
FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Bounded Domains and Unbounded Domains

Yatsuka Nakamura
Shinshu University

Nagano

Andrzej Trybulec
University of Białystok

Czesław Byliński
University of Białystok

Summary. First, notions of inside components and outside components
are introduced for any subset of n-dimensional Euclid space. Next, notions of
the bounded domain and the unbounded domain are defined using the above
components. If the dimension is larger than 1, and if a subset is bounded, a
unbounded domain of the subset coincides with an outside component (which is
unique) of the subset. For a sphare in n-dimensional space, the similar fact is
true for a bounded domain. In 2 dimensional space, any rectangle also has such
property. We discussed relations between the Jordan property and the concept
of boundary, which are necessary to find points in domains near a curve. In the
last part, we gave the sufficient criterion for belonging to the left component of
some clockwise oriented finite sequences.

MML Identifier: JORDAN2C.

The articles [44], [51], [12], [50], [53], [9], [10], [7], [22], [2], [1], [40], [54], [16],
[27], [15], [24], [5], [38], [39], [20], [35], [32], [18], [42], [3], [8], [49], [46], [41], [21],
[4], [26], [34], [37], [43], [6], [30], [52], [11], [25], [13], [17], [33], [14], [48], [47],
[19], [23], [28], [29], [36], [45], and [31] provide the notation and terminology for
this paper.

1. Definitions of Bounded Domain and Unbounded Domain

We follow the rules: m, n are natural numbers, r, s are real numbers, and
x, y are sets.

The following propositions are true:

1
c© 1999 University of Białystok

ISSN 1426–2630

2 yatsuka nakamura et al.

(1) If r ¬ 0, then |r| = −r.

(2) For all n, m such that n ¬ m and m ¬ n + 2 holds m = n or m = n + 1
or m = n + 2.

(3) For all n, m such that n ¬ m and m ¬ n + 3 holds m = n or m = n + 1
or m = n + 2 or m = n + 3.

(4) For all n, m such that n ¬ m and m ¬ n + 4 holds m = n or m = n + 1
or m = n + 2 or m = n + 3 or m = n + 4.

(5) For all real numbers a, b such that a ­ 0 and b ­ 0 holds a + b ­ 0.

(6) For all real numbers a, b such that a > 0 and b ­ 0 or a ­ 0 and b > 0
holds a + b > 0.

(7) For every finite sequence f such that rng f = {x, y} and len f = 2 holds
f(1) = x and f(2) = y or f(1) = y and f(2) = x.

(8) Let f be an increasing finite sequence of elements of R. If rng f = {r, s}
and len f = 2 and r ¬ s, then f(1) = r and f(2) = s.

In the sequel p, p1, p2, p3, q, q1, q2 denote points of En
T.

We now state several propositions:

(9) (p1 + p2)− p3 = (p1 − p3) + p2.

(10) ||q|| = |q|.
(11) ||q1| − |q2|| ¬ |q1 − q2|.
(12) ||[r]|| = |r|.
(13) q − 0En

T
= q and 0En

T
− q = −q.

Let us consider n and let P be a subset of En
T. We say that P is n-convex if

and only if:

(Def. 1) For all points w1, w2 of En
T such that w1 ∈ P and w2 ∈ P holds

L(w1, w2) ⊆ P.

The following propositions are true:

(14) For every non empty subset P of En
T such that P is n-convex holds P is

connected.

(15) Let G be a non empty topological space, P be a subset of G, A be a
subset of the carrier of G, and Q be a subset of G¹A. If P 6= ∅ and P = Q

and P is connected, then Q is connected.

Let us consider n and let A be a subset of En
T. We say that A is Bounded if

and only if:

(Def. 2) There exists a subset C of the carrier of En such that C = A and C is
bounded.

One can prove the following proposition

(16) For all subsets A, B of En
T such that B is Bounded and A ⊆ B holds A

is Bounded.

bounded domains and unbounded domains 3

Let us consider n, let A be a subset of the carrier of En
T, and let B be a

subset of En
T. We say that B is inside component of A if and only if:

(Def. 3) B is a component of Ac and Bounded.

Next we state the proposition

(17) Let A be a subset of the carrier of En
T and B be a subset of En

T. Then B

is inside component of A if and only if there exists a subset C of (En
T)¹Ac

such that C = B and C is a component of (En
T)¹Ac and for every subset

D of the carrier of En such that D = C holds D is bounded.

Let us consider n, let A be a subset of the carrier of En
T, and let B be a

subset of En
T. We say that B is outside component of A if and only if:

(Def. 4) B is a component of Ac and B is not Bounded.

Next we state three propositions:

(18) Let A be a subset of the carrier of En
T and B be a subset of En

T. Then B

is outside component of A if and only if there exists a subset C of (En
T)¹Ac

such that C = B and C is a component of (En
T)¹Ac and it is not true

that for every subset D of the carrier of En such that D = C holds D is
bounded.

(19) For all subsets A, B of En
T such that B is inside component of A holds

B ⊆ Ac.

(20) For all subsets A, B of En
T such that B is outside component of A holds

B ⊆ Ac.

Let us consider n and let A be a subset of the carrier of En
T. The functor

BDD A yields a subset of En
T and is defined by:

(Def. 5) BDD A =
⋃{B; B ranges over subsets of En

T: B is inside component of
A}.

Let us consider n and let A be a subset of the carrier of En
T. The functor

UBD A yielding a subset of En
T is defined by:

(Def. 6) UBD A =
⋃{B; B ranges over subsets of En

T: B is outside component of
A}.

One can prove the following propositions:

(21) ΩEn
T

is n-convex.

(22) ΩEn
T

is connected.

Let us consider n. One can check that ΩEn
T

is connected.
We now state several propositions:

(23) ΩEn
T

is a component of En
T.

(24) For every subset A of the carrier of En
T holds BDD A is a union of com-

ponents of (En
T)¹Ac.

(25) For every subset A of the carrier of En
T holds UBD A is a union of com-

ponents of (En
T)¹Ac.

4 yatsuka nakamura et al.

(26) Let A be a subset of the carrier of En
T and B be a subset of En

T. If B is
inside component of A, then B ⊆ BDD A.

(27) Let A be a subset of the carrier of En
T and B be a subset of En

T. If B is
outside component of A, then B ⊆ UBD A.

(28) For every subset A of the carrier of En
T holds BDD A ∩UBD A = ∅.

(29) For every subset A of the carrier of En
T holds BDD A ⊆ Ac.

(30) For every subset A of the carrier of En
T holds UBD A ⊆ Ac.

(31) For every subset A of the carrier of En
T holds BDD A ∪UBD A = Ac.

In the sequel u is a point of En.
One can prove the following propositions:

(32) Let G be a non empty topological space, w1, w2, w3 be points of G,
h1 be a map from I into G, and h2 be a map from I into G. Suppose
h1 is continuous and w1 = h1(0) and w2 = h1(1) and h2 is continuous
and w2 = h2(0) and w3 = h2(1). Then there exists a map h3 from I
into G such that h3 is continuous and w1 = h3(0) and w3 = h3(1) and
rng h3 ⊆ rng h1 ∪ rng h2.

(33) For every subset P of En
T such that P = Rn holds P is connected.

Let us consider n. The functor 1 ∗n yielding a finite sequence of elements of
R is defined by:

(Def. 7) 1 ∗ n = n 7→ (1 qua real number).

Let us consider n. Then 1 ∗ n is an element of Rn.
Let us consider n. The functor 1.REAL n yielding a point of En

T is defined
by:

(Def. 8) 1.REAL n = 1 ∗ n.

One can prove the following propositions:

(34) |1 ∗ n| = n 7→ (1 qua real number).

(35) |1 ∗ n| = √n.

(36) 1.REAL 1 = 〈(1 qua real number)〉.
(37) | 1.REAL n| = √n.

(38) If 1 ¬ n, then 1 ¬ | 1.REAL n|.
(39) For every subset W of the carrier of En such that n ­ 1 and W = Rn

holds W is not bounded.

(40) Let A be a subset of En
T. Then A is Bounded if and only if there exists

a real number r such that for every point q of En
T such that q ∈ A holds

|q| < r.

(41) If n ­ 1, then ΩEn
T

is not Bounded.

(42) If n ­ 1, then UBD ∅En
T

= Rn.

bounded domains and unbounded domains 5

(43) Let w1, w2, w3 be points of En
T, P be a non empty subset of the carrier

of En
T, and h1, h2 be maps from I into (En

T)¹P. Suppose h1 is continuous
and w1 = h1(0) and w2 = h1(1) and h2 is continuous and w2 = h2(0) and
w3 = h2(1). Then there exists a map h3 from I into (En

T)¹P such that h3

is continuous and w1 = h3(0) and w3 = h3(1).

(44) Let P be a subset of the carrier of En
T and w1, w2, w3 be points of

En
T. Suppose w1 ∈ P and w2 ∈ P and w3 ∈ P and L(w1, w2) ⊆ P and
L(w2, w3) ⊆ P. Then there exists a map h from I into (En

T)¹P such that h

is continuous and w1 = h(0) and w3 = h(1).

(45) Let P be a subset of the carrier of En
T and w1, w2, w3, w4 be points of En

T.
Suppose w1 ∈ P and w2 ∈ P and w3 ∈ P and w4 ∈ P and L(w1, w2) ⊆ P

and L(w2, w3) ⊆ P and L(w3, w4) ⊆ P. Then there exists a map h from I
into (En

T)¹P such that h is continuous and w1 = h(0) and w4 = h(1).

(46) Let P be a subset of the carrier of En
T and w1, w2, w3, w4, w5, w6,

w7 be points of En
T. Suppose w1 ∈ P and w2 ∈ P and w3 ∈ P and

w4 ∈ P and w5 ∈ P and w6 ∈ P and w7 ∈ P and L(w1, w2) ⊆ P and
L(w2, w3) ⊆ P and L(w3, w4) ⊆ P and L(w4, w5) ⊆ P and L(w5, w6) ⊆ P

and L(w6, w7) ⊆ P. Then there exists a map h from I into (En
T)¹P such

that h is continuous and w1 = h(0) and w7 = h(1).

(47) For all points w1, w2 of En
T such that it is not true that there exists a

real number r such that w1 = r ·w2 or w2 = r ·w1 holds 0En
T

/∈ L(w1, w2).

(48) Let w1, w2 be points of En
T and P be a subset of (En)top. Suppose P =

L(w1, w2) and 0En
T

/∈ L(w1, w2). Then there exists a point w0 of En
T such

that w0 ∈ L(w1, w2) and |w0| > 0 and |w0| = (distmin(P))(0En
T
).

(49) Let a be a real number, Q be a subset of the carrier of En
T, and w1, w4

be points of En
T. Suppose Q = {q : |q| > a} and w1 ∈ Q and w4 ∈ Q and

it is not true that there exists a real number r such that w1 = r · w4 or
w4 = r · w1. Then there exist points w2, w3 of En

T such that w2 ∈ Q and
w3 ∈ Q and L(w1, w2) ⊆ Q and L(w2, w3) ⊆ Q and L(w3, w4) ⊆ Q.

(50) Let a be a real number, Q be a subset of the carrier of En
T, and w1, w4

be points of En
T. Suppose Q = Rn \ {q : |q| < a} and w1 ∈ Q and w4 ∈ Q

and it is not true that there exists a real number r such that w1 = r · w4

or w4 = r ·w1. Then there exist points w2, w3 of En
T such that w2 ∈ Q and

w3 ∈ Q and L(w1, w2) ⊆ Q and L(w2, w3) ⊆ Q and L(w3, w4) ⊆ Q.

(51) Let x be an element of Rn. Then x is a finite sequence of elements of R
and for every finite sequence f such that f = x holds len f = n.

(52) Every finite sequence f of elements of R is an element of Rlen f and a
point of E len f

T .

(53) Let x be an element of Rn, f , g be finite sequences of elements of R, and
r be a real number. Suppose f = x and g = r ·x. Then len f = len g and for

6 yatsuka nakamura et al.

every natural number i such that 1 ¬ i and i ¬ len f holds πig = r · πif.

(54) Let x be an element of Rn and f be a finite sequence. Suppose x 6=
〈0, . . . , 0︸ ︷︷ ︸

n

〉 and x = f. Then there exists a natural number i such that 1 ¬ i

and i ¬ n and f(i) 6= 0.

(55) Let x be an element of Rn. Suppose n ­ 2 and x 6= 〈0, . . . , 0︸ ︷︷ ︸
n

〉. Then it

is not true that there exists an element y of Rn and there exists a real
number r such that y = r · x or x = r · y.

(56) Let a be a real number, Q be a subset of the carrier of En
T, and w1, w7 be

points of En
T. Suppose n ­ 2 and Q = {q : |q| > a} and w1 ∈ Q and w7 ∈ Q

and there exists a real number r such that w1 = r · w7 or w7 = r · w1.

Then there exist points w2, w3, w4, w5, w6 of En
T such that w2 ∈ Q and

w3 ∈ Q and w4 ∈ Q and w5 ∈ Q and w6 ∈ Q and L(w1, w2) ⊆ Q and
L(w2, w3) ⊆ Q and L(w3, w4) ⊆ Q and L(w4, w5) ⊆ Q and L(w5, w6) ⊆ Q

and L(w6, w7) ⊆ Q.

(57) Let a be a real number, Q be a subset of the carrier of En
T, and w1, w7 be

points of En
T. Suppose n ­ 2 and Q = Rn \ {q : |q| < a} and w1 ∈ Q and

w7 ∈ Q and there exists a real number r such that w1 = r·w7 or w7 = r·w1.

Then there exist points w2, w3, w4, w5, w6 of En
T such that w2 ∈ Q and

w3 ∈ Q and w4 ∈ Q and w5 ∈ Q and w6 ∈ Q and L(w1, w2) ⊆ Q and
L(w2, w3) ⊆ Q and L(w3, w4) ⊆ Q and L(w4, w5) ⊆ Q and L(w5, w6) ⊆ Q

and L(w6, w7) ⊆ Q.

(58) For every real number a such that n ­ 1 holds {q : |q| > a} 6= ∅.
(59) For every real number a and for every subset P of En

T such that n ­ 2
and P = {q : |q| > a} holds P is connected.

(60) For every real number a such that n ­ 1 holds Rn \ {q : |q| < a} 6= ∅.
(61) For every real number a and for every subset P of En

T such that n ­ 2
and P = Rn \ {q : |q| < a} holds P is connected.

(62) Let a be a real number, n be a natural number, and P be a subset of
En

T. If n ­ 1 and P = Rn \ {q; q ranges over points of En
T: |q| < a}, then P

is not Bounded.

(63) Let a be a real number and P be a subset of E1
T. Suppose P = {q; q

ranges over points of E1
T:

∨
r (q = 〈r〉 ∧ r > a)}. Then P is n-convex.

(64) Let a be a real number and P be a subset of E1
T. Suppose P = {q; q

ranges over points of E1
T:

∨
r (q = 〈r〉 ∧ r < −a)}. Then P is n-convex.

(65) Let a be a real number and P be a subset of E1
T. Suppose P = {q; q

ranges over points of E1
T:

∨
r (q = 〈r〉 ∧ r > a)}. Then P is connected.

(66) Let a be a real number and P be a subset of E1
T. Suppose P = {q; q

ranges over points of E1
T:

∨
r (q = 〈r〉 ∧ r < −a)}. Then P is connected.

bounded domains and unbounded domains 7

(67) Let W be a subset of the carrier of E1, a be a real number, and P be
a subset of E1

T. Suppose W = {q; q ranges over points of E1
T:

∨
r (q =

〈r〉 ∧ r > a)} and P = W. Then P is connected and W is not bounded.

(68) Let W be a subset of the carrier of E1, a be a real number, and P be
a subset of E1

T. Suppose W = {q; q ranges over points of E1
T:

∨
r (q =

〈r〉 ∧ r < −a)} and P = W. Then P is connected and W is not bounded.

(69) Let W be a subset of the carrier of En, a be a real number, and P be
a subset of En

T. If n ­ 2 and W = {q : |q| > a} and P = W, then P is
connected and W is not bounded.

(70) Let W be a subset of the carrier of En, a be a real number, and P be a
subset of En

T. If n ­ 2 and W = Rn \ {q : |q| < a} and P = W, then P is
connected and W is not bounded.

(71) Let P , P1 be subsets of En
T, Q be a subset of the carrier of En

T, and W

be a subset of the carrier of En. Suppose P = W and P is connected and
W is not bounded and P1 = Component(Down(P, Qc)) and W ∩ Q = ∅.
Then P1 is outside component of Q.

Let S be a 1-sorted structure and let A be a subset of the carrier of S. The
functor RAC A yields a subset of S and is defined as follows:

(Def. 9) RAC A = A.

The following propositions are true:

(72) Let A be a subset of the carrier of En, B be a non empty subset of the
carrier of En, and C be a subset of the carrier of En¹B. If A ⊆ B and
A = C and C is bounded, then A is bounded.

(73) For every subset A of En
T such that A is compact holds A is Bounded.

(74) For every subset A of En
T such that 1 ¬ n and A is Bounded holds Ac 6= ∅.

(75) Let r be a real number. Then
(i) there exists a subset B of the carrier of En such that B = {q : |q| < r},

and
(ii) for every subset A of the carrier of En such that A = {q1 : |q1| < r}

holds A is bounded.

(76) Let A be a subset of En
T. Suppose n ­ 2 and A is Bounded. Then there

exists a subset B of En
T such that B is outside component of A and B =

UBD A.

(77) For every real number a and for every subset P of En
T such that P = {q :

|q| < a} holds P is n-convex.

(78) For every real number a and for every subset P of En
T such that P =

Ball(u, a) holds P is n-convex.

(79) For every real number a and for every subset P of En
T such that a > 0

and P = {q : |q| < a} holds P is connected.

8 yatsuka nakamura et al.

In the sequel R denotes a subset of En
T, P denotes a subset of the carrier of

En
T, and f denotes a finite sequence of elements of En

T.
Next we state a number of propositions:

(80) Suppose p 6= q and p ∈ Ball(u, r) and q ∈ Ball(u, r). Then there exists a
map h from I into En

T such that h is continuous and h(0) = p and h(1) = q

and rng h ⊆ Ball(u, r).

(81) Let f be a map from I into En
T. Suppose f is continuous and f(0) = p1

and f(1) = p2 and p ∈ Ball(u, r) and p2 ∈ Ball(u, r). Then there exists a
map h from I into En

T such that h is continuous and h(0) = p1 and h(1) = p

and rng h ⊆ rng f ∪ Ball(u, r).

(82) Let f be a map from I into En
T. Suppose p 6= p1 and f is continuous

and rng f ⊆ P and f(0) = p1 and f(1) = p2 and p ∈ Ball(u, r) and
p2 ∈ Ball(u, r) and Ball(u, r) ⊆ P. Then there exists a map f1 from I
into En

T such that f1 is continuous and rng f1 ⊆ P and f1(0) = p1 and
f1(1) = p.

(83) Let given p and P be a subset of En
T. Suppose that

(i) R is connected and open, and
(ii) P = {q : q 6= p ∧ q ∈ R ∧ ¬∨

f : map from I into En
T

(f is
continuous ∧ rng f ⊆ R ∧ f(0) = p ∧ f(1) = q)}.
Then P is open.

(84) Let P be a subset of En
T. Suppose that

(i) R is connected and open,
(ii) p ∈ R, and
(iii) P = {q : q = p ∨ ∨

f : map from I into En
T

(f is continuous ∧ rng f ⊆
R ∧ f(0) = p ∧ f(1) = q)}.
Then P is open.

(85) Let R be a subset of the carrier of En
T. Suppose p ∈ R and P = {q :

q = p ∨ ∨
f : map from I into En

T
(f is continuous ∧ rng f ⊆ R ∧ f(0) =

p ∧ f(1) = q)}. Then P ⊆ R.

