds b = b = ¢ = b = ¢ = true(Y).
(22) For all elements a, b, c of BVF(Y) holdsa = b=c=a=b=a=

c = true(Y).
(23) For all elements a, b of BVF(Y') such that a = true(Y’) holds a = b =
b= true(Y).

(24) For all elements a, b, ¢ of BVF(Y') such that ¢ = b = a = true(Y’) holds
b= c=a=true(Y).

(25) For all elements a, b, ¢ of BVF(Y') such that ¢ = b = a = true(Y) and
b = true(Y) holds ¢ = a = true(Y).

(26) For all elements a, b, ¢ of BVF(Y') such that ¢ = b = a = true(Y) and
b= true(Y) and ¢ = true(Y) holds a = true(Y).

(27) For all elements b, ¢ of BVF(Y') such that b = b = ¢ = true(Y’) holds
b= c=true(Y).

(28) For all elements a, b, ¢ of BVF(Y) such that a = b = ¢ = true(Y’) holds
a=b=a=c=true(Y).

(29) For all elements a, b, ¢ of BVF(Y') such that a = b = ¢ = true(Y) and
a = b= true(Y) holds a = ¢ = true(Y).

(30) For all elements a, b, ¢ of BVF(Y') such that a = b = ¢ = true(Y) and
a=b=true(Y) and a = true(Y’) holds ¢ = true(Y).

(31) For all elements a, b, ¢, d of BVF(Y') such that a = b = ¢ = true(Y)
and a = ¢ = d = true(Y) holds a = b = d = true(Y).

W W W W
T = W N

W w w
© oo

AN AN N N N /N /N /S /S
=~ w
@) (=)
~— N~ N N~ N~

(41)

PROPOSITIONAL CALCULUS FOR BOOLEAN VALUED ... 113

For all elements a, b of BVF(Y') holds —a = —b = b= a = true(Y).
For all elements a, b of BVF(Y') holds a = b = —b = —a = true(
For all elements a, b of BVF(Y') holds a = —=b = b = —a = true(
For all elements a, b of BVF(Y') holds —a = b = —b = a = true(Y).
For every element a of BVF(Y') holds a = —a = —a = true(Y).
For all elements a, b of BVF(Y') holds —a = a = b = true(Y).
For all elements a, b, ¢ of BVF(Y') holds ~(a AbAc¢) =—=aV —bV —c.
For all elements a, b, ¢ of BVF(Y') holds ~(a VbV ¢) = —a A =bA —c.
For all elements a, b, ¢, d of BVF(Y) holdsaVbAcAd= (aVb)A(aV
c) A (aVd).
For all elements a, b, ¢, d of BVF(Y') holds aA(bVeVd) = aAbVaAcVaAd.

REFERENCES

[1] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485-492, 1996.
[2] Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—

65,

1990.

[3] Czestaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,

[4] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions.
Formalized Mathematics, 7(2):249-254, 1998.

[6] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83-86, 1993.

T g o

L XN S

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Edmund Woronowicz. Many—argument relations. Formalized Mathematics, 1(4):733-737,
1990.

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73-83, 1990.

Received March 13, 1999

114 SHUNICHI KOBAYASHI AND YATSUKA NAKAMURA

FORMALIZED MATHEMATICS
Volume 8, Number 1, 1999
University of Bialystok

Propositional Calculus for Boolean Valued
Functions. Part II

Shunichi Kobayashi Yatsuka Nakamura
Shinshu University Shinshu University
Nagano Nagano

Summary. In this paper, we have proved some elementary propositional
calculus formulae for Boolean valued functions.

MML Identifier: BVFUNC_6.

The articles [3], [4], [2], and [1] provide the terminology and notation for this

paper.
In this paper Y denotes a non empty set.
The following propositions are true:

(1) For all elements a, b of BVF(Y) holds a = b = a A b = true(Y).

(2) For all elements a, b of BVF(Y) holds a = b= b =a = a < b=
true(Y').

(3) For all elements a, b of BVF(Y') holds a Vb < bV a = true(Y).

(4) For all elements a, b, ¢c of BVF(Y) holds aAb = ¢ = a = b= c=

true(Y').

(5) For all elements a, b, c of BVF(Y) holds a = b = ¢ = aAb = c =
true(Y).

(6) For all elements a, b, cof BVF(Y) holds c=a=c=b=c=aAb=
true(Y').

(7) For all elements a, b, ¢c of BVF(Y) holds aVb = ¢ = (a=¢)V (b=
c) = true(Y).

(8) For all elements a, b, c of BVF(Y) holdsa = c=b=c=aVb=c=
true(Y).

(9) For all elements a, b, ¢ of BVF(Y) holds (a = ¢)A (b= ¢) = aVb=
¢ = true(Y).

@ 1999 University of Bialystok
115 ISSN 1426-2630

116 SHUNICHI KOBAYASHI AND YATSUKA NAKAMURA

(10) For all elements a, b of BVF(Y') holds a = b A —=b = —a = true(Y').

(11) For all elements a, b, ¢ of BVF(Y') holds (aVb) A (aVe)=aVbAc=
true(Y').

(12) For all elements a, b, c of BVF(Y') holds aA(bVe) = aAbVaAc = true(Y).

(13) For all elements a, b, ¢ of BVF(Y) holds (aVe)A(bVe)=aAbVe=
true(Y').

(14) For all elements a, b, c of BVF(Y') holds (aVb)Ac = aAcVbAc = true(Y).

(15) For all elements a, b of BVF(Y") such that a Ab = true(Y") holds a Vb =
true(Y').

(16) For all elements a, b, ¢ of BVF(Y) such that a = b = true(Y") holds
aVe=0bVc=true(Y).

(17) For all elements a, b, ¢ of BVF(Y) such that a = b = true(Y") holds
aNc=bAc=true(Y).

(18) For all elements a, b, ¢ of BVF(Y) such that ¢ = a = true(Y) and
c¢=b=true(Y) holds ¢ = a A b= true(Y).

(19) For all elements a, b, ¢ of BVF(Y) such that a = ¢ = true(Y) and
b= c=true(Y) holds a Vb= c= true(Y).

(20) For all elements a, b of BVF(Y') such that a Vb = true(Y) and —a =
true(Y') holds b = true(Y).

(21) For all elements a, b, ¢, d of BVF(Y') such that a = b = true(Y’) and
c=d=true(Y) holds aAc=bAd=true(Y).

(22) For all elements a, b, ¢, d of BVF(Y) such that a = b = true(Y’) and
c=d=true(Y)holds aVe=bVd=true(Y).

(23) For all elements a, b of BVF(Y') such that a A =b = —a = true(Y") holds
a=b=true(Y).

(24) For all elements a, b of BVF(Y) such that —a = —b = true(Y") holds
b= a=true(Y).

(25) For all elements a, b of BVF(Y') such that a = —b = true(Y) holds
b= —a = true(Y).

(26) For all elements a, b of BVF(Y') such that —a = b = true(Y’) holds

—b = a = true(Y).

(27) For all elements a, b of BVF(Y) holds a = a V b = true(Y).

(28) For all elements a, b of BVF(Y') holds a V b = —a = b = true(Y).

(29) For all elements a, b of BVF(Y') holds —(a V b) = —a A —b = true(Y).

(30) For all elements a, b of BVF(Y') holds —a A =b = —(a V b) = true(Y).

(31) For all elements a, b of BVF(Y') holds —(a V b) = —a = true(Y).

(32) For every element a of BVF(Y') holds a V a = a = true(Y).

(33) For all elements a, b of BVF(Y') holds a A —~a = b = true(Y).

o~~~ o~ o~ o~ o~ o~ o~ o~ o~~~ o~

W W
ISL I
N’ N e e e e e e e e e S N N

=R s R s R R W W W W
Y T W NP O © 3 O

N
\]

PROPOSITIONAL CALCULUS FOR BOOLEAN VALUED ... 117

For all elements a, b of BVF(Y
For all elements a, b of BVF(Y
For all elements a, b of BVF(Y
For all elements a, b of BVF(Y

(Y) holds a = b= —a Vb= true(Y).
(
(
(
For all elements a, b of BVF(Y
(
(
(

holds a A b = —(a = —b) = true(Y
holds =(a = —b) = a A b= true(Y
holds =(a A b) = —a V —b = true(Y)
holds —a V =b = —(a A b) = true(Y)
holds a A b = a = true(Y).

).
).
For all elements a, b of BVF(Y
For all elements a, b of BVF(Y') holds a Ab=a Vb= true(Y).
For all elements a, b of BVF(Y') holds a A b = b = true(Y).

For every element a of BVF(Y') holds a = a A a = true(Y).

For all elements a, b of BVF(Y') holds a < b= a = b = true(Y
For all elements a, b of BVF(Y') holds a < b= b= a = true(Y
For all elements a, b, ¢ of BVF(Y') holds aVbVe = aV (bVe) = true(Y).

(
For all elements a, b, c of BVF(Y) holds aAbAc = aA(bAc) = true(Y).
For all elements a, b, ¢ of BVF(Y') holds aV (bV¢) = aVbVe = true(Y).

~— N N N N N

).
).

REFERENCES

Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions.
Formalized Mathematics, 7(2):249-254, 1998.

Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83-86, 1993.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Edmund Woronowicz. Many—argument relations. Formalized Mathematics, 1(4):733-737,
1990.

Received March 13, 1999

118 SHUNICHI KOBAYASHI AND YATSUKA NAKAMURA

FORMALIZED MATHEMATICS
Volume 8, Number 1, 1999
University of Bialystok

Insert Sort on SCMpgy*

Jing-Chao Chen
Shanghai Jiaotong University

Summary. This article describes the insert sorting algorithm using macro
instructions such as if-Macro (conditional branch macro instructions), for-loop
macro instructions and While-Macro instructions etc. From the viewpoint of
initialization, we generalize the halting and computing problem of the While-
Macro. Generally speaking, it is difficult to judge whether the While-Macro is
halting or not by way of loop inspection. For this reason, we introduce a practical
and simple method, called body-inspection. That is, in many cases, we can prove
the halting problem of the While-Macro by only verifying the nature of the body
of the While-Macro, rather than the While-Macro itself. In fact, we have used
this method in justifying the halting of the insert sorting algorithm. Finally, we
prove that the insert sorting algorithm given in the article is autonomic and its
computing result is correct.

MML Identifier: SCMISORT.

The articles [28], [39], [20], [8], [13], [40], [14], [38], [15], [16], [12], [7], [10], [9],

) J) [
(23], [30], [11], [26], [34], [31], [32], [33], [25], [5], (6], [3], [1], [17], [2], [35], [37],
(18], [27], [29], [24], [4], [22], [19], [21], and [36] provide the terminology and
notation for this paper.

1. PRELIMINARIES

Let ¢ be a good instruction of SCMpga. Observe that Macro(7) is good.
Let a be a read-write integer location and let b be an integer location. Note
that AddTo(a,b) is good.

We now state several propositions:

IThis research is supported by the National Natural Science Foundation of China Grant
No. 69873033.

@ 1999 University of Bialystok
119 ISSN 1426-2630

120 JING-CHAO CHEN

(1) For every function f and for all sets d, r such that d € dom f holds
dom f = dom(f+-(d—r)).

(2) Let p be a programmed finite partial state of SCMpga, [be an
instruction-location of SCMpga, and 47 be an instruction of SCMpga.
Suppose [€ dom p and there exists an instruction p; of SCMygga such that
p1 = p(l) and UsedIntLoc(p;) = UsedIntLoc(i1). Then UsedIntLoc(p) =
UsedIntLoc(p+-(I——1i1)).

(3) For every integer location a and for every macro instruction I holds
(if a > 0 then I;Goto(insloc(0)) else (Stopgcny,) (insloc(card I +
4)) = goto insloc(card I + 4).

(4) Let p be a programmed finite partial state of SCMpga, [be an
instruction-location of SCMpga, and 47 be an instruction of SCMpga.
Suppose | € domp and there exists an instruction p; of SCMpga
such that py = p(l) and UsedInt* Loc(p;) = UsedInt* Loc(i1). Then
UsedInt* Loc(p) = UsedInt™ Loc(p+-(I——1i1)).

(5) For every natural number k holds k£ +1 > 0.

For simplicity, we adopt the following convention: s is a state of SCMpgga,
is a macro instruction, a is a read-write integer location, and j, k, n are natural
numbers.

Next we state a number of propositions:

(6) For every state s of SCMpga and for every macro instruction I such
that s(intloc(0)) = 1 and IC; = insloc(0) holds s+-I = s+- Initialized(I).

(7) Let I be a macro instruction and a, b be integer locations. If I does not
destroy b, then while a > 0 do I does not destroy b.

(8) Ifn<1l,thenn=0orn=1lorn=2orn=3orn=4orn=>5or
n=6orn=7orn=8orn=9orn=10orn=11.

(9) Let f, g be finite sequences of elements of Z and m, n be natural numbers.
Suppose 1 < nandn <lenfand 1 < mand m <lenf and g = f +-
(m,7nf) + (n, T f). Then

(i) f(m)=g(n),

(i) f(n)=g(m),

(iii) for every set k such that & # m and k # n and k£ € dom f holds
f(k) = g(k), and

(iv) f and g are fiberwise equipotent.

(10) Let s be a state of SCMpga and I be a macro instruction. Sup-
pose I is halting on Initialize(s). Let a be an integer location. Then
(IExec(1, s))(a) = (Computation(Initialize(s)+-(I+- Start-At(insloc(0)))))
(LifeSpan(Initialize(s)+-(/+- Start-At(insloc(0)))))(a).

(11) Let s1, s2 be states of SCMpgy and I be a InitHalting ma-
cro instruction. Suppose Initialized(/) C s; and Initialized(l) C

INSERT SORT ON SCMFpsa 121

so and s; and sy are equal outside the instruction locations of
SCMpga. Let k& be a natural number. Then (Computation(s;))(k)
and (Computation(ss))(k) are equal outside the instruction locations of
SCMrpga and Curlnstr((Computation(s;))(k)) = Curlnstr((Computation
(52))(K).

(12) Let s1, so be states of SCMpgy and I be a InitHalting macro in-
struction. Suppose Initialized(I) C s; and Initialized(I) C s9 and s
and s are equal outside the instruction locations of SCMpga. Then
LifeSpan(s;) = LifeSpan(sz) and Result(s;) and Result(s2) are equal out-
side the instruction locations of SCMpga.

(13) For every macro instruction I and for every finite sequence location f
holds f ¢ dom I.

(14) For every macro instruction I and for every integer location a holds
a ¢ domlI.

(15) Let N be a non empty set with non empty elements, S be a hal-
ting von Neumann definite AMI over N, and s be a state of S.
If LifeSpan(s) < j and s is halting, then (Computation(s))(j) =
(Computation(s))(LifeSpan(s)).

2. BAsic PROPERTY OF while MACRO

We now state several propositions:

(16) Let s be a state of SCMpga, I be a macro instruction, and a be a
read-write integer location. Suppose s(a) < 0. Then while ¢ > 0 do I is
halting onlnit s and while a > 0 do [is closed onlnit s.

(17) Let a be an integer location, I be a macro instruction, s be a state of
SCMrgga, and k£ be a natural number. Suppose that

(i) I is closed onlnit s,

(ii) I is halting onlnit s,

(ili) k& < LifeSpan(s+- Initialized(I)),

(iv) IC(Computation(s+-Initialized(while a>0 do I)))(1+k) =

IC(Computation(s+- Initialized(1))) (k) +4, and

(v) (Computation(s+- Initialized(while a > 0do I)))(1 + k)[D =
(Computation(s+- Initialized(I))) (k)| D.
Then IC Computation(s+- Initialized(while a>0 do I)))(1+k+1) =
IC (Computation(s+ Initialized(I))) (k+1) + 4 and (Computation(s+- Initialized
(while a > 0 do I)))(14+k+1)[D = (Computation(s+- Initialized(I)))(k+
1)[D, where D = Int-Locations U FinSeq-Locations.

122 JING-CHAO CHEN

(18) Let a be an integer location, I be a macro instruction, and s be a
state of SCMpga. Suppose [is closed onlnit s and I is halting onlnit s
and IC(Computation(s+~Initialized(while a>0 do I)))(1+LifeSpan(s+- Initialized(I))) =
IC(Computation(s—i-- Initialized(I)))(LifeSpan(s+- Initialized(I))) + 4.

Then Curlnstr((Computation(s+- Initialized(while a > 0do I)))(1 +
LifeSpan(s+- Initialized([)))) = goto insloc(card I + 4).

(19) Let s be a state of SCMpga, I be a macro instruction,
and a be a read-write integer location. Suppose I 1is closed
onlnit s and [is halting onlnit s and s(a) > 0. Then
IC(Computation(s+-Initialized(while a>0 do I)))(LifeSpan(s+- Initialized(I))+3) —
insloc(0) and for every natural number k such that k < LifeSpan(s+-
Inltlahzed(‘[)) + 3 holds IC(COmputation(s+-Initialized(while a>0 do N))(k) €
dom(while a > 0 do I).

(20) Let s be a state of SCMpga, I be a macro instruction, and
a be a read-write integer location. Suppose [is closed onl-
nit s and [is halting onlnit s and s(a) > 0. Let k be
a natural number. If k¥ < LifeSpan(s+-Initialized(l)) + 3, then
IC(Computation(s+-Initialized(while a>0 do I)))(k) € dom(whlle a>0do I)

(21) Let s be a state of SCMypga, I be a macro instruction,
and a be a read-write integer location. Suppose [is closed
onlnit s and [is halting onlnit s and s(a) > 0. Then
IC(Computation(s+-Initialized(while a>0 do I)))(LifeSpan(s+- Initialized(I))+3) —
insloc(0) and (Computation(s+- Initialized(while a > 0 do I)))(LifeSpan
(s+- Initialized(I)) + 3) [D = (Computation(s+- Initialized(T)))(LifeSpan
(s+- Initialized(I)))| D, where D = Int-Locations U FinSeq-Locations.

(22) Let s be a state of SCMpga, I be a InitHalting macro instruction, and
a be a read-write integer location. Suppose s(a) > 0. Then there exists a
state so of SCMpga and there exists a natural number k such that

(i) so = s+-Initialized(while a > 0 do I),
(ii) &k = LifeSpan(s+- Initialized(I)) + 3,
(iif) IC(Computation(sz))(k) = insloc(0),
(iv) for every integer location b holds (Computation(ss))(k)(b) =

(IExec(!, s))(b), and

(v) for every finite sequence location f holds (Computation(ss))(k)(f) =
(IExec(I, s))(f).

Let us consider s, I, a. The functor Step While>0(a, s, I) yields a function

from N into] (the object kind of SCMpga) and is defined by the conditions

(Def. 1).

(Def. 1)(i) (StepWhile>0(a,s,I))(0) = s qua element of [] (the object kind of
SCMprsa) qua non empty set, and

INSERT SORT ON SCMFpsa 123

(ii) for every natural number ¢ and for every element z of
[] (the object kind of SCMpgs) qua non empty set such that
x = (StepWhile>0(a,s,I))(i) holds (Step While>0(a,s,I))(i + 1) =
(Computation(z+- Initialized(while a > 0 do I)))(LifeSpan(x+- Initialized
(I))+3).

We now state several propositions:

(23) (StepWhile>0(a,s,I))(0) = s.

(24) (StepWhile>0(a,s,I))(k+1) = (Computation((Step While>0(a, s, I))(k)
+- Initialized(while a > 0 do I)))(LifeSpan((Step While>0(a, s, I))(k)+-
Initialized(1I)) + 3).

(25) (StepWhile>0(a,s,I))(k+1) = (Step While>0(a, (Step While>0(a, s, I))
(k), 1))(1).

(26) Let I be a macro instruction, a be a read-write integer location,
and s be a state of SCMpga. Then (Step While>0(a,s,I1))(0 + 1) =
(Computation(s+- Initialized(while a > 0 do I)))(LifeSpan(s+- Initialized
(I))+3).

(27) Let I be a macro instruction, a be a read-write integer location,
s be a state of SCMpga, and k, n be natural numbers. Suppose
IC (Stepwhite>0(a,s,1)) (k) = 1nsloc(0) and (StepWhile>0(a,s,1I))(k) =
(Computation(s+- Initialized(while @ > 0 do I)))(n) and (Step While>0
(a,s,1))(k)(intloc(0)) = 1.

Then (Step While>0(a, s,I))(k) = (StepWhile>0(a, s, I))(k)+- Initialized

(while a > 0 do I) and (Step While>0(a, s, I))(k+1) = (Computation(s+-
Initialized(while a > 0 do I)))(n+(LifeSpan((Step While>0(a, s, I))(k)+-
Initialized(I)) + 3)).

(28) Let I be a macro instruction, a be a read-write integer location, and s
be a state of SCMpga. Given a function f from [] (the object kind of
SCMp gy) into N such that let & be a natural number. Then

(i) if f((StepWhile>0(a,s,I))(k)) # 0, then f((Step While>0(a,s,I))(k+
1)) < f((StepWhile>0(a,s,I))(k)) and I is closed onlnit (Step While>0
(a,s,1))(k) and [is halting onInit (Step While>0(a, s, I))(k),

(ii) (StepWhile>0(a,s,I))(k + 1)(intloc(0)) = 1, and

(iii) f((StepWhile>0(a,s,I))(k)) = 0 iff (Step While>0(a,s,I))(k)(a) < 0.
Then while a > 0 do [is halting onlnit s and while a > 0 do [is closed
onlnit s.

(29) Let I be a good InitHalting macro instruction and a be a read-write inte-
ger location. Suppose that for every state s of SCMpga such that s(a) > 0
holds (IExec(I,s))(a) < s(a). Then while a > 0 do [is InitHalting.

(30) Let I be a good InitHalting macro instruction and a be a read-
write integer location. Suppose that for every state s of SCMpga holds

124 JING-CHAO CHEN

(IExec(I, s))(a) < s(a) or (IExec(1,s))(a) < 0. Then while a > 0 do I is
InitHalting.
Let D be a set, let f be a function from D into Z, and let d be an element
of D. Then f(d) is an integer.
One can prove the following propositions:

(31) Let I be a good InitHalting macro instruction and a be a read-write
integer location. Given a function f from [] (the object kind of SCMFpgy)
into Z such that let s, t be states of SCMypga. Then

(i) if f(s) > 0, then f(IExec(I,s)) < f(s),
(ii) if s|D =t¢[D, then f(s) = f(t), and
(iii) f(s) <0iff s(a) <O0.
Then while a > 0 do [is InitHalting, where
D = Int-Locations U FinSeq-Locations.

(32) Let s be a state of SCMpga, I be a macro instruction,
and a be a read-write integer location. If s(a) < 0, then
[Exec(whilea > 0 do I, s)[(Int-Locations U FinSeqg-Locations) =
Initialize(s)[(Int-Locations U FinSeq-Locations).

(33) Let s be a state of SCMpgga, I be a good InitHalting ma-
cro instruction, and a be a read-write integer location. If s(a) >
0 and whilea > O0do [is InitHalting, then IExec(while a >
0 do I, s)[(Int-Locations U FinSeq-Locations) = IExec(while a >
0 do I,IExec(I, s))[(Int-Locations U FinSeq-Locations).

(34) Let s be a state of SCMpga, I be a macro instruction, f be a finite
sequence location, and a be a read-write integer location. If s(a) < 0, then
(IExec(while a > 0 do I,))(f) = s(f).

(35) Let s be a state of SCMpsa, I be a macro instruction, b be an inte-
ger location, and a be a read-write integer location. If s(a) < 0, then
(IExec(while a > 0 do I, s))(b) = (Initialize(s))(b).

(36) Let s be a state of SCMpga, I be a good InitHalting macro instruction,
f be a finite sequence location, and a be a read-write integer location.
If s(a) > 0 and while a > 0 do I is InitHalting, then (IExec(while a >
0 do I,s))(f) = (IExec(while a > 0 do I,1Exec(Z,s)))(f)-

(37) Let s be a state of SCMpga, I be a good InitHalting macro instruc-
tion, b be an integer location, and a be a read-write integer location. If
s(a) > 0 and while a > 0 do [is InitHalting, then (IExec(while a >
0 do I,s))(b) = (IExec(while a > 0 do I,1Exec(I, s)))(b).

INSERT SORT ON SCMFpsa 125

3. INSERT SORT ALGORITHM

Let f be a finite sequence location. The functor insert — sort f yields a macro
instruction and is defined as follows:

(Def. 2) insert — sort f = ig;(a1:=lenf);SubFrom(ai, ag); Times(ay, (az2:=lenf);

SubFrom(ag, a1);(as:=az);AddTo(as, ag);(as:=fas);SubFrom(as, as);
(while az > 0 do ((as:=f,,);SubFrom(as, ag);(if a5 > 0 then Macro
(SubFrom(asg, az)) else (AddTo(a4, ag);SubFrom(as, ap))))); Times(aq,
(az:=agz);SubkFrom(as, ao);(as:=fa,);(a6:=fas);(faz :=06);(fay:=0a5))), where
io = (ag:=ap);(as:=ap);(as:=ap);(as:=ap);(ag:=ap), az = intloc(2), ag =
intloc(0), a3 = intloc(3), as = intloc(4), as = intloc(5), ag = intloc(6),
and a; = intloc(1).

The macro instruction Insert — Sort — Algorithm is defined by:

(Def. 3) Insert — Sort — Algorithm = insert — sort fsloc(0).

We now state a number of propositions:

(38) For every finite sequence location f holds UsedIntLoc(insert — sort f) =
{ap,a1,a2,a3,a4,a5,a6}, where ag = intloc(0), a3 = intloc(1), az =
intloc(2), ag = intloc(3), a4 = intloc(4), as = intloc(5), and ag = intloc(6).

(39) For every finite sequence location f holds UsedInt® Loc(insert — sort f) =
)

(40) For all instructions ki, k2, k3, ks of SCMpga holds card(ky;ko;kssks) = 8.

(41) For all instructions ki, ko, ks, kg, ks of SCMgpga holds
Cal“d(kl;kg;kg;k4;k5) = 10.

(42) For every finite sequence location f holds card insert — sort f = 82.

(43) For every finite sequence location f and for every natural number & such

that & < 82 holds insloc(k) € dominsert — sort f.

(44) insert — sort fsloc(0) is keepIntO 1 and InitHalting.

(45) Let s be a state of SCMpga. Then

(i) s(fo) and (IExec(insert — sort fo, s))(fo) are fiberwise equipotent, and

(ii) for all natural numbers 4, j such that ¢ > 1 and j < len s(fy) and i < j
and for all integers x1, 9 such that 1 = (IExec(insert — sort fo, s))(fo) ()
and x9 = (IExec(insert — sort fo, s))(fo)(j) holds z1 > xo,

where fo = fsloc(0).

(46) Let ¢ be a natural number, s be a state of SCMpga, and w be a finite se-
quence of elements of Z. If Initialized (Insert — Sort — Algorithm)+-(fsloc(0)
F—w) C s, then IC computation(s))(i) € dom Insert — Sort — Algorithm .

(47) Let s be a state of SCMpga and ¢ be a finite sequence of elements of Z.
Suppose Initialized(Insert — Sort — Algorithm)+-(fsloc(0)——t) C s. Then
there exists a finite sequence u of elements of R such that

126

(

JING-CHAO CHEN

(i) ¢ and wu are fiberwise equipotent,
ii) w is non-increasing and a finite sequence of elements of Z, and

(iii) (Result(s))(fsloc(0)) = u.

(48) For every finite sequence w of elements of Z holds

Initialized (Insert — Sort — Algorithm)--(fsloc(0)——w) is autonomic.

(49) Initialized(Insert — Sort — Algorithm) computes Sorting-Function.

[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
21]
[22]
23]

[24]
[25]

REFERENCES

Noriko Asamoto. Conditional branch macro instructions of SCMFpgsa. Part 1. Formalized
Mathematics, 6(1):65-72, 1997.

Noriko Asamoto. Conditional branch macro instructions of SCMpsa. Part II. Formalized
Mathematics, 6(1):73-80, 1997.

Noriko Asamoto. Constant assignment macro instructions of SCMgga. Part II. Forma-
lized Mathematics, 6(1):59-63, 1997.

Noriko Asamoto. The loop and Times macroinstruction for SCMpsa. Formalized Ma-
thematics, 6(4):483-497, 1997.

Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part II. Formalized Mathematics, 6(1):41-47, 1997.
Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part III. Formalized Mathematics, 6(1):53-57, 1997.
Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

Grzegorz Bancerek. Konig's theorem. Formalized Mathematics, 1(3):589-593, 1990.
Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Formalized
Mathematics, 4(1):61-67, 1993.

Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485-492, 1996.

Czestaw Byliniski. A classical first order language. Formalized Mathematics, 1(4):669-676,
1990.

Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

Czestaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,

1990.
Czestaw Bylinski. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521-527, 1990.

Jing-Chao Chen. While macro instructions of SCMpsa. Formalized Mathematics,
6(4):553-561, 1997.

Jing-Chao Chen and Yatsuka Nakamura. Bubble sort on SCMggga. Formalized Mathe-
matics, 7(1):1563-161, 1998.

Jing-Chao Chen and Yatsuka Nakamura. Initialization halting concepts and their basic
properties of SCMrpsa. Formalized Mathematics, 7(1):139-151, 1998.

Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.

Krzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics, 1(2):321-328,

1990.
Jarostaw Kotowicz. Functions and finite sequences of real numbers. Formalized Mathe-

matics, 3(2):275-278, 1992.

Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151-160, 1992.

Andrzej Nedzusiak. o-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
Piotr Rudnicki and Andrzej Trybulec. Memory handling for SCMpgsa. Formalized Ma-
thematics, 6(1):29-36, 1997.

INSERT SORT ON SCMFpsa

Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1-8, 1996.
Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
1990.
Andrzej Trybulec and Agata Darmochwal. Boolean domains. Formalized Mathematics,

1(1):187-190, 1990.

Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51-56, 1993.

Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of
SCMrsa. Formalized Mathematics, 5(4):571-576, 1996.

Andrzej Trybulec and Yatsuka Nakamura. Relocability for SCMrgsa. Formalized Mathe-
matics, 5(4):583-586, 1996.

Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of
macro instructions. Part I. Formalized Mathematics, 6(1):21-27, 1997.

Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMpga computer.
Formalized Mathematics, 5(4):519-528, 1996.

Michatl J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.

Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579,
1990.

Z?I?gida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Zinaida Trybulec and Halina Swigczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17-23, 1990.

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Received March 13, 1999

128 JING-CHAO CHEN

FORMALIZED MATHEMATICS
Volume 8, Number 1, 1999
University of Bialystok

Correctness of a Cyclic Redundancy Check
Code Generator

Yuguang Yang Katsumi Wasaki Yasushi Fuwa
Shinshu University Shinshu University Shinshu University
Nagano Nagano Nagano

Yatsuka Nakamura
Shinshu University
Nagano

Summary. We prove the correctness of the division circuit and the CRC
(cyclic redundancy checks) circuit by verifying the contents of the register after
one shift. Circuits with 12-bit register and 16-bit register are taken as examples.
All the proofs are done formally.

MML Identifier: GATE_4.

The terminology and notation used here are introduced in the article [1].

1. CORRECTNESS OF DIVISION CIRCUITS WITH 12-BIT REGISTER AND
16-BIT REGISTER

One can prove the following propositions:

(1) Let go, g1, g2, 93, 94, 95, 96, 97, 98, 99, G10, 911, G12, Go, G1, a2,
as, a4, as, ag, ar, ag, ag, aig, aii, bo, bi, bz, bz, by, bs, bg, b7, bs,
by, big, bi11, p be sets such that NE gy and NE g0 and NE by iff
NE XORQ(p, ANDQ(go, CLH)) and NE b1 iff NE XORQ(aO,ANDQ(gl,aH))
and NE by iff NE XOR2(ai,AND2(g2,a11)) and NE b3 iff NE
XOR2(a2,AND2(g3,a11)) and NE b4 iff NE XORQ(ag,ANDQ(g4,a11))
and NE b5 iff NE XOR2(a4,AND2(g5,a11)) and NE bg iff NE
XORQ(G5,AND2(Q6,G11)) and NE b7 iff NE XORZ(GG,AND2(97,CL11))

@ 1999 University of Bialystok
129 ISSN 1426-2630

130 YUGUANG YANG et al.

and NE bg iff NE XOR2(a7, AND2(gs,a11)) and NE by iff NE
XORQ(CLg,AND2(gg,(111)) and NE b10 iff NE XOR2(Q9,AND2(910,CL11))
and NE b11 iff NE XORQ(alo,ANDQ(gH, CLH)). Then

(i) NE all iff NE ANDQ(gm, au),
(11) NE aio iff NE XORZ(bH, ANDQ(gH, CLH)),
(111) NE ag iff NE XORQ(blo, ANDQ(gl(), a11))
(iV) NE as iff NE XORQ(bg, AND2(gg, an))
(v) NE a7 iff NE XOR2(bg, AND2(gs,a11)),
(vi) NE ag iff NE XOR2(b7, AND2(g7, a11)),
(vii) NE a5 iff NE XOR2(bs, AND2(gs, a11)),
(viii) NE a4 iff NE XOR2(b5, AND2(gs, a11)),
(ix) NE as iff NE XOR2(by, AND2(gy4, a11)),
(x) NE ap iff NE XOR2(b3, AND2(g3,a11)),
(xi) NE @ iff NE XOR2(ba, AND2(g, a11)),
(Xii) NE ag iff NE XOR2(1)1, ANDQ(gl, (111)), and
(xiii) NE p iff NE XOR2(by, AND2(go, a11))-

(2) Let go, 91, 92, 93, 945 5, 965 g7, g5 99, G105 911, 9125 913, J145 g5, J16,
ap, ai, az, az, a4, as, ag, Az, as, ag, 10, a11, 412, 413, A14, d15, Do, b1, b2,
bg, b4, b5, b6, b7, bg, b9, blo, blla b12, b13, b14, b15, p be sets such that NE
go and NE gj6 and NE by iff NE XOR2(p, AND2(go, a15)) and NE by iff
NE XORQ(CL(), ANDQ(gl, CL15)) and NE b2 iff NE XORQ(al, ANDQ(QQ, a15))
and NE b3 iff NE XOR2(ag, AND2(gs3,ai5)) and NE by iff NE
XORQ(G,g,ANDQ(g4,a15)) and NE b5 iff NE XOR2(G4,AND2(Q5,G15))
and NE bg iff NE XOR2(as, AND2(gg,a15)) and NE by iff NE
XORQ(GG,ANDQ(Q7,G15)) and NE bg iff NE XORQ(G7,AND2(98,CL15))
and NE bg iff NE XORQ(ag,ANDQ(gg,aw)) and NE bl() iff NE
XOR2(ag, AND2(g19,a15)) and NE b;; iff NE XOR2(a19, AND2(g11,a15))
and NE b12 iff NE XORQ(CLH,ANDQ(ng,CLw)) and NE b13 iff NE
XORQ(GlQ, ANDQ(glg, CL15)) and NE b14 iff NE XORQ(CL13, AND2(914, a15))
and NE b15 iff NE XOR?((I14, AND2(915, a15)). Then

(i) NE ais iff NE ANDQ(QlG, a15)
(11) NE ai4 iff NE XORQ(blg,, ANDQ(glg,, CL15)),
(111) NE ais iff NE XOR2(1)14, AND2(_914, a15)),
(iV) NE a2 iff NE XORQ(blg, AND2(Q13, a15)),
(V) NE ail iff NE XOR2(b12, AND2(g12, CL15)),
(Vi) NE aio iff NE XORQ(Z)H,ANDQ gii,a 15)),
(vil) NE ag iff NE XOR2(b19, AND2(g10, a15)),
(Vlll) NE as iff NE XORQ(bg, ANDQ(gg, a15))
(ix) NE ay iff NE XOR2(bg, AND2(gg, a15)),
(x) NE ag iff NE XOR2(b7, AND2(g7, a15)),
(xi) NE a5 iff NE XOR2(bg, AND2(gg, a15)),
(Xii) NE ag iff NE XOR2(b5, ANDQ(g5, a15)),

CORRECTNESS OF A CYCLIC REDUNDANCY CHECK ... 131

(xiii) NE ag iff NE XOR2(bs, AND2(g4, a15)),
(XiV) NE an iff NE XOR2(b AND2(93, a15)),

(xv) NE a; iff NE XOR2(b2, AND2(g2, a15)),
(xvi) NE ag iff NE XOR2(b;, AND2(g1,a15)), and
(xvii) NE p iff NE XOR2(by, AND2(go, a15)).

2. CORRECTNESS OF CRC CIrRcUITS WITH GENERATOR POLYNOMIAL OF
DEGREE 12 AND 16

Next we state two propositions:

(3) Let go, 91, 92, 93, 94, G55 96, 97> 98> 99, 910, 911, g12, G0, A1, A2, 43, O,
as, ag, ar, as, ag, a0, @11, bo, b1, b2, b3, ba, bs, bg, b7, bs, by, bio, b11, 2,
p be sets such that NE gy and NE ¢12 and not NE z and NE b iff NE
XOR2(p,a11) and NE b; iff NE XOR2(ag, AND2(g1,bp)) and NE by iff
NE XOR2(aj, AND2(go,b9)) and NE b3 iff NE XOR2(a2, AND2(gs, bo))
and NE by iff NE XOR2(a3, AND2(g4,b9)) and NE b5 iff NE
XOR2(aq, AND2(g5,b9)) and NE bg iff NE XOR2(as, AND2(gs, bo))
and NE b; iff NE XOR2(ag, AND2(g7,bp)) and NE bg iff NE
XOR2(a7, AND2(gs,bp)) and NE by iff NE XOR2(ag, AND2(gg, b))
and NE b10 ifft NE XOR2(0,9,AND2(910,I)0)) and NE b11 iff NE
XORQ(alo, ANDQ(QH, bo)) Then

(i) NE by iff NE XOR2(XOR2(a19, AND2(g11,a11)), XOR2(z, AND2(g11,p))),
(ii) NE by iff NE XOR2(XOR2 (a9, AND2(g10, a11)), XOR2(z, AND2(g10, p))),
(iii) NE by iff NE XORQ(XORQ(ag, AND2(gg, a11)), XOR2(z, AND2(go, p))),
(iv) NE bg iff NE XOR2(XOR2(a7, AND2(gs, a11)), XOR2(z, AND2(gs, p))),
(v) NE by iff NE XOR2(XOR2(ag, AND2(g7, a11)), XOR2(z, AND2(g7,p))),
(vi) NE bg iff NE XOR2(XOR2(as, AND2(gg, a11)), XOR2(z, AND2(gg, p))),
(vii) NE bs iff NE XOR2(XOR2(ay, AND2(gs, a11)), XOR2(z, AND2(gs,p))),
(viii) NE by iff NE XOR2(XOR2 (a3, AND2(gy, a11)), XOR2(z, AND2(g4,p))),
(ix) NE b3 iff NE XOR2(XOR2(ag, AND2(g3, a11)), XOR2(z, AND2(g3, p))),
(x) NE by iff NE XOR2(XOR2(a1, AND2(g2, a11)), XOR2(z, AND2(g2, p))),
(xi) NE by iff NE XOR2(XOR2(ag, AND2(g1, a11)), XOR2(z, AND2(g1, p))),

and
(xii) NE b iff NE XOR2(XOR2(z, AND2(gp, a11)), XOR2(z, AND2(go,p))).

(4) Let go, g1, 92, 93, 94, G5, 96, 97, 98, 99, 910, 911, G12, 913, 914, 915,
di6, @0, a1, a2, agz, a4, as, ae, Ay, ag, ag, aip, aA11, @12, Aa13, A14, ais,
bo, b1, b2, b3, by, b5, bs, b7, bs, bg, b1o, b11, b12, b13, b14, b15, 2, p be
sets such that NE gg and NE g1 and not NE 2z and NE by iff NE
XOR2(p, a15) and NE b; iff NE XOR2(ag, AND2(g1,bp)) and NE by iff
NE XORQ(CLl,AND2(QQ,bO)) and NE bg iff NE XORQ(GQ,AND2(Q3,[)0))

132 YUGUANG YANG et al.
and NE by iff NE XOR2(a3, AND2(g4,bp)) and NE b5 iff NE
XOR2(aq, AND2(g5,b9)) and NE bg iff NE XOR2(as, AND2(gs, bo))
and NE b; iff NE XOR2(ag, AND2(g7,b9)) and NE bg iff NE
XOR2(a7, AND2(gs,bp)) and NE by iff NE XOR2(ag, AND2(gg, b))
and NE blg iff NE XORQ(&Q,ANDQ(glo,bQ)) and NE bn iff NE
XOR2(a10,AND2(gH,b0)) and NE b12 iff NE XOR2(CL11,AND2(912,I)0>)
and NE b13 iff NE XORQ(alg,ANDQ(ng,bQ)) and NE b14 iff NE
XOR2(a13, AND2(g14,b9)) and NE by5 iff NE XOR2(a14, AND2(g15,b)).
Then
(1) NE b15 iff NE XOR2(XOR2(CL14,AND2(915,a15)) XORQ(Z AND2(915,))
(ii) NE b4 iff NE XOR2(XOR2(a13, AND2(g14, a15)), XOR2(z, AND2(g14, p))
(iii) NE by3 iff NE XOR2(XOR2(a12, AND2(g13, a15)), XOR2(z, AND2(g13,p))
(iV) NE 1)12 iff NE XOR2(XOR2(a11,AND2(912,a15)) XORQ(Z AND2(g12,))
(V) NE bn iff NE XOR2(XOR2(a10,AND2(gH,a15)) XOR2 2’ AND2(g11,))
(Vi) NE b10 iff NE XORQ(XOR (ag,ANDQ(glo,CL15)) XOR2(Z AND2(g10,))),
(vii) NE by iff NE XOR2(XOR2(ag, AND2(go, a15)), XOR2(z, AND2(gg,p))),
(viii) NE bg iff NE XOR2(XOR2(a7, AND2(gs, a15)), XOR2(z, AND2(gs, p))),
(ix) NE b7 iff NE XOR2(XOR2(ag, AND2(g7,a15)), XOR2(z, AND2(g7,p))),
(x) NE bg iff NE XOR2(XOR2(as5, AND2(gg, a5)), XOR2(z, AND2(gs,p))),
(xi) NE bs iff NE XOR2(XOR2(a4, AND2(gs, a15)), XOR2(z, AND2(gs, p))),
(xii) NE by iff NE XOR2(XOR2(a3, AND2(g4, a15)), XOR2(z, AND2(g4, p))),
(xiii) NE bs iff NE XOR2(XOR2(a2, AND2(g3,a15)), XOR2(z, AND2(gs,p))),
(xiv) NE by iff NE XOR2(XOR2(a1, AND2(gs, a15)), XOR2(z, AND2(g2,p))),
(XV) NE b1 iff NE XORQ(XORQ(GQ, ANDQ(gl, a15)), XORQ(Z, ANDZ(gl,))),
and
(xvi) NE bg iff NE XOR2(XOR2(z, AND2(go, a15)), XOR2(z, AND2(go,p))).
REFERENCES
[1] Yatsuka Nakamura. Logic gates and logical equivalence of adders. Formalized Mathematics,
8(1):35-45, 1999.

Received April 16, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Bialystok

Defining by Structural Induction in the
Positive Propositional Language

Andrzej Trybulec
University of Biatystok

Summary. The main goal of the paper consists in proving schemes for
defining by structural induction in the language defined by Adam Grabowski
[13]. The article consists of four parts. Besides the preliminaries where we prove
some simple facts still missing in the library, they are:

- “About the language” in which the consequences of the fact that the algebra
of formulae is free are formulated,

- “Defining by structural induction” in which two schemes are proved,

- “The tree of the subformulae” in which a scheme proved in the previous
section is used to define the tree of subformulae; also some simple facts about
the tree are proved.

MML Identifier: HILBERT2.

The terminology and notation used in this paper are introduced in the following
papers: [16], [19], [1], [14], [20], [10], [12], [18], [8], [15], [9], [11], [3], [17], [2], [4],
[5], 6], [7], and [13].

1. PRELIMINARIES

In this paper X, x denote sets.
We now state four propositions:

(1) Let Z be a set and M be a many sorted set indexed by Z. Suppose that
for every set x such that x € Z holds M (x) is a many sorted set indexed
by x. Let f be a function. If f = Union M, then dom f = J Z.

(2) For all sets z, y and for all finite sequences f, g such that (x)~f = (y) "g
holds f = g.

@ 1999 University of Bialystok
133 ISSN 1426-2630

134 ANDRZEJ TRYBULEC

(3) If (z) is a finite sequence of elements of X, then z € X.

(4) Let given X and f be a finite sequence of elements of X. Suppose f # ¢.
Then there exists a finite sequence g of elements of X and there exists an
element d of X such that f =g~ (d).

We adopt the following rules: m, n are natural numbers, p, g, r, s are elements
of HP-WFF, and Ty, T, are trees.
Next we state the proposition

——
(5) (x)eT, Triff t=0o0rz=1.
Let us mention that ¢ is tree yielding.
The scheme InTreelnd deals with a tree A and and states that:
For every element f of A holds P|[f]
provided the following conditions are satisfied:
e Plen], and
e For every element f of A such that P[f] and for every n such that
f~(n) € Aholds P[f ™ (n)].
In the sequel D is a non empty set and T3, T are decorated trees.
Next we state three propositions:
(6) For every set x and for all 71, T holds (a-tree(T7,T%))(e) =
(7) (a-tree(Th,T2))({0)) = T1(e) and (z-tree(T1,73))((1)) = Ta(e).
(8) (x-tree(T1,T%))[(0) = T and (z-tree(Ty,T3))[(1) = To.

Let us consider x and let p be a decorated tree yielding non empty finite

x.

sequence. Observe that z-tree(p) is non root.
Let us consider = and let 77 be a decorated tree. Observe that z-tree(77) is
non root. Let T be a decorated tree. Observe that x-tree(77,T») is non root.

2. ABOUT THE LANGUAGE

Let us consider n. The functor propn yielding an element of HP-WFF is
defined as follows:

(Def. 1) propn = (3 + n).
Let D be a set. Let us observe that D has VERUM if and only if:
(Def. 2) VERUM € D.
Let us observe that D has propositional variables if and only if:
(Def. 3) For every n holds propn € D.
Let D be a subset of HP-WFF. Let us observe that D has implication if and
only if:
(Def. 4) For all p, ¢ such that p € D and ¢ € D holds p = q € D.

Let us observe that D has conjunction if and only if:

DEFINING BY STRUCTURAL INDUCTION IN THE ... 135

(Def. 5) For all p, ¢ such that p € D and ¢ € D holds pAq € D.

In the sequel t denotes a finite sequence.
Let us consider p. We say that p is conjunctive if and only if:

(Def. 6) There exist r, s such that p =17 A s.
We say that p is conditional if and only if:
(Def. 7) There exist r, s such that p =1 = s.

We say that p is simple if and only if:
(Def. 8) There exists n such that p = propn.

The scheme HP Ind concerns and states that:
For every r holds P|r]
provided the following requirements are met:
e P[VERUM],
e For every n holds P[prop n], and
e For all r, s such that P[r] and P[s] holds P[r A s] and P[r = s].
Next we state a number of propositions:

(9) p is conjunctive, or conditional, or simple or p = VERUM.
(10) lenp > 1.
(11) If p(1) =1, then p is conditional.
(12) 1If p(1) = 2, then p is conjunctive.
(13) If p(1) = 3+ n, then p is simple.
(14) If p(1) = 0, then p = VERUM.
(15) lenp <len(p A q) and leng < len(p A q).
(16) lenp <len(p = ¢) and leng < len(p = q).
(17) If p=gq~t, then p=gq.
(18) Ifp~gq=r"s,then p=r and g =s.
(19) IfpAg=rAs, thenp=rand s=gq.
(20) Ifp=qg=r=s,thenp=rand s=gq.
(21) If propn = propm, then n = m.
(22) pAg#r=s.
(23) pAgq# VERUM.
(24) pAq#propn.
(25) p=q# VERUM.
(26) p = q # propn.
(27) pAq#pand pAq#q.
(28) p=q#pandp=q#q.
(29) VERUM # propn.

136 ANDRZEJ TRYBULEC

3. DEFINING BY STRUCTURAL INDUCTION

Now we present two schemes. The scheme HP MSSFExzL deals with a set A,
a unary functor F yielding a set, and a 5-ary predicate Q, and states that:
There exists a many sorted set M indexed by HP-WFF such that
(i) M(VERUM) = A,
(ii) for every n holds M (propn) = F(n), and
(ili) for all p, ¢ and for all sets a, b, ¢, d such that a = M(p) and
b= M(q) and c = M(pAq) and d = M (p = q) holds P|p, q,a,b, c|
and Q[p,q,a,b,d]
provided the following conditions are met:
e For all p, ¢ and for all sets a, b there exists a set ¢ such that
Plp, q,a,b,cl,
e For all p, ¢ and for all sets a, b there exists a set d such that
Qlp,q,a,b,d],
e For all p, ¢ and for all sets a, b, ¢, d such that P[p, q,a,b,c| and
Plp,q,a,b,d] holds ¢ = d, and
e For all p, ¢ and for all sets a, b, ¢, d such that Q[p,q,a,b,c|] and
Qlp,q,a,b,d] holds ¢ = d.
The scheme HP MSSLambda deals with a set A, a unary functor F yielding
a set, and two binary functors G and H yielding sets, and states that:
There exists a many sorted set M indexed by HP-WFF such that
(i) M(VERUM) = A,
(ii) for every n holds M (propn) = F(n), and
(iii) for all p, ¢ and for all sets x, y such that = M(p) and
y = M(q) holds M(p A q) =G(z,y) and M(p = q) = H(z,y)
for all values of the parameters.

4. THE TREE OF THE SUBFORMULAE

The many sorted set HP-Subformulae indexed by HP-WFF is defined by the
conditions (Def. 9).
(Def. 9)(i) (HP-Subformulae)(VERUM) = the root tree of VERUM,
(ii) for every n holds (HP-Subformulae)(propn) = the root tree of propn,
and
(iii) for all p, ¢ there exist trees p’, ¢’ decorated with elements of HP-WFF
such that p’ = (HP-Subformulae)(p) and ¢’ = (HP-Subformulae)(q) and
(HP-Subformulae)(p A q) = p A g-tree(p’, ¢') and (HP-Subformulae)(p =
q) = (p = q)-tree(p’, ¢').

DEFINING BY STRUCTURAL INDUCTION IN THE ...

Let us consider p. The functor Subformulae p yielding a tree decorated with

elements of HP-WFF is defined by:
(Def. 10) Subformulae p = (HP-Subformulae)(p).

(3
(3
(3
(3
(3
(3

The following propositions are true:

0) Subformulae VERUM = the root tree of VERUM.

1) Subformulae prop n = the root tree of propn.

2) Subformulae(p A q) = p A g-tree(Subformulae p, Subformulae q).

3) Subformulae(p = ¢) = (p = ¢)-tree(Subformulae p, Subformulae q).

4) (Subformulaep)(e) = p.

5) For every element f of dom Subformulaep holds Subformulaep[f =

Subformulae(Subformulae p)(f).

(36) If p € Leaves(Subformulae g), then p = VERUM or p is simple.

[1]

Ot w N

14
15

[16]

17
18

[19]

[20]

REFERENCES

Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990.
Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547—
552, 1991.

Grzegorz Bancerek. Koénig's lemma. Formalized Mathematics, 2(3):397-402, 1991.
Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Formalized
Mathematics, 3(2):195-204, 1992.

Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82,

1993.
Grzegorz Bancerek. Subtrees. Formalized Mathematics, 5(2):185-190, 1996.

Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

Czestaw Bylinski. A classical first order language. Formalized Mathematics, 1(4):669-676,
1990.

ngeslaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

Czestaw Bylinski. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521-527, 1990.

Czestaw Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
Adam Grabowski. Hilbert positive propositional calculus. Formalized Mathematics,
8(1):69-72, 1999.

Andrzej Nedzusiak. o-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
Andrzej Trybulec. Function domains and Fraenkel operator. Formalized Mathematics,
1(3):495-500, 1990.

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.
Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17-23, 1990.

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Received April 23, 1999

137

138 ANDRZEJ TRYBULEC

FORMALIZED MATHEMATICS
Volume 8, Number 1, 1999
University of Bialystok

Some Properties of Cells on Go-Board

Czestaw Bylinski
University of Bialystok

MML Identifier: GOBRD13.

The terminology and notation used in this paper have been introduced in the
following articles: [23], [9], [13], [3], [20], [22], [25], [26], [7], [8], [2], [1], [5], [6],
[24], [10], [19], [4], [15], [14], [21], [11], [12], [16], [17], and [18].

We use the following convention: i, i1, i2, 7, j1, j2, k, n are natural numbers,
D is a non empty set, and f is a finite sequence of elements of D.

Let E be a non empty set, let S be a non empty set of finite sequences of
the carrier of 5%, let F' be a function from E into S, and let e be an element of
E. Then F(e) is a finite sequence of elements of 2.

Let F be a function. The functor Values F' yielding a set is defined by:

(Def. 1) Values F' = Union(rng,, F'(k)).
We now state three propositions:
(1) Let M be a finite sequence of elements of D*. If i € dom M, then M (7)
is a finite sequence of elements of D.
(2) For every finite sequence M of elements of D* holds dom(rng,, M (k)) =
dom M.
(3) For every finite sequence M of elements of D* holds Values M =
U{rng f; f ranges over elements of D*: f € rng M }.
Let D be a non empty set and let M be a finite sequence of elements of D*.
Note that Values M is finite.
The following propositions are true:
(4) For every matrix M over D such that i € dom M and M (i) = f holds
len f = width M.
(5) For every matrix M over D such that i € dom M and M (i) = f and
j € dom f holds (i, j) € the indices of M.
(6) For every matrix M over D such that (i, j) € the indices of M and
M (i) = f holds len f = width M and j € dom f.

@ 1999 University of Bialystok
139 ISSN 1426-2630

140 CZESEAW BYLINSKI

(7) For every matrix M over D holds Values M = {M; ; : (i, j) € the indices
of M}.

(8) For every non empty set D and for every matrix M over D holds
card Values M < len M - width M.

In the sequel f, fi, fo are finite sequences of elements of 8% and G is a
Go-board.
Next we state a number of propositions:

(9) If f is a sequence which elements belong to G, then rng f C ValuesG.

(10) For all Go-boards G1, G2 such that Values G; C Values Gy and (i1, ji) €
the indices of G; and 1 < jp and jp < width G and (Gh1)i, 5, = (G2)1,5
holds i1 = 1.

(11) For all Go-boards G, G2 such that ValuesG; C ValuesGa and (i,
J1) € the indices of G; and 1 < jp and jo, < widthGy and (G1);, 5, =
(GZ)lenGz,jg holds il = len Gl.

(12) For all Go-boards G, G2 such that ValuesG; C ValuesGy and (i1,
Jj1) € the indices of G1 and 1 < i3 and i < len Gy and (G1)i, 5, = (G2)i,1
holds j; = 1.

(13) For all Go-boards G, G such that Values G; C Values G and (i1, ji) €
the indices of G and 1 < iz and iy < len Gy and (G1)i; .5, = (G2)iy,width Go
holds j; = width G;.

(14) Let G1, G be Go-boards. Suppose Values G; C ValuesGso and 1 < i3
and i1 < lenGp and 1 < j; and j; < widthGy and 1 < i and s <
lenGy and 1 < j2 and jo < widthGy and (G1)i,;, = (G2)is,j,- Then
((G2)iz+1,52)1 < ((G1)iy+1,50)1-

(15) Let G1, G2 be Go-boards. Suppose ValuesG; C ValuesGy and 1 < iy
and i1 < lenGy and 1 < j; and 77 < widthGy and 1 < 45 and iy <
lenGy and 1 < j2 and jo < widthGs and (Gl)ihﬁ = (GQ)iz,jz' Then
((G1)ir—1501 < ((G2)ig—1,52)1-

(16) Let G, G be Go-boards. Suppose Values G; C ValuesGy and 1 < 43
and 77 < lenGy and 1 < j; and j; < widthG; and 1 < 45 and ip <
lenGy and 1 < Jo and Jjo < width G5 and (Gl)’h,jl = (Gg)i2,j2. Then
((G2)iggo+1)2 < ((G1)iy jr+1)2-

(17) Let G1, G be Go-boards. Suppose Values G; C ValuesGg and 1 < 3
and 41 < lenGp and 1 < j; and j; < widthGy and 1 < i and 45 <
lenGy and 1 < jy and jo < widthGy and (G1)i,;, = (G2)is,j,- Then
((G1)irjr—1)2 < ((G2)is,go—1)2-

(18) Let G1, G2 be Go-boards. Suppose Values G; C Values G2 and (i1, ji) €
the indices of G and (i2, j2) € the indices of G and (G1)i, j; = (G2)iy jo-
Then CGH(GQ, ig,jg) g cell(Gl, il,jl).

(19) Let Gy, G be Go-boards. Suppose Values G; C Values G2 and (i1, ji) €

SOME PROPERTIES OF CELLS ON GO-BOARD 141

the indices of G and (i2, j2) € the indices of G2 and (G1)i, 5, = (G2)is.jo-
Then cell(Gg, ig ! 1,j2) - cell(Gl, il ! 1,j1).

(20) Let G1, G2 be Go-boards. Suppose Values G; C Values Go and (i1, j1) €
the indices of G and (i2, j2) € the indices of G2 and (G1)i, j; = (G2)iyjo-
Then Cell(GQ,iQ,jg —/ 1) g cell(Gl,il,jl - 1)

(21) Let f be a standard special circular sequence. Suppose f is a sequence
which elements belong to G. Then Valuesthe Go-board of f C ValuesG.

Let us consider f, G, k. Let us assume that 1 < k and £+ 1 <len f and f
is a sequence which elements belong to G. The functor right_cell(f, k, G) yields
a subset of £2 and is defined by the condition (Def. 2).

(Def. 2) Let i1, j1, 42, j2 be natural numbers. Suppose (i1, ji) € the indices of G
and (42, j2) € the indices of G and 7 f = G;, j, and 741 f = G, j,. Then
(i) i1 =12 and j1 + 1 = jo and right_cell(f, k, G) = cell(G, i1, j1), or
(ii) 41+ 1 =142 and j; = jo and right_cell(f, k, G) = cell(G,i1,71 —' 1), or
(iii) 41 =42+ 1 and j; = jo and right_cell(f, k, G) = cell(G, iz, j2), or
(iv) i1 =9 and j1 = jo + 1 and right_cell(f, k, G) = cell(G,i; —' 1, j2).
The functor left_cell(f, k, G) yields a subset of 5% and is defined by the condition
(Def. 3).

(Def. 3) Let i1, j1, 12, j2 be natural numbers. Suppose (i1, j1) € the indices of G
and (ig, j2) € the indices of G and 7 f = G}, j, and w41 f = G, j,. Then
(i) i1 =19 and j1 + 1 = jo and left_cell(f, k, G) = cell(G, i1 —' 1, 1), or
(ii) 41+ 1 =12 and j; = jo and left_cell(f, k, G) = cell(G, i1, j1), or
(iii) 41 =42+ 1 and j; = jo and left_cell(f, k, G) = cell(G, iz, jo —' 1), or
(iv) i1 =19 and j1 = jo + 1 and left_cell(f, k, G) = cell(G, i1, j2).
We now state a number of propositions:

(22) Suppose that
1< kand k+1 < lenf and f is a sequence which elements belong to
G and (i, j) € the indices of G and (i, j + 1) € the indices of G and
mf = Gij and w41 f = Gijy1. Then left_cell(f, k,G) = cell(G,1 —' 1, 7).
(23) Suppose that
1< kand k+1 < lenf and f is a sequence which elements belong to
G and (i, j) € the indices of G and (i, j + 1) € the indices of G and
mf = Gij and w41 f = G j41. Then right_cell(f, k, G) = cell(G, 1, j).
(24) Suppose that
1< kand k+1 < lenf and f is a sequence which elements belong to
G and (i, j) € the indices of G and (i + 1, j) € the indices of G and
mrf = G and Ty f = Gig15. Then left_cell(f, k, G) = cell(G, 1, j).
(25) Suppose that
1 < kand k+1 < len f and f is a sequence which elements belong to G and
(i, j) € the indices of G and (i + 1, j) € the indices of G and 7 f = G ;

142 CZESEAW BYLINSKI

and 41 f = Giy1,;. Then right_cell(f, k, G) = cell(G,i,j —'1).

(26) Suppose that
1< kand k+1 < lenf and f is a sequence which elements belong to
G and (i, j) € the indices of G and (i + 1, j) € the indices of G and
mf = Giz1; and mp41 f = G 5. Then left_cell(f, k, G) = cell(G, 1,7 —'1).

(27) Suppose that
1< kand k41 <lenf and f is a sequence which elements belong to
G and (i, j) € the indices of G and (i + 1, j) € the indices of G and
rf = Gig1; and 1 f = Gy ;. Then right_cell(f, k, G) = cell(G, 1, j).

(28) Suppose that
1< kand k+1 < lenf and f is a sequence which elements belong to
G and (i, j + 1) € the indices of G and (i, j) € the indices of G and
mf = Gijy1 and w1 f = G, 5. Then left_cell(f, k, G) = cell(G, 1, j).

(29) Suppose that
1 < kand k+1 <len f and f is a sequence which elements belong to G and
(i, j+1) € the indices of G and (i, j) € the indices of G and 7 f = G; j11
and 711 f = G; ;. Then right_cell(f, k,G) = cell(G,i —'1, 7).

(30) If1<kandk+1<lenf and f is a sequence which elements belong to
G, then left_cell(f, k, G) Nright_cell(f, k, G) = L(f, k).

(31) Ifl1<kandk+1<lenf and fis a sequence which elements belong to
G, then right_cell(f, k, G) is closed.

(32) Suppose 1 < k and k+ 1 < len f and f is a sequence which elements
belong to G and k + 1 < n. Then left_cell(f, k,G) = left_cell(fIn, k,G)
and right_cell(f, k, G) = right_cell(f[n, k, G).

(33) Suppose 1 < k and k + 1 < len(f},) and n <len f and f is a sequence
which elements belong to G. Then left_cell(f, k+n, G) = left_cell(f|,, k, G)
and right_cell(f, k + n, G) = right_cell(f, k, G).

(34) Let G be a Go-board and f be a standard special circular sequence.
Suppose 1 < nand n+ 1 < len f and f is a sequence which elements
belong to G. Then left_cell(f,n, G) C leftcell(f,n) and right_cell(f,n,G) C
righteell(f,n).

Let us consider f, G, k. Let us assume that 1 < k and £+ 1 <len f and f

is a sequence which elements belong to G. The functor front_right_cell(f, k, G)
yielding a subset of 5% is defined by the condition (Def. 4).
(Def. 4) Let i1, j1, i2, jo be natural numbers. Suppose (i1, j1) € the indices of G
and (iz, j2) € the indices of G and 7, f = Gj, 5, and w11 f = G, j,. Then
(i) i1 =iz and 71 + 1 = jo and front_right_cell(f, k, G) = cell(G, iz, j2), or
(ii) i14+1 =1y and j; = j2 and front_right_cell(f, k, G) = cell(G, iz, j2 —' 1),
or

SOME PROPERTIES OF CELLS ON GO-BOARD 143

(iii) 43 =i2+ 1 and j; = j2 and front_right_cell(f, k, G) = cell(G, iz —'1, ja2),
or
(iv) 41 =g and j; = jo+1 and front_right_cell(f, k, G) = cell(G,ia—'1, jo—'
1).
The functor front_left_cell(f, k, G) yields a subset of 5% and is defined by the
condition (Def. 5).