(86) Let R be a subset of En
T and p be a point of En

T. Suppose that
(i) R is connected and open,
(ii) p ∈ R, and
(iii) P = {q : q = p ∨ ∨

f : map from I into En
T

(f is continuous ∧ rng f ⊆
R ∧ f(0) = p ∧ f(1) = q)}.
Then R ⊆ P.

(87) Let R be a subset of En
T and p, q be points of En

T. Suppose R is connected
and open and p ∈ R and q ∈ R and p 6= q. Then there exists a map f

from I into En
T such that f is continuous and rng f ⊆ R and f(0) = p and

f(1) = q.

bounded domains and unbounded domains 9

(88) For every subset A of En
T and for every real number a such that A = {q :

|q| = a} holds −A is open and A is closed.

(89) For every non empty subset B of En
T such that B is open holds (En

T)¹B
is locally connected.

(90) Let B be a non empty subset of the carrier of En
T, A be a subset of the

carrier of En
T, and a be a real number. If A = {q : |q| = a} and Ac = B,

then (En
T)¹B is locally connected.

(91) For every map f from En
T into R1 such that for every q holds f(q) = |q|

holds f is continuous.

(92) There exists a map f from En
T into R1 such that for every q holds f(q) =

|q| and f is continuous.

Let X, Y be non empty 1-sorted structures, let f be a map from X into
Y , and let x be a set. Let us assume that x is a point of X. The functor πxf

yielding a point of Y is defined as follows:

(Def. 10) πxf = f(x).
We now state four propositions:

(93) Let g be a map from I into En
T. Suppose g is continuous. Then there exists

a map f from I into R1 such that for every point t of I holds f(t) = |g(t)|
and f is continuous.

(94) Let g be a map from I into En
T and a be a real number. Suppose g is

continuous and |π0g| ¬ a and a ¬ |π1g|. Then there exists a point s of I
such that |πsg| = a.

(95) If q = 〈r〉, then |q| = |r|.
(96) Let A be a subset of the carrier of En

T and a be a real number. Suppose
n ­ 1 and a > 0 and A = {q : |q| = a}. Then there exists a subset B of
En

T such that B is inside component of A and B = BDD A.

2. Bounded and Unbounded Domains of Rectangles

In the sequel D is a non vertical non horizontal non empty compact subset
of E2

T.
Next we state several propositions:

(97) len the Go-board of SpStSeq D = 2 and width the Go-board of
SpStSeq D = 2 and π1 SpStSeq D = (the Go-board of SpStSeq D)1,2

and π2 SpStSeq D = (the Go-board of SpStSeq D)2,2 and π3 SpStSeq D =
(the Go-board of SpStSeq D)2,1 and π4 SpStSeq D = (the Go-board of
SpStSeq D)1,1 and π5 SpStSeq D = (the Go-board of SpStSeq D)1,2.

(98) LeftComp(SpStSeq D) is not Bounded.

10 yatsuka nakamura et al.

(99) LeftComp(SpStSeq D) ⊆ UBD L̃(SpStSeq D).
(100) Let G be a topological space and A, B, C be subsets of G. Suppose A

is a component of G and B is a component of G and C is connected and
A ∩ C 6= ∅ and B ∩ C 6= ∅. Then A = B.

(101) For every subset B of E2
T such that B is a component of (L̃(SpStSeq D))c

and B is not Bounded holds B = LeftComp(SpStSeq D).
(102) RightComp(SpStSeq D) ⊆ BDD L̃(SpStSeq D) and

RightComp(SpStSeq D) is Bounded.

(103) LeftComp(SpStSeq D) = UBD L̃(SpStSeq D) and
RightComp(SpStSeq D) = BDD L̃(SpStSeq D).

(104) UBD L̃(SpStSeq D) 6= ∅ and UBD L̃(SpStSeq D) is outside component
of L̃(SpStSeq D) and BDD L̃(SpStSeq D) 6= ∅ and BDD L̃(SpStSeq D) is
inside component of L̃(SpStSeq D).

3. Jordan Property and Boundary Property

One can prove the following propositions:

(105) Let G be a non empty topological space and A be a subset of G. Suppose
Ac 6= ∅. Then A is boundary if and only if for every set x and for every
subset V of G such that x ∈ A and x ∈ V and V is open there exists
a subset B of the carrier of G such that B is a component of Ac and
V ∩B 6= ∅.

(106) Let A be a subset of E2
T. Suppose Ac 6= ∅. Then A is boundary and Jordan

if and only if there exist subsets A1, A2 of E2
T such that Ac = A1 ∪A2 and

A1∩A2 = ∅ and A1 \A1 = A2 \A2 and A = A1 \A1 and for all subsets C1,
C2 of (E2

T)¹Ac such that C1 = A1 and C2 = A2 holds C1 is a component
of (E2

T)¹Ac and C2 is a component of (E2
T)¹Ac.

(107) For every point p of En
T and for every subset P of En

T such that n ­ 1
and P = {p} holds P is boundary.

(108) For all points p, q of E2
T and for every r such that p1 = q2 and −p2 = q1

and p = r · q holds p1 = 0 and p2 = 0 and p = 0E2T .

(109) For all points q1, q2 of E2
T holds L(q1, q2) is boundary.

Let q1, q2 be points of E2
T. Observe that L(q1, q2) is boundary.

One can prove the following proposition

(110) For every finite sequence f of elements of E2
T holds L̃(f) is boundary.

Let f be a finite sequence of elements of E2
T. Note that L̃(f) is boundary.

We now state several propositions:

bounded domains and unbounded domains 11

(111) For every point e1 of En and for all points p, q of En
T such that p = e1

and q ∈ Ball(e1, r) holds |p− q| < r and |q − p| < r.

(112) Let a be a real number and p be a point of E2
T. Suppose a > 0

and p ∈ L̃(SpStSeq D). Then there exists a point q of E2
T such that

q ∈ UBD L̃(SpStSeq D) and |p− q| < a.

(113) R0 = {0E0T}.
(114) For every subset A of En

T such that A is Bounded holds BDD A is Boun-
ded.

(115) Let G be a non empty topological space and A, B, C, D be subsets of
G. Suppose A is a component of G and B is a component of G and C is
a component of G and A ∪ B = the carrier of G and C ∩ A = ∅. Then
C = B.

(116) For every subset A of E2
T such that A is Bounded and Jordan holds

BDD A is inside component of A.

(117) Let a be a real number and p be a point of E2
T. Suppose a > 0

and p ∈ L̃(SpStSeq D). Then there exists a point q of E2
T such that

q ∈ BDD L̃(SpStSeq D) and |p− q| < a.

4. Points in LeftComp

In the sequel f denotes a clockwise oriented non constant standard special
circular sequence.

Next we state four propositions:

(118) For every point p of E2
T such that π1f = N-min L̃(f) and p1 <

W-bound L̃(f) holds p ∈ LeftComp(f).
(119) For every point p of E2

T such that π1f = N-min L̃(f) and p1 >

E-bound L̃(f) holds p ∈ LeftComp(f).
(120) For every point p of E2

T such that π1f = N-min L̃(f) and p2 <

S-bound L̃(f) holds p ∈ LeftComp(f).
(121) For every point p of E2

T such that π1f = N-min L̃(f) and p2 >

N-bound L̃(f) holds p ∈ LeftComp(f).

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[4] Józef Białas and Yatsuka Nakamura. The theorem of Weierstrass. Formalized Mathema-

tics, 5(3):353–359, 1996.

12 yatsuka nakamura et al.

[5] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481–
485, 1991.

[6] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics,
1(1):245–254, 1990.

[7] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized

Mathematics, 1(3):529–536, 1990.
[9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[11] Czesław Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[13] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized

Mathematics, 1(4):661–668, 1990.
[14] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E2. Formalized

Mathematics, 6(3):427–440, 1997.
[15] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
[16] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces.

Formalized Mathematics, 1(2):257–261, 1990.
[17] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
[18] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - funda-

mental concepts. Formalized Mathematics, 2(4):605–608, 1991.
[19] Agata Darmochwał and Yatsuka Nakamura. The topological space E2

T. Arcs, line segments
and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.

[20] Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559–562,
1991.

[21] Adam Grabowski. Introduction to the homotopy theory. Formalized Mathematics,
6(4):449–454, 1997.

[22] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[23] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics,
2(4):475–480, 1991.

[24] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathe-
matics, 1(3):607–610, 1990.

[25] Zbigniew Karno. Continuity of mappings over the union of subspaces. Formalized Ma-
thematics, 3(1):1–16, 1992.

[26] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real
numbers. Formalized Mathematics, 1(3):477–481, 1990.

[27] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathema-
tics, 1(2):269–272, 1990.

[28] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized
Mathematics, 3(1):107–115, 1992.

[29] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part II. Formalized
Mathematics, 3(1):117–121, 1992.

[30] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields
and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.

[31] Roman Matuszewski and Yatsuka Nakamura. Projections in n-dimensional Euclidean
space to each coordinates. Formalized Mathematics, 6(4):505–509, 1997.

[32] Yatsuka Nakamura. Graph theoretical properties of arcs in the plane and Fashoda Meet
Theorem. Formalized Mathematics, 7(2):193–201, 1998.

[33] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special
polygons. Part I. Formalized Mathematics, 5(1):97–102, 1996.

[34] Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. For-
malized Mathematics, 6(2):255–263, 1997.

[35] Yatsuka Nakamura and Andrzej Trybulec. Components and unions of components. For-
malized Mathematics, 5(4):513–517, 1996.

bounded domains and unbounded domains 13

[36] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized
Mathematics, 5(3):323–328, 1996.

[37] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[38] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
[39] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93–96, 1991.
[40] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[41] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics,

1(2):263–264, 1990.
[42] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real num-

bers. Formalized Mathematics, 1(4):777–780, 1990.
[43] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[44] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[45] Andrzej Trybulec. Left and right component of the complement of a special closed curve.

Formalized Mathematics, 5(4):465–468, 1996.
[46] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized

Mathematics, 1(3):445–449, 1990.
[47] Andrzej Trybulec and Yatsuka Nakamura. On the order on a special polygon. Formalized

Mathematics, 6(4):541–548, 1997.
[48] Andrzej Trybulec and Yatsuka Nakamura. On the rectangular finite sequences of the

points of the plane. Formalized Mathematics, 6(4):531–539, 1997.
[49] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[50] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[51] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[52] Toshihiko Watanabe. The Brouwer fixed point theorem for intervals. Formalized Mathe-

matics, 3(1):85–88, 1992.
[53] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[54] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized

Mathematics, 1(1):231–237, 1990.

Received January 7, 1999

14 yatsuka nakamura et al.

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Rotating and Reversing

Andrzej Trybulec
University of Białystok

Summary. Quite a number of lemmas for the Jordan curve theorem, as
yet in the case of the special polygonal curves, have been proved. By ”special”
we mean, that it is a polygonal curve with edges parallel to axes and actually the
lemmas have been proved, mostly, for the triangulations i.e. for finite sequences
that define the curve. Moreover some of the results deal only with a special case:

- finite sequences are clockwise oriented,

- the first member of the sequence is the member with the lowest ordinate
among those with the highest abscissa (N-min f, where f is a finite sequence,
in the Mizar jargon).

In the change of the orientation one has to reverse the sequence (the operation
introduced in [7]) and to change the second restriction one has to rotate the sequ-
ence (the operation introduced in [26]). The goal of the paper is to prove, mostly
simple, facts about the relationship between properties and attributes of the fi-
nite sequence and its rotation (similar results about reversing had been proved
in [7]). Some of them deal with recounting parameters, others with properties
that are invariant under the rotation. We prove also that the finite sequence is
either clockwise oriented or it is such after reversing. Everything is proved for
the so called standard finite sequences, which means that if a point belongs to it
then every point with the same abscissa or with the same ordinate, that belongs
to the polygon, belongs also to the finite sequence. It does not seem that this
requirement causes serious technical obstacles.

MML Identifier: REVROT 1.

The terminology and notation used here are introduced in the following articles:
[24], [29], [12], [2], [23], [20], [1], [4], [6], [3], [5], [13], [28], [14], [7], [26], [22], [30],
[21], [9], [10], [11], [15], [16], [18], [25], [8], [17], [27], and [19].

15
c© 1999 University of Białystok

ISSN 1426–2630

16 andrzej trybulec

1. Preliminaries

For simplicity, we use the following convention: i, k, m, n are natural num-
bers, D is a non empty set, p is an element of D, and f is a finite sequence of
elements of D.

Let S be a non trivial 1-sorted structure. Observe that the carrier of S is
non trivial.

Let D be a non empty set and let f be a finite sequence of elements of D.
Let us observe that f is constant if and only if:

(Def. 1) For all n, m such that n ∈ dom f and m ∈ dom f holds πnf = πmf.

One can prove the following three propositions:

(1) Let D be a non empty set and f be a finite sequence of elements of D.
If f yields πlen ff just once, then (πlen ff) " f = len f.

(2) For every non empty set D and for every finite sequence f of elements
of D holds fºlen f = ∅.

(3) For every non empty set D and for every non empty finite sequence f of
elements of D holds πlen ff ∈ rng f.

Let D be a non empty set, let f be a finite sequence of elements of D, and
let y be a set. Let us observe that f yields y just once if and only if:

(Def. 2) There exists a set x such that x ∈ dom f and y = πxf and for every set
z such that z ∈ dom f and z 6= x holds πzf 6= y.

The following propositions are true:

(4) Let D be a non empty set and f be a finite sequence of elements of D.
If f yields πlen ff just once, then f −: πlen ff = f.

(5) Let D be a non empty set and f be a finite sequence of elements of D.
If f yields πlen ff just once, then f :− πlen ff = 〈πlen ff〉.

(6) 1 ¬ len(f :− p).
(7) Let D be a non empty set, p be an element of D, and f be a finite

sequence of elements of D. If p ∈ rng f, then len(f :− p) ¬ len f.

(8) For every non empty set D and for every circular non empty finite se-
quence f of elements of D holds Rev(f) is circular.

2. About the Rotation

In the sequel D denotes a non empty set, p denotes an element of D, and f

denotes a finite sequence of elements of D.
We now state several propositions:

rotating and reversing 17

(9) If p ∈ rng f and 1 ¬ i and i ¬ len(f :− p), then πif
p
ª = π(i−′1)+p"ff.

(10) If p ∈ rng f and p " f ¬ i and i ¬ len f, then πif = π(i+1)−′p"ffp
ª.

(11) If p ∈ rng f, then πlen(f :−p)f
p
ª = πlen ff.

(12) If p ∈ rng f and len(f :− p) < i and i ¬ len f, then πif
p
ª =

π(i+p"f)−′len ff.

(13) If p ∈ rng f and 1 < i and i ¬ p " f, then πif = π(i+len f)−′p"ffp
ª.

(14) len(fp
ª) = len f.

(15) dom(fp
ª) = dom f.

(16) Let D be a non empty set, f be a circular finite sequence of elements of
D, and p be an element of D. If for every i such that 1 < i and i < len f

holds πif 6= π1f, then (fp
ª)π1f

ª = f.

3. Rotating Circular Ones

In the sequel f is a circular finite sequence of elements of D.
The following propositions are true:

(17) If p ∈ rng f and len(f :− p) ¬ i and i ¬ len f, then πif
p
ª =

π(i+p"f)−′len ff.

(18) If p ∈ rng f and 1 ¬ i and i ¬ p " f, then πif = π(i+len f)−′p"ffp
ª.

Let D be a non trivial set. Note that there exists a finite sequence of elements
of D which is non constant and circular.

Let D be a non trivial set, let p be an element of D, and let f be a non
constant circular finite sequence of elements of D. Note that fp

ª is non constant.

4. Finite Sequence on the Plane

The following proposition is true

(19) For every non empty natural number n holds 0En
T
6= 1.REAL n.

Let n be a non empty natural number. Note that En
T is non trivial.

In the sequel f , g are finite sequences of elements of E2
T.

Next we state four propositions:

(20) If rng f ⊆ rng g, then rng X-coordinate(f) ⊆ rng X-coordinate(g).
(21) If rng f = rng g, then rng X-coordinate(f) = rng X-coordinate(g).
(22) If rng f ⊆ rng g, then rng Y-coordinate(f) ⊆ rng Y-coordinate(g).
(23) If rng f = rng g, then rng Y-coordinate(f) = rng Y-coordinate(g).

18 andrzej trybulec

5. Rotating Finite Sequence on the Plane

In the sequel p denotes a point of E2
T and f denotes a finite sequence of

elements of E2
T.

Let p be a point of E2
T and let f be a special circular finite sequence of

elements of E2
T. Observe that fp

ª is special.
The following propositions are true:

(24) If p ∈ rng f and 1 ¬ i and i < len(f :− p), then L(fp
ª, i) = L(f, (i−′ 1)+

p " f).
(25) If p ∈ rng f and p " f ¬ i and i < len f, then L(f, i) = L(fp

ª, (i−′ p "
f) + 1).

(26) For every circular finite sequence f of elements of E2
T holds

Inc(X-coordinate(f)) = Inc(X-coordinate(fp
ª)).

(27) For every circular finite sequence f of elements of E2
T holds

Inc(Y-coordinate(f)) = Inc(Y-coordinate(fp
ª)).

(28) For every non empty circular finite sequence f of elements of E2
T holds

the Go-board of fp
ª = the Go-board of f .

(29) For every non constant standard special circular sequence f holds
Rev(fp

ª) = (Rev(f))p
ª.

6. Rotating Circular Ones (on the Plane)

In the sequel f is a circular finite sequence of elements of E2
T.

We now state two propositions:

(30) For every circular s.c.c. finite sequence f of elements of E2
T such that

len f > 4 holds L(f, len f −′ 1) ∩ L(f, 1) = {π1f}.
(31) If p ∈ rng f and len(f :−p) ¬ i and i < len f, then L(fp

ª, i) = L(f, (i+p "
f)−′ len f).

Let p be a point of E2
T and let f be a circular s.c.c. finite sequence of elements

of E2
T. One can check that fp

ª is s.c.c..
Let p be a point of E2

T and let f be a non constant standard special circular
sequence. Observe that fp

ª is unfolded.
Next we state three propositions:

(32) If p ∈ rng f and 1 ¬ i and i < p " f, then L(f, i) = L(fp
ª, (i + len f)−′

p " f).
(33) L̃(fp

ª) = L̃(f).
(34) Let G be a Go-board. Then f is a sequence which elements belong to G

if and only if fp
ª is a sequence which elements belong to G.

rotating and reversing 19

Let p be a point of E2
T and let f be a standard non empty circular finite

sequence of elements of E2
T. One can verify that fp

ª is standard.
One can prove the following three propositions:

(35) Let f be a non constant standard special circular sequence and given p, k.
If p ∈ rng f and 1 ¬ k and k < p " f, then leftcell(f, k) = leftcell(fp

ª, (k+
len f)−′ p " f).

(36) For every non constant standard special circular sequence f holds
LeftComp(fp

ª) = LeftComp(f).
(37) For every non constant standard special circular sequence f holds

RightComp(fp
ª) = RightComp(f).

7. The Orientation

Let p be a point of E2
T and let f be a clockwise oriented non constant standard

special circular sequence. One can verify that fp
ª is clockwise oriented.

One can prove the following proposition

(38) Let f be a non constant standard special circular sequence. Then f is
clockwise oriented or Rev(f) is clockwise oriented.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[4] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized

Mathematics, 1(3):529–536, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[7] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathe-

matics, 5(2):241–245, 1996.
[8] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E2. Formalized

Mathematics, 6(3):427–440, 1997.
[9] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.

[10] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
[11] Agata Darmochwał and Yatsuka Nakamura. The topological space E2

T. Arcs, line segments
and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.

[12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[13] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics,
2(4):475–480, 1991.