(Def. 5) Let i1, j1, 2, j2 be natural numbers. Suppose (i1, j1) € the indices of G
and (42, j2) € the indices of G and 7, f = G;, j, and 71 f = G, j,. Then
(i) i1 =i2 and j1 + 1 = jo and front_left_cell(f, k, G) = cell(G,i2 —' 1, ja),
or
(ii) 41 + 1 =12 and j; = j and front_left_cell(f, k, G) = cell(G, iz, j2), or
(iii) 41 = i2+1 and j; = j2 and front_left_cell(f, k, G) = cell(G, ia—'1, jo—'1),
or
(iv) i1 =i9 and j; = jo + 1 and front_left_cell(f, k, G) = cell(G, iz, jo —' 1).
Next we state several propositions:

(35) Suppose that
1 < kandk+1 < len f and f is a sequence which elements belong to G and
(i, j) € the indices of G and (i, j + 1) € the indices of G and 7. f = G ;
and 741 f = Gij+1. Then frontleft_cell(f, k, G) = cell(G,i —"1,j + 1).
(36) Suppose that
1 < kand k+1 <len f and f is a sequence which elements belong to G and
(i, j) € the indices of G and (i, j + 1) € the indices of G and 7 f = G ;
and 741 f = G j+1. Then front_right_cell(f, k, G) = cell(G, i, j + 1).
(37) Suppose that
1 < kand k+1 < len f and f is a sequence which elements belong to G and
(i, j) € the indices of G and (i + 1, j) € the indices of G and 7 f = G ;
and mp+1f = Giy1;. Then front_left_cell(f, k, G) = cell(G,i + 1,).
(38) Suppose that
1 < kand k+1 < len f and f is a sequence which elements belong to G and
(i, j) € the indices of G and (i + 1, j) € the indices of G and 7 f = G ;
and 741 f = Giy1,;. Then front_right_cell(f, k, G) = cell(G,i+ 1,5 —'1).
(39) Suppose that
1 < kand k+1 < len f and f is a sequence which elements belong to G and
(i, j) € the indices of G and (i+1, j) € the indices of G and 7, f = G115
and 741 f = G; j. Then front_left_cell(f, k, G) = cell(G,i —" 1,7 —'1).
(40) Suppose that
1 < kand k41 < len f and f is a sequence which elements belong to G and
(i, j) € the indices of G and (i+1, j) € the indices of G and 7, f = G115
and 741 f = G ;. Then front_right_cell(f, k, G) = cell(G,i -1, j).
(41) Suppose that

144 CZESEAW BYLINSKI

1 < kandk+1 < len f and f is a sequence which elements belong to GG and
(i, j+1) € the indices of G and (i, j) € the indices of G and 7 f = G; j11
and 741 f = G; ;. Then front left_cell(f, k, G) = cell(G,4,5 —'1).
(42) Suppose that
1 < kand k+1 < len f and f is a sequence which elements belong to G and
(i, j+1) € the indices of G and (i, j) € the indices of G and 7 f = G; j11
and 741 f = G; ;. Then front_right_cell(f, k, G) = cell(G,i —"1,5 —'1).
(43) Suppose 1 < k and kK + 1 < lenf and f is a sequence which ele-
ments belong to G and k + 1 < n. Then front left_cell(f, k,G) =
front_left_cell(f[n, k, G) and front_right_cell(f, k, G) =
front_right_cell(f [n, k, G).
Let us consider f, G, k. We say that f turns right k, G if and only if the
condition (Def. 6) is satisfied.
(Def. 6) Let i1, j1, i2, jo be natural numbers. Suppose (i1, j1) € the indices of G
and (ig, j2) € the indices of G and 7, f = Gj, 5, and w11 f = G, j,. Then
(i) i1 = i2 and j1 +1 = jo and (i2 + 1, j2) € the indices of G and
Tet2f = Giy41,45, OF
(i) 41+ 1 = iy and j; = jo and (ig, jo —' 1) € the indices of G and
Tprof = Gig,jr/la or
(ili)) 4 = d2+ 1 and j; = j2 and (i2, jo + 1) € the indices of G and
Tet2f = Gig jot1, OF
(iv) i1 = iy and j; = jo + 1 and (i2 —' 1, jo) € the indices of G and
7Tk+2f = Gigdl,jg-
We say that f turns left k, G if and only if the condition (Def. 7) is satisfied.
(Def. 7) Let i1, j1, i2, jo be natural numbers. Suppose (i1, j1) € the indices of G
and (iz, j2) € the indices of G and 7, f = Gj, 5, and w11 f = G, j,. Then
(i) 44 = iz and j; + 1 = j and (is —' 1, j2) € the indices of G and
Tryof = Giy_r1j,, OF
(i) 41+ 1 = d2 and j; = j2 and (i2, jo + 1) € the indices of G and
Trt2f = Giy jot1, OF
(ili) 4 = i2 + 1 and j; = jo and (ig, jo — 1) € the indices of G and
Trv2f = Giy jy—r1, OF
(iv) 43 = i9 and j; = jo + 1 and (i + 1, jo) € the indices of G and
Trr2f = Giyt1,jo-
We say that f goes straight k, G if and only if the condition (Def. 8) is satisfied.
(Def. 8) Let i1, j1, i2, jo be natural numbers. Suppose (i1, j1) € the indices of G
and (42, j2) € the indices of G and 7 f = G;, j, and 741 f = G, j,. Then
(i) 41 = i2 and j; +1 = jo and (ig, jo + 1) € the indices of G and
Trt2f = Giy jot1, OF
(i) 41+ 1 = iz and j; = j2 and (i2 + 1, j2) € the indices of G and
Te+2f = Giyt1,4y, OF

SOME PROPERTIES OF CELLS ON GO-BOARD 145

(ili) 4 = i + 1 and j; = j2 and (iy —' 1, j2) € the indices of G and
Thtof = Giz—’l,jga or

(iv) 43 = iy and j1 = jo + 1 and (ig, jo —' 1) € the indices of G and
Tk+2f = Giy jo—11-

One can prove the following propositions:

(44) Suppose 1 < k and k+ 2 < len f and f is a sequence which elements
belong to G and k + 2 < n and f[n turns right k£, G. Then f turns right
k, G.

(45) Suppose 1 < k and k+ 2 < len f and f is a sequence which elements
belong to G and k + 2 < n and f[n turns left k, G. Then f turns left &,
G.

(46) Suppose 1 < k and k+ 2 < len f and f is a sequence which elements
belong to G and k42 < n and f[n goes straight k, G. Then f goes straight
k, G.

(47) Suppose that
l<kand k4+1<lenf; and £+ 1 < len fo and f; is a sequence which
elements belong to G and fy is a sequence which elements belong to G
and f1lk = folk and f1 turns right ¥ =" 1, G and f5 turns right ¥ —"1, G.
Then f1 r(k’ + 1) = f2 r(k‘ + 1)

(48) Suppose that
l<kand k4+1<lenf; and k+ 1 < len fo and f; is a sequence which
elements belong to G and fy is a sequence which elements belong to G
and f1lk = fo]k and f1 turns left k —' 1, G and fy turns left k —' 1, G.
Then fi[(k+1) = fol(k+1).

(49) Suppose that
l<kand k4+1<lenf; and £+ 1 < len fo and f; is a sequence which
elements belong to G and fy is a sequence which elements belong to G
and f1]k = fo|k and f; goes straight ¥ —'1, G and fy goes straight k —'1,

REFERENCES

[1] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.

[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

[4] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547—
552, 1991.

[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

[6] Czestaw Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529-536, 1990.

[7] Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

146

AR

10
11
12
[13]
[14]
[15]
[16]
[17]
18]

[19]
[20]

21]

22]

o

S
DO A S

[25
26

CZESLAW BYLINSKI

Czestaw Byliniski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,

1990.

Czestaw Byliiski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53,
1990.

Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

Agata Darmochwal. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
Agata Darmochwal and Yatsuka Nakamura. The topological space £%. Arcs, line segments
and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.

Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.

Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics,
2(4):475-480, 1991.

Jarostaw Kotowicz. Functions and finite sequences of real numbers. Formalized Mathe-
matics, 3(2):275-278, 1992.

Jarostaw Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized
Mathematics, 3(1):107-115, 1992.

Jarostaw Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I1. Formalized
Mathematics, 3(1):117-121, 1992.

Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized
Mathematics, 5(3):323-328, 1996.

Andrzej Nedzusiak. o-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83-86, 1993.

Beata Padlewska and Agata Darmochwatl. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223-230, 1990.

Jan Popiotek. Some properties of functions modul and signum. Formalized Mathematics,
1(2):263-264, 1990.

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
1990.

Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579,

1990.
Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Received April 23, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Bialystok

Propositional Calculus for Boolean Valued
Functions. Part III

Shunichi Kobayashi
Shinshu University
Nagano

Summary. In this paper, we have proved some elementary propositional
calculus formulae for Boolean valued functions.

MML Identifier: BVFUNC_7.

The articles [6], [8], [9], [2], [3], [5], [1], [7], and [4] provide the terminology and
notation for this paper.

In this paper Y is a non empty set.

Next we state a number of propositions:

(1) For all elements a, b of BVF(Y') holds (a = b) A (—a = b) = b.
(2) For all elements a, b of BVF(Y') holds (a = b) A (a = —b) = —a.
(3) For all elements a, b, c of BVF(Y) holds a = bVec=(a=b)V(a=c)
(4) For all elements a, b, c of BVF(Y) holds a = bAc= (a=b)A(a=c)
(5) For all elements a, b, c of BVF(Y) holds aVb=c=(a=¢)A (b= c¢)
(6) For all elements a, b, ¢ of BVF(Y) holds aAb=c=(a=c¢)V (b= c¢)
(7) For all elements a, b, c of BVF(Y) holds aAb=c=a=b=c.
(8) For all elements a, b, c of BVF(Y) holdsaAb=c=a= -bVec.
(9) For all elements a, b, c of BVF(Y) holds a = bVc=aA-b=c.

(10) For all elements a, b of BVF(Y) holds a A (a = b) = a A b.

(11) For all elements a, b of BVF(Y) holds (a = b) A =b = —a A —b.

(12) For all elements a, b, ¢ of BVF(Y) holds (a = b)) A (b = ¢) = (a =

b) A (b= c¢c)A (a=c).
(13) For every element a of BVF(Y) holds true(Y) = a = a.
(14) For every element a of BVF(Y') holds a = false(Y) = —a.

@ 1999 University of Bialystok
147 ISSN 1426-2630

148 SHUNICHI KOBAYASHI

AN TN N TN N N N N N N N N /N

\]

) For every element a of BVF(Y') holds false(Y) = a = true(Y).
6) For every element a of BVF(Y') holds a = true(Y') = true(Y).
7) For every element a of BVF(Y') holds a = —a = —a.
8) For all elements a, b, ¢ of BVF(Y) holdsa = b€ c=a = c=b.
) For all elements a, b, c of BVF(Y) holdsa & bcea < csbsc.
0) For all elements a, b, c of BVF(Y) holdsa < b€ a=c< b= c.
1) For all elements a, b, c of BVF(Y) holds a < b c= a < ¢ =b.
2) For all elements a, b, c of BVF(Y) holdsa & b€aAncebAc.
3) For all elements a, b, c of BVF(Y) holdsa < bcaVesbVe
4) For all elements a, b of BVF(Y) holdsa €a < b< b<a < a.
5) For all elements a, b of BVF(Y') holds a € a = b < b.
6) For all elements a, b of BVF(Y) holds a € b= a & a.
7) For all elements a, b of BVF(Y) holdsa €aAb< bAa < a.
REFERENCES
Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized

Mathematics, 5(4):485-492, 1996.

Czestaw Bylifiski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

Czestaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,

1990.
Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions.

Formalized Mathematics, 7(2):249-254, 1998.

Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83-86, 1993.

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.
Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Edmund Woronowicz. Many—argument relations. Formalized Mathematics, 1(4):733-737,

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Received April 23, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Bialystok

Propositional Calculus for Boolean Valued
Functions. Part IV

Shunichi Kobayashi
Shinshu University
Nagano

Summary. In this paper, we have proved some elementary propositional
calculus formulae for Boolean valued functions.

MML Identifier: BVFUNC_8.

The notation and terminology used here are introduced in the following articles:
(6], [71, [8], 2], [3], [5], [1], and [4].
In this paper Y denotes a non empty set.
One can prove the following propositions:

(1) For all elements a, b, ¢, d of BVF(Y') holds a = bAcAd = (a = b)A(a =
¢) A (a=d).

(2) For all elements a, b, ¢, d of BVF(Y') holds a = bVeVd = (a = b)V(a =
c)V (a=d).

(3) For all elements a, b, ¢, d of BVF(Y') holds aAbAc=d = (a = d)V (b=
d)V (¢ =d).

(4) For all elements a, b, ¢, d of BVF(Y') holds aVbVe = d = (a = d)A (b=
d) A (c=d).

(5) For all elements a, b, ¢ of BVF(Y') holds (a = b) A (b=¢) A (¢ = a) =
(a=bANb=c)AN(c=a)A(b=a)A(a=c).

(6) For all elements a, b of BVF(Y') holds a =a A bV a A —b.

(7) For all elements a, b of BVF(Y') holds a = (a VV b) A (a VV —b).

(8) For all elements a, b, c of BVF(Y) holdsa=aAbAcVaAbA—-cVaA
—~bAcVaA-bA-c.

(9) For all elements a, b, ¢ of BVF(Y) holdsa= (aVbVe)A(aVbV—c)A
(aV=bVe)A(aV—bV-c).

@ 1999 University of Bialystok
149 ISSN 1426-2630

150 SHUNICHI KOBAYASHI

o~~~ o~ o~ o~ o~ o~ o~ o~ o~~~ o~~~ o~~~

10) For all elements a, b of BVF(Y') holds a Ab=a A (-a V b).

11) For all elements a, b of BVF(Y') holds a Vb =aV —aAb.

12) For all elements a, b of BVF(Y') holds a © b = —(a < b).

13) For all elements a, b of BVF(Y') holds a © b= (a Vb) A (ma V —b).
14) For every element a of BVF(Y') holds a & true(Y') = —a.

15) For every element a of BVF(Y') holds a @ false(Y) = a.

16) For all elements a, b of BVF(Y') holds a ® b = —a @ —b.

17) For all elements a, b of BVF(Y') holds —(a & b) = a & —b.

18) For all elements a, b of BVF(Y') holds a < b= (a V =b) A (ma V b).
19) For all elements a, b of BVF(Y') holds a < b=a A bV —a A —b.
20) For every element a of BVF(Y') holds a < true(Y) = a.

21) For every element a of BVF(Y') holds a < false(Y) = —a.

22) For all elements a, b of BVF(Y') holds —(a < b) = a < —b.

23) For all elements a, b of BVF(Y') holds —a € a = b < —a.

24) For all elements a, b of BVF(Y') holds —a € b = a < —b.

25) For all elements a, b of BVF(Y) holdsa €@aVb<bVa<< a.

26) For every element a of BVF(Y') holds a = —a < —a = true(Y).
27) For all elements a, b of BVF(Y') holds a = b = a = a = true(Y).
28) For all elements a, b, ¢, d of BVF(Y') holds (a = ¢)A(b = d)A(—cV—d) =

—a V —b = true(Y).

(29) For all elements a, b, c of BVF(Y) holdsa = b=a=b=c=a=

1]
2]
3]

[5]

[6]

8]

c = true(Y).

REFERENCES

Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485-492, 1996.

Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

Czestaw Bylifiski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,

Sh%%ichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions.
Formalized Mathematics, 7(2):249-254, 1998.

Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83-86, 1993.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Edmund Woronowicz. Many—argument relations. Formalized Mathematics, 1(4):733-737,

1990.
Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73-83, 1990.

Received April 23, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Bialystok

Basic Properties of Genetic Algorithm

Akihiko Uchibori Noboru Endou
Yamaguchi University Shinshu University
Ube Nagano

Summary. We defined the set of the gene, the space treated by the genetic
algorithm and the individual of the space. Moreover, we defined some genetic
operators such as one point crossover and two points crossover, and the validity
of many characters were proven.

MML Identifier: GENEALG1.

The terminology and notation used in this paper have been introduced in the
following articles: [10], [6], [1], [4], [13], [12], [3], [8], [2], [11], [7], [9], and [3].

1. DEFINITIONS OF GENE-SET, GA-SPACE AND INDIVIDUAL

We follow the rules: D is a non empty set, fi, fo are finite sequences of
elements of D, and i, n, ni, no, ng, n4, N5, nNg are natural numbers.
We now state two propositions:
(1) Ifn<len fi, then (fi ~ f2)in = ((f1)n) ™ fo
(2) (A~ f)I(en fi +i) = f1 ™ (f2l4).
A Gene-Set is a non-empty non empty finite sequence.
Let S be a Gene-Set. We introduce GA — Space S as a synonym of Union S.
Let f be a non-empty non empty function. Note that Union f is non empty.
Let S be a Gene-Set. A finite sequence of elements of GA — Space S is said
to be a Individual of S if:
(Def. 1) lenit =len S and for every i such that i € domit holds it(i) € S(i).

@ 1999 University of Bialystok
151 ISSN 1426-2630

152 AKIHIKO UCHIBORI AND NOBORU ENDOU

2. DEFINITIONS OF SEVERAL GENETIC OPERATORS

Let S be a Gene-Set, let p;, p2 be finite sequences of elements of
GA — Space S, and let us consider n. The functor crossover(py,p2,n) yields a
finite sequence of elements of GA — Space S and is defined as follows:

(Def. 2) crossover(pi, p2,n) = (p1In) = ((p2) 1n)-
Let S be a Gene-Set, let p;, pa be finite sequences of elements of
GA — Space S, and let us consider nj, na. The functor crossover(pi, p2,n1,n2)
yields a finite sequence of elements of GA — Space .S and is defined as follows:

(Def. 3) crossover(pi, p2,n1,n2) =
crossover (crossover(py, p2, n1), crossover(pe, p1,n1), n2).

Let S be a Gene-Set, let p;, ps be finite sequences of ele-
ments of GA — SpaceS, and let us consider mi, ng, ng. The functor
crossover(p1, p2, n1, n2,ng) yields a finite sequence of elements of GA — Space S
and is defined as follows:

(Def. 4) crossover(p1, p2, n1,n2,n3) =
crossover(crossover(p1, p2, n1, n2), crossover(pa, p1, N1, N2), N3).
Let S be a Gene-Set, let p;, p2 be finite sequences of ele-
ments of GA — SpaceS, and let us consider ny, ng, n3, n4. The func-

tor crossover(pi, p2,ni,n2,n3,ng) yields a finite sequence of elements of
GA — Space S and is defined as follows:

(Def. 5) crossover(pi, p2, n1,n2,n3,Ng) =
crossover (crossover(p1, p2, N1, N2, N3), Crossover(pa, p1, N1, N2, N3), N4).
Let S be a Gene-Set, let p;, ps be finite sequences of elements
of GA — SpaceS, and let us consider ny, ng, ng, n4, ns. The functor

crossover(p1, p2, n1, n2,ng,ng,ns) yielding a finite sequence of elements of
GA — Space S is defined by:

(Def. 6) crossover(pi, p2, n1, N2, N3, Ny, N5) =
crossover(crossover(pi, p2, 11, N2, N3, N4), CLossover(pa, p1, N1, N2, N3, M4), 15).
Let S be a Gene-Set, let py, p2 be finite sequences of elements of
GA — Space S, and let us consider ni, ne, mns, n4, ns, ng. The functor

crossover(py, p2, N1, N2, ng, N4, N5, Ng) yielding a finite sequence of elements of
GA — Space S is defined as follows:

(Def. 7) crossover(pi, p2, n1,n2, N3, N4, N5, Ng) =
crossover(crossover(py, pa, N1, N2, N3, N4, N5),
crossover(pa, p1,n1, N2, N3, N4, N5), 16).

BASIC PROPERTIES OF GENETIC ALGORITHM 153

3. PROPERTIES OF 1-POINT CROSSOVER

In the sequel S denotes a Gene-Set and pq, po denote Individual of S.
The following proposition is true

(3) crossover(pi,p2,n) is a Individual of S.
Let S be a Gene-Set, let p1, po be Individual of S, and let us consider n.
Then crossover(p1, p2,n) is a Individual of S.
One can prove the following propositions:
(4) crossover(py, p2,0) = po.
(5) If n > lenps, then crossover(pi, p2,n) = pi.

4. PROPERTIES OF 2-POINTS CROSSOVER

We now state the proposition
(6) crossover(pi, p2,n1,n2) is a Individual of S.

Let S be a Gene-Set, let p1, ps be Individual of S, and let us consider n,
ny. Then crossover(py, p2,n1,n2) is a Individual of S.
We now state several propositions:

12
13

crossover(py, p2,n1,Nn1) = P1.

crossover(py, p2, N1, Ng) = crossover(py, p2, na, ny).

(7) crossover(py, p2,0,n) = crossover(pa, p1,n).
(8) crossover(py, p2,n,0) = crossover(ps, p1,n).
(9) If ny > lenpy, then crossover(pi, p2, n1,n2) = crossover(py, p2, na).
10) If ny > lenpy, then crossover(py, p2, n1,n2) = crossover(pi, p2, n1).
11) If ny > lenp; and ny > lenp;, then crossover(pi, p2, ni,n2) = p1.
)
)

(
(
(
(
5. PROPERTIES OF 3-POINTS CROSSOVER

Next we state the proposition
(14) crossover(p1, p2,n1, n2,n3) is a Individual of S.
Let S be a Gene-Set, let p1, p2 be Individual of S, and let us consider ni,
ng, n3. Then crossover(py, p2, ni,n2,n3) is a Individual of S.
We now state a number of propositions:
(15) crossover(p1, p2,0,n2,n3) = crossover(pa, p1,n2, n3) and
crossover(p1, p2, n1, 0, n3) = crossover(pe, p1,n1,n3) and
crossover(py, p2, n1,ng, 0) = crossover(pa, p1,n1, n2).

154 AKIHIKO UCHIBORI AND NOBORU ENDOU

(16) crossover(py,p2,0,0,n3) = crossover(pi, p2, n3) and

crossover(p1, p2,n1,0,0) = crossover(p1, p2, n1) and

crossover(p1, p2, 0,n2,0) = crossover(pi, p2, n2).
crossover(p1, p2,0,0,0) = pa.

If ny > len p1, then crossover(p1, p2, n1, n2, ng) = crossover(pi, p2, N2, n3).

(17)

(18))

(19) Ifng > lenpy, then crossover(py, p2, n1, ng,ng) = crossover(py, p2, N1, N3).

(20) Ifng > lenpy, then crossover(py, p2, i, ng,ng) = crossover(py, p2, N1, N2).

(21) If ny > lenp; and ny > lenp;, then crossover(py,ps,ni, na2,n3) =

crossover(pi, p2, ng).

(22) If ny > lenp; and n3 > lenp;, then crossover(pi,pa,ni,n2,n3) =
crossover(pi, p2, n2).

(23) If ng > lenp; and n3 > lenp;, then crossover(pi,pa,ni,n2,n3) =
crossover(pi, p2, n1).

(24) If ny > lenp; and mne > lenp; and n3 > lenp;, then
crossover(py, p2, N1, N2, N3) = Pi.

(25) crossover(pi, p2, n1, N2, n3) = crossover(py, p2, N2, n1,ng) and
crossover(p1, p2, n1, na, ng) = crossover(pi, p2, N1, N3, N2).

(26) crossover(py, p2, n1, N2, n3) = crossover(pi, P2, N3, N1, N2).

(27) crossover(py, p2, n1,n1,n3) = crossover(p, p2, ng) and

crossover(p1, p2, N1, Ng, Ny) = crossover(py, p2, ne) and

crossover(py, p2, N1, Ng, ng) = crossover(py, p2, n1).

6. PROPERTIES OF 4-POINTS CROSSOVER

Next we state the proposition

(28) crossover(p1, p2, n1,n2,ng,ny) is a Individual of S.

Let S be a Gene-Set, let p1, p2 be Individual of S, and let us consider n,
nga, n3, ng. Then crossover(py, p2, n1, N2, n3,ny) is a Individual of S.
The following propositions are true:

(29) crossover(pi, p2,0,n2,n3,n4) = crossover(pa, p1, N2, N3, ng) and
crossover(p1, p2, n1, 0, n3, ng) = crossover(pa, p1,n1,n3, ng) and
crossover(p1, p2, N1, na, 0, n4) = crossover(pa, p1,n1, N2, n4) and
crossover(p1, p2, N1, na, ng, 0) = crossover(pa, p1,n1, N2, N3).

(30) crossover(py, p2,0,0,n3,n4) = crossover(pi, p2, ng, ng) and
crossover(p1, p2, 0, n2,0,n4) = crossover(pi, p2, n2,nyg) and
crossover(pi, p2, 0,12, n3,

= crossover(py, p2, N2, n3) and

(0) = ()
crossover(p1, p2,n1,0,n3,0) = crossover(py, p2, n1,n3) and
() = () and

crossover(pi, p2,n1,0,0,ny crossover(pi, p2, N1, N4

BASIC PROPERTIES OF GENETIC ALGORITHM 155

crossover(pi, p2, n1,n2,0,0) = crossover(py, p2, n1,n2).
(31) crossover(py, p2,n1,0,0,0) = crossover(ps, p1,n1) and
crossover(py, p2, 0,n2,0,0) = crossover(pa, p1,n2) and
crossover(pi, p2,0,0,n3,0) = crossover(pz, p1,n3) and
crossover(pi, p2,0,0,0,n4) = crossover(pa, p1,n4).
(32) crossover(py,p2,0,0,0,0) = p;.
(33)(1) If ny > lenpy, then crossover(pi, p2,ni,n2,ng,ng) =
crossover(py, pa, N2, N3, n4),
(ii) if ng > lenpy, then crossover(py, p2, n1,na, n3, ng) =
crossover(pi, p2, N1, N3, N4),
(iii) if ng > lenpq, then crossover(py, p2, ni,ng, N3, ng) =
crossover(pi, p2, N1, ng, ng), and
(iv) if ng > lenp;, then crossover(pi, p2, n1,n2, N3, Myq) =
crossover(pi, p2, N1, N2, N3).
(34)(i) If ny > lenp; and ng > lenpq, then crossover(pi, p2,n1,n2,ng,nyg) =
crossover(py, p2, N3, Nyg),
(i) if n; > lenp; and ng > lenpp, then crossover(pi, p2,n1,n2,ng,ng) =
crossover(py, p2, N2, Ny4),
(iii) if n; > lenp; and ng > lenpy, then crossover(py, p2,ni,ng,ng,ng) =
crossover(py, p2, N2, n3),
(iv) if ng > lenp; and n3 > lenp;, then crossover(pi, p2, ni, ne,ng,ny) =
crossover(py, p2,n1,n4),
(v) if ng > lenp; and ng4 > lenp;, then crossover(pi, pa2, ni,n2,n3,n4) =
crossover(py, p2,n1,ng), and
(vi) if ng > lenp; and ng > lenp;, then crossover(pi, p2,ni, n2,ng,ng) =
crossover (pi, p2, N1, n2).
(35)(i) If ny > lenp; and ny > lenp; and ng > lenp;, then
crossover(py, p2, N1, N2, ng,ng) = crossover(pi, p2,ny),
(ii) if ngy > lenp; and no > lenp; and ng > lenp;, then
crossover(pi, pa2, N1, N2, N3, Ng) = crossover(pi, P2, n3),
(iii) if ngy > lenp; and ng > lenp; and ng > lenp;, then
crossover(py, pa2, N1, N2, N3, Ng) = crossover(pi, pa, na), and
(iv) if ng > lenp; and n3 > lenp; and ngy > lenp;, then
crossover(pi, p2, N1, N2, N3, Ng) = crossover(py, pa, n1).
(36) If n; > lenp; and ny > lenp; and n3 > lenp; and ny > lenp;, then
crossover(py, pa2, N1, N2, N3, N4) = P1.

(37) crossover(p1, p2,n1,n2,n3,ng) = crossover(pi, p2,ni, N2, Ny, ng) and
crossover(py, p2, Ny, N2, N3, ny) = crossover(py, p2, ni,n3, N2, ng) and
crossover(pi, p2,n1, N2, N3, ny) = crossover(pi, pa, N1, N3, N4, n2) and
crossover(pi, p2,n1, N2, N3, ny) = crossover(pi, pa, N1, N4, N2,n3) and
crossover(pi, p2,n1, N2, N3, ny) = crossover(py, pa, N1, N4, N3,n2) and

156

(38)

(39)

AKIHIKO UCHIBORI

crossover(pi, p2,ni, Ng, N3, N4
crossover(pi, p2,n1, N, N3, N4
crossover(pi, p2, N1, N, N3, N4
crossover(pi, p2, ni, N, N3, N4
crossover(pi, p2,ni, N9, N3, 14
crossover(pi, p2,n1, N, N3, N4
crossover\pi, p2, ni, N2, N3, N4
crossover(pi, p2,ni, Ng, N3, N4

()
()
()
()
()
()
()
()
crossover(py, p2, N1, Na, N3, N4)
crossover(p1, p2, N1, Ng, N3, n4)
crossover(p1, p2, N1, Na, N3, N4)
crossover(p1, p2, Ny, N2, N3, Ny)
crossover(p1, p2, n1, N2, N3, Nyg)
CI‘OSSOVGI"(pl,pQ, ni,ng2,n3, TL4)
CI‘OSSOVGI‘(pl ,P2,N1,N2,N3, 77,4)
crossover(py, p2, N1, Na, N3, n4)
crossover(pi, p2, N1, Na, N3, N4)
crossover(py, p2, N1, Na, N3, n4)

AND

NOBORU ENDOU

crossover(pi, p2, n2, N1, N3, N4
Ccrossover(pi, p2, na, 11, N4, N3
Crossover(pi, p2, N2, 13, Ny, N4
Crossover(pi, p2, N2, N3, N4, N1
Crossover(pi, p2, ng, N4, N1, N3
crossover(pi, p2, N2, N4, N3, N1
Crossover(pi, p2, 3, i, n2, 14
Crossover(pi, p2, n3, i, N4, N2

crossover(pi, p2, n3, ng, N4, N1
crossover(pi, p2, n3, 14, N1, N2
crossover(pi, p2, n3, N4, No, N1
crossover(pi, p2, n4, N1, N2, N3
crossover(pi, p2, N4, N1, N3, N2
Ccrossover(pi, p2, n4,Ng, N1, N3
crossover(pi, p2, N4, N2, N3, N1

()
(n3)
(n4)
()
(n3)
()
(n4)
(n2)
crossover(p1, p2, 13, N2, N1, N4)
()
(n2)
()
(n3)
(n2)
(n3)
()
)

crossover(py, p2, N4, N3, N1, N2

= crossover(p1, p2, N4, N3, N2, N1).

crossover(p1, p2, N1, N1, ng, ng) = crossover(pi, p2, n3, ng) and

crossover(p1, p2, n1, na, N1, ng) = crossover(py, p2, n2, ny) and

crossover(p1, p2, N1, Na, N3, n1) = crossover(py, p2, N2, n3) and

crossover(p1, p2, N1, Na, Na, Ng) = crossover(py, p2, ni,n4) and

crossover(p1, p2, N1, Na, N3, ne) = crossover(py, p2, ni,n3) and

crossover(p1, p2, n1, na2, N3, ng) = crossover(py, p2, N1, n2).

crossover(pi, p2, N1, N1, N3, N3)

p1 and crossover(py, p2, ni, N2, Na, N1)

= P1-

7. PROPERTIES OF 5-POINTS CROSSOVER

Next we state the proposition

(40)

crossover(pi, p2, N1, N2, ng, N4, ns5) is a Individual of S.

and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and

= p; and crossover(p1, p2, N1, N2, N1, N2) =

Let S be a Gene-Set, let p1, p2 be Individual of S, and let us consider nq,

ng, ng, N4, ns. Then crossover(pi, p2, n1,na, n3, ng,ns) is a Individual of S.

Next we state a number of propositions:

(41)

CI‘OSSOVGI‘(pl,pQ, 07 ng2,n3,ng, 715)
crossover(p1, p2,n1,0,n3, N4, ns5)

crossover(pi, p2,ni, ng, 0 s, Mg, Ny

()
crossover(pl,pg, ni, ng,n3,0 n5)
(0) =

crossover(pi, p2,ni, N2, N3, N4,

crossover(pa, p1, N2, N3, N4, N3)
crossover(pa, p1, 11, N3, N4, N5)
crossover(pa, pi,n1, N2, N4, N5)
crossover(pa, p1, N1, N2, N3, N5)

crossover(pa, p1,n1, N2, N3, N4).

and
and
and
and

(42)

(43)

(44)

(45)

(46)(1) If ngy > lenp;, then crossover(pi,ps,ni,na,nsg,ng,ns)
(i)
(iii)
(iv)
(v)

BASIC PROPERTIES OF GENETIC ALGORITHM

crossover(pi, p2, 0,0, ng, ng, ns) = crossover(pi, p2, n3, ng, ns) and

crossover(p1, p2, 0, 12,0, n4, n5)
crossover(pi, p2,0,n2,n3,0,n5) =
crossover(pi, p2,0,n2,n3, 14,0
crossover(py, p2,n1,0,0, 14,05

(

(

(

crossover(pi, p2,n1,0,mn3,0, 15

(

crossover(py, p2, ni,n2,0,0,n5
(

crossover(pi, p2,n1,n2,0,n4,0

= crossover(p1, p2, N2, N4, N5)

crossover(pi, p2, N2, N3, Ny
crossover(pi, p2, ng, N3, N4
crossover(pi, p2, i, N4, N5

()
()
()
crossover(p1, p2, 11,13, N5)
()
crossover(pi, pa, n1, N2, N5)

()

crossover(pi, p2, ni, N9, N4

) =
) =
) =
crossover(p1, p2, n1, 0, n3, ng,0) = crossover(py, p2, N1, N3, Ny
) =
) =
) =

crossover(pi, p2, ni,n2,n3, 0,0

crossover(p1, p2, N1, N2, N3).

and
and
and
and
and
and
and
and

crossover(p1, p2, 0, 0,0, ng, n5) = crossover(pa, p1, N4, n5) and

crossover(py, p2, 0,0, n3,0,ns5)
0) =
)
0)
)

crossover(p1, p2, 0,0, ng, ng,

crossover(p1, p2,0,n9,0,0, ns

crossover(pi, p2, 0,n2, 0, ny,

crossover(py, p2,n1,0,0,0, ns

(
(
(
crossover(py, p2, 0, n2,n3,0,0
(
(
(

)
crossover(py, p2,n1,0,0,n4,0)
)

crossover(py, p2,n1,0,n3,0,0

crossover(py, p2,n1,n2,0,0,0)

= crossover(pa, p1,ng, n5) and

crossover(ps, p1,n3, ng) and

crossover(pz, p1, n2, ns) and
crossover(pz, p1, N2, ng) and
crossover(ps, p1,n1,n5) and

and

()
()
(n4)
crossover(pa, p1, n2,n3) and
(ns)
crossover(pa, p1,n1,n4)

()

crossover(pa, p1,n1,n3) and

crossover(pa, p1,n1,n2).

crossover(pi, p2,0,0,0,0,n5) = crossover(py, p2,n5) and

crossover(pi, p2,0,0,0,n4,0) = crossover(pi, p2, ng) and

crossover(py, p2,0,0,n3,0,0) = crossover(pi, p2, n3) and

()
crossover(p1, p2, 0,n2,0,0,0) = crossover(py, p2, n2) and
()

crossover(pi, p2,n1,0,0,0,0) = crossover(py, p2, n1).

crossover(pi, p2,0,0,0,0,0) = py

CI‘OSSOV61“(p1,p2, n2,n3, Ny, TL5),

if ng > lenp;, then crossover(py, pa, n1, N2, N3, N4, N5) =

crossover(p1, p2, 111,13, N4, N5),

if ng > lenp;, then crossover(pi, p2, n1,n2,ng, ng, n5) =

CrOSSOVeY(m y D2, N1, N2, N4, 715),

if ng > lenp;, then crossover(py, p2,n1,n2,ng, ng, n5) =

crossover(py, p2, n1,n2, N3, ns), and

if ny > lenpy, then crossover(py, p2,n1,n2, ng, ng, n5) =

CrOSSOVGI‘(pl,pQ, ni,n2,ns, 7'1,4)-

157

(47)(i) Ifny > lenp; and ny > len py, then crossover(py, p2, n1, n2, N3, Ny, n5) =

(i)

crossover(pi, pa2, n3, N4, N5),

if n; > lenp; and ng > lenpy, then crossover(py, p2, n1, N2, N3, N4, N35) =

crossover(pi, p2, N2, N4, N5),

158 AKIHIKO UCHIBORI AND NOBORU ENDOU

(iii) if ny > lenp; and ng > len py, then crossover(pi, pa, n1, no, N3, N4, N5) =
crossover(p1, p2, N2, N3, N5),
(iv) ifny > lenp; and ns > len py, then crossover(py, p2, n1, N2, N3, ng, N5) =
crossover(p1, p2, n2, N3, Ng),
(v) if ng > lenp; and n3 > len py, then crossover(py, p2, n1, na, ng, ng, ns) =
crossover(p1, p2, n1, N4, N5),
(vi) if ng > lenp; and ng > lenpy, then crossover(p1, p2, n1,na, n3, ng, n5) =
crossover(p1, p2, N1, N3, Ns5),
(vii) if ng > lenp; and ns > lenpy, then crossover(py, p2, n1,n2, N3, N4, N5) =
crossover(py, p2, N1, N3, Ny4),
(viii) if ng > lenp; and ng > len py, then crossover(py, p2, n1,n2, N3, ng, N5) =
crossover(p1, p2, n1, N2, Ns),
(ix) if ng > lenp; and ns > lenpy, then crossover(py, pa, n1, N2, N3, Ny, N5) =
crossover(py, p2,n1,na,ng), and
(x) ifng > lenp; and ns > lenpy, then crossover(pi, pa, n1,n2, N3, N4, N5) =
crossover(py, p2, N1, Na, N3).
(48)(1) If ny > lenp; and noy > lenp; and nz > lenp;, then
crossover(p1, p2, n1, na2, N3, N4, N5) = crossover(py, p2, N4, ns),
(ii) if ni > lenpy and ney > lenp; and ng > lenpp, then
crossover(py, p2, N1, Na, N3, N4, N5) = crossover(py, pz, N3, nNs),
(iii) if ngy > lenp; and ny > lenp; and ns > lenp;, then
crossover(p1, p2, N1, Na, N3, N4, N5) = Crossover(py, pa, N3, N4),
(iv) if ngy > lenp; and ng > lenp; and ng > lenp;, then
crossover(p1, p2, N1, Na, N3, N4, N5) = crossover(py, pa, N2, N5),
(v) if ny > lenp; and ng > lenp; and ns > lenp;, then
crossover(p1, p2, n1, na2, N3, N4, N5) = crossover(py, p2, N2, n4),
(vi) if ni > lenpy and ngy > lenp; and ny > lenp;, then
crossover(p1, p2, N1, Na, N3, N4, N5) = crossover(py, pa, N2, n3),
(vii) if ng > lenp; and n3 > lenp; and ngy > lenp;, then
crossover(p1, p2, N1, Na, N3, N4, N5) = crossover(py, pa, Ny, ns),
(viii) if ng > lenp; and ng > lenp; and ns > lenp;, then
crossover(p1, p2, N1, Na, N3, N4, N5) = crossover(py, pa, Ny, Ny4),
(ix) if ng > lenp; and ngy > lenp; and ns > lenp;, then
crossover(p1, p2, n1, na2, ng, N4, ns) = crossover(py, p2, ni,ng), and
(x) if ng > lenp; and ngy > lenp; and ns > lenp;, then
crossover(py, p2, N1, Na, N3, N4, N5) = Crossover(py, p2, Ny, n2).
(49)(i) If ny > lenp; and ne > lenp; and ng > lenp; and ng > lenpp, then
crossover(p1, p2, n1, na2, N3, N4, N5) = crossover(py, p2, ns),
(ii) if n; > lenp; and ny > lenp; and ng > lenp; and ns > lenp;, then
crossover(p1, p2, n1, na, N3, Ny, N5) = crossover(py, p2, n4),

BASIC PROPERTIES OF GENETIC ALGORITHM 159

(iii) if n; > lenp; and ny > lenp; and ng > lenp; and ns > lenpp, then
crossover(py, p2, N1, N2, N3, N4, N5) = crossover(pi, p2, n3),

(iv) if ny > lenp; and n3 > lenp; and ng > lenp; and ns > lenp;, then
crossover(pi, p2, N1, N2, N3, N4, N5) = crossover(pi, p2, n2), and

(v) if ng > lenp; and n3 > lenp; and ny > lenp; and ns > lenp;, then
crossover(pi, p2, N1, N2, N3, N4, N5) = crossover(pi, p2, n1).

(50) If ny > lenp; and ne > lenp; and ng > lenp; and ny > lenp; and
ns > len pq, then crossover(py, p2, n1, N2, N3, Ny, N5) = P1.

(51) crossover(p1, p2, n1,n2,n3,Ng,N5) = crossover(pi, p2, N2, N1, N3, N4, N5)
and crossover(p1, p2, N1, N2, N3, N4, N5) = Crossover(py, p2, N3, N2, N1, N4, N5)
and crossover(p1, p2, N1, Na, N3, N4, N5) = Crossover(py, P2, N4, N2, N3, N1, N5)
and crossover(p1, p2, n1, N2, N3, Ny, Ny) = crossover(py, p2, N5, Mg, N3, N4, N1).

(52) crossover(py, p2,n1, N1, N3, Mg, N5) = crossover(pi, p2, N3, ng,n5) and
crossover(pi, p2, N1, N2, N1, N4, N5) = crossover(pi, pa, N2, N4, n5) and
crossover(pi, p2,n1, N2, N3, n1,N5) = crossover(py, pa, N2, N3, n5) and

crossover(pi, p2, N1, N2, N3, N4, N1) = crossover(pi, p2, N2, N3, ny).

8. PROPERTIES OF 6-POINTS CROSSOVER

Next we state the proposition
(53) crossover(p1, p2, n1, na2, ng, ng, ns, ng) is a Individual of S.

Let S be a Gene-Set, let p1, po be Individual of S, and let us consider n,
ng, N3, N4, N5, Ne. Then crossover(py, p2, n1, N2, N3, Ny, N5, ng) is a Individual of
S.

We now state four propositions:

(54)(i) crossover(py, p2, 0, n2, N3, N4, N5, Ng) = crossover(pa, p1, N2, N3, N4, N5, 16,

(ii) crossover(p1,p2, ni,0,ns,ng, ns, ng) = crossover(pa, p1, N1, N3, N4, N5, Ng),
(iii

)

) () ()
(iv) crossover(pi, p2,n1,n2,n3,0,n5,n6) = crossover(pa, p1, n1, N2, N3, N5, Ng),

) () ()

(v

Crossover(pi, p2, ni, n2, 07”47”55 Ne) = Crossover(pz, pi1, ni, N2, 14,15, N6),

crossover pl,pg,nl,ng,ng,n4,0,n6 = crossover(pz, p1,1n1,N2,M3,1M4,N¢),
and
(vi) crossover(pi, p2, ni,na, ng, ng, ns,0) = crossover(pa, p1, N1, N2, N3, N4, N5).
(55)(1) If ny > lenp;, then crossover(pi,p2,ni,na, n3,ng,ns,ng) =
crossover(py, p2, Na, N3, N4, N5, 16),
(ii) if ng > lenp;, then crossover(py,ps,ni,na,ng,ng,ns,ng) =
crossover(py, p2, N1, N3, N4, N5, N6,
(iii) if ng > lenp;, then -crossover(py,ps,ni,na,n3,nyg,ns,ng) =
crossover(py, P2, N1, N2, N4, N5, NG),
(iv) if ngy > lenpy, then crossover(pi,p2,ni,ne,ng,ng,ns,ng) =
crossover(py, p2, N1, N2, N3, N5, N6),

160 AKIHIKO UCHIBORI AND NOBORU ENDOU

(v) if ny > lenp;, then crossover(py,pa,ni,ng,n3,ng,ns,ng) =
crossover(p1, p2, N1, N2, N3, N4, Ng), and
(vi) if ng > lenp;, then crossover(py,ps,ni,na,n3,ng,ns,ng) =
Crossover(pl,pg, ni,n2,n3,nyg, TL5)-
(56)(1) crossover(py, p2,n1,n2, N3, N4, N5, Ng) = crossover(pi, P2, N2, N1, N3, N4, N5, Ng),
(ii)
(111) CTOSSOVGT(plaPQ, ni,n2,ng, N4, ns, nﬁ) = Crossover(plap2v Ny, N2,N3, N1, N5, ’I’l6),
(lV) CI‘OSSOVGI'(pl’pQ, ni,nz,n3, ng,ns, nG) = CI‘OSSOVGI’(pl,pQ, ns5,n2,MN3,MN4,MN1, nﬁ)a
and
(v) crossover(pi, p2, n1, n2, ng, N4, N5, Ng) = Crossover(pi, P2, Ng, N2, N3, N4, N5, N1).

CTOSSOVGT(pl y P2, M1, N2, N3, N4, N5, 7'1,6) = Crossover(plup?v ng,nz2,ni, N4, ns, ’I’l6),

(57)(i) crossover(pi, p2,n1,n1, N3, N4, N5, Ng) = Crossover(pi, P2, N3, N4, N5, 16,
(ii)
(iii) crossover(p1, p2, N1, N2, N3, N1, N5, NG) = Crossover(pi, P2, Na, N3, N5, NG),
(iv) crossover(pi, p2, n1,n2,n3,M4,N1,N6) = crossover(pi, p2, N2, N3, N4, Ng),
and
(v) crossover(pi, p2, ni, n2, N3, n4, N5, n1) = crossover(pi, p2, N2, N3, N4, ns).

CrOSSOV@T(pLP% ni,nz,ni, N4, ns, 7'1,6) = Crossover(plap?v n2,ny4,Ns, 7'1,6),

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

[2] Grzegorz Bancerek. The reflection theorem. Formalized Mathematics, 1(5):973-977, 1990.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

[4] Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

[6] Agata Darmochwal and Yatsuka Nakamura. The topological space E2. Arcs, line segments
and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.

[6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.

[7] Jarostaw Kotowicz. Functions and finite sequences of real numbers. Formalized Mathe-
matics, 3(2):275-278, 1992.

[8] Andrzej Nedzusiak. o-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.

[9] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,

4(1):83-86, 1993.

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

]
1990.
[11] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579,
]
]

1990.
Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Received April 24, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Bialystok

Propositional Calculus for Boolean Valued
Functions. Part V

Shunichi Kobayashi
Shinshu University
Nagano

Summary. In this paper, we have proved some elementary propositional
calculus formulae for Boolean valued functions.

MML Identifier: BVFUNC_9.

The terminology and notation used here have been introduced in the following
articles: [3], [4], [5], [2], and [1].

In this paper Y denotes a non empty set.

We now state a number of propositions:

(1) For all elements a, b, ¢ of BVF(Y') holds (aVb) A (b=c¢) €EaVec.

(2) For all elements a, b of BVF(Y') holds a A (a = b) € b.

(3) For all elements a, b of BVF(Y') holds (a = b) A =b € —a.

(4) For all elements a, b of BVF(Y') holds (a V b) A —a € b.

(5) For all elements a, b of BVF(Y) holds (a = b) A (ma = b) € b.

(6) For all elements a, b of BVF(Y') holds (a = b) A (a = —b) € —a.

(7) For all elements a, b, c of BVF(Y) holds a = bAc € a = b.

(8) For all elements a, b, c of BVF(Y) holds aVb=c€a=c.

(9) For all elements a, b, c of BVF(Y) holdsa = b & aAc=b.
(10) For all elements a, b, c of BVF(Y) holdsa=b&aAc=0bAc.
(11) For all elements a, b, c of BVF(Y) holdsa=b&a=0bVe.
(12) For all elements a, b, c of BVF(Y) holdsa=b&aVc=0bVe.
(13) For all elements a, b, c of BVF(Y) holds aAbVecEaVe.

(14) For all elements a, b, ¢, d of BVF(Y) holds aAbVecAdEaVe.

@ 1999 University of Bialystok
161 ISSN 1426-2630

162 SHUNICHI KOBAYASHI

(15) For all elements a, b, ¢ of BVF(Y') holds (aVb) A (b=¢) €EaVe.

(16) For all elements a, b, ¢ of BVF(Y') holds (a = b) A (-a = ¢) €bVec.
(17) For all elements a, b, ¢ of BVF(Y') holds (a = ¢) A (b= —¢) € —a V —b.
(18) For all elements a, b, ¢ of BVF(Y) holds (aVb) A (—aVec) EbVec.

(19) For all elements a, b, ¢ of BVF(Y) holds (a = b) A (a=c¢) Ea=bAc.
(20) For all elements a, b, ¢, d of BVF(Y') holds (a = b) A (¢ =d) EaNc=

bAd.

(21) For all elements a, b, ¢ of BVF(Y') holds (a = ¢) A (b=¢) €aVb=c.

(22) For all elements a, b, ¢, d of BVF(Y) holds (a = b) A (c=d) €aVec=
bVd.

(23) For all elements a, b, ¢ of BVF(Y') holds (a = b)A(a=c¢c) Ea=bVe.

(24) For all elements a1, b1, c1, ag, ba, c of BVF(Y) holds (bl = b2) VAN (Cl =
C2) AN ((11 VbV Cl) A —|(a2 VAN bg) VAN —|(CL2 AN CQ) C agy = ay.

(25) For all elements ay, b1, 1, ag, ba, c2 of BVF(Y) holds (a1 = a2) A (by =
bg) A (01 = CQ) A (a1 VbV Cl) A —|(a2 A bg) A —\(a2 VAN Cg) N ﬂ(bg VAN 02) c (CLQ =
al) A (b2 = bl) VAN (02 = Cl).

(26) For all elements ay, b1, az, be of BVF(Y) holds (a1 = a2) A (b =
bg) VAN —|(a2 VAN bg) = —|(a1 A bl) = true(Y).

(27) For all elements ay, by, c1, ag, ba, ca of BVF(Y') holds (a; = a2) A (by =
bg) A (Cl = 62) VAN ﬂ((lQ A bg) A —\(a2 AN CQ) VAN _\(bg A 02) c —\(al VAN bl) A _'((11 A
Cl) VAN —|(b1 AN Cl).

REFERENCES

[1] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions.
Formalized Mathematics, 7(2):249-254, 1998.

[2] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83-86, 1993.

[3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.

[4] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[5] Edmund Woronowicz. Many—argument relations. Formalized Mathematics, 1(4):733-737,
1990.

Received May 5, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Bialystok

Properties of Left and Right Components

Artur Kornitowicz!
University of Bialtystok

MML Identifier: GOBRD14.

The notation and terminology used here have been introduced in the following
papers: [33], [42], [43], [6], [7], [41], [5], [16], [35], [1], [30], [38], [31], [17], [27],
(8], [19], [39], [18], [20], [15], [4], [2], [3], [40], [32], [29], [44], [12], [28], [11], [13],
[14], [21], [22], [25], [34], [10], [24], [23], [37], [36], [26], and [9].

1. COMPONENTS

For simplicity, we adopt the following rules: r» denotes a real number, 2, j,
n denote natural numbers, f denotes a non constant standard special circular
sequence, g denotes a clockwise oriented non constant standard special circular
sequence, p, ¢ denote points of 5%, P, @, R denote subsets of 5%, C denotes a
compact non vertical non horizontal subset of £, and G denotes a Go-board.
Next we state several propositions:

(1) Let T be a topological space, A be a subset of the carrier of T', and B
be a subset of T'. If B is a component of A, then B is connected.

(2) Let A be a subset of the carrier of £} and B be a subset of £F. If B is
inside component of A, then B is connected.

(3) Let A be a subset of the carrier of £} and B be a subset of ELL. If B is
outside component of A, then B is connected.

(4) For every subset A of the carrier of £} and for every subset B of £F such
that B is a component of A€ holds AN B = (.

(5) If P is outside component of and R is inside component of @), then
PNR=0.

IThis paper was written while the author visited Shinshu University, winter 1999.

@ 1999 University of Bialystok
163 ISSN 1426-2630

164 ARTUR KORNILOWICZ

(6) Let A, B be subsets of £2 . Suppose A is outside component of E(f) and
B is outside component of L(f). Then A = B.

(7) Let p be a point of £2. Suppose p = Og% and P is outside component of

Z(f) Then there exists a real number 7 such that » > 0 and Ball(p,r)® C
P.

Let C be a closed subset of 8%. Observe that BDD C' is open and UBD C is
open.
Let C be a compact subset of 5%. Observe that UBD C' is connected.

2. GO-BOARDS

One can prove the following proposition
(8) For every finite sequence f of elements of £F such that L(f) # 0 holds
2 <len f.
Let n be a natural number and let a, b be points of £F. The functor p(a, b)
yields a real number and is defined by:
(Def. 1) There exist points p, ¢ of £™ such that p = a and ¢ = b and p(a,b) =
p(p,q).
Let us notice that the functor p(a,b) is commutative.
The following propositions are true:
9) pp.a) = v/ (p1—a1)? + (p2 — g2)%.
(10) For every point p of £F holds p(p,p) = 0.

(11) For all points p, ¢, r of £ holds p(p,r) < p(p,q) + p(g, 7).

(12) Let x1, x9, y1, y2 be real numbers and a, b be points of S%. Suppose
r1 < ay and a3 < 22 and y; < a2 and ag < Yo and x; < by and by < 9
and y; < bg and ba < yo. Then p(a,b) < |z2 — 21| + |y2 — 1].

(13) If1<iandi <lenG and 1 < j and j < width G, then cell(G,i,j) =
[I[1 — [(Gip)1, (Gixra)a], 2 — [(G)2, (Grjga)2]]-

(14) If1 <iandi <lenG and 1 < j and j < width G, then cell(G, i, j) is
compact.

(15) If (i, j) € the indices of G and (i + n, j) € the indices of G, then
p(GiJ, Gi+n7j) = (Gi+n,j)1 - (Gi,j)L

(16) If (i, j) € the indices of G and (i, j + n) € the indices of G, then
P(Gij; Gijan) = (Gijin)2 — (Gij)a-

(17) 3 <lenGauge(C,n) —'1.

(18) Suppose i < j. Let a, b be natural numbers. Suppose 2 < a and a <
len Gauge(C,i) — 1 and 2 < b and b < len Gauge(C,i) — 1. Then there
exist natural numbers ¢, d such that

PROPERTIES OF LEFT AND RIGHT COMPONENTS

2 < cand ¢ < len Gauge(C,j) — 1 and 2 < d and d < len Gauge(C, j) —

1 and (¢, d) € the indices of Gauge(C,j) and (Gauge(C,i))qp =

(Gauge(C, j))eqand ¢ =2 +2/""". (a —'2) and d = 2+ 271 - (b ' 2).
(19) If (i, j) € the indices of Gauge(C,n) and (i,j + 1) € the in-

dices of Gauge(C,n), then p((Gauge(C,n));;,(Gauge(C,n));jt1) =
N-bound C'—S-bound C
2n :

(20) If (i, j) € the indices of Gauge(C,n) and (i + 1,j) € the in-

dices of Gauge(C,n), then p((Gauge(C,n));;,(Gauge(C,n))it1,;) =
E-bound C—W-bound C
2n :

(21) If » > 0, then there exists a natural number n such that
p((Gauge(C,n))1,1, (Gauge(C,n))12) < r and
p((Gauge(C,n))1,1, (Gauge(C,n))21) < r.

3. LErTCoMP AND RicHTCOMP

One can prove the following propositions:

(22) For every subset P of (5%)[(2(]“))‘3 such that P is a component of
(E2) I(L(f))¢ holds P = RightComp(f) or P = LeftComp(f).
(23) Let A1, Az be subsets of EZ. Suppose that
(i) (L) = A1 U Ay,
(ii) AN Ay =0, and
(iii) for all subsets C1, Cy of (5%)[(E(f))c such that C; = A; and Cy =

Az holds C1 is a component of (E2)I(L(f))° and Cy is a component of
(EIE)

Then A; = RightComp(f) and Ay = LeftComp(f) or A; = LeftComp(f)
and Ay = RightComp(f).

(24) LeftComp(f) N RightComp(f) = 0.

(25) L(f) U RightComp(f) U LeftComp(f) = the carrier of E2.
(26) pe L(f)iffp¢ LeftComE(f) and p ¢ RightComp(f).
(27) p € LeftComp(f) iff p ¢ E(Nf) and p ¢ RightComp(f).
(28) pe RightComp(f) iff p ¢ L(f) and p ¢ LeftComp(f).
(29) Li(f) = RightComp(f) \ RightComp(f).

(30) L(f) = LeftComp(f) \ LeftComp(f).

(31) RightComp(f) = RightComp(f) U L(f).

(32) LeftComp(f) = LeftComp(f) U L(f).

Let f be a non constant standard special circular sequence. One can verify
that L(f) is Jordan.
The following propositions are true:

165

166 ARTUR KORNILOWICZ

(33) 1If 719 = N-min £(g) and p € RightComp(g), then W-bound £(g) < p1.
(34) If m g = N-min £(g) and p € RightComp(g), then E-bound £(g) > p1.
(35) If m1g = N-min Z(g) and p € RightComp(g), then N-bound Z(g) > pa.
(36) If m g = N-min £(g) and p € RightComp(g), then S-bound £(g) < p2.
(37) 1If p € RightComp(f) and ¢ € LeftComp(f), then £(p,q) N L(f) # 0.
(38) RightComp(SpStSeq () = [][1 — [W-bound L(SpStSeq C),

E-bound L(SpStSeq C)], 2 — [S-bound L(SpStSeq C),

N-bound L(SpStSeq C)]].

(39) (proj1)°L(f) C (proj1)°RightComp(f) and if m f = N—minNZ(f) and f
is clockwise oriented, then (projl)°RightComp(f) = (proj1)°L(f).

(40) (proj2)°L(f) C (proj2)°RightComp(f) and if 1 f = N-min £(f) and f
is clockwise oriented, then (proj2)°RightComp(f) = (proj2)°L(f).

(41) If m g = N-min £(g), then RightComp(g) C RightComp(SpStSeq £(g)).
(42) 1If 719 = N-min £(g), then RightComp(g) is compact.

(43) 1If 719 = N-min £(g), then LeftComp(g) is non Bounded.

(44) If m1 g = N-min £(g), then LeftComp(g) is outside component of £(g).
(45) 1If 719 = N-min £(g), then RightComp(g) is inside component of £(g).
(46) 1If 719 = N-min £(g), then UBD £(g) = LeftComp(g).

(47) If m g = N-min £(g), then BDD £(g) = RightComp(g).

(48) If mg = N-min£(g) and P is outside component of £(g), then P =

LeftComp(g).

(49) 1If mg = N-minL(g) and P is inside component of £(g), then P N
RightComp(g) # 0.

(50) If mg = N-min £(g) and P is inside component of £(g), then P =
BDD £(g).

(51) 1If w19 = N-min L
(52) If m g = N-min L
(53) If mg = N-min £
(54) 1If w19 = N-min L

g), then W-bound £(g) = W-bound RightComp(g).
g), then E-bound £(g) = E-bound RightComp(g).
g), then N-bound £(g) = N-bound RightComp(g).
g), then S-bound £(g) = S-bound RightComp(g).

~ o~~~

ACKNOWLEDGMENTS
I would like to thank Professor Yatsuka Nakamura for his help in the pre-
paration of the article.
REFERENCES
[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. Konig’s theorem. Formalized Mathematics, 1(3):589-593, 1990.

PROPERTIES OF LEFT AND RIGHT COMPONENTS

Grzegorz Bancerek. Countable sets and Hessenberg’s theorem. Formalized Mathematics,
2(1):65-69, 1991.

Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

Czestaw Bylifiski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
Czestaw Byliniski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

Czestaw Byliniski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,

1990.
Czestaw Bylinski. Products and coproducts in categories. Formalized Mathematics,

2(5):701-709, 1991.

Czestaw Bylifiski. Gauges. Formalized Mathematics, 8(1):25-27, 1999.

Czestaw Bylinski and Piotr Rudnicki. Bounding boxes for compact sets in £2. Formalized
Mathematics, 6(3):427-440, 1997.

Agata Darmochwal. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
Agata Darmochwal. Families of subsets, subspaces and mappings in topological spaces.
Formalized Mathematics, 1(2):257-261, 1990.

Agata Darmochwal. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
Agata Darmochwal and Yatsuka Nakamura. The topological space £2. Arcs, line segments
and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.

Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559-562,

1991.
Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35-40, 1990.

Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics,
2(4):475-480, 1991.

Stanistawa Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathe-
matics, 1(3):607-610, 1990.

Jarostaw Kotowicz. Convergent real sequences. Upper and lower bound of sets of real
numbers. Formalized Mathematics, 1(3):477-481, 1990.

Jarostaw Kotowicz. The limit of a real function at infinity. Formalized Mathematics,
2(1):17-28, 1991.

Jarostaw Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part 1. Formalized
Mathematics, 3(1):107-115, 1992.

Jarostaw Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part II. Formalized
Mathematics, 3(1):117-121, 1992.

Yatsuka Nakamura. Graph theoretical properties of arcs in the plane and Fashoda Meet
Theorem. Formalized Mathematics, 7(2):193-201, 1998.

Yatsuka Nakamura and Czestaw Bylinski. Extremal properties of vertices on special
polygons. Part 1. Formalized Mathematics, 5(1):97-102, 1996.

Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized
Mathematics, 5(3):323-328, 1996.

Yatsuka Nakamura, Andrzej Trybulec, and Czestaw Bylinski. Bounded domains and
unbounded domains. Formalized Mathematics, 8(1):1-13, 1999.

Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83-86, 1993.

Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223-230, 1990.

Jan Popiolek. Some properties of functions modul and signum. Formalized Mathematics,
1(2):263-264, 1990.

Konrad Raczkowski and Andrzej Nedzusiak. Real exponents and logarithms. Formalized
Mathematics, 2(2):213-216, 1991.

Konrad Raczkowski and Pawel Sadowski. Topological properties of subsets in real num-
bers. Formalized Mathematics, 1(4):777-780, 1990.

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.
Andrzej Trybulec. Left and right component of the complement of a special closed curve.

Formalized Mathematics, 5(4):465-468, 1996.

167

168 ARTUR KORNILOWICZ

[35] Andrzej Trybulec and Czestaw Bylifiski. Some properties of real numbers. Formalized
Mathematics, 1(3):445-449, 1990.
[36] Andrzej Trybulec and Yatsuka Nakamura. On the order on a special polygon. Formalized
Mathematics, 6(4):541-548, 1997.
[37] Andrzej Trybulec and Yatsuka Nakamura. On the rectangular finite sequences of the
points of the plane. Formalized Mathematics, 6(4):531-539, 1997.
] Michat J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[39] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[40] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579,
J
]

1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17-23, 1990.

[43] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

[44] Mirostaw Wysocki and Agata Darmochwal. Subsets of topological spaces. Formalized

Mathematics, 1(1):231-237, 1990.

Received May 5, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Bialystok

Noetherian Lattices

Christoph Schwarzweller
University of Tuebingen

Summary. In this article we define noetherian and co-noetherian lattices
and show how some properties concerning upper and lower neighbours, irreduci-
bility and density can be improved when restricted to these kinds of lattices. In
addition we define atomic lattices.

MML Identifier: LATTICES.

The notation and terminology used here are introduced in the following papers:
(18], [13], [17], [14], [19], [7], [1], [8], [6], [20], [3], [9), [2], [10], [15], [16], [5], [11],
[4], and [12].

Let us observe that there exists a lattice which is finite.

Let us mention that every lattice which is finite is also complete.

Let L be a lattice and let D be a subset of the carrier of L. The functor D
yields a subset of Poset(L) and is defined by:

(Def. 1) D' = {d';d ranges over elements of the carrier of L: d € D}.

Let L be a lattice and let D be a subset of the carrier of Poset(L). The
functor "D yielding a subset of the carrier of L is defined by:

(Def. 2) "D = {'d;d ranges over elements of Poset(L): d € D}.

Let L be a finite lattice. Note that Poset(L) is well founded.
Let L be a lattice. We say that L is noetherian if and only if:

(Def. 3) Poset(L) is well founded.
We say that L is co-noetherian if and only if:
(Def. 4) Poset(L)~ is well founded.
One can verify the following observations:
* there exists a lattice which is noetherian and upper-bounded,
% there exists a lattice which is noetherian and lower-bounded, and

% there exists a lattice which is noetherian and complete.

@ 1999 University of Bialystok
169 ISSN 1426-2630

170 CHRISTOPH SCHWARZWELLER

One can verify the following observations:

% there exists a lattice which is co-noetherian and upper-bounded,

% there exists a lattice which is co-noetherian and lower-bounded, and
* there exists a lattice which is co-noetherian and complete.

Next we state the proposition

(1) For every lattice L holds L is noetherian iff L° is co-noetherian.

One can check that every lattice which is finite is also noetherian and every
lattice which is finite is also co-noetherian.

Let L be a lattice and let a, b be elements of the carrier of L. We say that
a is-upper-neighbour-of b if and only if:

(Def. 5) a # b and b C a and for every element c¢ of the carrier of L such that
bCcand ¢cC a holds ¢ =a or ¢ =b.

We introduce b is-lower-neighbour-of a as a synonym of a is-upper-neighbour-of
b.

We now state several propositions:

(2) Let L be alattice, a be an element of the carrier of L, and b, ¢ be elements
of the carrier of L such that b # ¢. Then
(i) if bis-upper-neighbour-of a and ¢ is-upper-neighbour-of a, then a = ¢b,
and
(ii) if b is-lower-neighbour-of a and ¢ is-lower-neighbour-of a, then a = cLib.

(3) Let L be a noetherian lattice, a be an element of the carrier of L, and d
be an element of the carrier of L. Suppose a E d and a # d. Then there
exists an element ¢ of the carrier of L such that ¢ C d and ¢ is-upper-
neighbour-of a.

(4) Let L be a co-noetherian lattice, a be an element of the carrier of L,
and d be an element of the carrier of L. Suppose d C a and a # d. Then
there exists an element ¢ of the carrier of L such that d C ¢ and ¢ is-lower-
neighbour-of a.

(5) Let L be an upper-bounded lattice. Then it is not true that there exists
an element b of the carrier of L such that b is-upper-neighbour-of Tp.

(6) Let L be a noetherian upper-bounded lattice and a be an element of the
carrier of L. Then a = T, if and only if it is not true that there exists an
element b of the carrier of L such that b is-upper-neighbour-of a.

(7) Let L be a lower-bounded lattice. Then it is not true that there exists
an element b of the carrier of L such that b is-lower-neighbour-of L.

(8) Let L be a co-noetherian lower-bounded lattice and a be an element of
the carrier of L. Then a = 1 if and only if it is not true that there exists
an element b of the carrier of L such that b is-lower-neighbour-of a.

NOETHERIAN LATTICES

Let L be a complete lattice and let a be an element of the carrier of L. The
functor a* yielding an element of the carrier of L is defined by:

(Def. 6) a* = [].{d;d ranges over elements of the carrier of L: a T d A d # a}.
The functor *a yields an element of the carrier of L and is defined as follows:
(Def. 7) *a = | |;{d;d ranges over elements of the carrier of L: d " a A d # a}.

Let L be a complete lattice and let a be an element of the carrier of L. We
say that a is completely-meet-irreducible if and only if:

(Def. 8) a* # a.

We say that a is completely-join-irreducible if and only if:

(Def. 9) *a # a.

The following propositions are true:

(9) For every complete lattice L and for every element a of the carrier of L
holds a C ¢* and *a C a.
(10) For every complete lattice L holds (Tr)* = T and (Tp) is meet-
irreducible.
(11) For every complete lattice L holds *(Lr) = Llp and (Lp) is join-
irreducible.
(12) Let L be a complete lattice and a be an element of the carrier of L.
Suppose a is completely-meet-irreducible. Then
(i) a* is-upper-neighbour-of a, and
(ii) for every element c of the carrier of L such that ¢ is-upper-neighbour-of
a holds ¢ = a*.

(13) Let L be a complete lattice and a be an element of the carrier of L.
Suppose a is completely-join-irreducible. Then
(i) *a is-lower-neighbour-of a, and
(ii) for every element c of the carrier of L such that ¢ is-lower-neighbour-of
a holds ¢ = *a.