[14] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathe-
matics, 3(2):275–278, 1992.

[15] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized
Mathematics, 3(1):107–115, 1992.

20 andrzej trybulec

[16] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part II. Formalized
Mathematics, 3(1):117–121, 1992.

[17] Yatsuka Nakamura and Adam Grabowski. Bounding boxes for special sequences in E2.
Formalized Mathematics, 7(1):115–121, 1998.

[18] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized
Mathematics, 5(3):323–328, 1996.

[19] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and
unbounded domains. Formalized Mathematics, 8(1):1–13, 1999.

[20] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[21] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
[22] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[23] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics,

1(2):263–264, 1990.
[24] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[25] Andrzej Trybulec. Left and right component of the complement of a special closed curve.

Formalized Mathematics, 5(4):465–468, 1996.
[26] Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics,

5(3):317–322, 1996.
[27] Andrzej Trybulec and Yatsuka Nakamura. On the order on a special polygon. Formalized

Mathematics, 6(4):541–548, 1997.
[28] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[29] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[30] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized

Mathematics, 1(1):231–237, 1990.

Received January 21, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

On the Components of the Complement of a
Special Polygonal Curve

Andrzej Trybulec1

University of Bialystok
Yatsuka Nakamura
Shinshu University

Nagano

Summary. By the special polygonal curve we meana simple closed curve,
that is a polygone and moreover has edges parallel to axes. We continue the
formalization of the Takeuti-Nakamura proof [21] of the Jordan curve theorem. In
the paper we prove that the complement of the special polygonal curve consists of
at least two components. With the theorem which has at most two components
we completed the theorem that a special polygonal curve cuts the plane into
exactly two components.

MML Identifier: SPRECT 4.

The articles [22], [29], [1], [11], [3], [2], [27], [28], [19], [12], [20], [30], [7], [8], [9],
[16], [4], [24], [13], [14], [15], [5], [18], [23], [17], [6], [10], [26], and [25] provide
the terminology and notation for this paper.

In this paper j denotes a natural number.
One can prove the following propositions:

(1) Let f be a S-sequence in R2 and Q be a non empty compact subset of E2
T.

If L̃(f) meets Q and π1f /∈ Q, then L̃(º f, FPoint(L̃(f), π1f, πlen ff, Q)) ∩
Q = {FPoint(L̃(f), π1f, πlen ff, Q)}.

(2) Let f be a finite sequence of elements of E2
T and p be a point of E2

T. If f

is a special sequence and p = πlen ff, then L̃(¼ p, f) = {p}.
(3) Let f be a finite sequence of elements of E2

T and p be a point of E2
T. If f

is a special sequence and p ∈ L̃(f), then L̃(¼ p, f) ⊆ L̃(f).
(4) Let f be a S-sequence in R2, p be a point of E2

T, and given j. If 1 ¬ j and
j < len f and p ∈ L̃(mid(f, j, len f)), then LE πjf, p, L̃(f), π1f, πlen ff.

1The work had been done when the first author visited Nagano in fall of 1998.

21
c© 1999 University of Białystok

ISSN 1426–2630

22 andrzej trybulec and yatsuka nakamura

(5) Let f be a S-sequence in R2, p, q be points of E2
T, and given j. If 1 ¬ j

and j < len f and p ∈ L(f, j) and q ∈ L(p, πj+1f), then LE p, q, L̃(f),
π1f, πlen ff.

(6) Let f be a S-sequence in R2 and Q be a non empty com-
pact subset of E2

T. If L̃(f) meets Q and πlen ff /∈ Q, then
L̃(¼ LPoint(L̃(f), π1f, πlen ff, Q), f) ∩Q = {LPoint(L̃(f), π1f, πlen ff, Q)}.

(7) For every non constant standard special circular sequence f holds
LeftComp(f) 6= RightComp(f).

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[4] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathe-
matics, 5(2):241–245, 1996.

[5] Czesław Byliński and Yatsuka Nakamura. Special polygons. Formalized Mathematics,
5(2):247–252, 1996.

[6] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E2. Formalized
Mathematics, 6(3):427–440, 1997.

[7] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
[8] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
[9] Agata Darmochwał and Yatsuka Nakamura. The topological space E2

T. Arcs, line segments
and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.

[10] Adam Grabowski and Yatsuka Nakamura. The ordering of points on a curve. Part II.
Formalized Mathematics, 6(4):467–473, 1997.

[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[12] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics,
2(4):475–480, 1991.

[13] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized
Mathematics, 3(1):107–115, 1992.

[14] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part II. Formalized
Mathematics, 3(1):117–121, 1992.

[15] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special
polygons. Part I. Formalized Mathematics, 5(1):97–102, 1996.

[16] Yatsuka Nakamura and Jarosław Kotowicz. Connectedness conditions using polygonal
arcs. Formalized Mathematics, 3(1):101–106, 1992.

[17] Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. For-
malized Mathematics, 6(2):255–263, 1997.

[18] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized
Mathematics, 5(3):323–328, 1996.

[19] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[20] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223–230, 1990.

[21] Yukio Takeuchi and Yatsuka Nakamura. On the Jordan curve theorem. Technical Report
19804, Dept. of Information Eng., Shinshu University, 500 Wakasato, Nagano city, Japan,
April 1980.

[22] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

on the components of the complement of a . . . 23

[23] Andrzej Trybulec. Left and right component of the complement of a special closed curve.
Formalized Mathematics, 5(4):465–468, 1996.

[24] Andrzej Trybulec. On the decomposition of finite sequences. Formalized Mathematics,
5(3):317–322, 1996.

[25] Andrzej Trybulec and Yatsuka Nakamura. On the order on a special polygon. Formalized
Mathematics, 6(4):541–548, 1997.

[26] Andrzej Trybulec and Yatsuka Nakamura. On the rectangular finite sequences of the
points of the plane. Formalized Mathematics, 6(4):531–539, 1997.

[27] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,
1990.

[28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[29] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[30] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized

Mathematics, 1(1):231–237, 1990.

Received January 21, 1999

24 andrzej trybulec and yatsuka nakamura

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Gauges

Czesław Byliński
University of Białystok

MML Identifier: JORDAN8.

The papers [20], [5], [23], [22], [10], [1], [17], [19], [24], [4], [2], [3], [21], [12], [11],
[18], [7], [8], [9], [13], [14], [15], [6], and [16] provide the terminology and notation
for this paper.

We follow the rules: i, i1, i2, j, j1, j2, k, m, n are natural numbers, D is a
non empty set, and f is a finite sequence of elements of D.

We now state two propositions:

(1) If len f ­ 2, then f¹2 = 〈π1f, π2f〉.
(2) If k + 1 ¬ len f, then f¹(k + 1) = (f¹k) a 〈πk+1f〉.
In the sequel f denotes a finite sequence of elements of E2

T, G denotes a
Go-board, and p denotes a point of E2

T.
The following propositions are true:

(3) ε(the carrier of E2T) is a sequence which elements belong to G.

(4) If f is a sequence which elements belong to G, then f¹m is a sequence
which elements belong to G.

(5) If f is a sequence which elements belong to G, then fºm is a sequence
which elements belong to G.

(6) Suppose 1 ¬ k and k + 1 ¬ len f and f is a sequence which elements
belong to G. Then there exist natural numbers i1, j1, i2, j2 such that

(i) 〈〈i1, j1〉〉 ∈ the indices of G,
(ii) πkf = Gi1,j1 ,

(iii) 〈〈i2, j2〉〉 ∈ the indices of G,
(iv) πk+1f = Gi2,j2 , and
(v) i1 = i2 and j1 + 1 = j2 or i1 + 1 = i2 and j1 = j2 or i1 = i2 + 1 and

j1 = j2 or i1 = i2 and j1 = j2 + 1.

(7) Let f be a non empty finite sequence of elements of E2
T. Suppose f is a

sequence which elements belong to G. Then f is standard and special.

25
c© 1999 University of Białystok

ISSN 1426–2630

26 czesław byliński

(8) Let f be a non empty finite sequence of elements of E2
T. Suppose len f ­ 2

and f is a sequence which elements belong to G. Then f is non constant.

(9) Let f be a non empty finite sequence of elements of E2
T. Suppose that

(i) f is a sequence which elements belong to G,
(ii) there exist i, j such that 〈〈i, j〉〉 ∈ the indices of G and p = Gi,j , and
(iii) for all i1, j1, i2, j2 such that 〈〈i1, j1〉〉 ∈ the indices of G and 〈〈i2, j2〉〉 ∈ the

indices of G and πlen ff = Gi1,j1 and p = Gi2,j2 holds |i2−i1|+|j2−j1| = 1.

Then f a 〈p〉 is a sequence which elements belong to G.

(10) If i + k < len G and 1 ¬ j and j < width G and cell(G, i, j) meets
cell(G, i + k, j), then k ¬ 1.

(11) For every non empty compact subset C of E2
T holds C is vertical iff

E-bound C ¬W-bound C.

(12) For every non empty compact subset C of E2
T holds C is horizontal iff

N-bound C ¬ S-bound C.

Let C be a non empty subset of E2
T and let n be a natural number. The func-

tor Gauge(C, n) yielding a matrix over E2
T is defined by the conditions (Def. 1).

(Def. 1)(i) len Gauge(C, n) = 2n + 3,

(ii) len Gauge(C, n) = width Gauge(C, n), and
(iii) for all i, j such that 〈〈i, j〉〉 ∈ the indices of Gauge(C, n) holds

(Gauge(C, n))i,j = [W-bound C+ E-bound C−W-bound C
2n ·(i−2), S-bound C+

N-bound C−S-bound C
2n · (j − 2)].

Let C be a compact non empty subset of E2
T and let n be a natural number.

Note that Gauge(C, n) is non trivial line X-constant and column Y-constant.
In the sequel C is a compact non vertical non horizontal non empty subset

of E2
T.
Let us consider C, n. Observe that Gauge(C, n) is line Y-increasing and

column X-increasing.
The following propositions are true:

(13) len Gauge(C, n) ­ 4.

(14) If 1 ¬ j and j ¬ len Gauge(C, n), then ((Gauge(C, n))2,j)1 =
W-bound C.

(15) If 1 ¬ j and j ¬ len Gauge(C, n), then ((Gauge(C, n))len Gauge(C,n)−′1,j)1 =
E-bound C.

(16) If 1 ¬ i and i ¬ len Gauge(C, n), then ((Gauge(C, n))i,2)2 = S-bound C.

(17) If 1 ¬ i and i ¬ len Gauge(C, n), then ((Gauge(C, n))i,len Gauge(C,n)−′1)2 =
N-bound C.

(18) If i ¬ len Gauge(C, n), then cell(Gauge(C, n), i, len Gauge(C, n))∩C = ∅.
(19) If j ¬ len Gauge(C, n), then cell(Gauge(C, n), len Gauge(C, n), j) ∩ C =
∅.

(20) If i ¬ len Gauge(C, n), then cell(Gauge(C, n), i, 0) ∩ C = ∅.

gauges 27

(21) If j ¬ len Gauge(C, n), then cell(Gauge(C, n), 0, j) ∩ C = ∅.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. Countable sets and Hessenberg’s theorem. Formalized Mathematics,
2(1):65–69, 1991.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[6] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E2. Formalized
Mathematics, 6(3):427–440, 1997.

[7] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
[8] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
[9] Agata Darmochwał and Yatsuka Nakamura. The topological space E2

T. Arcs, line segments
and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.

[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[11] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics,
2(4):475–480, 1991.

[12] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathe-
matics, 3(2):275–278, 1992.

[13] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized
Mathematics, 3(1):107–115, 1992.

[14] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part II. Formalized
Mathematics, 3(1):117–121, 1992.

[15] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special
polygons. Part I. Formalized Mathematics, 5(1):97–102, 1996.

[16] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized
Mathematics, 5(3):323–328, 1996.

[17] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223–230, 1990.

[19] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics,
1(2):263–264, 1990.

[20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[21] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,
1990.

[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[23] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received January 22, 1999

28 czesław byliński

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

The Ring of Integers, Euclidean Rings and
Modulo Integers

Christoph Schwarzweller
University of Tübingen

Summary. In this article we introduce the ring of Integers, Euclidean
rings and Integers modulo p. In particular we prove that the Ring of Integers is
an Euclidean ring and that the Integers modulo p constitutes a field if and only
if p is a prime.

MML Identifier: INT 3.

The notation and terminology used here are introduced in the following papers:
[16], [21], [20], [17], [22], [4], [5], [14], [10], [12], [13], [3], [8], [7], [15], [18], [2], [6],
[11], [9], [1], and [19].

1. The Ring of Integers

The binary operation multint on Z is defined as follows:

(Def. 1) For all elements a, b of Z holds (multint)(a, b) = ·R(a, b).
The unary operation compint on Z is defined as follows:

(Def. 2) For every element a of Z holds (compint)(a) = −R(a).
The double loop structure INT.Ring is defined by:

(Def. 3) INT.Ring = 〈Z, +Z, multint, 1(∈ Z), 0(∈ Z)〉.
Let us mention that INT.Ring is strict and non empty.
Let us mention that INT.Ring is Abelian add-associative right zeroed ri-

ght complementable well unital distributive commutative associative integral
domain-like and non degenerated.

Let a, b be elements of the carrier of INT.Ring. The predicate a ¬ b is
defined by:

29
c© 1999 University of Białystok

ISSN 1426–2630

30 christoph schwarzweller

(Def. 4) There exist integers a′, b′ such that a′ = a and b′ = b and a′ ¬ b′.
Let us notice that the predicate a ¬ b is reflexive and connected. We introduce
b ­ a as a synonym of a ¬ b. We introduce b < a and a > b as antonyms of
a ¬ b.

Let a be an element of the carrier of INT.Ring. The functor |a| yields an
element of the carrier of INT.Ring and is defined as follows:

(Def. 5) |a| =
{

a, if a ­ 0INT.Ring,

−a, otherwise.
The function absint from the carrier of INT.Ring into N is defined as follows:

(Def. 6) For every element a of the carrier of INT.Ring holds (absint)(a) =
|¤|R(a).

One can prove the following two propositions:

(1) For every element a of the carrier of INT.Ring holds (absint)(a) = |a|.
(2) Let a, b, q1, q2, r1, r2 be elements of the carrier of INT.Ring. Suppose

b 6= 0INT.Ring and a = q1 · b + r1 and 0INT.Ring ¬ r1 and r1 < |b| and
a = q2 · b + r2 and 0INT.Ring ¬ r2 and r2 < |b|. Then q1 = q2 and r1 = r2.

Let a, b be elements of the carrier of INT.Ring. Let us assume that b 6=
0INT.Ring. The functor a÷ b yields an element of the carrier of INT.Ring and is
defined by:

(Def. 7) There exists an element r of the carrier of INT.Ring such that a =
(a÷ b) · b + r and 0INT.Ring ¬ r and r < |b|.

Let a, b be elements of the carrier of INT.Ring. Let us assume that b 6=
0INT.Ring. The functor a mod b yields an element of the carrier of INT.Ring and
is defined as follows:

(Def. 8) There exists an element q of the carrier of INT.Ring such that a =
q · b + (a mod b) and 0INT.Ring ¬ a mod b and a mod b < |b|.

Next we state the proposition

(3) For all elements a, b of the carrier of INT.Ring such that b 6= 0INT.Ring

holds a = (a÷ b) · b + (a mod b).

2. Euclidean Rings

Let I be a non empty double loop structure. We say that I is Euclidian if
and only if the condition (Def. 9) is satisfied.

(Def. 9) There exists a function f from the carrier of I into N such that for all
elements a, b of the carrier of I if b 6= 0I , then there exist elements q, r of
the carrier of I such that a = q · b + r but r = 0I or f(r) < f(b).

the ring of integers, euclidean rings and . . . 31

One can check that INT.Ring is Euclidian.
Let us observe that there exists a ring which is strict, Euclidian, integral

domain-like, non degenerated, well unital, and distributive.
A EuclidianRing is a Euclidian integral domain-like non degenerated well

unital distributive ring.
Let us mention that there exists a EuclidianRing which is strict.
Let E be a Euclidian non empty double loop structure. A function from the

carrier of E into N is said to be a DegreeFunction of E if it satisfies the condition
(Def. 10).

(Def. 10) Let a, b be elements of the carrier of E. Suppose b 6= 0E . Then there
exist elements q, r of the carrier of E such that a = q · b + r but r = 0E

or it(r) < it(b).
Next we state the proposition

(4) Every EuclidianRing is a gcdDomain.

Let us note that every integral domain-like non degenerated Abelian add-
associative right zeroed right complementable associative commutative right
unital right-distributive non empty double loop structure which is Euclidian is
also gcd-like.

absint is a DegreeFunction of INT.Ring.
One can prove the following proposition

(5) Every commutative associative left unital field-like right zeroed non
empty double loop structure is Euclidian.

Let us observe that every non empty double loop structure which is com-
mutative, associative, left unital, field-like, right zeroed, and field-like is also
Euclidian.

One can prove the following proposition

(6) Let F be a commutative associative left unital field-like right zeroed non
empty double loop structure. Then every function from the carrier of F

into N is a DegreeFunction of F .

3. Some Theorems about Div and Mod

The following propositions are true:

(7) Let n be a natural number. Suppose n > 0. Let a be an integer and a′ be
a natural number. If a′ = a, then a÷ n = a′ ÷ n and a mod n = a′ mod n.

(8) For every natural number n such that n > 0 and for all integers a, k

holds (a + n · k)÷ n = (a÷ n) + k and (a + n · k) mod n = a mod n.

(9) For every natural number n such that n > 0 and for every integer a

holds a mod n ­ 0 and a mod n < n.

32 christoph schwarzweller

(10) Let n be a natural number. Suppose n > 0. Let a be an integer. Then
(i) if 0 ¬ a and a < n, then a mod n = a, and
(ii) if 0 > a and a ­ −n, then a mod n = n + a.

(11) For every natural number n such that n > 0 and for every integer a

holds a mod n = 0 iff n | a.

(12) For every natural number n such that n > 0 and for all integers a, b

holds a mod n = b mod n iff a ≡ b(mod n).
(13) For every natural number n such that n > 0 and for every integer a

holds a mod n mod n = a mod n.

(14) For every natural number n such that n > 0 and for all integers a, b

holds (a + b) mod n = ((a mod n) + (b mod n)) mod n.

(15) For every natural number n such that n > 0 and for all integers a, b

holds a · b mod n = (a mod n) · (b mod n) mod n.

(16) For all integers a, b there exist integers s, t such that a gcd b = s ·a+ t ·b.

4. Modulo Integers

Let n be a natural number. Let us assume that n > 0. The functor multint n

yielding a binary operation on Zn is defined as follows:

(Def. 11) For all elements k, l of Zn holds (multint n)(k, l) = k · l mod n.

Let n be a natural number. Let us assume that n > 0. The functor compint n

yielding a unary operation on Zn is defined by:

(Def. 12) For every element k of Zn holds (compint n)(k) = (n− k) mod n.

Next we state three propositions:

(17) Let n be a natural number. Suppose n > 0. Let a, b be elements of Zn.
Then

(i) a + b < n iff +n(a, b) = a + b, and
(ii) a + b ­ n iff +n(a, b) = (a + b)− n.

(18) Let n be a natural number. Suppose n > 0. Let a, b be elements of Zn

and k be a natural number. Then k · n ¬ a · b and a · b < (k + 1) · n if and
only if (multint n)(a, b) = a · b− k · n.

(19) Let n be a natural number. Suppose n > 0. Let a be an element of Zn.
Then

(i) a = 0 iff (compint n)(a) = 0, and
(ii) a 6= 0 iff (compint n)(a) = n− a.

Let n be a natural number. The functor INT.Ring n yields a double loop
structure and is defined by:

(Def. 13) INT.Ring n = 〈Zn, +n, multint n, 1(∈ Zn), 0(∈ Zn)〉.

the ring of integers, euclidean rings and . . . 33

Let n be a natural number. Observe that INT.Ring n is strict and non empty.
We now state the proposition

(20) INT.Ring 1 is degenerated and INT.Ring 1 is a ring and INT.Ring 1 is
field-like, well unital, and distributive.

Let us note that there exists a ring which is strict, degenerated, well unital,
distributive, and field-like.

One can prove the following propositions:

(21) For every natural number n such that n > 1 holds INT.Ring n is non
degenerated and INT.Ring n is a well unital distributive ring.

(22) Let p be a natural number. Suppose p > 1. Then INT.Ring p is an
add-associative right zeroed right complementable Abelian commutative
associative left unital distributive field-like non degenerated non empty
double loop structure if and only if p is a prime number.

Let p be a prime number. Observe that INT.Ring p is add-associative ri-
ght zeroed right complementable Abelian commutative associative left unital
distributive field-like and non degenerated.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[6] Marek Chmur. The lattice of natural numbers and the sublattice of it. The set of prime

numbers. Formalized Mathematics, 2(4):453–459, 1991.
[7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[9] Krzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics, 1(2):321–328,

1990.
[10] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields

and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
[11] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes.

Formalized Mathematics, 1(5):829–832, 1990.
[12] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring.

Formalized Mathematics, 2(1):3–11, 1991.
[13] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized

Mathematics, 1(3):555–561, 1990.
[14] Christoph Schwarzweller. The correctness of the generic algorithms of Brown and Hen-

rici concerning addition and multiplication in fraction fields. Formalized Mathematics,
6(3):381–388, 1997.

[15] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathe-
matics, 2(5):623–627, 1991.

[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[17] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,
1(1):97–105, 1990.

34 christoph schwarzweller

[18] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[19] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[20] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296,

1990.
[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received February 4, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Logic Gates and Logical Equivalence of
Adders

Yatsuka Nakamura
Shinshu University

Nagano

Summary. This is an experimental article which shows that logical cor-
rectness of logic circuits can be easily proven by the Mizar system. First, we
define the notion of logic gates. Then we prove that an MSB carry of ’4 Bit
Carry Skip Adder’ is equivalent to an MSB carry of a normal 4 bit adder. In the
last theorem, we show that outputs of the ’4 Bit Carry Look Ahead Adder’ are
equivalent to the corresponding outputs of the normal 4 bits adder. The policy
here is as follows: when the functional (semantic) correctness of a system is al-
ready proven, and the correspondence of the system to a (normal) logic circuit
is given, it is enough to prove the correctness of the new circuit if we only prove
the logical equivalence between them. Although the article is very fundamental
(it contains few environment files), it can be applied to real problems. The key
of the method introduced here is to put the specification of the logic circuit into
the Mizar propositional formulae, and to use the strong inference ability of the
Mizar checker. The proof is done formally so that the automation of the proof
writing is possible. Even in the 5.3.07 version of Mizar, it can handle a formulae
of more than 100 lines, and a formula which contains more than 100 variables.
This means that the Mizar system is enough to prove logical correctness of middle
scaled logic circuits.

MML Identifier: GATE 1.

The articles [2] and [1] provide the terminology and notation for this paper.

1. Definition of Logical Values and Logic Gates

Let a be a set. We introduce NE a as an antonym of a is empty.
We now state three propositions:

35
c© 1999 University of Białystok

ISSN 1426–2630

36 yatsuka nakamura

(1) For every set a such that a = {∅} holds NE a.

(2) There exists a set a such that NE a.

(3) NE ∅ iff contradiction.

let a be a set. The functor NOT1 a yielding a set is defined by:

(Def. 1) NOT1 a =
{ ∅, if NE a,
{∅}, otherwise.

The following proposition is true

(4) For every set a holds NE NOT1 a iff not NE a.

In the sequel a, b are sets.
We now state the proposition

(5) NE NOT1 ∅.
Let a, b be sets. The functor AND2(a, b) yields a set and is defined by:

(Def. 2) AND2(a, b) =
{

NOT1 ∅, if NE a and NE b,
∅, otherwise.

Next we state the proposition

(6) For all sets a, b holds NE AND2(a, b) iff NE a and NE b.

Let a, b be sets. The functor OR2(a, b) yielding a set is defined as follows:

(Def. 3) OR2(a, b) =
{

NOT1 ∅, if NE a or NE b,
∅, otherwise.

Next we state the proposition

(7) For all sets a, b holds NE OR2(a, b) iff NE a or NE b.

Let a, b be sets. The functor XOR2(a, b) yields a set and is defined by:

(Def. 4) XOR2(a, b) =
{

NOT1 ∅, if NE a and not NE b or not NE a and NE b,
∅, otherwise.

The following four propositions are true:

(8) For all sets a, b holds NE XOR2(a, b) iff NE a and not NE b or not NE
a and NE b.

(9) NE XOR2(a, a) iff contradiction.

(10) NE XOR2(a, ∅) iff NE a.

(11) NE XOR2(a, b) iff NE XOR2(b, a).

Let a, b be sets. The functor EQV2(a, b) yielding a set is defined by:

(Def. 5) EQV2(a, b) =
{

NOT1 ∅, if NE a iff NE b,
∅, otherwise.

We now state two propositions:

(12) For all sets a, b holds NE EQV2(a, b) iff NE a iff NE b.

(13) NE EQV2(a, b) iff not NE XOR2(a, b).

Let a, b be sets. The functor NAND2(a, b) yielding a set is defined by:

logic gates and logical equivalence of adders 37

(Def. 6) NAND2(a, b) =
{

NOT1 ∅, if not NE a or not NE b,
∅, otherwise.

One can prove the following proposition

(14) For all sets a, b holds NE NAND2(a, b) iff not NE a or not NE b.

Let a, b be sets. The functor NOR2(a, b) yielding a set is defined as follows:

(Def. 7) NOR2(a, b) =
{

NOT1 ∅, if not NE a and not NE b,
∅, otherwise.

We now state the proposition

(15) For all sets a, b holds NE NOR2(a, b) iff not NE a and not NE b.

Let a, b, c be sets. The functor AND3(a, b, c) yields a set and is defined by:

(Def. 8) AND3(a, b, c) =
{

NOT1 ∅, if NE a and NE b and NE c,
∅, otherwise.

One can prove the following proposition

(16) For all sets a, b, c holds NE AND3(a, b, c) iff NE a and NE b and NE c.

Let a, b, c be sets. The functor OR3(a, b, c) yielding a set is defined by:

(Def. 9) OR3(a, b, c) =
{

NOT1 ∅, if NE a or NE b or NE c,
∅, otherwise.

One can prove the following proposition

(17) For all sets a, b, c holds NE OR3(a, b, c) iff NE a or NE b or NE c.

Let a, b, c be sets. The functor XOR3(a, b, c) yielding a set is defined by:

(Def. 10) XOR3(a, b, c) =





NOT1 ∅, if NE a and not NE b or not NE a and NE
b but not NE c or not NE a or not NE b but not
NE a or not NE b and NE c,

∅, otherwise.
We now state the proposition

(18) Let a, b, c be sets. Then NE XOR3(a, b, c) if and only if one of the
following conditions is satisfied:

(i) NE a and not NE b or not NE a and NE b but not NE c, or
(ii) not NE a or not NE b but not NE a or not NE b and NE c.

Let a, b, c be sets. The functor MAJ3(a, b, c) yields a set and is defined as
follows:

(Def. 11) MAJ3(a, b, c) =





NOT1 ∅, if NE a and NE b or NE b and NE c or NE
c and NE a,
∅, otherwise.

The following proposition is true

(19) For all sets a, b, c holds NE MAJ3(a, b, c) iff NE a and NE b or NE b

and NE c or NE c and NE a.

Let a, b, c be sets. The functor NAND3(a, b, c) yielding a set is defined by:

38 yatsuka nakamura

(Def. 12) NAND3(a, b, c) =
{

NOT1 ∅, if not NE a or not NE b or not NE c,
∅, otherwise.

The following proposition is true

(20) For all sets a, b, c holds NE NAND3(a, b, c) iff not NE a or not NE b or
not NE c.

Let a, b, c be sets. The functor NOR3(a, b, c) yields a set and is defined by:

(Def. 13) NOR3(a, b, c) =
{

NOT1 ∅, if not NE a and not NE b and not NE c,
∅, otherwise.

We now state the proposition

(21) For all sets a, b, c holds NE NOR3(a, b, c) iff not NE a and not NE b and
not NE c.

Let a, b, c, d be sets. The functor AND4(a, b, c, d) yields a set and is defined
by:

(Def. 14) AND4(a, b, c, d) =
{

NOT1 ∅, if NE a and NE b and NE c and NE d,
∅, otherwise.

One can prove the following proposition

(22) For all sets a, b, c, d holds NE AND4(a, b, c, d) iff NE a and NE b and
NE c and NE d.

Let a, b, c, d be sets. The functor OR4(a, b, c, d) yielding a set is defined as
follows:

(Def. 15) OR4(a, b, c, d) =
{

NOT1 ∅, if NE a or NE b or NE c or NE d,
∅, otherwise.

The following proposition is true

(23) For all sets a, b, c, d holds NE OR4(a, b, c, d) iff NE a or NE b or NE c

or NE d.

Let a, b, c, d be sets. The functor NAND4(a, b, c, d) yielding a set is defined
by:

(Def. 16) NAND4(a, b, c, d) =





NOT1 ∅, if not NE a or not NE b or not NE c or
not NE d,
∅, otherwise.

Next we state the proposition

(24) For all sets a, b, c, d holds NE NAND4(a, b, c, d) iff not NE a or not NE
b or not NE c or not NE d.

Let a, b, c, d be sets. The functor NOR4(a, b, c, d) yielding a set is defined
by:

(Def. 17) NOR4(a, b, c, d) =





NOT1 ∅, if not NE a and not NE b and not NE
c and not NE d,
∅, otherwise.

The following proposition is true

logic gates and logical equivalence of adders 39

(25) For all sets a, b, c, d holds NE NOR4(a, b, c, d) iff not NE a and not NE
b and not NE c and not NE d.

Let a, b, c, d, e be sets. The functor AND5(a, b, c, d, e) yielding a set is defined
as follows:

(Def. 18) AND5(a, b, c, d, e) =





NOT1 ∅, if NE a and NE b and NE c and NE d

and NE e,
∅, otherwise.

Next we state the proposition

(26) For all sets a, b, c, d, e holds NE AND5(a, b, c, d, e) iff NE a and NE b

and NE c and NE d and NE e.

Let a, b, c, d, e be sets. The functor OR5(a, b, c, d, e) yields a set and is
defined by:

(Def. 19) OR5(a, b, c, d, e) =
{

NOT1 ∅, if NE a or NE b or NE c or NE d or NE e,
∅, otherwise.

The following proposition is true

(27) For all sets a, b, c, d, e holds NE OR5(a, b, c, d, e) iff NE a or NE b or
NE c or NE d or NE e.

Let a, b, c, d, e be sets. The functor NAND5(a, b, c, d, e) yields a set and is
defined as follows:

(Def. 20) NAND5(a, b, c, d, e) =





NOT1 ∅, if not NE a or not NE b or not NE c

or not NE d or not NE e,
∅, otherwise.

The following proposition is true

(28) For all sets a, b, c, d, e holds NE NAND5(a, b, c, d, e) iff not NE a or not
NE b or not NE c or not NE d or not NE e.

Let a, b, c, d, e be sets. The functor NOR5(a, b, c, d, e) yielding a set is defined
as follows:

(Def. 21) NOR5(a, b, c, d, e) =





NOT1 ∅, if not NE a and not NE b and not NE c

and not NE d and not NE e,
∅, otherwise.

We now state the proposition

(29) For all sets a, b, c, d, e holds NE NOR5(a, b, c, d, e) iff not NE a and not
NE b and not NE c and not NE d and not NE e.

Let a, b, c, d, e, f be sets. The functor AND6(a, b, c, d, e, f) yielding a set is
defined by:

(Def. 22) AND6(a, b, c, d, e, f) =





NOT1 ∅, if NE a and NE b and NE c and NE d

and NE e and NE f ,
∅, otherwise.

Next we state the proposition

40 yatsuka nakamura

(30) Let a, b, c, d, e, f be sets. Then NE AND6(a, b, c, d, e, f) if and only if
the following conditions are satisfied:

(i) NE a,
(ii) NE b,
(iii) NE c,
(iv) NE d,
(v) NE e, and
(vi) NE f .

Let a, b, c, d, e, f be sets. The functor OR6(a, b, c, d, e, f) yielding a set is
defined by:

(Def. 23) OR6(a, b, c, d, e, f) =





NOT1 ∅, if NE a or NE b or NE c or NE d or
NE e or NE f ,
∅, otherwise.

The following proposition is true

(31) Let a, b, c, d, e, f be sets. Then NE OR6(a, b, c, d, e, f) if and only if one
of the following conditions is satisfied:

(i) NE a, or
(ii) NE b, or
(iii) NE c, or
(iv) NE d, or
(v) NE e, or
(vi) NE f .

Let a, b, c, d, e, f be sets. The functor NAND6(a, b, c, d, e, f) yields a set
and is defined by:

(Def. 24) NAND6(a, b, c, d, e, f) =





NOT1 ∅, if not NE a or not NE b or not NE
c or not NE d or not NE e or not NE f ,
∅, otherwise.

The following proposition is true

(32) Let a, b, c, d, e, f be sets. Then NE NAND6(a, b, c, d, e, f) if and only if
one of the following conditions is satisfied:

(i) not NE a, or
(ii) not NE b, or
(iii) not NE c, or
(iv) not NE d, or
(v) not NE e, or
(vi) not NE f .

Let a, b, c, d, e, f be sets. The functor NOR6(a, b, c, d, e, f) yields a set and
is defined as follows:

(Def. 25) NOR6(a, b, c, d, e, f) =





NOT1 ∅, if not NE a and not NE b and not NE
c and not NE d and not NE e and not NE f ,
∅, otherwise.

logic gates and logical equivalence of adders 41

One can prove the following proposition

(33) Let a, b, c, d, e, f be sets. Then NE NOR6(a, b, c, d, e, f) if and only if
the following conditions are satisfied:

(i) not NE a,
(ii) not NE b,
(iii) not NE c,
(iv) not NE d,
(v) not NE e, and
(vi) not NE f .

Let a, b, c, d, e, f , g be sets. The functor AND7(a, b, c, d, e, f, g) yields a set
and is defined by:

(Def. 26) AND7(a, b, c, d, e, f, g) =





NOT1 ∅, if NE a and NE b and NE c and
NE d and NE e and NE f and NE g,
∅, otherwise.

Next we state the proposition

(34) Let a, b, c, d, e, f , g be sets. Then NE AND7(a, b, c, d, e, f, g) if and only
if the following conditions are satisfied:
NE a and NE b and NE c and NE d and NE e and NE f and NE g.

Let a, b, c, d, e, f , g be sets. The functor OR7(a, b, c, d, e, f, g) yielding a set
is defined as follows:

(Def. 27) OR7(a, b, c, d, e, f, g) =





NOT1 ∅, if NE a or NE b or NE c or NE d or
NE e or NE f or NE g,
∅, otherwise.

Next we state the proposition

(35) Let a, b, c, d, e, f , g be sets. Then NE OR7(a, b, c, d, e, f, g) if and only
if one of the following conditions is satisfied:
NE a or NE b or NE c or NE d or NE e or NE f or NE g.

Let a, b, c, d, e, f , g be sets. The functor NAND7(a, b, c, d, e, f, g) yielding
a set is defined as follows:

(Def. 28) NAND7(a, b, c, d, e, f, g) =





NOT1 ∅, if not NE a or not NE b or
not NE c or not NE d or not NE e or not
NE f or not NE g,
∅, otherwise.

One can prove the following proposition

(36) Let a, b, c, d, e, f , g be sets. Then NE NAND7(a, b, c, d, e, f, g) if and
only if one of the following conditions is satisfied:
not NE a or not NE b or not NE c or not NE d or not NE e or not NE f

or not NE g.

Let a, b, c, d, e, f , g be sets. The functor NOR7(a, b, c, d, e, f, g) yielding a
set is defined as follows:

42 yatsuka nakamura

(Def. 29) NOR7(a, b, c, d, e, f, g) =





NOT1 ∅, if not NE a and not NE b and
not NE c and not NE d and not NE e and
not NE f and not NE g,
∅, otherwise.

Next we state the proposition

(37) Let a, b, c, d, e, f , g be sets. Then NE NOR7(a, b, c, d, e, f, g) if and only
if the following conditions are satisfied:
not NE a and not NE b and not NE c and not NE d and not NE e and
not NE f and not NE g.

Let a, b, c, d, e, f , g, h be sets. The functor AND8(a, b, c, d, e, f, g, h) yields
a set and is defined by:

(Def. 30) AND8(a, b, c, d, e, f, g, h) =





NOT1 ∅, if NE a and NE b and NE c and
NE d and NE e and NE f and NE g and
NE h,
∅, otherwise.

The following proposition is true

(38) Let a, b, c, d, e, f , g, h be sets. Then NE AND8(a, b, c, d, e, f, g, h) if and
only if the following conditions are satisfied:
NE a and NE b and NE c and NE d and NE e and NE f and NE g and
NE h.

Let a, b, c, d, e, f , g, h be sets. The functor OR8(a, b, c, d, e, f, g, h) yielding
a set is defined as follows:

(Def. 31) OR8(a, b, c, d, e, f, g, h) =





NOT1 ∅, if NE a or NE b or NE c or NE d

or NE e or NE f or NE g or NE h,
∅, otherwise.

One can prove the following proposition

(39) Let a, b, c, d, e, f , g, h be sets. Then NE OR8(a, b, c, d, e, f, g, h) if and
only if one of the following conditions is satisfied:
NE a or NE b or NE c or NE d or NE e or NE f or NE g or NE h.

Let a, b, c, d, e, f , g, h be sets. The functor NAND8(a, b, c, d, e, f, g, h)
yielding a set is defined as follows:

(Def. 32) NAND8(a, b, c, d, e, f, g, h) =





NOT1 ∅, if not NE a or not NE b or
not NE c or not NE d or not NE e or
not NE f or not NE g or not NE h,
∅, otherwise.

Next we state the proposition

(40) Let a, b, c, d, e, f , g, h be sets. Then NE NAND8(a, b, c, d, e, f, g, h) if
and only if one of the following conditions is satisfied:
not NE a or not NE b or not NE c or not NE d or not NE e or not NE f

or not NE g or not NE h.

logic gates and logical equivalence of adders 43

Let a, b, c, d, e, f , g, h be sets. The functor NOR8(a, b, c, d, e, f, g, h) yielding
a set is defined as follows:

(Def. 33) NOR8(a, b, c, d, e, f, g, h) =





NOT1 ∅, if not NE a and not NE b and
not NE c and not NE d and not NE e

and not NE f and not NE g and not
NE h,

∅, otherwise.
One can prove the following proposition

(41) Let a, b, c, d, e, f , g, h be sets. Then NE NOR8(a, b, c, d, e, f, g, h) if and
only if the following conditions are satisfied:
not NE a and not NE b and not NE c and not NE d and not NE e and
not NE f and not NE g and not NE h.

2. Logical Equivalence of 4 Bits Adders

We now state the proposition

(42) Let c1, x1, x2, x3, x4, y1, y2, y3, y4, c2, c3, c4, c5, n1, n2, n3, n4, n, c6 be
sets. Suppose that
NE c2 iff NE MAJ3(x1, y1, c1) and NE c3 iff NE MAJ3(x2, y2, c2) and
NE c4 iff NE MAJ3(x3, y3, c3) and NE c5 iff NE MAJ3(x4, y4, c4) and
NE n1 iff NE OR2(x1, y1) and NE n2 iff NE OR2(x2, y2) and NE n3

iff NE OR2(x3, y3) and NE n4 iff NE OR2(x4, y4) and NE n iff NE
AND5(c1, n1, n2, n3, n4) and NE c6 iff NE OR2(c5, n). Then NE c5 if and
only if NE c6.