(14) Let L be a noetherian complete lattice and a be an element of the carrier
of L. Suppose a # T . Then a is completely-meet-irreducible if and only if
there exists an element b of the carrier of L such that b is-upper-neighbour-
of a and for every element ¢ of the carrier of L such that c¢ is-upper-
neighbour-of a holds ¢ = b.

(15) Let L be a co-noetherian complete lattice and a be an element of the
carrier of L. Suppose a # L. Then a is completely-join-irreducible if and
only if there exists an element b of the carrier of L such that b is-lower-
neighbour-of a and for every element c¢ of the carrier of L such that ¢
is-lower-neighbour-of a holds ¢ = b.

(16) Let L be a complete lattice and a be an element of the carrier of L. If a
is completely-meet-irreducible, then a is meet-irreducible.

171

172 CHRISTOPH SCHWARZWELLER

(17) Let L be a complete noetherian lattice and a be an element of the carrier
of L. Suppose a # Tr. Then a is completely-meet-irreducible if and only
if a” is meet-irreducible.

(18) Let L be a complete lattice and a be an element of the carrier of L. If a
is completely-join-irreducible, then a is join-irreducible.

(19) Let L be a complete co-noetherian lattice and a be an element of the
carrier of L. Suppose a # 1 1. Then a is completely-join-irreducible if and
only if a" is join-irreducible.

(20) Let L be a finite lattice and a be an element of the carrier of L such that
a# Lp and a # Tp. Then

(i) a is completely-meet-irreducible iff @’ is meet-irreducible, and
(ii) a is completely-join-irreducible iff " is join-irreducible.
Let L be a lattice and let a be an element of the carrier of L. We say that
a is atomic if and only if:
(Def. 10) a is-upper-neighbour-of L.
We say that a is co-atomic if and only if:
(Def. 11) a is-lower-neighbour-of Tp.
One can prove the following propositions:

(21) Let L be a complete lattice and a be an element of the carrier of L. If a
is atomic, then a is completely-join-irreducible.
(22) Let L be a complete lattice and a be an element of the carrier of L. If a
is co-atomic, then a is completely-meet-irreducible.
Let L be a lattice. We say that L is atomic if and only if the condition
(Def. 12) is satisfied.

(Def. 12) Let a be an element of the carrier of L. Then there exists a subset X of
the carrier of L such that for every element x of the carrier of L such that
x € X holds z is atomic and a = | |; X.

One can verify that there exists a lattice which is atomic and complete.
Let L be a complete lattice and let D be a subset of L. We say that D is
supremum-dense if and only if:

(Def. 13) For every element a of the carrier of L there exists a subset D’ of D such
that a = ||, D’
We say that D is infimum-dense if and only if:
(Def. 14) For every element a of the carrier of L there exists a subset D’ of D such
that a = [D’
One can prove the following propositions:

(23) Let L be a complete lattice and D be a subset of L. Then D is supremum-
dense if and only if for every element a of the carrier of L holds a =
||, {d; d ranges over elements of the carrier of L: d € D A d C a}.

NOETHERIAN LATTICES 173

(24) Let L be a complete lattice and D be a subset of L. Then D is infimum-
dense if and only if for every element a of the carrier of L holds a =
[{d; d ranges over elements of the carrier of L: d € D A a C d}.

(25) Let L be a complete lattice and D be a subset of L. Then D is infimum-
dense if and only if D" is order-generating.

Let L be a complete lattice. The functor MIRRS L yields a subset of L and
is defined by:

(Def. 15) MIRRSL = {a;a ranges over elements of the carrier of L: a is
completely-meet-irreducible}.

The functor JIRRS L yielding a subset of L is defined by:
(Def. 16) JIRRS L = {a; a ranges over elements of the carrier of L: a is completely-
join-irreducible}.
One can prove the following two propositions:

(26) For every complete lattice L and for every subset D of L such that D is
supremum-dense holds JIRRS L C D.

(27) For every complete lattice L and for every subset D of L such that D is
infimum-dense holds MIRRS L C D.

Let L be a co-noetherian complete lattice. Note that MIRRS L is infimum-
dense.

Let L be a noetherian complete lattice. One can check that JIRRS L is
supremum-dense.

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The well ordering relations. Formalized Mathematics, 1(1):123-129,

1990.
[3] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719-725, 1991.

[4] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathe-
matics, 6(1):81-91, 1997.

[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

[6] Czestaw Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.

[7] Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—

65, 1990.

Czestaw Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53,

8]
1990.

[9] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
0]

1]

Beata Madras. Irreducible and prime elements. Formalized Mathematics, 6(2):233-239,
1997.
Piotr Rudnicki and Andrzej Trybulec. On same equivalents of well-foundedness. Forma-

lized Mathematics, 6(3):339-343, 1997.

[12] Andrzej Trybulec. Finite join and finite meet and dual lattices. Formalized Mathematics,
1(5):983-988, 1990.

[13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.
[14] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97-105, 1990.

CHRISTOPH SCHWARZWELLER

Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.

Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319,
1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Zinaida Trybulec and Halina Swiqczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17-23, 1990.

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Stanistaw Zukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215~
222, 1990.

Received June 9, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Bialystok

A Small Computer Model with Push-Down
Stack!

Jing-Chao Chen
Shanghai Jiaotong University

Summary. The SCMFSA computer can prove the correctness of many
algorithms. Unfortunately, it cannot prove the correctness of recursive algorithms.
For this reason, this article improves the SCMFSA computer and presents a
Small Computer Model with Push-Down Stack (called SCMPDS for short). In
addition to conventional arithmetic and ”goto” instructions, we increase two new
instructions such as ”"return” and ”save instruction-counter” in order to be able
to design recursive programs.

MML Identifier: SCMPDS_1.

The articles [15], [21], [8], [13], [22], [5], [6], [20], [12], [16], [2], [17], [1], [3], [14],
[19], [4], [7], [9], [11], [10], and [18] provide the terminology and notation for this

paper.

1. PRELIMINARIES

For simplicity, we follow the rules: x1, x2, x3, x4, x5 are sets, i, j, k are natural
numbers, I, Is, I3, I are elements of Z4, i1 is an element of Instr-Locgcm, di,
ds, d3, d4, ds are elements of Data-Locgcom, and k1, ks, k3, k4, ks, kg are integers.

Let z1, x2, x3, x4 be sets. The functor < xx1,x2, x3, T4* > yields a set and
is defined as follows:

(Def. 1) < xx1, 22,23, x4% >= (1,22, 23) ~ (T4).
Let x5 be a set. The functor < *x1, x2, x3, x4, T5* > yielding a set is defined by:
(Def. 2) < xxy1, 2,23, T4, T5x >= (X1, T2,23) " (T4, T5).

! This work was done while the author visited Shinshu University March—April 1999.

@ 1999 University of Bialystok
175 ISSN 1426-2630

176 JING-CHAO CHEN

Let x1, x2, x3, x4 be sets. One can verify that < *x1, xo, x3, £4* > is function-
like and relation-like. Let x5 be a set. One can verify that < xz1, 9, 3, x4, T5* >
is function-like and relation-like.

Let x1, x2, x3, x4 be sets. One can verify that < xx1, 29,3, x4% > is finite
sequence-like. Let x5 be a set. One can check that < *xq,x9, T3, T4, x5% > is
finite sequence-like.

Let D be a non empty set and let x1, z2, x3, £4 be elements of D. Then
< *x1, T2, T3, T4x > is a finite sequence of elements of D.

Let D be a non empty set and let x1, x2, x3, 4, 5 be elements of D. Then
< *x1, T2, T3, T4, T5x > is a finite sequence of elements of D.

One can prove the following propositions:

(1) < s*x1,29, 23, 24% >= (T1,22,23) ~ (x4) and < #x1,T9,x3,T4% >=
(x1,m2) ~ (x3,m4) and < xx1,T9,x3,x4% >= (1) " (T2, 23,24) and <
kT, To, T3, Teyx >= (x1) " (x2) ~ (x3) 7 (24).

(2) < *x1,x9,x3, g, T5% >= (X1, X2, x3) " (x4, x5) and < *x1, T2, T3, Tq, T5* >
=< %1, T2, T3, Tex > "(x5) and < xx1, T2, T3, Tg, Tex >= (x1) " (T2) 7
(x3) " (mg) ™ (x5) and < *x1, T2, X3, T4, T5* >= (r1,22) ~ (23,24, T5) and
< KT1, T2, T3, Tg, Tox >= (X1)" < *To, T3, Tq, Tk > .

We adopt the following rules: Ni is a non empty set, y1, y2, ¥3, ¥4, Y5 are
elements of N1, and p is a finite sequence.

We now state several propositions:

(3) p =< xx1,m9,23,24% > iff lenp = 4 and p(1) = z; and p(2) = x5 and
p(3) = 3 and p(4) = z4.

(4) dom < *z1,x2,x3, x4x >= Seg4.

(5) p =< *x1,x9, 23,24, x5% > iff lenp = 5 and p(1) = 21 and p(2) = x5 and
p(3) = x5 and p(4) = x4 and p(5) = z5.

(6) dom < *z1,x9, T3, T4, 5k >= Segb.

(7) ™ < *y1,92,¥3,yax >= y1 and T2 < *y1,Y2,y3, Yax >= y2 and 713 <
*Y1, Y2, Y3, Yax >=yg and my < *y1, Y2, Y3, Yax >= Y.

(8) ™1 < *Y1,Y2,Y3,Ya,Ys* >= y1 and T2 < *Y1,Y2, Y3, Y4, Ys* >= ya and
73 < *Y1,Y2,Y3, Y4, Ysk >= y3 and T4 < *y1,Y2,Ys3, Y4, Ys* >= y4 and
s < *Y1, Y2, Y3, Y4, Y5+ >= Ys.

(9) For every integer k holds k € J{Z} UN.

(10) For every integer k holds k € Data-Locgcn U Z.
(11 For every element d of Data-Locgoy holds d € Data-Locgen U Z.

2. THE CONSTRUCTION OF SCM WITH PUSH-DOWN STACK

The subset SCMPDS — Instr of | Z14, ((J{Z} UN)*] is defined by the condition
(Def. 3).

A SMALL COMPUTER MODEL WITH PUSH-DOWN STACK 177

(Def. 3) SCMPDS — Instr = {(0, (I)) : [ranges over integers} U {(1, (s1)) : s1
ranges over elements of Data-Locsom} U {{I, (v,¢)); I ranges over ele-
ments of Zi14, v ranges over elements of Data-Locgcn, ¢ ranges over inte-
gers: I € {2,3}}U{(I, (v,c1,c2)); I ranges over elements of Z14, v ranges
over elements of Data-Locgon, €1 ranges over integers, co ranges over
integers: I € {4,5,6,7,8}} U{(I, < xv1,v9,c1,co% >); I ranges over ele-
ments of Zi4, vy ranges over elements of Data-Locgcn, ve ranges over
elements of Data-Locgcn, ¢1 ranges over integers, co ranges over integers:
I€{9,10,11,12,13}}.

We now state two propositions:
(12) SCMPDS —Instr = {(0, (k1))} U {(1, (d))} U {(Ja, {do,ka)) : I €
{2,3}} U {(Ig, <d3, ks,]C4>) I3 € {4, 5,6,7, 8}} U {(14, < xdy, ds, ks, kgx >
y: Iy €{9,10,11,12,13}}.
(13) (0, (0)) € SCMPDS — Instr.

One can verify that SCMPDS — Instr is non empty.
We now state three propositions:
(14) k =0 or there exists j such that k = 2.7+ 1 or there exists j such that
k=2-j+2.
(15) If & = 0, then it is not true that there exists j such that k = 2.5+ 1
and it is not true that there exists j such that k =2-j 4 2.
(16)(1) If there exists j such that k = 2-j 4 1, then k # 0 and it is not true
that there exists j such that k =25 4+ 2, and
(ii) if there exists j such that k = 2-j + 2, then k # 0 and it is not true
that there exists j such that k =235 + 1.
The function SCMPDS — OK from N into {Z}U{SCMPDS — Instr, Instr-Locgcm }
is defined as follows:

(Def. 4) (SCMPDS — OK)(0) = Instr-Locgcym and for every natural number k
holds (SCMPDS — OK)(2-k+ 1) = Z and (SCMPDS — OK)(2 -k +2) =
SCMPDS — Instr.

A SCMPDS-State is an element of [[SCMPDS — OK.
Next we state several propositions:

(17) Instr-Locgcm # SCMPDS — Instr and SCMPDS — Instr # Z.

(18) (SCMPDS — OK)(i) = Instr-Locgcyy iff i = 0.

(19) (SCMPDS — OK)(i) = Z iff there exists k such that i =2 -k + 1.

(20) (SCMPDS — OK)(z) = SCMPDS — Instr iff there exists k such that i =

2-k+2.
(21) (SCMPDS — OK)(d;) = Z.
(22) (SCMPDS — OK)(i;) = SCMPDS — Instr.
(23) 7o [[SCMPDS — OK = Instr-Locgc.

178 JING-CHAO CHEN

(24) 74, [[SCMPDS — OK = Z.
(25) m;, [[SCMPDS — OK = SCMPDS — Instr.

Let s be a SCMPDS-State. The functor ICg yielding an element of
Instr-Locgcv is defined as follows:

(Def. 5) IC, = s(0).

Let s be a SCMPDS-State and let u be an element of Instr-Locgcn. The

functor Chggon (s, u) yielding a SCMPDS-State is defined as follows:
(Def. 6) Chggom(s, u) = s+-(0——u).

We now state three propositions:

(26) For every SCMPDS-State s and for every element u of Instr-Locgom
holds (Chggcyi(s,u))(0) = u.

(27) For every SCMPDS-State s and for every element u of Instr-Locgon and
for every element m; of Data-Locgcn holds (Chggen(s, u))(my) = s(myq).

(28) For every SCMPDS-State s and for all elements u, v of Instr-Locgcym
holds (Chgge(s, u))(v) = s(v).

Let s be a SCMPDS-State, let ¢ be an element of Data-Locgcm, and let u be
an integer. The functor Chggcon(s, ¢, u) yields a SCMPDS-State and is defined
as follows:

(Def. 7) Chggonm(s, t,u) = s+ (t—u).

The following propositions are true:

(29) For every SCMPDS-State s and for every element ¢ of Data-Locgcn and
for every integer u holds (Chggcn(s, £, w))(0) = s(0).

(30) For every SCMPDS-State s and for every element ¢ of Data-Locgonm and
for every integer u holds (Chggcon (s, t,w))(t) = u.

(31) Let s be a SCMPDS-State, ¢t be an element of Data-Locgcm, u be
an integer, and m; be an element of Data-Locgonm. If mi # t, then
(Chgsan (s, t, w))(ma) = s(ma).

(32) Let s be a SCMPDS-State, ¢ be an element of Data-Locgcy, u be an
integer, and v be an element of Instr-Locgcn. Then (Chggon(s, ¢, w))(v) =
s(v).

Let s be a SCMPDS-State and let @ be an element of Data-Locgcy. Then
s(a) is an integer.

Let s be a SCMPDS-State, let a be an element of Data-Locgcwm, and let n be
an integer. The functor Address_Add(s, a,n) yields an element of Data-Locgcym
and is defined by:

(Def. 8) Address_Add(s,a,n) =2-|s(a) +n|+ 1.

Let s be a SCMPDS-State and let n be an integer. The functor

jump_address(s,n) yielding an element of Instr-Locgcy is defined as follows:
(Def. 9) jump_address(s,n) = |((ICs; qua natural number)—2) + 2 - n| + 2.

A SMALL COMPUTER MODEL WITH PUSH-DOWN STACK 179

Let d be an element of Data-Locgcy and let s be an integer. Then (d, s) is
a finite sequence of elements of Data-Locgcy U Z.

Let & be an element of SCMPDS — Instr. Let us assume that there exist
an element my of Data-Locgom and I such that x = (I, (m)). The functor
x address; yielding an element of Data-Locgcn is defined as follows:

(Def. 10) There exists a finite sequence f of elements of Data-Locgonm such that
f = x2 and z address; = 7y f.
The following proposition is true
(33) For every element z of SCMPDS — Instr and for every element m; of
Data-Locgom such that « = (I, (m;)) holds x address; = m;.

Let = be an element of SCMPDS — Instr. Let us assume that there exist
an integer r and I such that z = (I, (r)). The functor z const_INT yielding an
integer is defined by:

(Def. 11) There exists a finite sequence f of elements of Z such that f = xo and
xconst INT = 7y f.
The following proposition is true
(34) For every element z of SCMPDS — Instr and for every integer k such
that x = (I, (k)) holds z const INT = k.

Let = be an element of SCMPDS — Instr. Let us assume that there exist an
element m; of Data-Locgcowm, an integer 7, and I such that z = (I, (my,r)). The
functor x P21address yielding an element of Data-Locgcy is defined as follows:

(Def. 12) There exists a finite sequence f of elements of Data-Locgcm U Z such
that f = 29 and x P21address = 7 f.

The functor x P22const yielding an integer is defined as follows:

(Def. 13) There exists a finite sequence f of elements of Data-Locgcem U Z such
that f = x2 and z P22const = mo f.
The following proposition is true
(35) Let x be an element of SCMPDS —Instr, m; be an element
of Data-Locgom, and r be an integer. If =z = (I, (my,r)), then
z P2laddress = m; and x P22const = r.

Let x be an element of SCMPDS — Instr. Let us assume that there exist an
element mgo of Data-Locgcn, integers ki, ko, and I such that x = (I, (ma, k1,
k2)). The functor x P3laddress yielding an element of Data-Locgcyy is defined
as follows:

(Def. 14) There exists a finite sequence f of elements of Data-Locgem U Z such
that f = x2 and x P3laddress = 71 f.
The functor z P32const yielding an integer is defined as follows:

(Def. 15) There exists a finite sequence f of elements of Data-Locgconm U Z such
that f = x9 and z P32const = mo f.

180 JING-CHAO CHEN

The functor z P33const yields an integer and is defined by:
(Def. 16) There exists a finite sequence f of elements of Data-Locgem U Z such
that f = 22 and z P33const = w3 f.
We now state the proposition
(36) Let x be an element of SCMPDS — Instr, d; be an element of
Data-Locgom, and ki, k2 be integers. If x = (I, (di,k1,ke)), then
x P3laddress = d; and x P32const = k1 and xz P33const = ko.

Let x be an element of SCMPDS — Instr. Let us assume that there exist
elements mo, ms3 of Data-Locgcn, integers ki, ko, and I such that x =
(I, < smg,ms,ki,kox >). The functor xP4laddress yields an element of
Data-Locscy and is defined by:

(Def. 17) There exists a finite sequence f of elements of Data-Locgonm U Z such
that f = x2 and z P41laddress = 71 f.
The functor z P42address yields an element of Data-Locgoym and is defined as
follows:
(Def. 18) There exists a finite sequence f of elements of Data-Locgon U Z such
that f = x2 and x P42address = mo f.
The functor z P43const yielding an integer is defined as follows:
(Def. 19) There exists a finite sequence f of elements of Data-Locgonm U Z such
that f = 22 and z P43const = 73 f.
The functor x P44const yielding an integer is defined as follows:
(Def. 20) There exists a finite sequence f of elements of Data-Locgcem U Z such
that f = x9 and x P44const = w4 f.
We now state the proposition
(37) Let = be an element of SCMPDS — Instr, di, d2 be elements of
Data-Locgom, and ki, ko be integers. If © = (I, < *di,da, k1, kax >),
then x P41laddress = d; and x P42address = do and x P43const = ki and
x P44const = ko.

Let s be a SCMPDS-State and let a be an element of Data-Locgoy. The
functor PopInstrLoc(s, a) yielding an element of Instr-Locgcy is defined as fol-
lows:

(Def. 21) PoplInstrLoc(s,a) =2 - (|s(a)| +2) + 4.
The natural number RetSP is defined as follows:
(Def. 22) RetSP = 0.
The natural number RetlC is defined as follows:
(Def. 23) RetIC = 1.

Let x be an element of SCMPDS — Instr and let s be a SCMPDS-State. The
functor Exec-Resscm(z, s) yielding a SCMPDS-State is defined as follows:

A SMALL COMPUTER MODEL WITH PUSH-DOWN STACK 181

(Def. 24) Exec-Resscm(z, s) =
[Chggep (s, jump_address(s, « const_INT)), if there exists k; such that
z = (0, (k1)),

Chggcni(Chggon (s, x P21address, x P22const), Next(ICy)), if there exist
dl,k‘l such that z = (2, <d1,]€1>),

Chggcn (Chggon (s, Address_Add(s, x P21address, z P22const), (IC; qua natural

number)), Next(ICy)), if there exist dy, k1 such that = = (3, (d1, k1)),

Chggcn(Chggen (s, x addressy, s(Address_Add(s, z address;, RetSP))), PopInstrLoc
(s, Address_Add(s, z address;, RetIC))), if there exists d; such that x = (1, (d1)),

Chggen (s, (s(Address_Add(s, x P31laddress, 2 P32const)) = 0 — Next(IC;), jump-
address(s, z P33const))), if there exist di, k1, k2 such that x = (4, (d1, k1, k2)),

Chggen(s, (s(Address_Add(s, x P31laddress, z P32const)) > 0 — Next(ICy), jump-
address(s, z P33const))), if there exist dy, k1, k2 such that z = (5, (di, k1, k2)),

Chggen(s, (0 > s(Address_Add(s, z P3laddress, x P32const)) — Next(IC;), jump-_
address(s, z P33const))), if there exist dq, k1, ko such that x = (6, (d1, k1, k2)),

Chggcn (Chggen (s, Address_Add(s, x P31address, z P32const), 2 P33const),
Next(ICy)), if there exist di, k1, k2 such that = = (7, (dy, k1, k2)),

Chggcni(Chggeni (s, Address_Add(s, x P31address, z P32const),
s(Address_Add(s, x P31address, z P32const)) + 2 P33const), Next(ICy)),

if there exist dy, k1, ko such that = = (8, (d1, k1, k2)),

Chggcni(Chggon (s, Address_Add(s, x P41laddress, © P43const), s(Address_Add
(s, P4laddress, x P43const)) + s(Address_Add(s, x P42address, x P44const))),
Next(ICy)), if there exist dy,ds, k1, ko such that x = (9, < *dy, da, k1, kax >),

Chggcn(Chggon (s, Address_Add(s, x P41address, © P43const), s(Address_Add
(s, z P41laddress, 2 P43const)) — s(Address_Add(s, z P42address, x P44const))),
Next(ICy)), if there exist dy, ds, k1, ko such that x = (10, < *dy, dg, k1, kox >),

Chggen(Chggen (s, Address_Add(s, x P41address, z P43const), s(Address_Add
(s,x P4laddress, z P43const)) - s(Address_Add(s, x P42address, P44const))),
Next(ICy)), if there exist dy,da, k1, ko such that x = (11, < *dy,dg, k1, kox >),

Chggcni(Chggen (s, Address_Add(s, x P41laddress, z P43const),
s(Address_Add(s, z P42address, z P44const))), Next(ICy)), if there exist dj, da,
k1, ko such that x = (13, < xdy,do, k1, kox >),

Chggcn (Chggon (Chggon (s, Address_Add(s, z P4laddress, P43const),
s(Address_Add(s, x P41laddress, z P43const)) + s(Address_Add(s, x P42address,
x P44const))), Address_Add(s, z P42address, x P44const), s(Address_Add(s,

x P4laddress, 2 P43const)) mod s(Address_Add(s, x P42address, x P44const))),
Next(ICy)), if there exist dy,da, k1, ko such that x = (12, < *dy, da, k1, kax >),

[s, otherwise.

Let f be a function gom SCMPDS — Instr into

([ISCMPDS — OK) SCMPDS=OK a5 Jet be an element of SCMPDS — Instr.
Note that f(x) is function-like and relation-like.

The function SCMPDS — Exec from SCMPDS — Instr into

182 JING-CHAO CHEN

Q
(] SCMPDS — OK) ~ SCMPDS—OK g defined by:

(Def. 25) For every element xz of SCMPDS — Instr and for every SCMPDS-State
y holds (SCMPDS — Exec)(z)(y) = Exec-Resscm(, y).

ACKNOWLEDGMENTS

We wish to thank Prof. Y. Nakamura for many helpful suggestions.

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

[2] Grzegorz Bancerek. Konig’s theorem. Formalized Mathematics, 1(3):589-593, 1990.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

[4] Czestaw Bylinski. A classical first order language. Formalized Mathematics, 1(4):669-676,
1990.

[5] Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

[6] Czestaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,

1990.
[7] Czestaw Bylinski. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521-527, 1990.

[8] Czestaw Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53,

1990.
[9] Czestaw Bylinski. Subcategories and products of categories. Formalized Mathematics,

1(4):725-732, 1990.

[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.

[11] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241-250, 1992.

[12] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathe-
matics, 2(5):623-627, 1991.

[13] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.

[14] Andrzej Trybulec. Function domains and Freenkel operator. Formalized Mathematics,
1(8):495-500, 1990.

[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.
[16] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97-105, 1990.
] Michal J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[19] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579,
1990.
| Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
] Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17-23, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Received June 15, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Bialystok

The SCMPDS Computer and the Basic

Semantics of its Instructions!

Jing-Chao Chen
Shanghai Jiaotong University

Summary. The article defines the SCMPDS computer and its instructions.
The SCMPDS computer consists of such instructions as conventional arithme-
tic, "goto”, "return” and ”save instruction-counter” (”savelC” for short). The
address used in the ”goto” instruction is an offset value rather than a pointer
in the standard sense. Thus, we don’t define halting instruction directly but de-
fine it by ”goto 0” instruction. The ”savelC” and "return” equal almost call and
return statements in the usual high programming language. Theoretically, the
SCMPDS computer can implement all algorithms described by the usual high
programming language including recursive routine. In addition, we describe the
execution semantics and halting properties of each instruction.

MML Identifier: SCMPDS_2.

The papers [15], [21], [14], [5], [6], [10], [20], [18], [1], [16], [4], [2], [13], [22], 7],
[9], (3], [11], [12], [8], [17], and [19] provide the notation and terminology for this
paper.

1. THE SCMPDS COMPUTER

In this paper x denotes a set and i, k denote natural numbers.
The strict AMI SCMPDS over {Z} is defined as follows:

(Def. 1) SCMPDS = (N, 0, Instr-Locgcm, Z14, SCMPDS — Instr, SCMPDS — OK,
SCMPDS — Exec).

Next we state three propositions:

1 This work was done while the author visited Shinshu University March—April 1999.

@ 1999 University of Bialystok
183 ISSN 1426-2630

184 JING-CHAO CHEN

(1) There exists k such that x =2 k 4 2 iff € Instr-Locgc.
(2) SCMPDS is data-oriented.
(3) SCMPDS is definite.

Let us note that SCMPDS is von Neumann data-oriented and definite.
The following two propositions are true:

(4)i) The instruction locations of SCMPDS # Z,
(ii) the instructions of SCMPDS # Z, and
(ili) the instruction locations of SCMPDS # the instructions of SCMPDS.

(5) N ={0} UData-Locgcym U Instr-Locgonm.
In the sequel s is a state of SCMPDS.
One can prove the following propositions:
(6) ICscmpps = 0.
(7) For every SCMPDS-State S such that S = s holds IC; = ICg.

2. THE MEMORY STRUCTURE

An object of SCMPDS is called a Int position if:
(Def. 2) It € Data-Locscm-

In the sequel d; denotes a Int position.
The following propositions are true:

(8 dy € Data-Locgcy.
(9) If z € Data-Locgowm, then z is a Int position.
10) Data-Locgcy misses the instruction locations of SCMPDS.

Every Int position is a data-location.
For every Int position [holds ObjectKind(l) = Z.

For every set x such that x € Instr-Locgcoy holds x is an instruction-
location of SCMPDS.

)
)
(10)
(11) The instruction locations of SCMPDS are infinite.
(12)
(13)
(14)

3. THE INSTRUCTION STRUCTURE

We use the following convention: da, ds, d4, ds, dg are elements of
Data-Locscm and kq, ko, k3, ks, ks, kg are integers.

Let I be an instruction of SCMPDS. The functor InsCode(I) yields a natural
number and is defined by:

(Def. 3) InsCode(I) = I;.

THE SCMPDS COMPUTER AND THE BASIC ... 185

In the sequel I is an instruction of SCMPDS.
Next we state the proposition
(15) For every instruction I of SCMPDS holds InsCode(I) < 13.
Let s be a state of SCMPDS and let d be a Int position. Then s(d) is an
integer.
Let m, n be integers. The functor Datal.oc(m,n) yields a Int position and
is defined as follows:

(Def. 4) DataLoc(m,n) =2-|m+n|+ 1.

One can prove the following propositions:

(16) {0, (k1)) € SCMPDS — Instr.

(17) (1, (d2)) € SCMPDS — Instr.

(18) If x € {2,3}, then (x, (ds, k2)) € SCMPDS — Instr.

(19) If x € {4,5,6,7,8}, then (x, (d4, k3, k4)) € SCMPDS — Instr.

(20) If o € {9,10,11,12,13}, then (x, < #ds,de, ks, kex >) €

SCMPDS — Instr.

In the sequel a, b, ¢ are Int position.
Let us consider k1. The functor goto kp yielding an instruction of SCMPDS
is defined as follows:

(Def. 5) goto k1 = (0, (k1)).
Let us consider a. The functor returna yields an instruction of SCMPDS
and is defined by:
(Def. 6) returna = (1, (a)).
Let us consider a, k1. The functor a:=k; yields an instruction of SCMPDS
and is defined as follows:
(Def. 7) a:=k1 = (2, (a,k1)).
The functor savelC(a, k1) yields an instruction of SCMPDS and is defined as
follows:
(Def. 8) savelC(a, k1) = (3, (a, k1)).
Let us consider a, k1, k2. The functor (a, k1) <> 0_gotok, yields an instruc-
tion of SCMPDS and is defined as follows:
(Def. 9) (a, k1) <> 0_gotoks = (4, {(a, ki1, k2)).
The functor (a, k1) <= 0_gotoks yielding an instruction of SCMPDS is defined
as follows:
(Def. 10) (a, k1) <= 0_gotoks = (5, (a, k1, k2)).
The functor (a, k1) >= 0_gotoks yielding an instruction of SCMPDS is defined
by:
(Def. 11) (a, k1) >= 0_gotoks = (6, (a, ki, k2)).
The functor ag, :=ks yielding an instruction of SCMPDS is defined as follows:

186 JING-CHAO CHEN

(Def 12) akltzkg = (7, <a, kl, k‘2>)
The functor AddTo(a, k1, k2) yielding an instruction of SCMPDS is defined by:
(Def. 13) AddTo(a, kl, k‘g) = (8, (a, kl, k’2>)

Let us consider a, b, k1, ka. The functor AddTo(a, k1, b, k2) yields an instruc-
tion of SCMPDS and is defined by:

(Def. 14) AddTo(a, ki, b, k) = (9, < *a,b, ki, kox >).
The functor SubFrom(a, k1, b, k2) yielding an instruction of SCMPDS is defined
by:

(Def. 15) SubFrom(a, k1,b, k2) = (10, < *a,b, k1, kox >).
The functor MultBy (a, k1, b, k2) yielding an instruction of SCMPDS is defined
as follows:

(Def. 16) MultBy(a, ki1, b, ko) = (11, < *a,b, ki, kox >).
The functor Divide(a, k1,b, k2) yielding an instruction of SCMPDS is defined
by:
(Def. 17) Divide(a, k1,b, k2) = (12, < *a, b, k1, kax >).
The functor (a, k1) := (b, k2) yielding an instruction of SCMPDS is defined by:
(Def. 18) (a, k1) := (b, k2) = (13, < *a, b, k1, kox >).
One can prove the following propositions:
InsCode(goto k1) = 0.
InsCode(return a) 1.
InsCode(a:=k1) =
InsCode(savelC(a, kl))
InsCode((a, k1) <> 0 gotok‘g) =4.
InsCode((a, k1) <= 0_gotoks) = 5.
InsCode((a, k1) >= 0_gotoks) = 6.
InsCode(ag, :=ko) = 7.
(
(
(
(
(

NN N NN NN
N O Ot =~ W N~

N
=)

InsCode(AddTo(a, k1, k2)) = 8.

InsCode(AddTo(a, k1, b, k2)) = 9.

InsCode(SubFrom(a, k1, b, k2)) = 10.

InsCode(MultBy(a, k1, b, k2)) = 11.

InsCode(Divide(a, k1, b, ka)) = 12.

InsCode((a, k1) := (b, k2)) = 13.

For every instruction i; of SCMPDS such that InsCode(i;) = 0 there
exists k1 such that i; = goto k;.

(36) For every instruction i; of SCMPDS such that InsCode(i1) = 1 there
exists a such that 77 = returna.

A~ o~ o~ o~ o~ ~~ o~ ~~ o~ o~ o~ o~ o~ o~~~
W W W w w [\
=~ W NN = O 09

T D o T D D e D D D O —

w
ot

THE SCMPDS COMPUTER AND THE BASIC ... 187

(37) For every instruction i; of SCMPDS such that InsCode(i;) = 2 there
exist a, k1 such that i1 = a:=k1.