Let a, b be sets. The functor MODADD2(a, b) yields a set and is defined as
follows:

(Def. 34) MODADD2(a, b) =
{

NOT1 ∅, if NE a or NE b but NE a but NE b,
∅, otherwise.

Next we state the proposition

(43) For all sets a, b holds NE MODADD2(a, b) iff NE a or NE b but NE a

but NE b.

Let a, b, c be sets. The functor ADD1(a, b, c) yields a set and is defined by:

(Def. 35) ADD1(a, b, c) = XOR3(a, b, c).
Let a, b, c be sets. The functor CARR1(a, b, c) yielding a set is defined by:

(Def. 36) CARR1(a, b, c) = MAJ3(a, b, c).
Let a1, b1, a2, b2, c be sets. The functor ADD2(a2, b2, a1, b1, c) yielding a set

is defined as follows:

(Def. 37) ADD2(a2, b2, a1, b1, c) = XOR3(a2, b2, CARR1(a1, b1, c)).

44 yatsuka nakamura

Let a1, b1, a2, b2, c be sets. The functor CARR2(a2, b2, a1, b1, c) yields a set
and is defined as follows:

(Def. 38) CARR2(a2, b2, a1, b1, c) = MAJ3(a2, b2, CARR1(a1, b1, c)).
Let a1, b1, a2, b2, a3, b3, c be sets. The functor ADD3(a3, b3, a2, b2, a1, b1, c)

yields a set and is defined by:

(Def. 39) ADD3(a3, b3, a2, b2, a1, b1, c) = XOR3(a3, b3, CARR2(a2, b2, a1, b1, c)).
Let a1, b1, a2, b2, a3, b3, c be sets. The functor CARR3(a3, b3, a2, b2, a1, b1, c)

yields a set and is defined as follows:

(Def. 40) CARR3(a3, b3, a2, b2, a1, b1, c) = MAJ3(a3, b3, CARR2(a2, b2, a1, b1, c)).
Let a1, b1, a2, b2, a3, b3, a4, b4, c be sets.
The functor ADD4(a4, b4, a3, b3, a2, b2, a1, b1, c) yielding a set is defined by:

(Def. 41) ADD4(a4, b4, a3, b3, a2, b2, a1, b1, c) =
XOR3(a4, b4, CARR3(a3, b3, a2, b2, a1, b1, c)).

Let a1, b1, a2, b2, a3, b3, a4, b4, c be sets.
The functor CARR4(a4, b4, a3, b3, a2, b2, a1, b1, c) yields a set and is defined

as follows:

(Def. 42) CARR4(a4, b4, a3, b3, a2, b2, a1, b1, c) =
MAJ3(a4, b4, CARR3(a3, b3, a2, b2, a1, b1, c)).

One can prove the following proposition

(44) Let c1, x1, y1, x2, y2, x3, y3, x4, y4, c4, q1, p1, s1, q2, p2, s2, q3, p3, s3, q4,
p4, s4, c7, c8, l2, t2, l3, m3, t3, l4, m4, n4, t4, l5, m5, n5, o5, s5, s6, s7, s8 be
sets such that NE q1 iff NE NOR2(x1, y1) and NE p1 iff NE NAND2(x1, y1)
and NE s1 iff NE MODADD2(x1, y1) and NE q2 iff NE NOR2(x2, y2)
and NE p2 iff NE NAND2(x2, y2) and NE s2 iff NE MODADD2(x2, y2)
and NE q3 iff NE NOR2(x3, y3) and NE p3 iff NE NAND2(x3, y3) and
NE s3 iff NE MODADD2(x3, y3) and NE q4 iff NE NOR2(x4, y4) and
NE p4 iff NE NAND2(x4, y4) and NE s4 iff NE MODADD2(x4, y4) and
NE c7 iff NE NOT1 c1 and NE c8 iff NE NOT1 c7 and NE s5 iff NE
XOR2(c8, s1) and NE l2 iff NE AND2(c7, p1) and NE t2 iff NE NOR2(l2, q1)
and NE s6 iff NE XOR2(t2, s2) and NE l3 iff NE AND2(q1, p2) and NE
m3 iff NE AND3(p2, p1, c7) and NE t3 iff NE NOR3(l3,m3, q2) and NE
s7 iff NE XOR2(t3, s3) and NE l4 iff NE AND2(q2, p3) and NE m4 iff
NE AND3(q1, p3, p2) and NE n4 iff NE AND4(p3, p2, p1, c7) and NE t4
iff NE NOR4(l4,m4, n4, q3) and NE s8 iff NE XOR2(t4, s4) and NE l5 iff
NE AND2(q3, p4) and NE m5 iff NE AND3(q2, p4, p3) and NE n5 iff NE
AND4(q1, p4, p3, p2) and NE o5 iff NE AND5(p4, p3, p2, p1, c7) and NE c4

iff NE NOR5(q4, l5,m5, n5, o5). Then
(i) NE s5 iff NE ADD1(x1, y1, c1),
(ii) NE s6 iff NE ADD2(x2, y2, x1, y1, c1),
(iii) NE s7 iff NE ADD3(x3, y3, x2, y2, x1, y1, c1),

logic gates and logical equivalence of adders 45

(iv) NE s8 iff NE ADD4(x4, y4, x3, y3, x2, y2, x1, y1, c1), and
(v) NE c4 iff NE CARR4(x4, y4, x3, y3, x2, y2, x1, y1, c1).

References

[1] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[2] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.

Received February 4, 1999

46 yatsuka nakamura

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

The Sequential Closure Operator in
Sequential and Frechet Spaces

Bartłomiej Skorulski
University of Białystok

MML Identifier: FRECHET2.

The articles [26], [30], [2], [21], [10], [3], [11], [29], [9], [31], [6], [7], [23], [8], [4],
[13], [1], [20], [19], [24], [18], [17], [14], [16], [5], [12], [22], [28], [15], [27], and [25]
provide the notation and terminology for this paper.

1. The Properties of Sequences and Subsequences

Let T be a non empty 1-sorted structure, let f be a function from N into N,
and let S be a sequence of T . Then S · f is a sequence of T .

One can prove the following two propositions:

(1) Let T be a non empty 1-sorted structure, S be a sequence of T , and N1

be an increasing sequence of naturals. Then S ·N1 is a sequence of T .

(2) For every sequence R1 of real numbers such that R1 = idN holds R1 is
an increasing sequence of naturals.

Let T be a non empty 1-sorted structure and let S be a sequence of T . A
sequence of T is called a subsequence of S if:

(Def. 1) There exists an increasing sequence N1 of naturals such that it = S ·N1.

The following two propositions are true:

(3) For every non empty 1-sorted structure T holds every sequence S of T

is a subsequence of S.

(4) For every non empty 1-sorted structure T and for every sequence S of T

and for every subsequence S1 of S holds rng S1 ⊆ rng S.

47
c© 1999 University of Białystok

ISSN 1426–2630

48 bartłomiej skorulski

Let T be a non empty 1-sorted structure, let N1 be an increasing sequence
of naturals, and let S be a sequence of T . Then S ·N1 is a subsequence of S.

One can prove the following proposition

(5) Let T be a non empty 1-sorted structure, S1 be a sequence of T , and S2

be a subsequence of S1. Then every subsequence of S2 is a subsequence of
S1.

In this article we present several logical schemes. The scheme SubSeqChoice
deals with a non empty 1-sorted structure A, a sequence B of A, and and states
that:

There exists a subsequence S1 of B such that for every natural
number n holds P[S1(n)]

provided the following requirement is met:
• For every natural number n there exists a natural number m and

there exists a point x of A such that n ¬ m and x = B(m) and
P[x].

The scheme SubSeqChoice1 deals with a non empty topological structure A,

a sequence B of A, and and states that:
There exists a subsequence S1 of B such that for every natural
number n holds P[S1(n)]

provided the parameters have the following property:
• For every natural number n there exists a natural number m and

there exists a point x of A such that n ¬ m and x = B(m) and
P[x].

One can prove the following propositions:

(6) Let T be a non empty 1-sorted structure, S be a sequence of T , and A

be a subset of the carrier of T . Suppose that for every subsequence S1 of
S holds rng S1 6⊆ A. Then there exists a natural number n such that for
every natural number m such that n ¬ m holds S(m) /∈ A.

(7) Let T be a non empty 1-sorted structure, S be a sequence of T , and A,
B be subsets of the carrier of T . If rng S ⊆ A ∪ B, then there exists a
subsequence S1 of S such that rng S1 ⊆ A or rng S1 ⊆ B.

(8) Let T be a non empty topological space. Suppose that for every sequence
S of T and for all points x1, x2 of T such that x1 ∈ Lim S and x2 ∈ Lim S

holds x1 = x2. Then T is a T1 space.

(9) Let T be a non empty topological space. Suppose T is a T2 space. Let S

be a sequence of T and x1, x2 be points of T . If x1 ∈ Lim S and x2 ∈ Lim S,

then x1 = x2.

(10) Let T be a non empty topological space. Suppose T is first-countable.
Then T is a T2 space if and only if for every sequence S of T and for all
points x1, x2 of T such that x1 ∈ Lim S and x2 ∈ Lim S holds x1 = x2.

the sequential closure operator in . . . 49

(11) For every non empty topological structure T and for every sequence S

of T such that S is not convergent holds Lim S = ∅.
(12) Let T be a non empty topological space and A be a subset of T . If

A is closed, then for every sequence S of T such that rng S ⊆ A holds
Lim S ⊆ A.

(13) Let T be a non empty topological structure, S be a sequence of T , and
x be a point of T . Suppose S is not convergent to x. Then there exists a
subsequence S1 of S such that every subsequence of S1 is not convergent
to x.

2. The Continuous Maps

One can prove the following two propositions:

(14) Let T1, T2 be non empty topological spaces and f be a map from T1

into T2. Suppose f is continuous. Let S1 be a sequence of T1 and S2 be a
sequence of T2. If S2 = f · S1, then f◦ Lim S1 ⊆ Lim S2.

(15) Let T1, T2 be non empty topological spaces and f be a map from T1 into
T2. Suppose T1 is sequential. Then f is continuous if and only if for every
sequence S1 of T1 and for every sequence S2 of T2 such that S2 = f · S1

holds f◦ Lim S1 ⊆ Lim S2.

3. The Sequential Closure Operator

Let T be a non empty topological structure and let A be a subset of the
carrier of T . The functor ClSeq A yielding a subset of T is defined by:

(Def. 2) For every point x of T holds x ∈ ClSeq A iff there exists a sequence S of
T such that rng S ⊆ A and x ∈ Lim S.

The following propositions are true:

(16) Let T be a non empty topological structure, A be a subset of T , S be a
sequence of T , and x be a point of T . If rng S ⊆ A and x ∈ Lim S, then
x ∈ A.

(17) For every non empty topological structure T and for every subset A of
T holds ClSeq A ⊆ A.

(18) Let T be a non empty topological structure, S be a sequence of T , S1 be
a subsequence of S, and x be a point of T . If S is convergent to x, then
S1 is convergent to x.

(19) Let T be a non empty topological structure, S be a sequence of T , and
S1 be a subsequence of S. Then Lim S ⊆ Lim S1.

50 bartłomiej skorulski

(20) For every non empty topological structure T holds ClSeq(∅T) = ∅.
(21) For every non empty topological structure T and for every subset A of

T holds A ⊆ ClSeq A.

(22) For every non empty topological structure T and for all subsets A, B of
T holds ClSeq A ∪ ClSeq B = ClSeq(A ∪B).

(23) Let T be a non empty topological structure. Then T is Frechet if and
only if for every subset A of the carrier of T holds A = ClSeq A.

(24) Let T be a non empty topological space. Suppose T is Frechet. Let A, B

be subsets of T . Then ClSeq(∅T) = ∅ and A ⊆ ClSeq A and ClSeq(A∪B) =
ClSeq A ∪ ClSeq B and ClSeq ClSeq A = ClSeq A.

(25) Let T be a non empty topological space. Suppose T is sequential. If for
every subset A of T holds ClSeq ClSeq A = ClSeq A, then T is Frechet.

(26) Let T be a non empty topological space. Suppose T is sequential. Then
T is Frechet if and only if for all subsets A, B of T holds ClSeq(∅T) = ∅
and A ⊆ ClSeq A and ClSeq(A∪B) = ClSeq A∪ClSeq B and ClSeq ClSeq A =
ClSeq A.

4. The Limit

Let T be a non empty topological space and let S be a sequence of T . Let
us assume that there exists a point x of T such that Lim S = {x}. The functor
lim S yields a point of T and is defined as follows:

(Def. 3) S is convergent to lim S.

The following propositions are true:

(27) Let T be a non empty topological space. Suppose T is a T2 space. Let
S be a sequence of T . If S is convergent, then there exists a point x of T

such that Lim S = {x}.
(28) Let T be a non empty topological space. Suppose T is a T2 space. Let

S be a sequence of T and x be a point of T . Then S is convergent to x if
and only if S is convergent and x = lim S.

(29) For every metric structure M holds every sequence of M is a sequence
of Mtop.

(30) For every non empty metric structure M holds every sequence of Mtop

is a sequence of M .

(31) Let M be a non empty metric space, S be a sequence of M , x be a point
of M , S′ be a sequence of Mtop, and x′ be a point of Mtop. Suppose S = S′

and x = x′. Then S is convergent to x if and only if S′ is convergent to x′.
(32) Let M be a non empty metric space, S3 be a sequence of M , and S4 be

a sequence of Mtop. If S3 = S4, then S3 is convergent iff S4 is convergent.

the sequential closure operator in . . . 51

(33) Let M be a non empty metric space, S3 be a sequence of M , and S4 be
a sequence of Mtop. If S3 = S4 and S3 is convergent, then lim S3 = lim S4.

5. The Cluster Points

Let T be a topological structure, let S be a sequence of T , and let x be a
point of T . We say that x is a cluster point of S if and only if the condition
(Def. 4) is satisfied.

(Def. 4) Let O be a subset of T and n be a natural number. Suppose O is open
and x ∈ O. Then there exists a natural number m such that n ¬ m and
S(m) ∈ O.

Next we state several propositions:

(34) Let T be a non empty topological structure, S be a sequence of T , and
x be a point of T . If there exists a subsequence of S which is convergent
to x, then x is a cluster point of S.

(35) Let T be a non empty topological structure, S be a sequence of T , and
x be a point of T . If S is convergent to x, then x is a cluster point of S.

(36) Let T be a non empty topological structure, S be a sequence of T , x be
a point of T , and Y be a subset of the carrier of T . If Y = {y; y ranges
over points of T : x ∈ {y}} and rng S ⊆ Y, then S is convergent to x.

(37) Let T be a non empty topological structure, S be a sequence of T , and x,
y be points of T . Suppose that for every natural number n holds S(n) = y

and S is convergent to x. Then x ∈ {y}.
(38) Let T be a non empty topological structure, x be a point of T , Y be a

subset of the carrier of T , and S be a sequence of T . Suppose Y = {y; y
ranges over points of T : x ∈ {y}} and rng S ∩ Y = ∅ and S is convergent
to x. Then there exists a subsequence of S which is one-to-one.

(39) Let T be a non empty topological structure and S1, S2 be sequences
of T . Suppose rng S2 ⊆ rng S1 and S2 is one-to-one. Then there exists a
permutation P of N such that S2 · P is a subsequence of S1.

Now we present two schemes. The scheme PermSeq deals with a non empty
1-sorted structure A, a sequence B of A, a permutation C of N, and and states
that:

There exists a natural number n such that for every natural num-
ber m such that n ¬ m holds P[(B · C)(m)]

provided the following condition is satisfied:
• There exists a natural number n such that for every natural num-

ber m and for every point x of A if n ¬ m and x = B(m), then
P[x].

52 bartłomiej skorulski

The scheme PermSeq2 deals with a non empty topological structure A, a
sequence B of A, a permutation C of N, and and states that:

There exists a natural number n such that for every natural num-
ber m such that n ¬ m holds P[(B · C)(m)]

provided the parameters meet the following condition:
• There exists a natural number n such that for every natural num-

ber m and for every point x of A if n ¬ m and x = B(m), then
P[x].

We now state several propositions:

(40) Let T be a non empty topological structure, S be a sequence of T , P be
a permutation of N, and x be a point of T . If S is convergent to x, then
S · P is convergent to x.

(41) Let n0 be a natural number. Then there exists an increasing sequence
N1 of naturals such that for every natural number n holds N1(n) = n+n0.

(42) Let T be a non empty 1-sorted structure, S be a sequence of T , and n0

be a natural number. Then there exists a subsequence S1 of S such that
for every natural number n holds S1(n) = S(n + n0).

(43) Let T be a non empty topological structure, S be a sequence of T , x be a
point of T , and S1 be a subsequence of S. Suppose x is a cluster point of S

and there exists a natural number n0 such that for every natural number
n holds S1(n) = S(n + n0). Then x is a cluster point of S1.

(44) Let T be a non empty topological structure, S be a sequence of T , and
x be a point of T . If x is a cluster point of S, then x ∈ rng S.

(45) Let T be a non empty topological structure. Suppose T is Frechet. Let
S be a sequence of T and x be a point of T . If x is a cluster point of S,
then there exists a subsequence of S which is convergent to x.

6. Auxiliary Theorems

We now state several propositions:

(46) Let T be a non empty topological space. Suppose T is first-countable.
Let x be a point of T . Then there exists a basis B of x and there exists
a function S such that dom S = N and rng S = B and for all natural
numbers n, m such that m ­ n holds S(m) ⊆ S(n).

(47) For every non empty topological space T holds T is a T1 space iff for
every point p of T holds {p} = {p}.

(48) For every non empty topological space T such that T is a T2 space holds
T is a T1 space.

the sequential closure operator in . . . 53

(49) Let T be a non empty topological space. Suppose T is not a T1 space.
Then there exist points x1, x2 of T and there exists a sequence S of T

such that S = N 7−→ x1 and x1 6= x2 and S is convergent to x2.

(50) For every function f such that dom f is infinite and f is one-to-one holds
rng f is infinite.

(51) For every non empty finite subset X of N and for every natural number
x such that x ∈ X holds x ¬ max X.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[3] Grzegorz Bancerek. Countable sets and Hessenberg’s theorem. Formalized Mathematics,

2(1):65–69, 1991.
[4] Józef Białas and Yatsuka Nakamura. Dyadic numbers and T4 topological spaces. Forma-

lized Mathematics, 5(3):361–366, 1996.
[5] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481–

485, 1991.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[8] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
[9] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces.

Formalized Mathematics, 1(2):257–261, 1990.
[10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[11] Agata Darmochwał and Andrzej Trybulec. Similarity of formulae. Formalized Mathema-

tics, 2(5):635–642, 1991.
[12] Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559–562,

1991.
[13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[14] Krzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics, 1(2):321–328,

1990.
[15] Stanisława Kanas and Adam Lecko. Sequences in metric spaces. Formalized Mathematics,

2(5):657–661, 1991.
[16] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathe-

matics, 1(3):607–610, 1990.
[17] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics,

1(3):471–475, 1990.
[18] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathema-

tics, 1(2):269–272, 1990.
[19] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics,

2(1):17–28, 1991.
[20] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preli-

minaries to circuits, I. Formalized Mathematics, 5(2):167–172, 1996.
[21] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[22] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[23] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111–115, 1991.
[24] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics,

5(2):233–236, 1996.
[25] Bartłomiej Skorulski. First-countable, sequential, and Frechet spaces. Formalized Mathe-

matics, 7(1):81–86, 1998.

54 bartłomiej skorulski

[26] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[27] Andrzej Trybulec. Baire spaces, Sober spaces. Formalized Mathematics, 6(2):289–294,
1997.

[28] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics,
1(5):979–981, 1990.

[29] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[30] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[31] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received February 13, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Properties of the Product of Compact
Topological Spaces

Adam Grabowski
University of Białystok

MML Identifier: BORSUK 3.

The notation and terminology used in this paper are introduced in the following
articles: [12], [16], [15], [4], [17], [9], [2], [11], [6], [18], [5], [13], [19], [14], [7], [1],
[3], [10], and [8].

1. Preliminaries

One can prove the following proposition

(1) For all topological spaces S, T holds Ω[: S, T :] = [:ΩS , ΩT :].

Let X be a set and let Y be an empty set. Note that [:X, Y :] is empty.
Let X be an empty set and let Y be a set. Observe that [:X, Y :] is empty.
We now state the proposition

(2) Let X, Y be non empty topological spaces and x be a point of X. Then
Y 7−→ x is a continuous map from Y into X¹{x}.

Let T be a non empty topological structure. One can verify that idT is
homeomorphism.

Let S, T be non empty topological structures. Let us notice that the predi-
cate S and T are homeomorphic is reflexive and symmetric.

The following proposition is true

(3) Let S, T , V be non empty topological spaces. Suppose S and T are
homeomorphic and T and V are homeomorphic. Then S and V are home-
omorphic.

55
c© 1999 University of Białystok

ISSN 1426–2630

56 adam grabowski

2. On the Projections and Empty Topological Spaces

Let T be a topological structure and let P be an empty subset of the carrier
of T . One can verify that T ¹P is empty.

One can check that there exists a topological space which is strict and empty.
One can prove the following propositions:

(4) For every topological space T1 and for every empty topological space T2

holds [:T1, T2 :] is empty and [:T2, T1 :] is empty.

(5) Every empty topological space is compact.

Let us note that every topological space which is empty is also compact.
Let T1 be a topological space and let T2 be an empty topological space.

Observe that [:T1, T2 :] is empty.
One can prove the following propositions:

(6) Let X, Y be non empty topological spaces, x be a point of X, and f be
a map from [:Y, X¹{x} :] into Y . If f = π1((the carrier of Y)× {x}), then
f is one-to-one.

(7) Let X, Y be non empty topological spaces, x be a point of X, and f be
a map from [:X¹{x}, Y :] into Y . If f = π2({x}× the carrier of Y), then f

is one-to-one.

(8) Let X, Y be non empty topological spaces, x be a point of X, and f be
a map from [:Y, X¹{x} :] into Y . If f = π1((the carrier of Y)× {x}), then
f−1 = 〈idY , Y 7−→ x〉.

(9) Let X, Y be non empty topological spaces, x be a point of X, and f be
a map from [:X¹{x}, Y :] into Y . If f = π2({x} × the carrier of Y), then
f−1 = 〈Y 7−→ x, idY 〉.

(10) Let X, Y be non empty topological spaces, x be a point of X, and f be
a map from [:Y, X¹{x} :] into Y . If f = π1((the carrier of Y)× {x}), then
f is a homeomorphism.

(11) Let X, Y be non empty topological spaces, x be a point of X, and f be
a map from [:X¹{x}, Y :] into Y . If f = π2({x}× the carrier of Y), then f

is a homeomorphism.

3. On the Product of Compact Spaces

One can prove the following propositions:

(12) Let X be a non empty topological space, Y be a compact non empty
topological space, G be an open subset of [:X, Y :], and x be a set. Suppose
x ∈ {x′; x′ ranges over points of X: [: {x′}, the carrier of Y :] ⊆ G}. Then

properties of the product of compact . . . 57

there exists a many sorted set f indexed by the carrier of Y such that for
every set i if i ∈ the carrier of Y , then there exists a subset G1 of X and
there exists a subset H1 of Y such that f(i) = 〈〈G1, H1〉〉 and 〈〈x, i〉〉 ∈ [:G1,

H1 :] and G1 is open and H1 is open and [: G1, H1 :] ⊆ G.

(13) Let X be a non empty topological space, Y be a compact non empty
topological space, G be an open subset of [:Y, X :], and x be a set. Suppose
x ∈ {y; y ranges over points of X: [: ΩY , {y} :] ⊆ G}. Then there exists an
open subset R of X such that x ∈ R and R ⊆ {y; y ranges over points of
X: [: ΩY , {y} :] ⊆ G}.

(14) Let X be a non empty topological space, Y be a compact non empty
topological space, and G be an open subset of [:Y, X :]. Then {x; x ranges
over points of X: [: ΩY , {x} :] ⊆ G} ∈ the topology of X.

(15) For all non empty topological spaces X, Y and for every point x of X

holds [:X¹{x}, Y :] and Y are homeomorphic.

(16) For all non empty topological spaces S, T such that S and T are home-
omorphic and S is compact holds T is compact.

(17) For all topological spaces X, Y and for every subspace X1 of X holds
[:Y, X1 :] is a subspace of [:Y, X :].

(18) Let X be a non empty topological space, Y be a compact non empty
topological space, x be a point of X, and Z be a subset of [:Y, X :]. If
Z = [:ΩY , {x} :], then Z is compact.

(19) Let X be a non empty topological space, Y be a compact non empty
topological space, and x be a point of X. Then [:Y, X¹{x} :] is compact.

(20) Let X, Y be compact non empty topological spaces and R be a family
of subsets of X. Suppose R = {Q;Q ranges over open subsets of X: [: ΩY ,

Q :] ⊆ ⋃
BaseAppr(Ω[: Y, X :])}. Then R is open and a cover of ΩX .

(21) Let X, Y be compact non empty topological spaces, R be a family of
subsets of X, and F be a family of subsets of [:Y, X :]. Suppose that

(i) F is a cover of [:Y, X :] and open, and
(ii) R = {Q; Q ranges over open subsets of X:

∨
F1 : family of subsets of [: Y, X :]

(F1 ⊆ F ∧ F1 is finite ∧ [: ΩY , Q :] ⊆ ⋃
F1)}.

Then R is open and a cover of X.

(22) Let X, Y be compact non empty topological spaces, R be a family of
subsets of X, and F be a family of subsets of [:Y, X :]. Suppose that

(i) F is a cover of [:Y, X :] and open, and
(ii) R = {Q; Q ranges over open subsets of X:

∨
F1 : family of subsets of [: Y, X :]

(F1 ⊆ F ∧ F1 is finite ∧ [: ΩY , Q :] ⊆ ⋃
F1)}.

Then there exists a family C of subsets of X such that C ⊆ R and C is
finite and a cover of X.

(23) Let X, Y be compact non empty topological spaces and F be a family of

58 adam grabowski

subsets of [:Y, X :]. Suppose F is a cover of [:Y, X :] and open. Then there
exists a family G of subsets of [:Y, X :] such that G ⊆ F and G is a cover
of [:Y, X :] and finite.

(24) For all topological spaces T1, T2 such that T1 is compact and T2 is com-
pact holds [:T1, T2 :] is compact.

Let T1, T2 be compact topological spaces. Observe that [:T1, T2 :] is compact.
Next we state two propositions:

(25) Let X, Y be non empty topological spaces, X1 be a non empty subspace
of X, and Y1 be a non empty subspace of Y . Then [:X1, Y1 :] is a subspace
of [:X, Y :].

(26) Let X, Y be non empty topological spaces, Z be a non empty subset of
[:Y, X :], V be a non empty subset of X, and W be a non empty subset
of Y . Suppose Z = [:W, V :]. Then the topological structure of [:Y ¹W,

X¹V :] = the topological structure of [:Y, X :]¹Z.

Let T be a topological space. Observe that there exists a subset of T which
is compact.

Let T be a topological space and let P be a compact subset of T . Note that
T ¹P is compact.

We now state the proposition

(27) Let T1, T2 be topological spaces, S1 be a subset of T1, and S2 be a subset
of T2. If S1 is compact and S2 is compact, then [:S1, S2 :] is a compact
subset of [:T1, T2 :].

References

[1] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics,
1(1):245–254, 1990.

[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[3] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics,
1(2):409–420, 1990.

[4] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[5] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
[6] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces.

Formalized Mathematics, 1(2):257–261, 1990.
[7] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[8] Michał Muzalewski. Categories of groups. Formalized Mathematics, 2(4):563–571, 1991.
[9] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.

[10] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93–96, 1991.
[11] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[13] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics,

2(4):535–545, 1991.
[14] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

properties of the product of compact . . . 59

[16] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17–23, 1990.

[17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

[18] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized
Mathematics, 1(1):231–237, 1990.

[19] Mariusz Żynel and Adam Guzowski. T0 topological spaces. Formalized Mathematics,
5(1):75–77, 1996.

Received February 13, 1999

60 adam grabowski

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Compactness of the Bounded Closed
Subsets of E2

T

Artur Korniłowicz1

University of Bialystok

Summary. This paper contains theorems which describe the correspon-
dence between topological properties of real numbers subsets introduced in [40]
and introduced in [38], [16]. We also show the homeomorphism between the car-
tesian product of two R1 and E2

T. The compactness of the bounded closed subset
of E2

T is proven.

MML Identifier: TOPREAL6.

The articles [41], [48], [12], [49], [10], [11], [6], [47], [7], [18], [24], [43], [1], [39],
[35], [8], [14], [28], [27], [26], [45], [25], [23], [3], [9], [13], [29], [2], [46], [40], [38],
[50], [17], [36], [37], [16], [42], [5], [19], [4], [20], [21], [22], [51], [33], [32], [15],
[31], [30], [44], and [34] provide the notation and terminology for this paper.

1. Real Numbers

For simplicity, we use the following convention: a, b are real numbers, r is a
real number, i, j, n are natural numbers, M is a non empty metric space, p, q,
s are points of E2

T, e is a point of E2, w is a point of En, z is a point of M , A,
B are subsets of En

T, P is a subset of E2
T, and D is a non empty subset of E2

T.
One can prove the following propositions:

(2)2 a− 2 · a = −a.

(3) −a + 2 · a = a.

1This paper was written while the author visited Shinshu University, winter 1999.
2The proposition (1) has been removed.

61
c© 1999 University of Białystok

ISSN 1426–2630

62 artur korniłowicz

(4) a− a
2 = a

2 .

(5) If a 6= 0 and b 6= 0, then a
a
b

= b.

(6) For all real numbers a, b such that 0 ¬ a and 0 ¬ b holds
√

a + b ¬√
a +
√

b.

(7) If 0 ¬ a and a ¬ b, then |a| ¬ |b|.
(8) If b ¬ a and a ¬ 0, then |a| ¬ |b|.
(9)

∏
(0 7→ r) = 1.

(10)
∏

(1 7→ r) = r.

(11)
∏

(2 7→ r) = r · r.
(12)

∏
((n + 1) 7→ r) =

∏
(n 7→ r) · r.

(13) j 6= 0 and r = 0 iff
∏

(j 7→ r) = 0.

(14) If r 6= 0 and j ¬ i, then
∏

((i−′ j) 7→ r) =
Q

(i7→r)Q
(j 7→r) .

(15) If r 6= 0 and j ¬ i, then ri−′j = ri

rj .

In the sequel a, b denote real numbers.
The following propositions are true:

(16) 2〈a, b〉 = 〈a2, b2〉.
(17) For every finite sequence F of elements of R such that i ∈ dom|F | and

a = F (i) holds |F |(i) = |a|.
(18) |〈a, b〉| = 〈|a|, |b|〉.
(19) For all real numbers a, b, c, d such that a ¬ b and c ¬ d holds |b− a|+
|d− c| = (b− a) + (d− c).

(20) If r > 0, then a ∈]a− r, a + r[.
(21) If r ­ 0, then a ∈ [a− r, a + r].
(22) If a < b, then inf]a, b[= a and sup]a, b[= b.

(23)]a, b[⊆ [a, b].
(24) For every bounded subset A of R holds A ⊆ [inf A, sup A].

2. Topological Preliminaries

Let T be a topological structure and let A be a finite subset of the carrier
of T . One can verify that T ¹A is finite.

Let us observe that there exists a topological space which is finite, non empty,
and strict.

Let T be a topological structure. Note that every subset of T which is empty
is also connected.

Let T be a topological space. Observe that every subset of T which is finite
is also compact.

compactness of the bounded closed subsets of . . . 63

Let T be T2 non empty topological space. Observe that every subset of T

which is compact is also closed.
The following two propositions are true:

(25) For all topological spaces S, T such that S and T are homeomorphic
and S is connected holds T is connected.

(26) Let T be a topological space and F be a finite family of subsets of T .
Suppose that for every subset X of T such that X ∈ F holds X is compact.
Then

⋃
F is compact.

3. Points and Subsets in E2
T

The following propositions are true:

(27) For every non empty set X and for every set Y such that X ⊆ Y holds
X meets Y .

(28) For all sets A, B, C, D, X such that A ∪ B = X and C ∪D = X and
A ∩B = ∅ and C ∩D = ∅ and B = D holds A = C.

(29) For all sets A, B, C, D, a, b such that A ⊆ B and C ⊆ D holds∏
[a 7−→ A, b 7−→ C] ⊆∏

[a 7−→ B, b 7−→ D].
(30) For all subsets A, B of R holds

∏
[1 7−→ A, 2 7−→ B] is a subset of E2

T.

(31) |[0, a]| = |a| and |[a, 0]| = |a|.
(32) For every point p of E2 and for every point q of E2

T such that p = 0E2T
and p = q holds q = 〈0, 0〉 and q1 = 0 and q2 = 0.

(33) For all points p, q of E2 and for every point z of E2
T such that p = 0E2T

and q = z holds ρ(p, q) = |z|.
(34) r · p = [r · p1, r · p2].
(35) If s = (1− r) · p + r · q and s 6= p and 0 ¬ r, then 0 < r.

(36) If s = (1− r) · p + r · q and s 6= q and r ¬ 1, then r < 1.

(37) If s ∈ L(p, q) and s 6= p and s 6= q and p1 < q1, then p1 < s1 and
s1 < q1.

(38) If s ∈ L(p, q) and s 6= p and s 6= q and p2 < q2, then p2 < s2 and
s2 < q2.

(39) For every point p of E2
T there exists a point q of E2

T such that q1 <

W-bound D and p 6= q.

(40) For every point p of E2
T there exists a point q of E2

T such that q1 >

E-bound D and p 6= q.

(41) For every point p of E2
T there exists a point q of E2

T such that q2 >

N-bound D and p 6= q.

64 artur korniłowicz

(42) For every point p of E2
T there exists a point q of E2

T such that q2 <

S-bound D and p 6= q.

One can verify the following observations:

∗ every subset of E2
T which is convex and non empty is also connected,

∗ every subset of E2
T which is non horizontal is also non empty,

∗ every subset of E2
T which is non vertical is also non empty,

∗ every subset of E2
T which is region is also open and connected, and

∗ every subset of E2
T which is open and connected is also region.

Let us observe that every subset of E2
T which is empty is also horizontal and

every subset of E2
T which is empty is also vertical.

Let us mention that there exists a subset of E2
T which is non empty and

convex.
Let a, b be points of E2

T. Observe that L(a, b) is convex and connected.
Let us mention that ¤E2 is connected.
Let us observe that every subset of E2

T which is simple closed curve is also
connected and compact.

One can prove the following propositions:

(43) L(NE-corner P, SE-corner P) ⊆ L̃(SpStSeq P).
(44) L(SW-corner P, SE-corner P) ⊆ L̃(SpStSeq P).
(45) L(SW-corner P, NW-corner P) ⊆ L̃(SpStSeq P).
(46) For every subset C of E2

T holds {p; p ranges over points of E2
T: p1 <

W-bound C} is a non empty convex connected subset of E2
T.

4. Balls as subsets of En
T

We now state a number of propositions:

(47) If e = q and p ∈ Ball(e, r), then q1 − r < p1 and p1 < q1 + r.

(48) If e = q and p ∈ Ball(e, r), then q2 − r < p2 and p2 < q2 + r.

(49) If p = e, then
∏

[1 7−→]p1 − r√
2
, p1 + r√

2
[, 2 7−→]p2 − r√

2
, p2 + r√

2
[] ⊆

Ball(e, r).
(50) If p = e, then Ball(e, r) ⊆∏

[1 7−→]p1− r, p1 + r[, 2 7−→]p2− r, p2 + r[].
(51) If P = Ball(e, r) and p = e, then (proj1)◦P =]p1 − r, p1 + r[.
(52) If P = Ball(e, r) and p = e, then (proj2)◦P =]p2 − r, p2 + r[.
(53) If D = Ball(e, r) and p = e, then W-bound D = p1 − r.

(54) If D = Ball(e, r) and p = e, then E-bound D = p1 + r.

(55) If D = Ball(e, r) and p = e, then S-bound D = p2 − r.

(56) If D = Ball(e, r) and p = e, then N-bound D = p2 + r.

compactness of the bounded closed subsets of . . . 65

(57) If D = Ball(e, r), then D is non horizontal.

(58) If D = Ball(e, r), then D is non vertical.

(59) For every point f of E2 and for every point x of E2
T such that x ∈

Ball(f, a) holds [x1 − 2 · a, x2] /∈ Ball(f, a).

(60) Let X be a non empty compact subset of E2
T and p be a point of E2.

If p = 0E2T and a > 0, then X ⊆ Ball(p, |E-bound X| + |N-bound X| +
|W-bound X|+ | S-bound X|+ a).

(61) Let M be a Reflexive symmetric triangle non empty metric structure
and z be a point of M . If r < 0, then Sphere(z, r) = ∅.

(62) For every Reflexive discernible non empty metric structure M and for
every point z of M holds Sphere(z, 0) = {z}.

(63) Let M be a Reflexive symmetric triangle non empty metric structure
and z be a point of M . If r < 0, then Ball(z, r) = ∅.

(64) Ball(z, 0) = {z}.
(65) For every subset A of Mtop such that A = Ball(z, r) holds A is closed.

(66) If A = Ball(w, r), then A is closed.

(67) Ball(z, r) is bounded.

(68) For every subset A of Mtop such that A = Sphere(z, r) holds A is closed.

(69) If A = Sphere(w, r), then A is closed.

(70) Sphere(z, r) is bounded.

(71) If A is Bounded, then A is Bounded.

(72) For every non empty metric structure M holds M is bounded iff every
subset of the carrier of M is bounded.

(73) Let M be a Reflexive symmetric triangle non empty metric structure and
X, Y be subsets of the carrier of M . Suppose the carrier of M = X ∪ Y

and M is non bounded and X is bounded. Then Y is non bounded.

(74) For all subsets X, Y of En
T such that n ­ 1 and the carrier of En

T = X∪Y

and X is Bounded holds Y is non Bounded.

(76)3 If A is Bounded and B is Bounded, then A ∪B is Bounded.

5. Topological Properties of Real Numbers Subsets

Let X be a non empty subset of R. Observe that X is non empty.
Let D be a lower bounded subset of R. One can verify that D is lower

bounded.

3The proposition (75) has been removed.

66 artur korniłowicz

Let D be an upper bounded subset of R. One can verify that D is upper
bounded.

We now state two propositions:

(77) For every non empty lower bounded subset D of R holds inf D = inf D.

(78) For every non empty upper bounded subset D of R holds sup D = sup D.

Let us observe that R1 is T2.
The following three propositions are true:

(79) For every subset A of R and for every subset B of R1 such that A = B

holds A is closed iff B is closed.

(80) For every subset A of R and for every subset B of R1 such that A = B

holds A = B.

(81) For every subset A of R and for every subset B of R1 such that A = B

holds A is compact iff B is compact.