(38) For every instruction i; of SCMPDS such that InsCode(i;) = 3 there
exist a, k1 such that iy = savelC(a, k7).

(39) For every instruction i; of SCMPDS such that InsCode(i;) = 4 there
exist a, k1, ko such that iy = (a, k1) <> 0_gotoks.

(40) For every instruction i; of SCMPDS such that InsCode(i;) = 5 there
exist a, k1, ko such that iy = (a, k1) <= 0_gotoks.

(41) For every instruction i; of SCMPDS such that InsCode(i;) = 6 there
exist a, k1, ko such that iy = (a, k1) >= 0_gotoks.

(42) For every instruction i; of SCMPDS such that InsCode(i1) = 7 there
exist a, k1, ko such that i1 = ag,:=ks.

(43) For every instruction i; of SCMPDS such that InsCode(i;) = 8 there
exist a, k1, ko such that iy = AddTo(a, k1, k2).

(44) For every instruction i; of SCMPDS such that InsCode(i1) = 9 there
exist a, b, k1, ko such that i1 = AddTo(a, k1, b, k2).

(45) For every instruction i3 of SCMPDS such that InsCode(i1) = 10 there
exist a, b, k1, ko such that iy = SubFrom(a, k1, b, k2).

(46) For every instruction ¢; of SCMPDS such that InsCode(i;) = 11 there
exist a, b, k1, ko such that i1 = MultBy(a, k1, b, k2).

(47) For every instruction ¢; of SCMPDS such that InsCode(i;) = 12 there
exist a, b, k1, ko such that i1 = Divide(a, k1, b, k2).

(48) For every instruction ¢; of SCMPDS such that InsCode(i;) = 13 there
exist a, b, k1, ko such that i1 = (a, k1) := (b, k2).

(49) For every state s of SCMPDS and for every Int position d holds d €
dom s.

(50) For every state s of SCMPDS holds Data-Locgcy € dom s.

(51) For every state s of SCMPDS holds dom(s[Data-Locgom) =
Data-Locgconm .

(52) For every Int position d7 holds d7 # ICscmpDs-

(53) For every instruction-location iz of SCMPDS and for every Int position
d7 holds 2 # dy.

(54) Let s1, s2 be states of SCMPDS. Suppose IC(,) = ICy,) and for every

Int position a holds s1(a) = s2(a) and for every instruction-location i of
SCMPDS holds s;(i) = s2(i). Then s; = sa.

Let I; be an instruction-location of SCMPDS. The functor Next(l;) yields
an instruction-location of SCMPDS and is defined by:

(Def. 19) There exists an element m; of Instr-Locgcy such that my = I3 and
Next(l1) = Next(myq).

188 JING-CHAO CHEN

One can prove the following propositions:

(55) For every instruction-location /; of SCMPDS and for every element m;
of Instr-Locgonm such that my = I3 holds Next(m;) = Next(ly).

(56) For every element i of SCMPDS — Instr such that ¢ = I and for every
SCMPDS-State S such that S = s holds Exec(!, s) = Exec-Resgcm (i, S).

4. EXECUTION SEMANTICS OF THE SCMPDS INSTRUCTIONS

The following propositions are true:

(57) (Exec(a:=k1, s))(ICscmpps) = Next(ICy) and (Exec(a:=kq, s))(a) = k1
and for every b such that b # a holds (Exec(a:=k1,s))(b) = s(b).

(58) (Exec(ak,:=ka, s))(ICscmpps) = Next(IC;) and (Exec(ag,:=k2,s))
(DataLoc(s(a), k1)) = ko and for every b such that b # DataLoc(s(a), k1)
holds (Exec(ag,:=ka,s))(b) = s(b).

(59) (Exec((a, k1) := (b,k2),s))(ICscmpps) = Next(IC;) and (Exec((a, k1) :=
(b, k2), s))(DataLoc(s(a), k1)) = s(DataLoc(s(b), k2)) and for every ¢ such
that ¢ # DataLoc(s(a), k1) holds (Exec((a, k1) := (b, k2), s))(c) = s(c).

(60) (Exec(AddTo(a,ki1,k2),s))(ICscmpps) = Next(IC;) and (Exec(AddTo
(a,k1,k2),s))(DataLoc(s(a), k1)) = s(Dataloc(s(a),k1)) + k2 and for
every b such that b # Dataloc(s(a), k1) holds (Exec(AddTo(a, k1, k2), s))(b)
= s(b).

(61) (Exec(AddTo(a,ki1,b, k2),s))(ICscmpps) = Next(IC;) and (Exec(AddTo
(a,k1,b,k2),s))(DataLoc(s(a), k1)) = s(DataLoc(s(a), k1))+s(DataLoc(s(b),
ky)) and for every ¢ such that ¢ # Dataloc(s(a),k;) holds
(Exec(AddTo(a, k1,b, k2), s))(c) = s(c).

(62) (Exec(SubFrom(a, ki,b,k2),s))(ICscmpps) = Next(IC;) and (Exec
(SubFrom(a, k1, b, k2), s))(DataLoc(s(a), k1)) = s(DataLoc(s(a),k1)) —
s(DataLoc(s(b), k2)) and for every ¢ such that ¢ # Dataloc(s(a), k1) holds
(Exec(SubFrom(a, k1, b, k2), s))(c) = s(c).

(63) (Exec(MultBy(a, k1,b, k2), s))(ICscmpps) = Next(ICy) and (Exec
(MultBy(a, k1,b, k2), s))(DataLoc(s(a), k1)) = s(DataLoc(s(a),k1)) -
s(DataLoc(s(b), k2)) and for every ¢ such that ¢ # DataLoc(s(a), k1) holds
(Exec(MultBy(a, k1, b, k2), s))(c) = s(c).

(64)(1) (Exec(Divide(a, k1,b, k2), s))(ICscmpps) = Next(ICy),

(ii) if DataLoc(s(a), k1) # DataLoc(s(b), k2), then (Exec(Divide(a, k1, b, k2),
s))(DataLoc(s(a), k1)) = s(DataLoc(s(a), k1)) + s(DataLoc(s(b), k2)),

(iii) (Exec(Divide(a, k1, b, k2), s))(DataLoc(s(b), k2)) = s(DataLoc(s(a), k1))
mod s(DataLoc(s(b), k2)), and

THE SCMPDS COMPUTER AND THE BASIC ... 189

(iv) for every ¢ such that ¢ # DataLoc(s(a), k1) and ¢ # DataLoc(s(b), k2)
holds (Exec(Divide(a, k1,b, k2), s))(c) = s(c).

(65) (Exec(Divide(a, k1,a,k1),s))(ICscmpps) = Next(IC;) and (Exec(Divide
(a,ki1,a,ky),s))(Dataloc(s(a), k1)) = s(DataLoc(s(a), k1))mods(DataLoc
(s(a),k1)) and for every ¢ such that ¢ # Dataloc(s(a),k;) holds
(Exec(Divide(a, k1, a, k1), s))(c) = s(c).

Let s be a state of SCMPDS and let ¢ be an integer. The functor
ICplusConst(s, ¢) yields an instruction-location of SCMPDS and is defined by:

(Def. 20) There exists a natural number m such that m = ICs; and
ICplusConst(s,c) = |(m —2) + 2 - ¢| + 2.
The following propositions are true:

(66) (Exec(goto k1,s))(ICscmpps) = ICplusConst(s, ki) and for every a
holds (Exec(goto k1, s))(a) = s(a).

(67) If s(DataLoc(s(a), k1)) # 0, then (Exec((a, k1) <> 0_gotoks, s))(ICscmpDS)
= ICplusConst(s,k2) and if s(DataLoc(s(a),k1)) = 0, then
(Exec((a, k1) <> 0_gotoksa, s))(ICscmpps) = Next(IC;) and (Exec((a, k1) <>
0_gotoks, s))(b) = s(b).

(68) If s(DataLoc(s(a), k1)) < 0, then (Exec((a, k1) <= 0_gotoks, s))(ICscmpDS)
= ICplusConst(s, k2) and if s(DataLoc(s(a),k1)) > 0, then
(Exec((a, k1) <= 0_gotoks, s))(ICscmpps) = Next(IC;) and (Exec((a, k1) <=
0_gotoka, s))(b) = s(b).

(69) If s(DataLoc(s(a), k1)) > 0, then (Exec((a, k1) >= 0_gotoks, s))(ICscampDpS)
= ICplusConst(s,k2) and if s(DataLoc(s(a),k1)) < 0, then
(Exec((a, k1) >= 0_gotoka, s))(ICscmpps) = Next(IC;) and (Exec((a, k1) >=
0_gotoka, s))(b) = s(b).

(70) (Exec(returna, s))(ICscmpps) = 2 - (Js(DataLoc(s(a), RetIC))| +2) + 4
and (Exec(returna, s))(a) = s(DataLoc(s(a), RetSP)) and for every b such
that a # b holds (Exec(returna, s))(b) = s(b).

(71) (Exec(savelC(a, k1), s))(ICscmpps) = Next(IC;) and (Exec(savelC(a, k1),
s))(DataLoc(s(a), k1)) = IC;, and for every b such that DataLoc(s(a), k1) #

b holds (Exec(savelC(a, k1), s))(b) = s(b).

(72) For every integer k there exists a function f from Data-Locgcy into Z

such that for every element = of Data-Locgcy holds f(x) = k.

(73) For every integer k there exists a state s of SCMPDS such that for every
Int position d holds s(d) = k.

(74) Let k be an integer and [; be an instruction-location of SCMPDS. Then
there exists a state s of SCMPDS such that s(0) = I; and for every Int
position d holds s(d) = k.

(75) goto 0 is halting.

190 JING-CHAO CHEN

(76) For every instruction I of SCMPDS such that there exists s such that
(Exec(I, s))(ICscmpps) = Next(ICy) holds I is non halting.

a:=ky is non halting.

3
0

ay, :=ko is non halting.

(a, k1) := (b, k2) is non halting.
AddTo(a, k1, k2) is non halting.
AddTo(a, k1,b, k2) is non halting.
SubFrom(a, k1, b, k2) is non halting.
MultBy(a, k1,b, k2) is non halting.
Divide(a, k1, b, k2) is non halting.

If k1 # 0, then goto k; is non halting.
(a, k1) <> 0_gotoks is non halting.

o 0 o 0
w N = O ©

e oo
oS Ot

AN N N N N N N N N N N N N /N /N
0] 0]
-~ e~

I N N e N N i N N i g

(a, k1) <= 0_gotoks is non halting.

Qo
oo

(a, k1) >= 0_gotoksy is non halting.

oo
©

return a is non halting.

©
(==}

savelC(a, k1) is non halting.

Let I be a set. Then [is an instruction of SCMPDS if and only if one
of the following conditions is satisfied:
there exists k; such that I = goto k1 or there exists a such that I =
returna or there exist a, k; such that I = savelC(a, k1) or there exist a,
k1 such that I = a:=k; or there exist a, ki, k2 such that I = ay,:=ko
or there exist a, ki, ko such that I = (a, k1) <> 0_gotoky or there exist
a, k1, kg such that I = (a,k1) <= 0_gotoks or there exist a, ki, ky such
that I = (a,k1) >= 0_gotoks or there exist a, b, ki, ko such that I =
AddTo(a, k1, ko) or there exist a, b, k1, ko such that I = AddTo(a, k1, b, k2)
or there exist a, b, k1, ko such that I = SubFrom(a, k1,b, k2) or there exist
a, b, k1, ko2 such that I = MultBy(a, k1,b, k2) or there exist a, b, ki,
ko such that I = Divide(a, k1,b, k2) or there exist a, b, ki, k2 such that
I= (CL, kl) = (b, kg).

Let us observe that SCMPDS is halting.

We now state several propositions:
(92) For every instruction I of SCMPDS such that [is halting holds I =

haltscmpps-

(93) haltscympps = goto 0.
(94) Exec(haltscmpps, s) = s.
(95) For every state s of SCMPDS and for every instruction-location i of
SCMPDS holds s(i) is an instruction of SCMPDS.

(96) For every state s of SCMPDS and for every instruction ¢ of SCMPDS and
for every instruction-location [of SCMPDS holds (Exec(i, s))(1) = s(l).

©
—_

THE SCMPDS COMPUTER AND THE BASIC ... 191

(97) SCMPDS is realistic.

Let us observe that SCMPDS is steady-programmed and realistic.
One can prove the following propositions:

(98) ICscmpps # d; and ICscmpps 7 -
(99) For every instruction I of SCMPDS such that I = goto 0 holds I is
halting.

ACKNOWLEDGMENTS

We wish to thank Prof. Y. Nakamura for many helpful suggestions.

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

[2] Grzegorz Bancerek. Konig’s theorem. Formalized Mathematics, 1(3):589-593, 1990.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

[4] Czestaw Bylinski. A classical first order language. Formalized Mathematics, 1(4):669-676,

1990.

[5] Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

[6] Czestaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,

1990.
[7] Czestaw Bylinski. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[8] Jing-Chao Chen. A small computer model with push-down stack. Formalized Mathema-
tics, 8(1):175-182, 1999.
[9] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.
[11] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151-160, 1992.
[12] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241-250, 1992.
[13] Dariusz Surowik. Cyclic groups and some of their properties - part 1. Formalized Mathe-
matics, 2(5):623-627, 1991.
4] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.
[16] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97-105, 1990.
[17] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51-56, 1993.
8] Michatl J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
9] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
0] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
1] Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17-23, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Received June 15, 1999

192 JING-CHAO CHEN

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Bialystok

Computation and Program Shift in the
SCMPDS Computer!

Jing-Chao Chen
Shanghai Jiaotong University

Summary. A finite partial state is said to be autonomic if the computation
results in any two states containing it are same on its domain. On the basis of
this definition, this article presents some computation results about autonomic
finite partial states of the SCMPDS computer. Because the instructions of the
SCMPDS computer are more complicated than those of the SCMFSA computer,
the results given by this article are weaker than those reported previously by the
article on the SCMFSA computer. The second task of this article is to define the
notion of program shift. The importance of this notion is that the computation of
some program blocks can be simplified by shifting a program block to the initial
position.

MML Identifier: SCMPDS_3.

The papers [3], [18], [24], [2], [12], [25], [4], 28], [6], [21], (1], [7], [16], [3], [11],
8], [13], [14], [19], [17], [10], [9], [22], [15], and [20] provide the notation and
terminology for this paper.

1. PRELIMINARIES

In this paper k, m, n denote natural numbers.
Next we state several propositions:
(1) Suppose n < 13. Thenn=0orn=1lorn=2orn=3orn =4 or
n=5orn=6orn=7orn=8orn=9%9orn=100orn =11 or n =12
orn =13.

1 This work was done while the author visited Shinshu University March—April 1999.

@ 1999 University of Bialystok
193 ISSN 1426-2630

194 JING-CHAO CHEN

(2) For every integer ki and for all states s, so of SCMPDS such that
IC(,,) = IC(y,) holds ICplusConst(s1, k1) = ICplusConst(sz, k1)

(3) Let k1 be an integer, a be a Int position, and s;, sy be states of SCMPDS.
If sj/Data-Locgom = s2|Data-Locgcn, then si(DataLoc(si(a), k1)) =
so(Dataloc(sa(a), k1)).

(4) For every Int position a and for all states si, so of SCMPDS such that
s1|Data-Locgcm = s2[Data-Locgon holds s1(a) = sa(a).

(5) The objects of SCMPDS = {ICscmpps } UData-Locgcn Uthe instruction
locations of SCMPDS.

(6) ICscMmPDs ¢ Data-Locgon.

(7) For all states sj, sg of SCMPDS such that s;[(Data-Locgom U
{ICscmpps}) = s2[(Data-Locsem U {ICscmpps}) and for every instruc-
tion | of SCMPDS holds Exec(l, s1)[(Data-Locscym U {ICscompps)) =
Exec(l, s2) [(Data-Locgom U {ICscmpDs })-

(8) For every instruction i of SCMPDS and for every state s of SCMPDS
holds Exec(i, s) [Instr-Locgcy = s[Instr-Locsc.

2. FINITE PARTIAL STATES OF SCMPDS

Next we state two propositions:
(9) For every finite partial state p of SCMPDS holds DataPart(p) =
plData-Locsc.
(10) For every finite partial state p of SCMPDS holds p is data-only iff
dom p C Data-Locgcm.-
Let us mention that there exists a finite partial state of SCMPDS which is
data-only.
Next we state two propositions:
(11) For every finite partial state p of SCMPDS holds dom DataPart(p) C
Data-Locscm.-
(12) For every finite partial state p of SCMPDS holds dom ProgramPart(p) C
the instruction locations of SCMPDS.
Let I be a partial function from FinPartSt(SCMPDS) to FinPartSt(SCMPDS).
We say that I is data-only if and only if the condition (Def. 1) is satisfied.
(Def. 1) Let p be a finite partial state of SCMPDS. Suppose p € dom I;. Then
p is data-only and for every finite partial state ¢ of SCMPDS such that
q = I1(p) holds ¢ is data-only.
Let us observe that there exists a partial function from FinPartSt(SCMPDS)
to FinPartSt(SCMPDS) which is data-only.

COMPUTATION AND PROGRAM SHIFT IN THE ... 195

Next we state three propositions:

(13) Let i be an instruction of SCMPDS, s be a state of SCMPDS, and p
be a programmed finite partial state of SCMPDS. Then Exec(i, s+-p) =
Exec(i, s)+p.

(14) For every state s of SCMPDS and for every instruction-location 4; of
SCMPDS and for every Int position a holds s(a) = (s+- Start-At(i1))(a).

(15) For all states s, t of SCMPDS holds s+-t[Data-Locgcm is a state of
SCMPDS.

3. AutonoMIC FINITE PARTIAL STATES OF SCMPDS AND ITS
COMPUTATION

Let I; be a Int position and let a be an integer. Then [;——a is a finite partial
state of SCMPDS.
Next we state the proposition
(16) For every autonomic finite partial state p of SCMPDS such that
DataPart(p) # 0 holds ICscmpps € dom p.

Let us observe that there exists a finite partial state of SCMPDS which is
autonomic and non programmed.
One can prove the following propositions:

(17) For every autonomic non programmed finite partial state p of SCMPDS
holds ICscypps € dom p.

(18) Let s1, s2 be states of SCMPDS and ki, ka2, m be integers. If IC(,) =
IC(y,) and k1 # kg and m = IC(,,) and (m —2) +2-k1 > 0 and (m —2) +
2 ko > 0, then ICplusConst(s1, k1) # ICplusConst(s2, k2).

(19) For all states sj, sa of SCMPDS and for all natural numbers ki, k2
such that IC(,,) = IC(,) and ki # ko holds ICplusConst(s1,k1) #
ICplusConst(s2, k2).

(20) For every state s of SCMPDS holds Next(IC;) = ICplusConst(s, 1).

(21) For every autonomic finite partial state p of SCMPDS such that
ICscmpps € domp holds IC, € dom p.

(22) Let p be an autonomic non programmed finite partial state of SCMPDS
and s be a state of SCMPDS. If p C s, then for every natural number i
holds IC(computation(s))(i) € dom ProgramPart(p).

(23) Let p be an autonomic non programmed finite partial state of SCMPDS
and s1, so be states of SCMPDS. Suppose p C s; and p C s9. Let 7 be
a natural number. Then IC(Computation(sl))(i) = IC(Computation(sz))(i) and
CurInstr((Computation(s;))(i)) = Curlnstr((Computation(sg))(7)).

196 JING-CHAO CHEN

(24) Let p be an autonomic non programmed finite partial state of SCMPDS
and s1, s9 be states of SCMPDS. Suppose p C s; and p C so.
Let i be a natural number, ki, k2 be integers, and a, b be Int po-
sition. Suppose Curlnstr((Computation(s1))(i)) = (a,k1) = (b, k2)
and a € domp and DataLoc((Computation(sy))(i)(a), k1) € domp.
Then (Computation(s;))(7)(DataLoc((Computation(sy))(i)(b), k2)) =
(Computation(ssz))(7)(DataLoc((Computation(sz))(7)(b), k2)).

(25) Let p be an autonomic non programmed finite partial state of SCMPDS
and s1, s9 be states of SCMPDS. Suppose p C s; and p C so.
Let i be a natural number, ki, k2 be integers, and a, b be Int po-
sition. Suppose Curlnstr((Computation(s;))(i)) = AddTo(a,k1,b, k2)
and a € domp and DataLoc((Computation(sy))(i)(a), k1) € domp.
Then (Computation(s;))(7)(DataLoc((Computation(s1))(i)(b), k2)) =
(Computation(ssz))(7)(DataLoc((Computation(sz))(7)(b), k2)).

(26) Let p be an autonomic non programmed finite partial state of SCMPDS
and s1, s9 be states of SCMPDS. Suppose p C s; and p C so.
Let ¢ be a natural number, ki, k2 be integers, and a, b be Int po-
sition. Suppose Curlnstr((Computation(sy))(i)) = SubFrom(a, k1, b, k2)
and a € domp and DataLoc((Computation(sy))(i)(a), k1) € domp.
Then (Computation(s;))(7)(DataLoc((Computation(s1))(i)(b), k2)) =
(Computation(ssz))(7)(DataLoc((Computation(sz))(7)(b), k2)).

(27) Let p be an autonomic non programmed finite partial state of SCMPDS
and s1, sy be states of SCMPDS. Suppose p C s; and p C so.
Let ¢ be a natural number, ki, ko be integers, and a, b be Int posi-
tion. Suppose Curlnstr((Computation(s1))(i)) = MultBy(a, k1,b, k2) and
a € domp and DataLoc((Computation(sy))(i)(a), k1) € domp. Then
(Computation(si))(z)(DataLoc((Computation(sy))(i)(a), k1))
(Computation(si))(z)(DataLoc((Computation(sy))(i)(b), k2)) =
(Computation(ss))(i)(DataLoc((Computation(s2))(i)(a), k1))
(Computation(ssz))(7)(DataLoc((Computation(sz))(7)(b), k2)).

(28) Let p be an autonomic non programmed finite partial state of SCMPDS
and s1, so be states of SCMPDS. Suppose p C s1 and p C so. Let
7, m be natural numbers, a be a Int position, and ki, ko be inte-
gers. Suppose Curlnstr((Computation(sy))(i)) = (a, k1) <> 0_gotoks and
m = IC(Computation(sl))(i) and (m —2)+2-ky > 0 and ko # 1. Then
(Computation(sy))(z)(DataLoc((Computation(sy))(i)(a), k1)) = 0 if and
only if (Computation(sz))(7)(DataLoc((Computation(sz))(i)(a), k1)) = 0.
(29) Let p be an autonomic non programmed finite partial state of SCMPDS
and s1, so be states of SCMPDS. Suppose p C s1 and p C so. Let
7, m be natural numbers, a be a Int position, and ki, ko be inte-
gers. Suppose Curlnstr((Computation(sy))(i)) = (a, k1) <= 0_gotoks and

(a
)
)
)

COMPUTATION AND PROGRAM SHIFT IN THE ... 197

m = IC(Computation(sl))(i) and (m - 2) +2-ky > 0 and ky # 1. Then
(Computation(sy))(7) (DataLoc((Computation(sy))(i)(a), k1)) > 0 if and
only if (Computation(ss))(7)(DataLoc((Computation(sz))(i)(a), k1)) > 0.
(30) Let p be an autonomic non programmed finite partial state of SCMPDS
and s1, so be states of SCMPDS. Suppose p C s; and p C so. Let
i, m be natural numbers, a be a Int position, and ki, ko be inte-
gers. Suppose Curlnstr((Computation(sy))()) = (a, k1) >= 0_gotoks and
m = IC(Computation(sl))(i) and (m — 2) +2-ks > 0 and ky # 1. Then
(Computation(si))(i)(DataLoc((Computation(s;))(i)(a), k1)) < 0 if and
only if (Computation(sz))(7)(DataLoc((Computation(sz))(i)(a), k1)) < 0.

4. PROGRAM SHIFT IN THE SCMPDS COMPUTER

Let us consider k. The functor insposk yielding an instruction-location of
SCMPDS is defined by:
(Def. 2) insposk = iy.
One can prove the following two propositions:
(31) For all natural numbers kj, k2 such that k1 # ko holds insposk; #
inspos ks.
(32) For every instruction-location iz of SCMPDS there exists a natural num-
ber ¢ such that io = insposz.
Let [5 be an instruction-location of SCMPDS and let k be a natural number.
The functor I + k yields an instruction-location of SCMPDS and is defined as
follows:
(Def. 3) There exists a natural number m such that Iy = insposm and lp + k =
insposm + k.
The functor I, —' k yielding an instruction-location of SCMPDS is defined as
follows:
(Def. 4) There exists a natural number m such that lo = insposm and ls —' k =
insposm —' k.
Next we state four propositions:
(33) For every instruction-location | of SCMPDS and for all m, n holds (I +
m)+n=104+(m+n).
(34) For every instruction-location Iy of SCMPDS and for every natural num-
ber k holds (o + k) —" k = ls.
(35) For all instructions-locations I3, I4 of SCMPDS and for every natural
number k holds Start-At(ls + k) = Start-At(ly + k) iff Start-At(l3) =
Start-At(l4).

198 JING-CHAO CHEN

(36) For all instructions-locations l3, l4 of SCMPDS and for every natural
number k such that Start-At(l3) = Start-At(l4) holds Start-At(ls —' k) =
Start-At(ly —' k).

Let I; be a finite partial state of SCMPDS. We say that I; is initial if and
only if:
(Def. 5) For all m, n such that insposn € dom I; and m < n holds insposm €
dom Il.
The finite partial state SCMPDS — Stop of SCMPDS is defined as follows:
(Def. 6) SCMPDS — Stop = inspos O——haltscnmpps.
Let us observe that SCMPDS — Stop is non empty initial and programmed.
Let us observe that there exists a finite partial state of SCMPDS which is
initial, programmed, and non empty.
Let p be a programmed finite partial state of SCMPDS and let & be a

natural number. The functor Shift(p, k) yielding a programmed finite partial
state of SCMPDS is defined as follows:
(Def. 7) dom Shift(p, k) = {inspos m+k : insposm € dom p} and for every m such
that insposm € dom p holds (Shift(p, k))(insposm + k) = p(inspos m).
We now state several propositions:

(37) Let [be an instruction-location of SCMPDS, k be a natural number,
and p be a programmed finite partial state of SCMPDS. If [€ dom p, then
(Shift(p, k))(I + k) = p(1).

(38) Let p be a programmed finite partial state of SCMPDS and k be a
natural number. Then dom Shift(p, k) = {i2+Fk; i2 ranges over instructions-
locations of SCMPDS: iy € dom p}.

(39) For every programmed finite partial state I of SCMPDS holds
Shift(Shift(I, m),n) = Shift(I,m + n).

(40) Let s be a programmed finite partial state of SCMPDS, f be a function
from the instructions of SCMPDS into the instructions of SCMPDS, and
given n. Then Shift(f - s,n) = f - Shift(s,n).

(41) For all programmed finite partial states I, J of SCMPDS holds
Shift(I+-J,n) = Shift(I, n)+- Shift(J, n).

ACKNOWLEDGMENTS

We wish to thank Prof. Y. Nakamura for many helpful suggestions.

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

[2] Grzegorz Bancerek. Konig’s theorem. Formalized Mathematics, 1(3):589-593, 1990.

[3] Czestaw Bylinski. A classical first order language. Formalized Mathematics, 1(4):669-676,
1990.

COMPUTATION AND PROGRAM SHIFT IN THE ...

Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.
Cz7eslaw Byliniski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,

Czestaw Bylinski. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521-527, 1990.

Czestaw Bylifiski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
Czestaw Bylinski. Products and coproducts in categories. Formalized Mathematics,
2(5):701-709, 1991.

Jing-Chao Chen. The SCMPDS computer and the basic semantics of its instructions.
Formalized Mathematics, 8(1):183-191, 1999.

Jing-Chao Chen. A small computer model with push-down stack. Formalized Mathema-
tics, 8(1):175-182, 1999.

Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.

Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151-160, 1992.

Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241-250, 1992.

Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83-86, 1993.

Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathe-
matics, 2(5):623-627, 1991.

Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1-8, 1996.

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.
Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51-56, 1993.

Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of
SCMrsa. Formalized Mathematics, 5(4):571-576, 1996.

Michatl J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Zinaida Trybulec and Halina Swieczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17-23, 1990.

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Received June 15, 1999

199

200 JING-CHAO CHEN

FORMALIZED MATHEMATICS
Volume 8, Number 1, 1999
University of Bialystok

The Construction and Shiftability of
Program Blocks for SCMPDS!

Jing-Chao Chen
Shanghai Jiaotong University

Summary. In this article,a program block is defined as a finite sequence of
instructions stored consecutively on initial positions. Based on this definition,any
program block with more than two instructions can be viewed as the combina-
tion of two smaller program blocks. To describe the computation of a program
block by the result of its two sub-blocks, we introduce the notions of paraclosed,
parahalting, valid, and shiftable, the meaning of which may be stated as follows:

- a program is paraclosed if and only if any state containing it is closed,
- a program is parahalting if and only if any state containing it is halting,

- in a program block, a jumping instruction is valid if its jumping offset is
valid,

- a program block is shiftable if it does not contain any return and savelC
instructions,and each instruction in it is valid.

When a program block is shiftable, its computing result does not depend on its

storage position.

MML Identifier: SCMPDS_4.

The articles [17], [23], [12], [24], [5], [6], [20], [22], [2], [4], [11], [7], [13], [14], [18],
[15], [3], [10], [9], [21], [19], [8], [1], and [16] provide the notation and terminology
for this paper.

I This research is partially supported by the National Natural Science Foundation of China
Grant No. 69873033.

@ 1999 University of Bialystok
201 ISSN 1426-2630

202 JING-CHAO CHEN

1. DEFINITION OF A PROGRAM BLOCK AND ITS BASIC PROPERTIES

A Program-block is an initial programmed finite partial state of SCMPDS.
We adopt the following convention: m, n are natural numbers, ¢, j, k are
instructions of SCMPDS, and I, J, K are Program-block.
Let us consider i. The functor Load(i) yielding a Program-block is defined
as follows:
(Def. 1) Load(i) = inspos 0——1.
Let us consider i. Note that Load(7) is non empty.
Next we state the proposition

(1) For every Program-block P and for every n holds n < card P iff
insposn € dom P.

Let I be an initial finite partial state of SCMPDS. Note that ProgramPart([)
is initial.
Next we state four propositions:
(2) dom I misses dom Shift(.J, card I).
(3) For every programmed finite partial state I of SCMPDS holds
card Shift(/,m) = card I.
(4) For all finite partial states I, J of SCMPDS holds ProgramPart(/+-J) =
ProgramPart(I)+- ProgramPart(.J).
(5) For all finite partial states I, J of SCMPDS holds Shift(ProgramPart
(I4-J),n) = Shift(ProgramPart(I), n)+- Shift(ProgramPart(.J), n).
We use the following convention: a, b are Int position, s, s1, sg are states of
SCMPDS, and kq, ko are integers.
Let us consider I. The functor Initialized([) yields a finite partial state of
SCMPDS and is defined as follows:
(Def. 2) Initialized(l) = I+- Start-At(inspos 0).

We now state a number of propositions:

(6) InsCode(i) € {0,1,4,5,6} or (Exec(, s))(ICscmpps) = Next(ICy).

(7) ICscmpps € dom Initialized (7).

(8) ICritialized(r) = insposO0.

(9) I C Initialized([).
(10) s and s+-I are equal outside the instruction locations of SCMPDS.
(11) Let s1, s2 be states of SCMPDS. Suppose IC(,) = ICy,) and for every

Int position a holds s1(a) = sa(a). Then s; and sg are equal outside the
instruction locations of SCMPDS.

THE CONSTRUCTION AND SHIFTABILITY OF PROGRAM . .. 203

(13)2 Suppose s; and so are equal outside the instruction locations of
SCMPDS. Let a be a Int position. Then si(a) = sa(a).

(14) If s; and s2 are equal outside the instruction locations of SCMPDS, then
s1(Dataloc(s1(a), k1)) = se(Dataloc(sz(a), k1)).

(15) Suppose s; and sp are equal outside the instruction locations of
SCMPDS. Then Exec(i, s1) and Exec(i, s2) are equal outside the instruc-
tion locations of SCMPDS.

(16) Initialized (/) [the instruction locations of SCMPDS = I.

(17) For all natural numbers kj, ko such that k; # k2 holds DataLoc(k,0) #
DataLoc(kz,0).
(18) For every Int position d; there exists a natural number 7 such that d; =
DataLoc(,0).
The scheme SCMPDSEz deals with a unary functor F yielding an instruction
of SCMPDS, a unary functor G yielding an integer, and an instruction-location
A of SCMPDS, and states that:
There exists a state S of SCMPDS such that ICs = A
and for every natural number i holds S(insposi) = F(i) and
S(DataLoc(7,0)) = G(i)

for all values of the parameters.