One can check that every subset of R which is finite is also compact.
Let a, b be real numbers. Note that [a, b] is compact.
Next we state the proposition

(82) a 6= b iff]a, b[= [a, b].
Let us observe that there exists a subset of R which is non empty, finite, and

bounded.
The following propositions are true:

(83) Let T be a topological structure, f be a real map of T , and g be a map
from T into R1. If f = g, then f is continuous iff g is continuous.

(84) Let A, B be subsets of R and f be a map from [:R1, R1 :] into E2
T. If for

all real numbers x, y holds f(〈〈x, y〉〉) = 〈x, y〉, then f◦[:A, B :] =
∏

[1 7−→
A, 2 7−→ B].

(85) For every map f from [:R1, R1 :] into E2
T such that for all real numbers

x, y holds f(〈〈x, y〉〉) = 〈x, y〉 holds f is a homeomorphism.

(86) [:R1, R1 :] and E2
T are homeomorphic.

6. Bounded Subsets

One can prove the following propositions:

(87) For all compact subsets A, B of R holds
∏

[1 7−→ A, 2 7−→ B] is a
compact subset of E2

T.

(88) If P is Bounded and closed, then P is compact.

(89) If P is Bounded, then for every continuous real map g of E2
T holds g◦P ⊆

g◦P .

(90) (proj1)◦P ⊆ (proj1)◦P .

compactness of the bounded closed subsets of . . . 67

(91) (proj2)◦P ⊆ (proj2)◦P .

(92) If P is Bounded, then (proj1)◦P = (proj1)◦P .

(93) If P is Bounded, then (proj2)◦P = (proj2)◦P .

(94) If D is Bounded, then W-bound D = W-bound D.

(95) If D is Bounded, then E-bound D = E-bound D.

(96) If D is Bounded, then N-bound D = N-bound D.

(97) If D is Bounded, then S-bound D = S-bound D.

Acknowledgments

I would like to thank Professor Yatsuka Nakamura for his help in the pre-
paration of the article.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[4] Józef Białas and Yatsuka Nakamura. The theorem of Weierstrass. Formalized Mathema-

tics, 5(3):353–359, 1996.
[5] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481–

485, 1991.
[6] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics,

1(1):245–254, 1990.
[7] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[8] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676,

1990.
[9] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized

Mathematics, 1(3):529–536, 1990.
[10] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[11] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[13] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized

Mathematics, 1(4):661–668, 1990.
[14] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics,

2(5):701–709, 1991.
[15] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E2. Formalized

Mathematics, 6(3):427–440, 1997.
[16] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
[17] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces.

Formalized Mathematics, 1(2):257–261, 1990.
[18] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[19] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
[20] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - funda-

mental concepts. Formalized Mathematics, 2(4):605–608, 1991.
[21] Agata Darmochwał and Yatsuka Nakamura. The topological space E2

T. Arcs, line segments
and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.

[22] Agata Darmochwał and Yatsuka Nakamura. The topological space E2
T. Simple closed

curves. Formalized Mathematics, 2(5):663–664, 1991.

68 artur korniłowicz

[23] Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559–562,
1991.

[24] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[25] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathe-
matics, 1(3):607–610, 1990.

[26] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real
numbers. Formalized Mathematics, 1(3):477–481, 1990.

[27] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathe-
matics, 1(2):273–275, 1990.

[28] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathema-
tics, 1(2):269–272, 1990.

[29] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890,
1990.

[30] Yatsuka Nakamura. Graph theoretical properties of arcs in the plane and Fashoda Meet
Theorem. Formalized Mathematics, 7(2):193–201, 1998.

[31] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special
polygons. Part I. Formalized Mathematics, 5(1):97–102, 1996.

[32] Yatsuka Nakamura and Jarosław Kotowicz. Connectedness conditions using polygonal
arcs. Formalized Mathematics, 3(1):101–106, 1992.

[33] Yatsuka Nakamura and Jarosław Kotowicz. The Jordan’s property for certain subsets of
the plane. Formalized Mathematics, 3(2):137–142, 1992.

[34] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and
unbounded domains. Formalized Mathematics, 8(1):1–13, 1999.

[35] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[36] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
[37] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93–96, 1991.
[38] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[39] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics,

1(2):263–264, 1990.
[40] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real num-

bers. Formalized Mathematics, 1(4):777–780, 1990.
[41] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[42] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics,

2(4):535–545, 1991.
[43] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized

Mathematics, 1(3):445–449, 1990.
[44] Andrzej Trybulec and Yatsuka Nakamura. On the rectangular finite sequences of the

points of the plane. Formalized Mathematics, 6(4):531–539, 1997.
[45] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[46] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[47] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[48] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[49] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[50] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized

Mathematics, 1(1):231–237, 1990.
[51] Mariusz Żynel and Adam Guzowski. T0 topological spaces. Formalized Mathematics,

5(1):75–77, 1996.

Received February 19, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Hilbert Positive Propositional Calculus

Adam Grabowski
University of Białystok

MML Identifier: HILBERT1.

The papers [4], [5], [3], [1], and [2] provide the notation and terminology for this
paper.

1. Definition of the Language

Let D be a set. We say that D has VERUM if and only if:

(Def. 1) 〈0〉 ∈ D.

Let D be a set. We say that D has implication if and only if:

(Def. 2) For all finite sequences p, q such that p ∈ D and q ∈ D holds 〈1〉a pa q ∈
D.

Let D be a set. We say that D has conjunction if and only if:

(Def. 3) For all finite sequences p, q such that p ∈ D and q ∈ D holds 〈2〉a pa q ∈
D.

Let D be a set. We say that D has propositional variables if and only if:

(Def. 4) For every natural number n holds 〈3 + n〉 ∈ D.

Let D be a set. We say that D is HP-closed if and only if:

(Def. 5) D ⊆ N∗ and D has VERUM, implication, conjunction, and propositional
variables.

Let us note that every set which is HP-closed is also non empty and has
VERUM, implication, conjunction, and propositional variables and every subset
of N∗ which has VERUM, implication, conjunction, and propositional variables
is HP-closed.

The set HP-WFF is defined as follows:

69
c© 1999 University of Białystok

ISSN 1426–2630

70 adam grabowski

(Def. 6) HP-WFF is HP-closed and for every set D such that D is HP-closed
holds HP-WFF ⊆ D.

Let us note that HP-WFF is HP-closed.
Let us mention that there exists a set which is HP-closed and non empty.
One can verify that every element of HP-WFF is relation-like and function-

like.
Let us mention that every element of HP-WFF is finite sequence-like.
A HP-formula is an element of HP-WFF.
The HP-formula VERUM is defined by:

(Def. 7) VERUM = 〈0〉.
Let p, q be elements of HP-WFF. The functor p ⇒ q yielding a HP-formula is
defined by:

(Def. 8) p⇒ q = 〈1〉 a p a q.

The functor p ∧ q yielding a HP-formula is defined as follows:

(Def. 9) p ∧ q = 〈2〉 a p a q.

We follow the rules: T , X, Y denote subsets of HP-WFF and p, q, r, s denote
elements of HP-WFF.

Let T be a subset of HP-WFF. We say that T is Hilbert theory if and only
if the conditions (Def. 10) are satisfied.

(Def. 10)(i) VERUM ∈ T, and
(ii) for all elements p, q, r of HP-WFF holds p ⇒ (q ⇒ p) ∈ T and

(p ⇒ (q ⇒ r)) ⇒ ((p ⇒ q) ⇒ (p ⇒ r)) ∈ T and p ∧ q ⇒ p ∈ T and
p ∧ q ⇒ q ∈ T and p⇒ (q ⇒ p ∧ q) ∈ T and if p ∈ T and p⇒ q ∈ T, then
q ∈ T.

Let us consider X. The functor CnPos X yields a subset of HP-WFF and is
defined by:

(Def. 11) r ∈ CnPos X iff for every T such that T is Hilbert theory and X ⊆ T

holds r ∈ T.

The subset HP TAUT of HP-WFF is defined by:

(Def. 12) HP TAUT = CnPos ∅HP-WFF.

The following propositions are true:

(1) VERUM ∈ CnPos X.

(2) p⇒ (q ⇒ p ∧ q) ∈ CnPos X.

(3) (p⇒ (q ⇒ r))⇒ ((p⇒ q)⇒ (p⇒ r)) ∈ CnPos X.

(4) p⇒ (q ⇒ p) ∈ CnPos X.

(5) p ∧ q ⇒ p ∈ CnPos X.

(6) p ∧ q ⇒ q ∈ CnPos X.

(7) If p ∈ CnPos X and p⇒ q ∈ CnPos X, then q ∈ CnPos X.

(8) If T is Hilbert theory and X ⊆ T, then CnPos X ⊆ T.

hilbert positive propositional calculus 71

(9) X ⊆ CnPos X.

(10) If X ⊆ Y, then CnPos X ⊆ CnPos Y.

(11) CnPos CnPos X = CnPos X.

Let X be a subset of HP-WFF. One can verify that CnPos X is Hilbert
theory.

We now state two propositions:

(12) T is Hilbert theory iff CnPos T = T.

(13) If T is Hilbert theory, then HP TAUT ⊆ T.

Let us mention that HP TAUT is Hilbert theory.

2. The Tautologies of the Hilbert Calculus - Implicational Part

We now state a number of propositions:

(14) p⇒ p ∈ HP TAUT .

(15) If q ∈ HP TAUT, then p⇒ q ∈ HP TAUT .

(16) p⇒ VERUM ∈ HP TAUT .

(17) (p⇒ q)⇒ (p⇒ p) ∈ HP TAUT .

(18) (q ⇒ p)⇒ (p⇒ p) ∈ HP TAUT .

(19) (q ⇒ r)⇒ ((p⇒ q)⇒ (p⇒ r)) ∈ HP TAUT .

(20) If p⇒ (q ⇒ r) ∈ HP TAUT, then q ⇒ (p⇒ r) ∈ HP TAUT .

(21) (p⇒ q)⇒ ((q ⇒ r)⇒ (p⇒ r)) ∈ HP TAUT .

(22) If p⇒ q ∈ HP TAUT, then (q ⇒ r)⇒ (p⇒ r) ∈ HP TAUT .

(23) If p⇒ q ∈ HP TAUT and q ⇒ r ∈ HP TAUT, then p⇒ r ∈ HP TAUT .

(24) (p⇒ (q ⇒ r))⇒ ((s⇒ q)⇒ (p⇒ (s⇒ r))) ∈ HP TAUT .

(25) ((p⇒ q)⇒ r)⇒ (q ⇒ r) ∈ HP TAUT .

(26) (p⇒ (q ⇒ r))⇒ (q ⇒ (p⇒ r)) ∈ HP TAUT .

(27) (p⇒ (p⇒ q))⇒ (p⇒ q) ∈ HP TAUT .

(28) q ⇒ ((q ⇒ p)⇒ p) ∈ HP TAUT .

(29) If s ⇒ (q ⇒ p) ∈ HP TAUT and q ∈ HP TAUT, then s ⇒ p ∈
HP TAUT .

3. Conjunctional Part of the Calculus

The following propositions are true:

(30) p⇒ p ∧ p ∈ HP TAUT .

72 adam grabowski

(31) p ∧ q ∈ HP TAUT iff p ∈ HP TAUT and q ∈ HP TAUT .

(32) p ∧ q ∈ HP TAUT iff q ∧ p ∈ HP TAUT .

(33) (p ∧ q ⇒ r)⇒ (p⇒ (q ⇒ r)) ∈ HP TAUT .

(34) (p⇒ (q ⇒ r))⇒ (p ∧ q ⇒ r) ∈ HP TAUT .

(35) (r ⇒ p)⇒ ((r ⇒ q)⇒ (r ⇒ p ∧ q)) ∈ HP TAUT .

(36) (p⇒ q) ∧ p⇒ q ∈ HP TAUT .

(37) (p⇒ q) ∧ p ∧ s⇒ q ∈ HP TAUT .

(38) (q ⇒ s)⇒ (p ∧ q ⇒ s) ∈ HP TAUT .

(39) (q ⇒ s)⇒ (q ∧ p⇒ s) ∈ HP TAUT .

(40) (p ∧ s⇒ q)⇒ (p ∧ s⇒ q ∧ s) ∈ HP TAUT .

(41) (p⇒ q)⇒ (p ∧ s⇒ q ∧ s) ∈ HP TAUT .

(42) (p⇒ q) ∧ (p ∧ s)⇒ q ∧ s ∈ HP TAUT .

(43) p ∧ q ⇒ q ∧ p ∈ HP TAUT .

(44) (p⇒ q) ∧ (p ∧ s)⇒ s ∧ q ∈ HP TAUT .

(45) (p⇒ q)⇒ (p ∧ s⇒ s ∧ q) ∈ HP TAUT .

(46) (p⇒ q)⇒ (s ∧ p⇒ s ∧ q) ∈ HP TAUT .

(47) p ∧ (s ∧ q)⇒ p ∧ (q ∧ s) ∈ HP TAUT .

(48) (p⇒ q) ∧ (p⇒ s)⇒ (p⇒ q ∧ s) ∈ HP TAUT .

(49) p ∧ q ∧ s⇒ p ∧ (q ∧ s) ∈ HP TAUT .

(50) p ∧ (q ∧ s)⇒ p ∧ q ∧ s ∈ HP TAUT .

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[4] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[5] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received February 20, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Homeomorphism between [:E i
T, E j

T:] and E i+j
T

Artur Korniłowicz1

University of Bialystok

Summary. In this paper we introduce the cartesian product of two metric
spaces. As the distance between two points in the product we take maximal
distance between coordinates of these points. In the main theorem we show the
homeomorphism between [:Ei

T, Ej
T:] and Ei+j

T .

MML Identifier: TOPREAL7.

The notation and terminology used in this paper have been introduced in the
following articles: [20], [9], [25], [7], [8], [4], [16], [24], [21], [19], [13], [18], [23],
[1], [2], [10], [5], [17], [11], [3], [22], [14], [12], [6], [26], and [15].

We use the following convention: i, j, n denote natural numbers, f , g, h, k

denote finite sequences of elements of R, and M , N denote non empty metric
spaces.

We now state a number of propositions:

(1) For all real numbers a, b such that max(a, b) ¬ a holds max(a, b) = a.

(2) For all real numbers a, b, c, d holds max(a + c, b + d) ¬ max(a, b) +
max(c, d).

(3) For all real numbers a, b, c, d, e, f such that a ¬ b + c and d ¬ e + f

holds max(a, d) ¬ max(b, e) + max(c, f).
(4) For all finite sequences f , g holds dom g ⊆ dom(f a g).
(5) For all finite sequences f , g such that len f < i and i ¬ len f + len g

holds i− len f ∈ dom g.

(6) For all finite sequences f , g, h, k such that f ag = hak and len f = len h

and len g = len k holds f = h and g = k.

(7) If len f = len g or dom f = dom g, then len(f + g) = len f and dom(f +
g) = dom f.

1This paper was written while the author visited Shinshu University, winter 1999.

73
c© 1999 University of Białystok

ISSN 1426–2630

74 artur korniłowicz

(8) If len f = len g or dom f = dom g, then len(f − g) = len f and dom(f −
g) = dom f.

(9) len f = len2f and dom f = dom2f.

(10) len f = len|f | and dom f = dom|f |.
(11) 2(f a g) = (2f) a (2g).
(12) |f a g| = |f | a |g|.
(13) If len f = len h and len g = len k, then 2(f a g + h a k) = (2(f + h)) a

(2(g + k)).
(14) If len f = len h and len g = len k, then |f a g + h a k| = |f + h| a |g + k|.
(15) If len f = len h and len g = len k, then 2(f a g − h a k) = (2(f − h)) a

(2(g − k)).
(16) If len f = len h and len g = len k, then |f a g − h a k| = |f − h| a |g − k|.
(17) If len f = n, then f ∈ the carrier of En.

(18) If len f = n, then f ∈ the carrier of En
T.

(19) For every finite sequence f such that f ∈ the carrier of En holds len f =
n.

Let M , N be non empty metric structures. The functor max-Prod2(M, N)
yielding a strict metric structure is defined by the conditions (Def. 1).

(Def. 1)(i) The carrier of max-Prod2(M,N) = [: the carrier of M , the carrier of
N :], and

(ii) for all points x, y of max-Prod2(M, N) there exist points x1, y1 of M

and there exist points x2, y2 of N such that x = 〈〈x1, x2〉〉 and y = 〈〈y1,

y2〉〉 and (the distance of max-Prod2(M, N))(x, y) = max((the distance of
M)(x1, y1), (the distance of N)(x2, y2)).

Let M , N be non empty metric structures. One can verify that
max-Prod2(M, N) is non empty.

Let M , N be non empty metric structures, let x be a point of M , and let y

be a point of N . Then 〈〈x, y〉〉 is an element of max-Prod2(M, N).
Let M , N be non empty metric structures and let x be a point of

max-Prod2(M, N). Then x1 is an element of M . Then x2 is an element of
N .

The following three propositions are true:

(20) Let M , N be non empty metric structures, m1, m2 be points
of M , and n1, n2 be points of N . Then ρ(〈〈m1, n1〉〉, 〈〈m2, n2〉〉) =
max(ρ(m1,m2), ρ(n1, n2)).

(21) For all non empty metric structures M , N and for all points m, n of
max-Prod2(M, N) holds ρ(m,n) = max(ρ(m1, n1), ρ(m2, n2)).

(22) For all Reflexive non empty metric structures M , N holds
max-Prod2(M, N) is Reflexive.

homeomorphism between [:eit, . . . 75

Let M , N be Reflexive non empty metric structures. Observe that
max-Prod2(M,N) is Reflexive.

Next we state the proposition

(23) For all symmetric non empty metric structures M , N holds
max-Prod2(M, N) is symmetric.

Let M , N be symmetric non empty metric structures. Note that
max-Prod2(M,N) is symmetric.

Next we state the proposition

(24) For all triangle non empty metric structures M , N holds
max-Prod2(M, N) is triangle.

Let M , N be triangle non empty metric structures. One can check that
max-Prod2(M,N) is triangle.

Let M , N be non empty metric spaces. Note that max-Prod2(M,N) is
discernible.

The following three propositions are true:

(25) [:Mtop, Ntop :] = (max-Prod2(M, N))top.

(26) Suppose that
(i) the carrier of M = the carrier of N ,
(ii) for every point m of M and for every point n of N and for every real

number r such that r > 0 and m = n there exists a real number r1 such
that r1 > 0 and Ball(n, r1) ⊆ Ball(m, r), and

(iii) for every point m of M and for every point n of N and for every real
number r such that r > 0 and m = n there exists a real number r1 such
that r1 > 0 and Ball(m, r1) ⊆ Ball(n, r).
Then Mtop = Ntop.

(27) [: E i
T, Ej

T :] and E i+j
T are homeomorphic.

Acknowledgments

I would like to thank Professor Yatsuka Nakamura for his help in the pre-
paration of the article.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[3] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481–
485, 1991.

[4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[5] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics,

1(4):643–649, 1990.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized

Mathematics, 1(3):529–536, 1990.

76 artur korniłowicz

[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[10] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized
Mathematics, 1(4):661–668, 1990.

[11] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces.
Formalized Mathematics, 1(2):257–261, 1990.

[12] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
[13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[14] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathe-

matics, 1(3):607–610, 1990.
[15] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized

Mathematics, 3(1):107–115, 1992.
[16] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[17] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[18] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics,

1(2):263–264, 1990.
[19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.
[20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[21] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97–105, 1990.
[22] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics,

2(4):535–545, 1991.
[23] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized

Mathematics, 1(3):445–449, 1990.
[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[26] Mariusz Żynel and Adam Guzowski. T0 topological spaces. Formalized Mathematics,

5(1):75–77, 1996.