Next we state a number of propositions:

(19) For every state s of SCMPDS holds doms = {ICgcmpps}t U
Data-Locgcy U the instruction locations of SCMPDS.

(20) Let s be a state of SCMPDS and z be a set. Suppose x € dom s. Then
x is a Int position or x = ICgcmpps or = is an instruction-location of
SCMPDS.

(21) Let s1, s2 be states of SCMPDS. Then for every instruction-location I
of SCMPDS holds s;(l) = s2(1) if and only if s; [the instruction locations
of SCMPDS = sy[the instruction locations of SCMPDS.

(22) For every instruction-location ¢ of SCMPDS holds i ¢ Data-Locgcm.

(23) For all states si, so of SCMPDS holds for every Int position a holds
s1(a) = sa(a) iff s1[Data-Locgcy = s2[Data-Locgcm.

(24) Let s1, s2 be states of SCMPDS. Suppose s; and sg are equal out-
side the instruction locations of SCMPDS. Then si[Data-Locscy =
so[Data-Locgcn.

(25) For all states s, s3 of SCMPDS and for every set A holds (s3+-s[A)[A =
s[A.

(26) For all Program-block I, J holds I and J are equal outside the instruction
locations of SCMPDS.

2The proposition (12) has been removed.

204 JING-CHAO CHEN

(27) For every Program-block I holds domInitialized(I) = domlI U

{ICscmpps}-

(28) For every Program-block I and for every set x such that = €
dom Initialized(I) holds = € dom I or z = ICscmpDS-

(29) For every Program-block I holds (Initialized(I))(ICscmpps) = inspos 0.
(30) For every Program-block I holds ICscmpps ¢ dom I.
(31) For every Program-block I and for every Int position a holds a ¢
dom Initialized (7).
In the sequel z denotes a set.
The following propositions are true:
(32) If x € dom I, then I(x) = (I+- Start-At(insposn))(x).
(33) For every Program-block I and for every set x such that € dom I holds
I(x) = (Initialized(1))(x).
(34) For all Program-block I, J and for every state s of SCMPDS such that
Initialized(J) C s holds s+- Initialized(I) = s+-1I.
(35) For all Program-block I, J and for every state s of SCMPDS such that
Initialized(J) C s holds Initialized(I) C s+-1I.

(36) Let I, J be Program-block and s be a state of SCMPDS. Then
s+- Initialized(I) and s+- Initialized(J) are equal outside the instruction
locations of SCMPDS.

2. COMBINING TWO CONSECUTIVE BLOCKS INTO ONE PROGRAM BLOCK

Let I, J be Program-block. The functor I;J yields a Program-block and is
defined by:

(Def. 3) I;J = I+ Shift(J, card I).
One can prove the following propositions:

(37) For all Program-block I, J and for every instruction-location [of
SCMPDS such that [€ dom I holds (Z;J)(l) = I(1).

(38) For all Program-block I, J and for every instruction-location [of
SCMPDS such that [€ dom J holds (I;J)({ + card I) = J(I).

) For all Program-block I, J holds dom I C dom(I;.J).
) For all Program-block I, J holds I C I;J.
41) For all Program-block I, J holds I+-(I;J) = I;J.
) For all Program-block I, J holds Initialized(I)+-(I;J) = Initialized(/;.J).

THE CONSTRUCTION AND SHIFTABILITY OF PROGRAM ... 205

3. COMBINING A BLOCK AND A INSTRUCTION INTO ONE PROGRAM BLOCK

Let us consider ¢, J. The functor ¢;J yielding a Program-block is defined by:
(Def. 4) 4;J = Load(i);J.
Let us consider I, j. The functor I;j yields a Program-block and is defined
by:
(Def. 5) I;j = I;Load(y).
Let us consider 4, j. The functor ;5 yielding a Program-block is defined as
follows:
(Def. 6) ;5 = Load(i); Load ().

The following propositions are true:

(43) ;5 = Load(1);j.

(44) 435 = i; Load(y).

(45) card(I;J) = card I + card J.

(46) (I3J);K = I;(J;K).

(47) (I;J)sk = I;(Jk).

(48) (L;j);K = I;(j;K).

(49) (Li):k = L;(jsk)

(50) (4J):K = i5(J;K)

(51) (isJ)sk = i5(J;k)

(52) (i57);K = 4;(5;K)

(53) (i54)sk = 4;(jsk)

(54) dom I N dom Start-At(insposn) = ().

(65) Start-At(inspos0) C Initialized([).

(56) If I+4- Start-At(insposn) C s, then I C s.
(57) If Initialized(I) C s, then I C s.

(58) (I+- Start-At(insposn))[the instruction locations of SCMPDS = I.

In the sequel [, I; denote instructions-locations of SCMPDS.
Next we state four propositions:

(59) a ¢ dom Start-At(l).
(60) 11 ¢ dom Start-At(l).
(61) a ¢ dom(I+- Start-At(l)).
(62) s+-I+- Start-At(inspos 0) = s+- Start-At(inspos 0)+-1.
Let s be a state of SCMPDS, let s be a Int position, and let k£ be an integer.
Then s +- (I, k) is a state of SCMPDS.

206 JING-CHAO CHEN

4. THE NOTIONS OF PARACLOSED, PARAHALTING AND THEIR BASIC
PROPERTIES

Let I be a Program-block. The functor stop I yielding a Program-block is
defined as follows:
(Def. 7) stopI = I; SCMPDS — Stop .
Let I be a Program-block and let s be a state of SCMPDS. The functor
IExec(I, s) yielding a state of SCMPDS is defined as follows:
(Def. 8) IExec(I,s) = Result(s+- Initialized(stop I))+-s[the instruction loca-
tions of SCMPDS.
Let I be a Program-block. We say that I is paraclosed if and only if:
(Def. 9) For every state s of SCMPDS and for every natural number n such that
Initialized(stop I) C s holds IC(gomputation(s))(n) € domstop 1.
We say that I is parahalting if and only if:
(Def. 10) Initialized(stop I) is halting.
Let us note that there exists a Program-block which is parahalting.
One can prove the following proposition

(63) For every parahalting Program-block I such that Initialized(stop I) C s
holds s is halting.

Let I be a parahalting Program-block. Note that Initialized(stop I) is hal-
ting.
Let I3, I4 be instructions-locations of SCMPDS and let a, b be instructions
of SCMPDS. Then [l3 — a,ly — b] is a finite partial state of SCMPDS.
One can prove the following propositions:
(64) For every integer k such that k # 0 holds goto k # haltscnmpps.
(65) IC, # Next(IC).
(66) so+[IC(,,) — goto 1,Next(ICy,)) — goto (—1)] is not halting.
(67) Suppose that
(i) s; and sy are equal outside the instruction locations of SCMPDS,
(i) IC s,
(ili) I C s9, and
(iv) for every m such that m < n holds IC computation(ss))(m) € dom I.
Let given m. Suppose m < n. Then (Computation(s;))(m) and
(Computation(ss))(m) are equal outside the instruction locations of
SCMPDS.

(68) For every state s of SCMPDS and for every instruction-location [of
SCMPDS holds [€ dom s.

In the sequel [y, l5 are instructions-locations of SCMPDS and i1, io are
instructions of SCMPDS.

=~

THE CONSTRUCTION AND SHIFTABILITY OF PROGRAM . .. 207

The following propositions are true:
(69) s+-[l1 — i1,l5 — ia] = s +- (I1,11) + (I5,12).
(70) Next(insposn) = insposn + 1.
(71) IfICs ¢ dom I, then Next(IC;) ¢ dom [.
Let us mention that every Program-block which is parahalting is also parac-
losed.
We now state several propositions:
(72) dom SCMPDS — Stop = {inspos0}.
(73) inspos0 € dom SCMPDS — Stop and (SCMPDS — Stop)(inspos0) =
haltscmpps.
(74) card SCMPDS — Stop = 1.
(75) insposO € domstop I.
(76) Let p be a programmed finite partial state of SCMPDS, k be a natural

number, and i3 be an instruction-location of SCMPDS. If i3 € dom p, then
i + k € dom Shift(p, k).

5. SHIFTABILITY OF PROGRAM BLOCKS AND INSTRUCTIONS

Let ¢ be an instruction of SCMPDS and let n be a natural number. We say
that ¢ valid at n if and only if the conditions (Def. 11) are satisfied.
(Def. 11)(1) If InsCode(i) = 0, then there exists k; such that ¢ = goto k; and
n+ki >0,
(ii) if InsCode(i) = 4, then there exist a, k1, k2 such that i = (a,k;) <>
0_gotoky and n + ko > 0,
(iii) if InsCode(i) = 5, then there exist a, k1, k2 such that i = (a,k1) <=
0_gotoky and n + ko > 0, and
(iv) if InsCode(i) = 6, then there exist a, ki, ko2 such that i = (a, k1) >=
0_gotoks and n + ko > 0.
One can prove the following proposition
(77) Let ¢ be an instruction of SCMPDS and m, n be natural numbers. If
valid at m and m < n, then 7 valid at n.

Let I be a finite partial state of SCMPDS. We say that I; is shiftable if and
only if:
(Def. 12) For all n, i such that insposn € domI; and i = Ij(insposn) holds
InsCode(i) # 1 and InsCode(i) # 3 and i valid at n.
Let us mention that there exists a Program-block which is parahalting and
shiftable.
Let i be an instruction of SCMPDS. We say that i is shiftable if and only if:

208 JING-CHAO CHEN

(Def. 13) InsCode(i) = 2 or InsCode(i) > 6.
One can check that there exists an instruction of SCMPDS which is shiftable.
Let us consider a, k1. Observe that a:=k; is shiftable.
Let us consider a, k;, k2. One can check that ay,:=ks is shiftable.
Let us consider a, k1, ka. Observe that AddTo(a, k1, k2) is shiftable.
Let us consider a, b, k1, ko. One can check the following observations:
x AddTo(a, k1, b, k) is shiftable,
*x SubFrom(a, k1, b, ko) is shiftable,
x MultBy(a, k1, b, ko) is shiftable,
« Divide(a, k1, b, k2) is shiftable, and
x (a,ky) := (b, ko) is shiftable.
Let I, J be shiftable Program-block. Observe that I;J is shiftable.
Let i be a shiftable instruction of SCMPDS. Observe that Load(7) is shifta-
ble.
Let i be a shiftable instruction of SCMPDS and let J be a shiftable Program-
block. Observe that i;J is shiftable.
Let I be a shiftable Program-block and let j be a shiftable instruction of
SCMPDS. Observe that I;j is shiftable.
Let 4, j be shiftable instructions of SCMPDS. Note that ;5 is shiftable.
Let us note that SCMPDS — Stop is parahalting and shiftable.
Let I be a shiftable Program-block. One can verify that stop I is shiftable.
Next we state the proposition
(78) For every shiftable Program-block I and for every integer k; such that
card I + k1 > 0 holds I;goto ki is shiftable.
Let n be a natural number. Note that Load(goto n) is shiftable.
One can prove the following proposition
(79) Let I be a shiftable Program-block, ki, k2 be integers, and a be a Int
position. If card I + ko > 0, then I;((a, k1) <> 0_gotoks) is shiftable.
Let k1 be an integer, let a be a Int position, and let n be a natural number.
Note that Load((a, k1) <> 0_goton) is shiftable.
Next we state the proposition
(80) Let I be a shiftable Program-block, ki, k2 be integers, and a be a Int
position. If card I + ko > 0, then I;((a, k1) <= 0_gotoks) is shiftable.
Let k1 be an integer, let a be a Int position, and let n be a natural number.
Observe that Load((a, k1) <= 0_goton) is shiftable.
One can prove the following proposition
(81) Let I be a shiftable Program-block, ki, ks be integers, and a be a Int
position. If card I + ko > 0, then I;((a, k1) >= 0_gotoks) is shiftable.
Let k1 be an integer, let a be a Int position, and let n be a natural number.
Observe that Load((a, k1) >= 0_goton) is shiftable.

THE CONSTRUCTION AND SHIFTABILITY OF PROGRAM . .. 209

We now state three propositions:

(82) Let s1, s2 be states of SCMPDS, n, m be natural numbers, and k; be

an integer. If ICy,) = insposm and m + k1 > 0 and IC,) + n = ICy,,
then ICplusConst(s1, k1) + n = ICplusConst(s2, k7).

(83) Let s1, so be states of SCMPDS, n, m be natural numbers, and i be

an instruction of SCMPDS. Suppose IC(,) = insposm and i valid at m
and InsCode(i) # 1 and InsCode(i) # 3 and IC(,,) + n = IC(,) and
s1[Data-Locsom = sz2[Data-Locgem. Then ICgyec(is)) + 7 = ICExec(i,s0)
and Exec(i, s1) [Data-Locgom = Exec(i, s9) [Data-Locgcom.

(84) Let J be a parahalting shiftable Program-block. Suppose Initialized(stop

J) C s1. Let n be a natural number. Suppose Shift(stop J,n) C sy and
IC,,) = insposn and s; [Data-Locgem = s2[Data-Locgem. Let @ be a na-
tural number. Then IC(Computation(sl))(i) +n = IC(Computation(sg))(i) and
Curlnstr((Computation(s1))(i)) = Curlnstr((Computation(sz2))(i)) and
(Computation(sy))(i) [Data-Locgcy = (Computation(se))(i) [Data-Locgc.

REFERENCES

Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485-492, 1996.

Czestaw Bylinski. A classical first order language. Formalized Mathematics, 1(4):669-676,
1990.

Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

Czestaw Bylinski. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521-527, 1990.

Czestaw Bylinski. Products and coproducts in categories. Formalized Mathematics,
2(5):701-709, 1991.

Jing-Chao Chen. Computation and program shift in the SCMPDS computer. Formalized
Mathematics, 8(1):193-199, 1999.

Jing-Chao Chen. The SCMPDS computer and the basic semantics of its instructions.
Formalized Mathematics, 8(1):183-191, 1999.

Jing-Chao Chen. A small computer model with push-down stack. Formalized Mathema-
tics, 8(1):175-182, 1999.

Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.

Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151-160, 1992.

Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241-250, 1992.

Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1-8, 1996.

Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.
Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51-56, 1993.

210 JING-CHAO CHEN

[19] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of
SCMprsa. Formalized Mathematics, 5(4):571-576, 1996.
| Michat J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[21] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
| Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
| Zinaida Trybulec and Halina Swi@czkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17-23, 1990.
[24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Received June 15, 1999

FORMALIZED MATHEMATICS
Volume 8, Number 1, 1999
University of Bialystok

Computation of Two Consecutive Program
Blocks for SCMPDS!

Jing-Chao Chen
Shanghai Jiaotong University

Summary. In this article, a program block without halting instructions is
called No-StopCode program block. If a program consists of two blocks, where
the first block is parahalting (i.e. halt for all states) and No-StopCode, and
the second block is parahalting and shiftable, it can be computed by combining
the computation results of the two blocks. For a program which consists of a
instruction and a block, we obtain a similar conclusion. For a large amount of
programs, the computation method given in the article is useful, but it is not
suitable to recursive programs.

MML Identifier: SCMPDS_5.

The terminology and notation used here have been introduced in the following
articles: [16], [20], [11], [21], [5], [6], [18], [2], [12], [13], [17], [14], [4], [10], [9],
[19], [7], (1], [15], [8], and [3].

1. PRELIMINARIES

For simplicity, we use the following convention: x denotes a set, m, n de-
note natural numbers, a, b denote Int position, ¢ denotes an instruction of
SCMPDS, s, s1, so denote states of SCMPDS, ki, ko denote integers, [de-
notes an instruction-location of SCMPDS, I, J denote Program-block, and N
denotes a set with non empty elements.

One can prove the following propositions:

I This research is partially supported by the National Natural Science Foundation of China
Grant No. 69873033.

@ 1999 University of Bialystok
211 ISSN 1426-2630

212 JING-CHAO CHEN

(1) Let S be a halting von Neumann definite AMI over NV and s be a state
of S. If s = Following(s), then for every n holds (Computation(s))(n) = s.

(2) z € domLoad(7) iff z = insposO0.
(3) If l; € domstop I and (stop I)(l) # haltscmpps, then I3 € dom 1.
(4) dom Load(i) = {inspos0} and (Load(i))(inspos0) = i.
(5) inspos0 € dom Load(%).
(6) cardLoad(i) = 1.
(7) cardstopl = card I + 1.
(8) cardstop Load(i) = 2.
(9) inspos0 € domstop Load(i) and inspos 1 € dom stop Load (7).
(10) (stop Load(7))(inspos0) = i and (stop Load(7))(inspos 1) = haltscypps.-
(11) = € domstop Load (i) iff = inspos0 or x = inspos 1.
(12) domstop Load(i) = {inspos0, inspos 1}.
(13) insposO € dom Initialized(stop Load(7)) and inspos 1 € dom Initialized

(stop Load(7)) and (Initialized (stop Load(7)))(inspos 0) = ¢ and (Initialized
(stop Load()))(inspos 1) = haltscympps.-

(14) For all Program-block I, J holds Initialized(stop I;.J) =
(I;(J; SCMPDS — Stop))+- Start-At(inspos0).

(15) For all Program-block I, J holds Initialized(I) C Initialized(stop I;J).

(16) domstop I C domstop I;.J.

(17) For all Program-block I, J holds Initialized(stop I)+- Initialized(stop I;J)
= Initialized(stop I;J).

(18) If Initialized(I) C s, then IC4 = insposO0.

(19) (s+-Initialized(I))(a) = s(a).

(20) Let I be a parahalting Program-block. Suppose Initialized(stop) C
s1 and Initialized(stopI) C sy and s; and so are equal outside the
instruction locations of SCMPDS. Let k be a natural number. Then
(Computation(sy))(k) and (Computation(sz2))(k) are equal outside the in-
struction locations of SCMPDS and Curlnstr((Computation(si))(k)) =
Curlnstr((Computation(sz))(k)).

(21) Let I be a parahalting Program-block. Suppose Initialized(stop I) C s;
and Initialized(stop I) C s and s; and sy are equal outside the instruction
locations of SCMPDS. Then LifeSpan(s;) = LifeSpan(sz) and Result(s;)
and Result(s2) are equal outside the instruction locations of SCMPDS.

(22) For every Program-block I holds ICIExec(I,s) = ICResult(s+- Initialized(stop I))-

(23) Let I be a parahalting Program-block and J be a Program-block. Sup-
pose Initialized(stop I) C s. Let given m. Suppose m < LifeSpan(s). Then
(Computation(s))(m) and (Computation(s+-(7;J)))(m) are equal outside
the instruction locations of SCMPDS.

COMPUTATION OF TWO CONSECUTIVE PROGRAM ... 213

(24) Let I be a parahalting Program-block and J be a Program-block. Sup-
pose Initialized(stop I) C s. Let given m. Suppose m < LifeSpan(s). Then
(Computation(s))(m) and (Computation(s+-Initialized(stop I;.J)))(m)
are equal outside the instruction locations of SCMPDS.

2. NoON HALTING INSTRUCTIONS AND PARAHALTING INSTRUCTIONS

Let i be an instruction of SCMPDS. We say that i is No-StopCode if and
only if:
(Def 1) 1 7& haltSCMst.
Let ¢ be an instruction of SCMPDS. We say that ¢ is parahalting if and only
if:
(Def. 2) Load(7) is parahalting.
One can verify that there exists an instruction of SCMPDS which is No-
StopCode, shiftable, and parahalting.
One can prove the following proposition
(25) If k1 # 0, then goto k; is No-StopCode.
Let us consider a. Observe that returna is No-StopCode.
Let us consider a, k;. Note that a:=Fk; is No-StopCode and savelC(a, k1) is
No-StopCode.
Let us consider a, k1, k3. One can check the following observations:

x (a, k1) <> 0_gotoks is No-StopCode,

x (a, k1) <= 0_gotoks is No-StopCode,

x (a, k1) >= 0_gotoks is No-StopCode, and

* ay,:=ks is No-StopCode.

Let us consider a, ki, ky. Note that AddTo(a, k1, k2) is No-StopCode.

Let us consider a, b, k1, k3. One can verify the following observations:

x AddTo(a, k1, b, k2) is No-StopCode,

* SubFrom(a, k1,b, k2) is No-StopCode,

x MultBy(a, k1, b, k2) is No-StopCode,

« Divide(a, k1, b, k2) is No-StopCode, and

* (a,k1) := (b, k2) is No-StopCode.

Let us note that haltgcypps is parahalting.

Let i be a parahalting instruction of SCMPDS. Observe that Load(i) is
parahalting.

Let us consider a, k1. Observe that a:=k; is parahalting.

Let us consider a, ki, ko. Note that ag,:=ke is parahalting and
AddTo(a, k1, ko) is parahalting.

214 JING-CHAO CHEN

Let us consider a, b, k1, k3. One can check the following observations:
x AddTo(a, k1, b, ko) is parahalting,

* SubFrom(a, k1, b, k2) is parahalting,

* MultBy(a, k1, b, ko) is parahalting,

x Divide(a, k1, b, k2) is parahalting, and

x (a,ky) := (b, ko) is parahalting.

Next we state the proposition

(26) If InsCode(i) = 1, then 7 is not parahalting.

Let I; be a finite partial state of SCMPDS. We say that I; is No-StopCode
if and only if:

(Def. 3) For every instruction-location z of SCMPDS such that € dom I; holds
I (z) # haltscmpps.

Let us observe that there exists a Program-block which is parahalting, shi-
ftable, and No-StopCode.

Let I, J be No-StopCode Program-block. Observe that I;J is No-StopCode.

Let i be a No-StopCode instruction of SCMPDS. Observe that Load(i) is
No-StopCode.

Let ¢ be a No-StopCode instruction of SCMPDS and let J be a No-StopCode
Program-block. Note that ;J is No-StopCode.

Let I be a No-StopCode Program-block and let j be a No-StopCode instruc-
tion of SCMPDS. Observe that I;5 is No-StopCode.

Let 4, 7 be No-StopCode instructions of SCMPDS. Observe that ;5 is No-
StopCode.

Next we state several propositions:

(27) For every parahalting No-StopCode Program-block I such that
Initiahzed(Stop I) C sholds IC(Computation(s))(LifeSpan(s+- Initialized(stop I))) —
inspos card I.

(28) For every parahalting Program-block I and for every natural
number k such that k& < LifeSpan(s+- Initialized(stop/)) holds
IC(Computation(er- Initialized(stop I)))(k) € dom I.

(29) Let I be a parahalting Program-block and k& be a natural number.
Suppose Initialized(I) C s and k < LifeSpan(s+-Initialized(stop I)).
Then (Computation(s))(k) and (Computation(s+- Initialized(stop I)))(k)
are equal outside the instruction locations of SCMPDS.

(30) For every parahalting No-StopCode Program-block I such that
Initia‘hzed(‘[) C s holds IC(Computation(s))(LifeSpan(s+-Initialized(stop n)) =
insposcard I.

(31) For every parahalting Program-block I such that Initialized(I) C
s holds Curlnstr((Computation(s))(LifeSpan(s+- Initialized(stop I)))) =
haltscmpps or IC(Computation(s))(LifeSpan(er- Initialized(stop I))) — inspos card I.

COMPUTATION OF TWO CONSECUTIVE PROGRAM ... 215

(32) Let I be a parahalting No-StopCode Program-block and k be a natural
number. If Initialized(I) C s and k < LifeSpan(s+- Initialized(stop I)),
then Curlnstr((Computation(s))(k)) # haltscmpps.

(33) Let I be a parahalting Program-block, J be a Program-block, and &
be a natural number. Suppose k < LifeSpan(s+- Initialized(stop I)). Then
(Computation(s+- Initialized(stop I)))(k) and (Computation(s+-((1;J)+-
Start-At(inspos0))))(k) are equal outside the instruction locations of
SCMPDS.

(34) Let I be a parahalting Program-block, J be a Program-block, and k
be a natural number. Suppose k < LifeSpan(s+- Initialized(stop I)). Then
(Computation(s+- Initialized(stop I)))(k) and (Computation(s+- Initialized
(stop I;J)))(k) are equal outside the instruction locations of SCMPDS.

Let I be a parahalting Program-block and let J be a parahalting shiftable
Program-block. One can verify that I;J is parahalting.

Let ¢ be a parahalting instruction of SCMPDS and let J be a parahalting
shiftable Program-block. Note that ¢;J is parahalting.

Let I be a parahalting Program-block and let j be a parahalting shiftable
instruction of SCMPDS. Observe that I;j is parahalting.

Let ¢ be a parahalting instruction of SCMPDS and let j be a parahalting
shiftable instruction of SCMPDS. One can check that i;j is parahalting.

Next we state the proposition

(35) Let s, s; be states of SCMPDS and J be a parahalting shiftable
Program-block. If s = (Computation(s;+- Initialized(stop J)))(m), then
Exec(Curlnstr(s), s+- Start-At(IC; +n)) =
Following(s)+- Start-At(ICr,liowing(s) + 7)-

3. COMPUTATION OF TWO CONSECUTIVE PROGRAM BLOCKS

The following propositions are true:

(36) Let I be a parahalting No-StopCode Program-block, J be a para-
halting shiftable Program-block, and k& be a natural number. Suppose
Initialized(stop I;J) C s. Then (Computation(Result(s+- Initialized
(stop I))+- Initialized(stop J)))(k)+- Start-At
(IC(Computation(Result(er- Initialized(stop I))+- Initialized(stop J))) (k) + card I) and
(Computation(s+- Initialized(stop I;.J)))(LifeSpan(s+- Initialized(stop 1))+
k) are equal outside the instruction locations of SCMPDS.

(37) Let I be a parahalting No-StopCode Program-block and J be a parahal-
ting shiftable Program-block. Then LifeSpan(s+- Initialized(stop I;.J)) =
LifeSpan(s+- Initialized(stop I'))+LifeSpan(Result(s+- Initialized(stop I))+-
Initialized(stop J)).

216 JING-CHAO CHEN

(38) Let I be a parahalting No-StopCode Program-block and J
be a parahalting shiftable Program-block. Then IExec(I;J,s) =
[Exec(J, [Exec([, s))+- Start-At(IC:gyec(.1Exec(1,5)) + card I).

(39) Let I be a parahalting No-StopCode Program-block and J be
a parahalting shiftable Program-block. Then (IExec(I;J,s))(a) =
(IExec(J, IExec(I, s)))(a).

4. COMPUTATION OF THE PROGRAM CONSISTING OF A INSTRUCTION AND A
BLock

Let s be a state of SCMPDS. The functor Initialized(s) yields a state of
SCMPDS and is defined by:
(Def. 4) Initialized(s) = s+- Start-At(inspos0).
Next we state several propositions:

(40) ICrpitialized(sy = 1insposO and (Initialized(s))(a) = s(a) and
(Initialized(s))(l1) = s(ly).

(41) s; and s2 are equal outside the instruction locations of SCMPDS iff
s1[(Data-Locsem U {ICscompps }) = s2[(Data-Locsem U {ICscompDs })-

(42) 1If si|Data-Locgem = sa|Data-Locgom, then si(DataLoc(si(a), k1)) =
so(DataLoc(sz(a), k1)).

(43) 1If sy|Data-Locscy = seo|Data-Locgcy and InsCode(i) # 3, then
Exec(i, s1) [Data-Locsom = Exec(i, s9) [Data-Locgom.

(44) For every shiftable instruction ¢ of SCMPDS such that s; [Data-Locgem =
so[Data-Locscy holds Exec(i, s1) [Data-Locgsom = Exec(i, s9) [Data-Locgom.

(45) For every parahalting instruction ¢ of SCMPDS holds
Exec(i, Initialized(s)) = IExec(Load(i), s).

(46) Let I be a parahalting No-StopCode Program-block and j be a pa-
rahalting shiftable instruction of SCMPDS. Then (IExec(I;j,s))(a) =
(Exec(j, IExec(I, s)))(a).

(47) Let i be a No-StopCode parahalting instruction of SCMPDS and j be
a shiftable parahalting instruction of SCMPDS. Then (IExec(i;7, s))(a) =
(Exec(j, Exec(i, Initialized(s))))(a).

REFERENCES

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

[3] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Formalized
Mathematics, 4(1):61-67, 1993.

COMPUTATION OF TWO CONSECUTIVE PROGRAM ...

Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485-492, 1996.

Czestaw Byliniski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

Czestaw Bylinski. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521-527, 1990.

Jing-Chao Chen. Computation and program shift in the SCMPDS computer. Formalized
Mathematics, 8(1):193-199, 1999.

Jing-Chao Chen. The construction and shiftability of program blocks for SCMPDS.
Formalized Mathematics, 8(1):201-210, 1999.

Jing-Chao Chen. The SCMPDS computer and the basic semantics of its instructions.
Formalized Mathematics, 8(1):183-191, 1999.

Jing-Chao Chen. A small computer model with push-down stack. Formalized Mathema-
tics, 8(1):175-182, 1999.

Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.

Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151-160, 1992.

Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241-250, 1992.

Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1-8, 1996.

Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.
Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51-56, 1993.

Michatl J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.

Zinaida Trybulec and Halina Swigczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17-23, 1990.

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Received June 15, 1999

217

218 JING-CHAO CHEN

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Bialystok

The Construction and Computation of
Conditional Statements for SCMPDS!

Jing-Chao Chen
Shanghai Jiaotong University

Summary. We construct conditional statements like the usual high level
program language by program blocks of SCMPDS. Roughly speaking, the article
justifies such a fact that when the condition of a conditional statement is true
(false), and the true (false) branch is shiftable, parahalting and does not contain
any halting instruction, and the false branch is shiftable, then it is halting and
its computation result equals that of the true (false) branch. The parahalting
means some program halts for all states, this is strong condition. For this reason,
we introduce the notions of ”is_closed_on” and ”is_halting_on”. The predicate ” A
is_closed_on B” denotes program A is closed on state B, and ” A is_halting_on B”
denotes program A is halting on state B. We obtain a similar theorem to the
above fact by replacing parahalting by ”is_closed_on” and ”is_halting_on”.

MML Identifier: SCMPDS_6.

The terminology and notation used in this paper are introduced in the following
papers: [16], [19], [11], [14], [20], [5], [6], [18], [2], [12], [13], [17], [15], [4], [10],
(7], [1], [9], [3], and [8].

1. PRELIMINARIES

For simplicity, we follow the rules: a denotes a Int position, ¢ denotes an in-
struction of SCMPDS, s, s1, so denote states of SCMPDS, k; denotes an integer,
l1 denotes an instruction-location of SCMPDS, and I, J denote Program-block.

One can prove the following propositions:

I This research is partially supported by the National Natural Science Foundation of China
Grant No. 69873033.

@ 1999 University of Bialystok
219 ISSN 1426-2630

220 JING-CHAO CHEN

(1) For every state s of SCMPDS holds dom(s[the instruction locations of
SCMPDS) = the instruction locations of SCMPDS.

(2) For every state s of SCMPDS such that s is halting and
for every natural number % such that LifeSpan(s) < & holds
Curlnstr((Computation(s))(k)) = haltscmpps-

(3) For every state s of SCMPDS such that s is halting and for every na-
tural number & such that LifeSpan(s) < & holds IC(computation(s))(k) =
IC(Computation(s)) (LifeSpan(s))-

(4) Let s1, s2 be states of SCMPDS. Then s; and sy are equal outside
the instruction locations of SCMPDS if and only if IC(,) = IC,,) and
s1[Data-Locscyv = so[Data-Locgon.

(5) For every state s of SCMPDS and for every Program-block I holds
Initialized(s)+- Initialized(I) = s+- Initialized(I).

(6) For every Program-block I and for every instruction-location [of
SCMPDS holds I C I+- Start-At({).

(7) For every state s of SCMPDS and for every instruction-location [of
SCMPDS holds s[Data-Locgcy = (s+- Start-At(l)) [Data-Locgom.

(8) For every state s of SCMPDS and for every Program-block I and
for every instruction-location I of SCMPDS holds s[Data-Locscy =
(s+-(I+- Start-At(l))) [Data-Locscu.

(9) For every state s of SCMPDS and for every Program-block I holds
sIData-Locgom = (s+- Initialized (7)) [Data-Locscm.

(10) Let s be a state of SCMPDS and [be an instruction-location of

SCMPDS. Then dom(s[the instruction locations of SCMPDS) misses
dom Start-At(l).

(11) Let s be a state of SCMPDS, I, J be Program-block, and [be
an instruction-location of SCMPDS. Then s+-(I+- Start-At(l)) and

s+-(J+- Start-At(l)) are equal outside the instruction locations of
SCMPDS.

(12) Let s1, s2 be states of SCMPDS and I, J be Program-block. Sup-
pose sj[Data-Locgcm = sa2[Data-Locgon. Then sq+- Initialized(I) and
so+- Initialized(J) are equal outside the instruction locations of SCMPDS.

(13) Let I be a programmed finite partial state of SCMPDS and x be a set.
If x € dom I, then I(z) is an instruction of SCMPDS.

(14) For every state s of SCMPDS and for all instructions-locations la, I3 of
SCMPDS holds s+- Start-At(l2)+- Start-At(l3) = s+ Start-At(l3).

(15) card(i;/) = card I + 1.
(16) (#;1)(inspos0) = 1.
(17) I C Initialized(stop I).

THE CONSTRUCTION AND COMPUTATION OF ... 221

(18) Ifl; € domI, then [; € domstop I.

(19) If l; € dom I, then (stopI)(l1) = I(ly).

(20) 1If l; € dom I, then (Initialized(stop I))(l1) = I(l1).

(21) IC, . misialized(r) = insposO0.

(22) Curlnstr(s+- Initialized(stop i;1)) = 1.

(23) For every state s of SCMPDS and for all natural numbers m;, mg such

that ICs = inspos my holds ICplusConst(s, my) = insposmi + mao.

(24) For all Program-block I, J holds Shift(stop J, card I') C stop I;.J.

(25) insposcard] € domstop I and (stop I)(insposcard I) = haltscumpps.

(26) For all instructions-locations x, { of SCMPDS holds (IExec(J,s))(z) =
(IExec(I, s)+- Start-At(1))(z).

(27) For all instructions-locations x, [of SCMPDS holds (IExec(7,s))(z) =
(s+- Start-At(l))(z).

(28) Let s be a state of SCMPDS, i be a No-StopCode parahalting instruction
of SCMPDS, J be a parahalting shiftable Program-block, and a be a Int
position. Then (IExec(i;/, s))(a) = (IExec(J, Exec(7, Initialized(s))))(a).

(29) For every Int position a and for all integers ki, k2 holds (a, k1) <>
O,QOtOkg 75 haltSCMst.

(30) For every Int position a and for all integers ki, ko holds (a, k1) <=
O,QOtOk‘Q 75 haltSCMst.

(31) For every Int position a and for all integers ki, ko holds (a, k1) >=

0,got0k:2 75 haltSCMst.

Let us consider k. The functor Goto(kq) yielding a Program-block is defined
as follows:

(Def. 1) Goto(k1) = Load(goto k).

Let n be a natural number. One can verify that goto (n+ 1) is No-StopCode
and goto (—(n + 1)) is No-StopCode.

Let n be a natural number. Observe that Goto(n + 1) is No-StopCode and
Goto(—(n + 1)) is No-StopCode.

The following two propositions are true:

(32) card Goto(ky) = 1.
(33) inspos0 € dom Goto(k;) and (Goto(ky))(inspos0) = goto k.

2. THE PREDICATES OF IS_CLOSED_ON AND IS_HALTING_ON

Let I be a Program-block and let s be a state of SCMPDS. We say that
is closed on s if and only if:

222 JING-CHAO CHEN

(Def. 2) For every natural number k holds IC computation(s-+- Initialized(stop I))) (k) €
dom stop I.
We say that I is halting on s if and only if:
(Def. 3) s+ Initialized(stop I) is halting.
We now state a number of propositions:

(34) For every Program-block I holds I is paraclosed iff for every state s of
SCMPDS holds [is closed on s.

(35) For every Program-block I holds [is parahalting iff for every state s of
SCMPDS holds [is halting on s.

(36) Let s1, so be states of SCMPDS and I be a Program-block. If
s1|Data-Locseom = so[Data-Locgcon, then if I is closed on sy, then I is
closed on ss.

(37) Let s1, s2 be states of SCMPDS and I be a Program-block. Suppose
s1[Data-Locgenm = so [Data-Locgon. Suppose [is closed on s and halting
on s1. Then I is closed on sy and halting on ss.

(38) For every state s of SCMPDS and for all Program-block I, J holds I is
closed on s iff I is closed on s+- Initialized(.J).

(39) Let I, J be Program-block and s be a state of SCMPDS. Suppose [is
closed on s and halting on s. Then

(i) for every natural number k such that k£ < LifeSpan(s+- Initialized(stop I))
holds IC(Computation(s+-Initialized(stop n))(k) —
IC(Computation(s+- Initialized(stop I3.J)))(k)» and

(ii) (Computation(s+- Initialized(stop I)))(LifeSpan(s—+- Initialized(stop I)))
Data-Locgem = (Computation(s+- Initialized(stop I;J)))(LifeSpan(s+-
Initialized(stop I)))[Data-Locgc-

(40) Let I be a Program-block and k be a natural number. If T is closed
on s and halting on s and k < LifeSpan(s+-Initialized(stop I)), then
IC(Computation(er- Initialized(stop I))) (k) € dom I.

(41) Let I, J be Program-block, s be a state of SCMPDS, and k be a
natural number. Suppose [is closed on s and halting on s and k <
LifeSpan(s+- Initialized(stop I)). Then Curlnstr((Computation(s+-
Initialized(stop I)))(k)) =
Curlnstr((Computation(s+- Initialized(stop I;.J))) (k)).

(42) Let I be a No-StopCode Program-block, s be a state of
SCMPDS, and k£ be a natural number. If [is closed on s
and halting on s and k < LifeSpan(s+-Initialized(stopI)), then
Curlnstr((Computation(s+- Initialized(stop I)))(k)) # haltscumpps.

(43) Let I be a No-StopCode Program-block and s be a state
of SCMPDS. If I is closed on s and halting on s, then

IC(Computation(er- Initialized(stop I)))(LifeSpan(s+- Initialized(stop I))) — inspos card I.

THE CONSTRUCTION AND COMPUTATION OF ... 223

(44) Let I, J be Program-block and s be a state of SCMPDS. Suppose [is
closed on s and halting on s. Then I; Goto(card J + 1);J is halting on s
and I; Goto(card J + 1);J is closed on s.

(45) Let I be a shiftable Program-block. Suppose Initialized(stop I) C s; and
I is closed on s1. Let n be a natural number. Suppose Shift(stop I,n) C s
and IC,) = insposn and s1 [Data-Locgem = s2[Data-Locgom. Let @ be a
natural number. Then IC(Computation(sl))(i) +n = IC(Computation(SQ))(i) and
Curlnstr((Computation(s1))(i)) = Curlnstr((Computation(sy))(i)) and
(Computation(sy))(7) [Data-Locgom = (Computation(ss))(7) [Data-Locgon.

(46) Let s be a state of SCMPDS, I be a No-StopCode Program-block,
and J be a Program-block. If I is closed on s and halting on s, then
ICIExec(I; Goto(card J+1);J,s) — il’lSpOS card] + card J + 1.

(47) Let s be a state of SCMPDS, I be a No-StopCode Program-block,
and J be a Program-block. If I is closed on s and halting on s, then
IExec(I; Goto(card J + 1);J,s) = IExec([,s)+- Start-At(insposcard I +
card J +1).

(48) Let s be a state of SCMPDS and I be a No-StopCode Program-block.
If I is closed on s and halting on s, then ICgyec(7,s) = inspos card I.

3. THE CONSTRUCTION OF CONDITIONAL STATEMENTS

Let a be a Int position, let k be an integer, and let I, J be Program-block.
The functor if @ = k then I else J yielding a Program-block is defined by:

(Def. 4) if a =k then I else J = ((a, k) <> 0_gotocard I + 2);I; Goto(card J +

1);J.
The functor if @ > k then I else J yielding a Program-block is defined by:

(Def. 5) if a > k then I else J = ((a, k) <= 0_gotocard I + 2);I; Goto(card J +

1);J.
The functor if a < k then [else J yielding a Program-block is defined by:

(Def. 6) if a < k then I else J = ((a, k) >= 0_gotocard I + 2);I; Goto(card J +

1);dJ.
Let a be a Int position, let k be an integer, and let I be a Program-block.
The functor if a = 0 then k else I yields a Program-block and is defined as
follows:

(Def. 7) if a =0 then k else I = ((a, k) <> 0_gotocard I + 1);I.

The functor if a # 0 then k else I yielding a Program-block is defined by:

(Def. 8) if a # 0 then k else I = ((a, k) <> 0_goto2);goto (card I + 1);I.

The functor if a > 0 then k else [yielding a Program-block is defined as fol-
lows:

224 JING-CHAO CHEN

(Def. 9) if a > 0 then k else I = ((a, k) <= 0_gotocard I + 1);I.

The functor if a < 0 then k else I yields a Program-block and is defined as
follows:

(Def. 10) if a < 0 then k else I = ((a, k) <= 0_goto2);goto (card I + 1);I.

The functor if a < 0 then k else I yields a Program-block and is defined as
follows:

(Def. 11) if a < 0 then k else I = ((a,k) >= 0_gotocard I + 1);1.

The functor if @ > 0 then k else I yields a Program-block and is defined as
follows:

(Def. 12) if a > 0 then k else I = ((a, k) >= 0_goto2);goto (card I + 1);I.

4. THE COMPUTATION OF ”IF VAR=(0 THEN BLOCK]1 ELSE BLOCK2”

One can prove the following propositions:
(49) card(if a = k; then [else J) = card I + card J + 2.

(50) inspos0 € dom(if a = k; then I else J) and inspos1 € dom(if a =
ki then I else J).

(51) (if @ = k1 then I else J)(inspos0) = (a, k1) <> 0_gotocard I + 2.

(52) Let s be a state of SCMPDS, I, J be shiftable Program-block, a be a
Int position, and k; be an integer. Suppose s(DataLoc(s(a), k1)) = 0 and
I is closed on s and halting on s. Then if a = k1 then [else J is closed
on s and if a = k; then I else J is halting on s.

(53) Let s be a state of SCMPDS, I be a Program-block, J be a shifta-
ble Program-block, a be a Int position, and k; be an integer. Suppose
s(DataLoc(s(a), k1)) # 0 and J is closed on s and halting on s. Then
if a = kq then I else J is closed on s and if a = k; then I else J is
halting on s.

(54) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, J be a shiftable Program-block, a be a Int position, and ki
be an integer. Suppose s(DatalLoc(s(a),k1)) = 0 and I is closed
on s and halting on s. Then IExec(if a = k; then [else J,s) =
IExec(I, s)+- Start-At(inspos card I + card J + 2).

(55) Let s be a state of SCMPDS, I be a Program-block, J be a
No-StopCode shiftable Program-block, a be a Int position, and k;
be an integer. Suppose s(DataLoc(s(a),k1)) # 0 and J is closed
on s and halting on s. Then IExec(if a = k; then [else J,s) =
[Exec(J, s)+- Start-At(inspos card I + card J + 2).

THE CONSTRUCTION AND COMPUTATION OF ... 225

Let I, J be shiftable parahalting Program-block, let a be a Int position,
and let k1 be an integer. Observe that if a = k1 then I else J is shiftable and
parahalting.

Let I, J be No-StopCode Program-block, let a be a Int position, and let &k
be an integer. Note that if a = k; then I else J is No-StopCode.

We now state three propositions:

(56) Let s be a state of SCMPDS, I, J be No-StopCode shiftable para-
halting Program-block, a be a Int position, and k; be an integer. Then
ICIExec(if a=k; then [else J,s) — inspos card I + card J + 2.

(57) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-
ting Program-block, J be a shiftable Program-block, a, b be Int position,
and k1 be an integer. If s(DataLoc(s(a),k1)) = 0, then (IExec(if a =
ki then I else J,s))(b) = (IExec(I,s))(b).

(58) Let s be a state of SCMPDS, I be a Program-block, J be a No-
StopCode parahalting shiftable Program-block, a, b be Int position,
and k1 be an integer. If s(DataLoc(s(a),k1)) # 0, then (IExec(if a =
ki then I else J,s))(b) = (IExec(J,s))(b).

5. THE COMPUTATION OF ”IF VAR=0 THEN BLOCK”

One can prove the following propositions:
59) card(if @ = 0 then k; else I) = card [+ 1.
60) inspos0 € dom(if a = 0 then k; else I).
61) (if a =0 then k; else I)(inspos0) = (a, k1) <> 0_gotocard I + 1.
62) Let s be a state of SCMPDS, I be a shiftable Program-block, a be a Int
position, and k; be an integer. Suppose s(DataLoc(s(a), k1)) = 0 and [is

(
(
(
(

closed on s and halting on s. Then if a = 0 then k; else I is closed on s
and if a = 0 then k; else I is halting on s.

(63) Let s be a state of SCMPDS, I be a Program-block, a be a Int po-
sition, and k; be an integer. If s(DataLoc(s(a),k1)) # 0, then if a =
0 then k; else I is closed on s and if a = 0 then k; else I is halting on
s.

(64) Let s be a state of SCMPDS, I be a No-StopCode shiftable
Program-block, a be a Int position, and k; be an integer. Suppose
s(DataLoc(s(a),k1)) = 0 and I is closed on s and halting on s. Then
IExec(if a = 0 then k; else I, s) = IExec(I, s)+- Start-At(inspos card I+
1).

(65) Let s be a state of SCMPDS, I be a Program-block, a be a Int posi-
tion, and k; be an integer. If s(DataLoc(s(a), k1)) # 0, then IExec(if a =

226 JING-CHAO CHEN

0 then k; else I,s) = s+- Start-At(insposcard I + 1).

Let I be a shiftable parahalting Program-block, let a be a Int position, and
let k1 be an integer. One can verify that if a = 0 then k; else [is shiftable
and parahalting.

Let I be a No-StopCode Program-block, let a be a Int position, and let kq
be an integer. Observe that if a = 0 then k; else I is No-StopCode.

Next we state three propositions:

(66) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-
ting Program-block, a be a Int position, and k; be an integer. Then
ICIExec(if a=0 then k; else I,s) — inspos card [+ 1.

(67) Let s be a state of SCMPDS, I be a No-StopCode shiftable para-
halting Program-block, a, b be Int position, and k; be an integer. If
s(DataLoc(s(a), k1)) = 0, then (IExec(if @ = 0 then k; else I,s))(b) =
(IExec(!, s))(b).

(68) Let s be a state of SCMPDS, I be a Program-block, a, b be Int position,
and ki be an integer. If s(DataLoc(s(a),k1)) # 0, then (IExec(if a =
0 then k; else 1,s))(b) = s(b).

6. THE COMPUTATION OF ”IF VAR< >0 THEN BLOCK”

One can prove the following propositions:

(69) card(if a # 0 then k; else I) = card [+ 2.

(70) inspos0 € dom(if @ # 0 then k; else I) and inspos1 € dom(if a #
0 then k; else I).

(71) (if @ # 0 then k; else I)(inspos0) = (a, k1) <> 0_goto2 and (if a #
0 then k; else I)(inspos 1) = goto (card I + 1).

(72) Let s be a state of SCMPDS, I be a shiftable Program-block, a be a Int
position, and ki be an integer. Suppose s(DatalLoc(s(a), k1)) # 0 and [is
closed on s and halting on s. Then if a # 0 then k; else [is closed on s
and if a # 0 then k; else I is halting on s.

(73) Let s be a state of SCMPDS, I be a Program-block, a be a Int po-
sition, and k; be an integer. If s(DataLoc(s(a),k1)) = 0, then if a #
0 then k; else [is closed on s and if a # 0 then k; else [is halting on
s.

(74) Let s be a state of SCMPDS, I be a No-StopCode shiftable
Program-block, a be a Int position, and k; be an integer. Suppose
s(DataLoc(s(a), k1)) # 0 and I is closed on s and halting on s. Then
IExec(if a # 0 then k; else I, s) = IExec(I, s)+- Start-At(inspos card I+
2).

THE CONSTRUCTION AND COMPUTATION OF ... 227

(75) Let s be a state of SCMPDS, I be a Program-block, a be a Int posi-
tion, and k1 be an integer. If s(DataLoc(s(a), k1)) = 0, then IExec(if a #
0 then k; else I,s) = s+- Start-At(inspos card I + 2).

Let I be a shiftable parahalting Program-block, let a be a Int position,
and let k1 be an integer. Observe that if a # 0 then k; else I is shiftable and
parahalting.

Let I be a No-StopCode Program-block, let a be a Int position, and let k;
be an integer. One can verify that if a # 0 then k; else I is No-StopCode.

One can prove the following three propositions:

(76) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-
ting Program-block, a be a Int position, and k; be an integer. Then

ICIExec(if a#0 then ki else I,s) — inspos card [+ 2.

(77) Let s be a state of SCMPDS, I be a No-StopCode shiftable para-
halting Program-block, a, b be Int position, and ki be an integer. If
s(DataLoc(s(a), k1)) # 0, then (IExec(if a # 0 then k; else I,s))(b) =
(IExec(1,s))(b).

(78) Let s be a state of SCMPDS, I be a Program-block, a, b be Int position,
and k1 be an integer. If s(DataLoc(s(a),k1)) = 0, then (IExec(if a #
0 then k; else I,s))(b) = s(b).

7. THE COMPUTATION OF ”IF VAR>(0 THEN BLOCK1 ELSE BLOCKZ2”

We now state several propositions:
(79) card(if a > ki then I else J) = card I + card J + 2.

(80) inspos0 € dom(if a > k; then I else J) and insposl € dom(if a >
k1 then I else J).

(81) (if a > k; then I else J)(inspos0) = (a, k1) <= 0_gotocard I + 2.

(82) Let s be a state of SCMPDS, I, J be shiftable Program-block, a be a
Int position, and k; be an integer. Suppose s(DataLoc(s(a), k1)) > 0 and
I is closed on s and halting on s. Then if a > k; then [else J is closed
on s and if a > k; then I else J is halting on s.

(83) Let s be a state of SCMPDS, I be a Program-block, J be a shifta-
ble Program-block, a be a Int position, and k; be an integer. Suppose
s(DataLoc(s(a), k1)) < 0 and J is closed on s and halting on s. Then
if a > ky then I else J is closed on s and if a > k; then [else J is
halting on s.

(84) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, J be a shiftable Program-block, a be a Int position, and k;
be an integer. Suppose s(DataLoc(s(a),k1)) > 0 and I is closed

228 JING-CHAO CHEN

on s and halting on s. Then IExec(if a > kj then [else J,s) =
IExec(I, s)+- Start-At(inspos card I + card J + 2).

(85) Let s be a state of SCMPDS, I be a Program-block, J be a
No-StopCode shiftable Program-block, a be a Int position, and k;
be an integer. Suppose s(DataLoc(s(a),k1)) < 0 and J is closed
on s and halting on s. Then IExec(if @ > k; then [else J,s) =
IExec(J, s)+- Start-At(inspos card I + card J + 2).

Let I, J be shiftable parahalting Program-block, let a be a Int position,
and let k1 be an integer. Note that if a > k; then [else J is shiftable and
parahalting.

Let I, J be No-StopCode Program-block, let a be a Int position, and let k;
be an integer. Note that if a > ki then I else J is No-StopCode.

Next we state three propositions:

(86) Let s be a state of SCMPDS, I, J be No-StopCode shiftable para-
halting Program-block, a be a Int position, and k; be an integer. Then
ICIExec(if a>ki then I else J,s) — inspos card I + card J + 2.

(87) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-
ting Program-block, J be a shiftable Program-block, a, b be Int position,
and k1 be an integer. If s(DataLoc(s(a),k1)) > 0, then (IExec(if a >
k1 then I else J,s))(b) = (IExec(I,s))(b).

(88) Let s be a state of SCMPDS, I be a Program-block, J be a No-
StopCode parahalting shiftable Program-block, a, b be Int position,
and k1 be an integer. If s(DataLoc(s(a),k1)) < 0, then (IExec(if a >
k1 then I else J,s))(b) = (IExec(J,s))(b).

8. THE COMPUTATION OF ”IF VAR>(0 THEN BLOCK”

The following propositions are true:

89) card(if a > 0 then k; else I) = card I + 1.

90) inspos0 € dom(if a > 0 then k; else I).

91) (if @ > 0 then k; else I)(inspos0) = (a, k1) <= 0_gotocard I + 1.

92) Let s be a state of SCMPDS, I be a shiftable Program-block, a be a Int
position, and ki be an integer. Suppose s(DataLoc(s(a), k1)) > 0 and [is
closed on s and halting on s. Then if a > 0 then k; else I is closed on s
and if a > 0 then k; else I is halting on s.

(93) Let s be a state of SCMPDS, I be a Program-block, a be a Int po-

sition, and k1 be an integer. If s(DataLoc(s(a),k1)) < 0, then if a >
0 then k£ else I is closed on s and if a > 0 then k; else [is halting on

(
(
(
(

S.

THE CONSTRUCTION AND COMPUTATION OF ... 229

(94) Let s be a state of SCMPDS, I be a No-StopCode shiftable
Program-block, a be a Int position, and k; be an integer. Suppose
s(DataLoc(s(a), k1)) > 0 and I is closed on s and halting on s. Then
IExec(if a > 0 then k; else I, s) = IExec([, s)+- Start-At(inspos card [+
1).

(95) Let s be a state of SCMPDS, I be a Program-block, a be a Int posi-
tion, and k; be an integer. If s(DataLoc(s(a), k1)) < 0, then IExec(if a >
0 then k; else I,s) = s+- Start-At(insposcard I + 1).

Let I be a shiftable parahalting Program-block, let a be a Int position,
and let k1 be an integer. Observe that if ¢ > 0 then k; else I is shiftable and
parahalting.

Let I be a No-StopCode Program-block, let a be a Int position, and let k;
be an integer. Observe that if a > 0 then k; else I is No-StopCode.

The following propositions are true:

(96) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-
ting Program-block, a be a Int position, and k; be an integer. Then
ICiExec(if a>0 then ki else I,s) = insposcard] + 1.

(97) Let s be a state of SCMPDS, I be a No-StopCode shiftable para-
halting Program-block, a, b be Int position, and ki be an integer. If
s(DataLoc(s(a), k1)) > 0, then (IExec(if a > 0 then k; else I,5s))(b) =
(IExec(1, s))(b).

(98) Let s be a state of SCMPDS, I be a Program-block, a, b be Int position,
and k1 be an integer. If s(DataLoc(s(a),k1)) < 0, then (IExec(if a >
0 then k else I,s))(b) = s(b).

9. THE COMPUTATION OF ”IF VAR<=0 THEN BLOCK”

We now state several propositions:
(99) card(if a < 0 then k; else I) = card [+ 2.

(100) inspos0 € dom(if @ < 0 then k; else I) and insposl € dom(if a <
0 then k; else I).

(101) (if @ < 0 then k; else I)(inspos0) = (a, k1) <= 0_goto2 and (if a <
0 then k; else I)(inspos 1) = goto (card I + 1).

(102) Let s be a state of SCMPDS, I be a shiftable Program-block, a be a Int
position, and k; be an integer. Suppose s(DataLoc(s(a), k1)) < 0 and I is
closed on s and halting on s. Then if a < 0 then k; else I is closed on s
and if a < 0 then k; else I is halting on s.

(103) Let s be a state of SCMPDS, I be a Program-block, a be a Int po-
sition, and k1 be an integer. If s(DataLoc(s(a),k1)) > 0, then if a <

230 JING-CHAO CHEN

0 then k; else [is closed on s and if a < 0 then k; else I is halting on
s.

(104) Let s be a state of SCMPDS, I be a No-StopCode shiftable
Program-block, a be a Int position, and k; be an integer. Suppose
s(DataLoc(s(a), k1)) < 0 and I is closed on s and halting on s. Then
IExec(if a < 0 then k; else I, s) = IExec(!, s)+- Start-At(inspos card I+
2).

(105) Let s be a state of SCMPDS, I be a Program-block, a be a Int posi-
tion, and k; be an integer. If s(DataLoc(s(a), k1)) > 0, then IExec(if a <
0 then k; else I,s) = s+- Start-At(inspos card I + 2).

Let I be a shiftable parahalting Program-block, let a be a Int position,
and let k1 be an integer. Observe that if a < 0 then k; else [is shiftable and
parahalting.

Let I be a No-StopCode Program-block, let a be a Int position, and let k;
be an integer. Note that if a < 0 then k; else I is No-StopCode.

We now state three propositions:

(106) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-
ting Program-block, a be a Int position, and k; be an integer. Then
ICIExec(if a<0 then k; else I,s) — inspos card [+ 2.

(107) Let s be a state of SCMPDS, I be a No-StopCode shiftable para-
halting Program-block, a, b be Int position, and ki be an integer. If
s(DataLoc(s(a), k1)) < 0, then (IExec(if a < 0 then k; else I,3s))(b) =
(IExec(I, s))(b).

(108) Let s be a state of SCMPDS, I be a Program-block, a, b be Int position,
and k; be an integer. If s(DataLoc(s(a),k1)) > 0, then (IExec(if a <
0 then k; else 1,s))(b) = s(b).

10. THE COMPUTATION OF ”IF VAR<(O THEN BLOCK1 ELSE BLOCK2”

One can prove the following propositions:

(109) card(if a < k; then [else J) = card [+ card J + 2.

(110) inspos0 € dom(if a < ki then I else J) and inspos1 € dom(if a <
ki then I else J).

(111) (if @ < k1 then I else J)(inspos0) = (a, k1) >= 0_gotocard I + 2.

(112) Let s be a state of SCMPDS, I, J be shiftable Program-block, a be a
Int position, and k; be an integer. Suppose s(DataLoc(s(a), k1)) < 0 and
I is closed on s and halting on s. Then if a < ki then I else J is closed
on s and if a < k; then I else J is halting on s.

THE CONSTRUCTION AND COMPUTATION OF ... 231

(113) Let s be a state of SCMPDS, I be a Program-block, J be a shifta-
ble Program-block, a be a Int position, and ki be an integer. Suppose
s(DataLoc(s(a), k1)) > 0 and J is closed on s and halting on s. Then
if a < kq then I else J is closed on s and if a < k; then I else J is
halting on s.

(114) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, J be a shiftable Program-block, a be a Int position, and k;
be an integer. Suppose s(DatalLoc(s(a),k1)) < 0 and I is closed
on s and halting on s. Then IExec(if @ < k; then [else J,s) =
IExec(I, s)+- Start-At(inspos card [+ card J + 2).

(115) Let s be a state of SCMPDS, I be a Program-block, J be a
No-StopCode shiftable Program-block, a be a Int position, and k;
be an integer. Suppose s(DataLoc(s(a),k1)) > 0 and J is closed
on s and halting on s. Then IExec(if a < ki then [else J,s) =
IExec(.J, s)+- Start-At(inspos card I + card J + 2).

Let I, J be shiftable parahalting Program-block, let a be a Int position,
and let k1 be an integer. Observe that if a < k1 then I else J is shiftable and
parahalting.

Let I, J be No-StopCode Program-block, let a be a Int position, and let kq
be an integer. Note that if a < ki then I else J is No-StopCode.

Next we state three propositions:

(116) Let s be a state of SCMPDS, I, J be No-StopCode shiftable para-
halting Program-block, a be a Int position, and k; be an integer. Then
ICIExec(if a<kp then I else J,s) — inspos card I + card J + 2.

(117) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-
ting Program-block, J be a shiftable Program-block, a, b be Int position,
and k1 be an integer. If s(DataLoc(s(a), k1)) < 0, then (IExec(if a <
k1 then I else J, s))(b) = (IExec(Z,s))(b).

(118) Let s be a state of SCMPDS, I be a Program-block, J be a No-
StopCode parahalting shiftable Program-block, a, b be Int position,
and k1 be an integer. If s(DataLoc(s(a),k1)) > 0, then (IExec(if a <
k1 then I else J,s))(b) = (IExec(J,s))(b).

11. THE COMPUTATION OF "IF VAR<(Q THEN BLOCK”

One can prove the following propositions:
(119) card(if a < 0 then k; else I) = card I + 1.
(120) inspos0 € dom(if a < 0 then k; else I).
(121) (if a < 0 then k; else I)(inspos0) = (a, k1) >= 0_gotocard I + 1.

232 JING-CHAO CHEN

(122) Let s be a state of SCMPDS, I be a shiftable Program-block, a be a Int
position, and k; be an integer. Suppose s(DataLoc(s(a), k1)) < 0 and I is
closed on s and halting on s. Then if a < 0 then k; else [is closed on s
and if a < 0 then k; else [is halting on s.

(123) Let s be a state of SCMPDS, I be a Program-block, a be a Int po-
sition, and k1 be an integer. If s(DataLoc(s(a),k1)) > 0, then if a <
0 then k; else I is closed on s and if a < 0 then k; else I is halting on
s.

(124) Let s be a state of SCMPDS, I be a No-StopCode shiftable
Program-block, a be a Int position, and k; be an integer. Suppose
s(DataLoc(s(a), k1)) < 0 and I is closed on s and halting on s. Then
IExec(if a < 0 then k; else I, s) = IExec([, s)+- Start-At(inspos card [+
1).

(125) Let s be a state of SCMPDS, I be a Program-block, a be a Int posi-
tion, and k1 be an integer. If s(DataLoc(s(a), k1)) > 0, then IExec(if a <
0 then k; else I,s) = s+ Start-At(insposcard I + 1).

Let I be a shiftable parahalting Program-block, let a be a Int position,
and let k1 be an integer. Note that if a < 0 then k; else I is shiftable and
parahalting.

Let I be a No-StopCode Program-block, let a be a Int position, and let k;
be an integer. One can check that if a < 0 then k; else I is No-StopCode.

Next we state three propositions:

(126) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-
ting Program-block, a be a Int position, and k; be an integer. Then
ICiExec(if a<0 then k; else I,s) = insposcard] + 1.

(127) Let s be a state of SCMPDS, I be a No-StopCode shiftable para-
halting Program-block, a, b be Int position, and ki be an integer. If
s(Dataloc(s(a), k1)) < 0, then (IExec(if a < 0 then k; else I,s))(b) =
(IExec(I, s))(b).

(128) Let s be a state of SCMPDS, I be a Program-block, a, b be Int position,
and k1 be an integer. If s(DataLoc(s(a),k1)) > 0, then (IExec(if a <
0 then k; else I,s))(b) = s(b).

12. THE COMPUTATION OF ”IF VAR>=(0 THEN BLOCK”

The following propositions are true:
(129) card(if a > 0 then k; else I) = card I + 2.

(130) inspos0 € dom(if @ > 0 then k; else I) and inspos1 € dom(if a >
0 then k; else I).

THE CONSTRUCTION AND COMPUTATION OF ...

(131) (if @ > 0 then k; else I)(inspos0) = (a, k1) >= 0_goto2 and (if a >
0 then k; else I)(inspos 1) = goto (card I + 1).

(132) Let s be a state of SCMPDS, I be a shiftable Program-block, a be a Int
position, and k; be an integer. Suppose s(DataLoc(s(a), k1)) > 0 and [is
closed on s and halting on s. Then if a > 0 then k; else [is closed on s
and if a > 0 then k; else [is halting on s.

(133) Let s be a state of SCMPDS, I be a Program-block, a be a Int po-
sition, and k; be an integer. If s(DataLoc(s(a),k1)) < 0, then if a >
0 then k; else [is closed on s and if a > 0 then k; else I is halting on
s.

(134) Let s be a state of SCMPDS, I be a No-StopCode shiftable
Program-block, a be a Int position, and k; be an integer. Suppose
s(DataLoc(s(a), k1)) > 0 and I is closed on s and halting on s. Then
IExec(if @ > 0 then k; else I, s) = IExec(, s)+- Start-At(inspos card I+
2).

(135) Let s be a state of SCMPDS, I be a Program-block, a be a Int posi-
tion, and k; be an integer. If s(DataLoc(s(a), k1)) < 0, then IExec(if a >
0 then k; else I,s) = s+- Start-At(inspos card I + 2).

Let I be a shiftable parahalting Program-block, let a be a Int position,
and let k1 be an integer. Note that if a > 0 then k; else I is shiftable and
parahalting.

Let I be a No-StopCode Program-block, let a be a Int position, and let k;
be an integer. Observe that if a > 0 then k; else I is No-StopCode.

We now state three propositions:

(136) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-
ting Program-block, a be a Int position, and k; be an integer. Then
ICIExec(if a>0 then k; else I,s) — inspos card I + 2.

(137) Let s be a state of SCMPDS, I be a No-StopCode shiftable para-
halting Program-block, a, b be Int position, and ki be an integer. If
s(DataLoc(s(a), k1)) > 0, then (IExec(if a > 0 then k; else I,s))(b) =
(IExec(1, s))(b).

(138) Let s be a state of SCMPDS, I be a Program-block, a, b be Int position,
and k1 be an integer. If s(DataLoc(s(a),k1)) < 0, then (IExec(if a >
0 then k; else I,s))(b) = s(b).

REFERENCES

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

[3] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Formalized
Mathematics, 4(1):61-67, 1993.

233

JING-CHAO CHEN

Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485-492, 1996.

Czestaw Byliniski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.

Czestaw Bylinski. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521-527, 1990.

Jing-Chao Chen. Computation and program shift in the SCMPDS computer. Formalized
Mathematics, 8(1):193-199, 1999.

Jing-Chao Chen. Computation of two consecutive program blocks for SCMPDS. Forma-
lized Mathematics, 8(1):211-217, 1999.

Jing-Chao Chen. The construction and shiftability of program blocks for SCMPDS.
Formalized Mathematics, 8(1):201-210, 1999.

Jing-Chao Chen. The SCMPDS computer and the basic semantics of its instructions.
Formalized Mathematics, 8(1):183-191, 1999.

Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.

Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151-160, 1992.

Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241-250, 1992.

Jan Popiotek. Some properties of functions modul and signum. Formalized Mathematics,
1(2):263-264, 1990.

Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1-8, 1996.

Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,

1990.
Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51-56, 1993.

Michat J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

Zinaida Trybulec and Halina SWchzkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17-23, 1990.

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

Received June 15, 1999