Received February 21, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Full Subtracter Circuit. Part I

Katsumi Wasaki
Shinshu University

Nagano

Noboru Endou
Shinshu University

Nagano

Summary. We formalize the concept of the full subtracter circuit, define
the structures of bit subtract/borrow units for binary operations, and prove the
stability of the circuit.

MML Identifier: FSCIRC 1.

The terminology and notation used in this paper are introduced in the following
papers: [11], [14], [13], [10], [17], [3], [4], [1], [16], [9], [12], [8], [6], [7], [5], [15],
and [2].

1. Bit Subtract and Borrow Circuit

In this paper x, y, c are sets.
Let x, y, c be sets. The functor BitSubtracterOutput(x, y, c) yields an ele-

ment of InnerVertices(2GatesCircStr(x, y, c, xor)) and is defined as follows:

(Def. 1) BitSubtracterOutput(x, y, c) = 2GatesCircOutput(x, y, c, xor).
Let x, y, c be sets. The functor BitSubtracterCirc(x, y, c) yields a strict

Boolean circuit of 2GatesCircStr(x, y, c, xor) with denotation held in gates and
is defined as follows:

(Def. 2) BitSubtracterCirc(x, y, c) = 2GatesCircuit(x, y, c, xor).
Let x, y, c be sets. The functor BorrowIStr(x, y, c) yields an unsplit non void

strict non empty many sorted signature with arity held in gates and Boolean
denotation held in gates and is defined by:

(Def. 3) BorrowIStr(x, y, c) = 1GateCircStr(〈x, y〉, and2a)+· 1GateCircStr(〈y,

c〉, and2)+· 1GateCircStr(〈x, c〉, and2a).

77
c© 1999 University of Białystok

ISSN 1426–2630

78 katsumi wasaki and noboru endou

Let x, y, c be sets. The functor BorrowStr(x, y, c) yielding an unsplit non void
strict non empty many sorted signature with arity held in gates and Boolean
denotation held in gates is defined by:

(Def. 4) BorrowStr(x, y, c) = BorrowIStr(x, y, c)+· 1GateCircStr(〈〈〈〈x, y〉, and2a 〉〉,
〈〈〈y, c〉, and2 〉〉, 〈〈〈x, c〉, and2a 〉〉〉, or3).

Let x, y, c be sets. The functor BorrowICirc(x, y, c) yielding a strict Boolean
circuit of BorrowIStr(x, y, c) with denotation held in gates is defined by:

(Def. 5) BorrowICirc(x, y, c) = 1GateCircuit(x, y, and2a)+· 1GateCircuit(y, c, and2)
+· 1GateCircuit(x, c, and2a).

The following propositions are true:

(1) InnerVertices(BorrowStr(x, y, c)) is a binary relation.

(2) For all non pair sets x, y, c holds InputVertices(BorrowStr(x, y, c)) has
no pairs.

(3) For every state s of BorrowICirc(x, y, c) and for all elements a, b of
Boolean such that a = s(x) and b = s(y) holds (Following(s))(〈〈〈x, y〉,
and2a 〉〉) = ¬a ∧ b.

(4) For every state s of BorrowICirc(x, y, c) and for all elements a, b of
Boolean such that a = s(y) and b = s(c) holds (Following(s))(〈〈〈y, c〉,
and2 〉〉) = a ∧ b.

(5) For every state s of BorrowICirc(x, y, c) and for all elements a, b of
Boolean such that a = s(x) and b = s(c) holds (Following(s))(〈〈〈x, c〉,
and2a 〉〉) = ¬a ∧ b.

Let x, y, c be sets. The functor BorrowOutput(x, y, c) yields an element of
InnerVertices(BorrowStr(x, y, c)) and is defined by:

(Def. 6) BorrowOutput(x, y, c) = 〈〈〈〈〈〈x, y〉, and2a 〉〉, 〈〈〈y, c〉, and2 〉〉, 〈〈〈x, c〉, and2a 〉〉〉,
or3 〉〉.

Let x, y, c be sets. The functor BorrowCirc(x, y, c) yielding a strict Boolean
circuit of BorrowStr(x, y, c) with denotation held in gates is defined by:

(Def. 7) BorrowCirc(x, y, c) = BorrowICirc(x, y, c)+· 1GateCircuit(〈〈〈x, y〉, and2a 〉〉,
〈〈〈y, c〉, and2 〉〉, 〈〈〈x, c〉, and2a 〉〉, or3).

Next we state a number of propositions:

(6) x ∈ the carrier of BorrowStr(x, y, c) and y ∈ the carrier of
BorrowStr(x, y, c) and c ∈ the carrier of BorrowStr(x, y, c).

(7) 〈〈〈x, y〉, and2a 〉〉 ∈ InnerVertices(BorrowStr(x, y, c)) and 〈〈〈y, c〉, and2 〉〉 ∈
InnerVertices(BorrowStr(x, y, c)) and 〈〈〈x, c〉, and2a 〉〉
∈ InnerVertices(BorrowStr(x, y, c)).

(8) For all non pair sets x, y, c holds x ∈ InputVertices(BorrowStr(x, y, c))
and y ∈ InputVertices(BorrowStr(x, y, c)) and
c ∈ InputVertices(BorrowStr(x, y, c)).

full subtracter circuit. part i 79

(9) For all non pair sets x, y, c holds InputVertices(BorrowStr(x, y, c)) =
{x, y, c} and InnerVertices(BorrowStr(x, y, c)) = {〈〈〈x, y〉, and2a 〉〉, 〈〈〈y, c〉,
and2 〉〉, 〈〈〈x, c〉, and2a 〉〉} ∪ {BorrowOutput(x, y, c)}.

(10) Let x, y, c be non pair sets, s be a state of BorrowCirc(x, y, c), and
a1, a2 be elements of Boolean. If a1 = s(x) and a2 = s(y), then
(Following(s))(〈〈〈x, y〉, and2a 〉〉) = ¬a1 ∧ a2.

(11) Let x, y, c be non pair sets, s be a state of BorrowCirc(x, y, c), and
a2, a3 be elements of Boolean. If a2 = s(y) and a3 = s(c), then
(Following(s))(〈〈〈y, c〉, and2 〉〉) = a2 ∧ a3.

(12) Let x, y, c be non pair sets, s be a state of BorrowCirc(x, y, c), and
a1, a3 be elements of Boolean. If a1 = s(x) and a3 = s(c), then
(Following(s))(〈〈〈x, c〉, and2a 〉〉) = ¬a1 ∧ a3.

(13) Let x, y, c be non pair sets, s be a state of BorrowCirc(x, y, c),
and a1, a2, a3 be elements of Boolean. If a1 = s(〈〈〈x, y〉, and2a 〉〉)
and a2 = s(〈〈〈y, c〉, and2 〉〉) and a3 = s(〈〈〈x, c〉, and2a 〉〉), then
(Following(s))(BorrowOutput(x, y, c)) = a1 ∨ a2 ∨ a3.

(14) Let x, y, c be non pair sets, s be a state of BorrowCirc(x, y, c), and
a1, a2 be elements of Boolean. If a1 = s(x) and a2 = s(y), then
(Following(s, 2))(〈〈〈x, y〉, and2a 〉〉) = ¬a1 ∧ a2.

(15) Let x, y, c be non pair sets, s be a state of BorrowCirc(x, y, c), and
a2, a3 be elements of Boolean. If a2 = s(y) and a3 = s(c), then
(Following(s, 2))(〈〈〈y, c〉, and2 〉〉) = a2 ∧ a3.

(16) Let x, y, c be non pair sets, s be a state of BorrowCirc(x, y, c), and
a1, a3 be elements of Boolean. If a1 = s(x) and a3 = s(c), then
(Following(s, 2))(〈〈〈x, c〉, and2a 〉〉) = ¬a1 ∧ a3.

(17) Let x, y, c be non pair sets, s be a state of BorrowCirc(x, y, c), and a1, a2,
a3 be elements of Boolean. If a1 = s(x) and a2 = s(y) and a3 = s(c), then
(Following(s, 2))(BorrowOutput(x, y, c)) = ¬a1 ∧ a2 ∨ a2 ∧ a3 ∨ ¬a1 ∧ a3.

(18) For all non pair sets x, y, c and for every state s of BorrowCirc(x, y, c)
holds Following(s, 2) is stable.

2. Bit Subtracter with Borrow Circuit

Let x, y, c be sets. The functor BitSubtracterWithBorrowStr(x, y, c) yields
an unsplit non void strict non empty many sorted signature with arity held in
gates and Boolean denotation held in gates and is defined by:

(Def. 8) BitSubtracterWithBorrowStr(x, y, c) = 2GatesCircStr(x, y, c, xor)
+·BorrowStr(x, y, c).

The following propositions are true:

80 katsumi wasaki and noboru endou

(19) For all non pair sets x, y, c holds
InputVertices(BitSubtracterWithBorrowStr(x, y, c)) = {x, y, c}.

(20) For all non pair sets x, y, c holds
InnerVertices(BitSubtracterWithBorrowStr(x, y, c)) = {〈〈〈x, y〉, xor 〉〉,
2GatesCircOutput(x, y, c, xor)} ∪ {〈〈〈x, y〉, and2a 〉〉, 〈〈〈y, c〉, and2 〉〉, 〈〈〈x, c〉,
and2a 〉〉} ∪ {BorrowOutput(x, y, c)}.

(21) Let S be a non empty many sorted signature. Suppose S =
BitSubtracterWithBorrowStr(x, y, c). Then x ∈ the carrier of S and
y ∈ the carrier of S and c ∈ the carrier of S.

Let x, y, c be sets. The functor BitSubtracterWithBorrowCirc(x, y, c) yields
a strict Boolean circuit of BitSubtracterWithBorrowStr(x, y, c) with denotation
held in gates and is defined as follows:

(Def. 9) BitSubtracterWithBorrowCirc(x, y, c) = BitSubtracterCirc(x, y, c)
+·BorrowCirc(x, y, c).

We now state several propositions:

(22) InnerVertices(BitSubtracterWithBorrowStr(x, y, c)) is a binary relation.

(23) For all non pair sets x, y, c holds
InputVertices(BitSubtracterWithBorrowStr(x, y, c)) has no pairs.

(24) BitSubtracterOutput(x, y, c) ∈
InnerVertices(BitSubtracterWithBorrowStr(x, y, c)) and BorrowOutput
(x, y, c) ∈ InnerVertices(BitSubtracterWithBorrowStr(x, y, c)).

(25) Let x, y, c be non pair sets, s be a state of BitSubtracterWithBorrowCirc
(x, y, c), and a1, a2, a3 be elements of Boolean. Suppose a1 = s(x) and a2 =
s(y) and a3 = s(c). Then (Following(s, 2))(BitSubtracterOutput(x, y, c)) =
a1⊕a2⊕a3 and (Following(s, 2))(BorrowOutput(x, y, c)) = ¬a1∧a2∨a2∧
a3 ∨ ¬a1 ∧ a3.

(26) For all non pair sets x, y, c and for every state s of
BitSubtracterWithBorrowCirc(x, y, c) holds Following(s, 2) is stable.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[2] Grzegorz Bancerek and Yatsuka Nakamura. Full adder circuit. Part I. Formalized Ma-
thematics, 5(3):367–380, 1996.

[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[5] Yatsuka Nakamura and Grzegorz Bancerek. Combining of circuits. Formalized Mathema-
tics, 5(2):283–295, 1996.

[6] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Intro-
duction to circuits, I. Formalized Mathematics, 5(2):227–232, 1996.

[7] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Intro-
duction to circuits, II. Formalized Mathematics, 5(2):273–278, 1996.

full subtracter circuit. part i 81

[8] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preli-
minaries to circuits, II. Formalized Mathematics, 5(2):215–220, 1996.

[9] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[10] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[12] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
[13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[14] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[15] Katsumi Wasaki and Pauline N. Kawamoto. 2’s complement circuit. Formalized Mathe-

matics, 6(2):189–197, 1997.
[16] Edmund Woronowicz. Many–argument relations. Formalized Mathematics, 1(4):733–737,

1990.
[17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received March 13, 1999

82 katsumi wasaki and noboru endou

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Correctness of Binary Counter Circuits

Yuguang Yang
Shinshu University

Nagano

Katsumi Wasaki
Shinshu University

Nagano

Yasushi Fuwa
Shinshu University

Nagano

Yatsuka Nakamura
Shinshu University

Nagano

Summary. This article introduces the verification of the correctness for
the operations and the specification of the 3-bit counter. Both cases: without
reset input and with reset input are considered. The proof was proposed by Y.
Nakamura in [1].

MML Identifier: GATE 2.

The paper [1] provides the terminology and notation for this paper.
In this paper a, b, c, d denote sets.
Next we state four propositions:

(1) Let s0, s1, s2, s3, s4, s5, s6, s7, n0, n1, n2, n3, n4, n5, n6, n7, q1, q2, q3, n8,
n9, n10 be sets such that NE s0 iff NE AND3(NOT1 q3, NOT1 q2, NOT1 q1)
and NE s1 iff NE AND3(NOT1 q3, NOT1 q2, q1) and NE s2 iff NE
AND3(NOT1 q3, q2, NOT1 q1) and NE s3 iff NE AND3(NOT1 q3, q2, q1)
and NE s4 iff NE AND3(q3, NOT1 q2, NOT1 q1) and NE s5 iff NE
AND3(q3, NOT1 q2, q1) and NE s6 iff NE AND3(q3, q2, NOT1 q1) and NE
s7 iff NE AND3(q3, q2, q1) and NE n0 iff NE AND3(NOT1 n10, NOT1 n9,

NOT1 n8) and NE n1 iff NE AND3(NOT1 n10, NOT1 n9, n8) and
NE n2 iff NE AND3(NOT1 n10, n9, NOT1 n8) and NE n3 iff NE
AND3(NOT1 n10, n9, n8) and NE n4 iff NE AND3(n10, NOT1 n9, NOT1 n8)
and NE n5 iff NE AND3(n10, NOT1 n9, n8) and NE n6 iff NE
AND3(n10, n9, NOT1 n8) and NE n7 iff NE AND3(n10, n9, n8) and NE
n8 iff NE NOT1 q1 and NE n9 iff NE XOR2(q1, q2) and NE n10 iff NE
OR2(AND2(q3, NOT1 q1), AND2(q1, XOR2(q2, q3))). Then

83
c© 1999 University of Białystok

ISSN 1426–2630

84 yuguang yang et al.

(i) NE n1 iff NE s0,

(ii) NE n2 iff NE s1,

(iii) NE n3 iff NE s2,

(iv) NE n4 iff NE s3,

(v) NE n5 iff NE s4,

(vi) NE n6 iff NE s5,

(vii) NE n7 iff NE s6, and

(viii) NE n0 iff NE s7.

(2) NE AND3(AND2(a, d), AND2(b, d), AND2(c, d))
iff NE AND2(AND3(a, b, c), d).

(3)(i) Not NE AND2(a, b) iff NE OR2(NOT1 a, NOT1 b),
(ii) NE OR2(a, b) and NE OR2(c, b) iff NE OR2(AND2(a, c), b),
(iii) NE OR2(a, b) and NE OR2(c, b) and NE OR2(d, b) iff NE

OR2(AND3(a, c, d), b), and

(iv) if NE OR2(a, b) and NE a iff NE c, then NE OR2(c, b).

(4) Let s0, s1, s2, s3, s4, s5, s6, s7, n0, n1, n2, n3, n4, n5,
n6, n7, q1, q2, q3, n8, n9, n10, R be sets such that NE
s0 iff NE AND3(NOT1 q3, NOT1 q2, NOT1 q1) and NE s1 iff NE
AND3(NOT1 q3, NOT1 q2, q1) and NE s2 iff NE AND3(NOT1 q3, q2, NOT1

q1) and NE s3 iff NE AND3(NOT1 q3, q2, q1) and NE s4 iff NE
AND3(q3, NOT1 q2, NOT1 q1) and NE s5 iff NE AND3(q3, NOT1 q2, q1)
and NE s6 iff NE AND3(q3, q2, NOT1 q1) and NE s7 iff NE
AND3(q3, q2, q1) and NE n0 iff NE AND3(NOT1 n10, NOT1 n9, NOT1 n8)
and NE n1 iff NE AND3(NOT1 n10, NOT1 n9, n8) and NE n2 iff NE
AND3(NOT1 n10, n9, NOT1 n8) and NE n3 iff NE AND3(NOT1 n10, n9, n8)
and NE n4 iff NE AND3(n10, NOT1 n9, NOT1 n8) and NE n5 iff NE
AND3(n10, NOT1 n9, n8) and NE n6 iff NE AND3(n10, n9, NOT1 n8) and
NE n7 iff NE AND3(n10, n9, n8) and NE n8 iff NE AND2(NOT1 q1, R)
and NE n9 iff NE AND2(XOR2(q1, q2), R) and NE n10 iff NE
AND2(OR2(AND2(q3, NOT1 q1), AND2(q1, XOR2(q2, q3))), R). Then

(i) NE n1 iff NE AND2(s0, R),
(ii) NE n2 iff NE AND2(s1, R),
(iii) NE n3 iff NE AND2(s2, R),
(iv) NE n4 iff NE AND2(s3, R),
(v) NE n5 iff NE AND2(s4, R),
(vi) NE n6 iff NE AND2(s5, R),
(vii) NE n7 iff NE AND2(s6, R), and

(viii) NE n0 iff NE OR2(s7, NOT1 R).

correctness of binary counter circuits 85

References

[1] Yatsuka Nakamura. Logic gates and logical equivalence of adders. Formalized Mathematics,
8(1):35–45, 1999.

Received March 13, 1999

86 yuguang yang et al.

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Correctness of Johnson Counter Circuits

Yuguang Yang
Shinshu University

Nagano

Katsumi Wasaki
Shinshu University

Nagano

Yasushi Fuwa
Shinshu University

Nagano

Yatsuka Nakamura
Shinshu University

Nagano

Summary. This article introduces the verification of the correctness for
the operations and the specification of the Johnson counter. We formalize the
concepts of 2-bit, 3-bit and 4-bit Johnson counter circuits with a reset input, and
define the specification of the state transitions without the minor loop.

MML Identifier: GATE 3.

The notation and terminology used here are introduced in the paper [1].
The following propositions are true:

(1) Let s0, s1, s2, s3, n0, n1, n2, n3, q1, q2, n4, n5 be sets such that NE s0

iff NE AND2(NOT1 q2, NOT1 q1) and NE s1 iff NE AND2(NOT1 q2, q1)
and NE s2 iff NE AND2(q2, NOT1 q1) and NE s3 iff NE AND2(q2, q1)
and NE n0 iff NE AND2(NOT1 n5, NOT1 n4) and NE n1 iff NE
AND2(NOT1 n5, n4) and NE n2 iff NE AND2(n5, NOT1 n4) and NE n3 iff
NE AND2(n5, n4) and NE n4 iff NE NOT1 q2 and NE n5 iff NE q1. Then

(i) NE n1 iff NE s0,
(ii) NE n3 iff NE s1,
(iii) NE n2 iff NE s3, and
(iv) NE n0 iff NE s2.

(2) Let s0, s1, s2, s3, n0, n1, n2, n3, q1, q2, n4, n5, R be sets such that NE s0

iff NE AND2(NOT1 q2, NOT1 q1) and NE s1 iff NE AND2(NOT1 q2, q1)
and NE s2 iff NE AND2(q2, NOT1 q1) and NE s3 iff NE AND2(q2, q1)
and NE n0 iff NE AND2(NOT1 n5, NOT1 n4) and NE n1 iff NE
AND2(NOT1 n5, n4) and NE n2 iff NE AND2(n5, NOT1 n4) and NE n3

87
c© 1999 University of Białystok

ISSN 1426–2630

88 yuguang yang et al.

iff NE AND2(n5, n4) and NE n4 iff NE AND2(NOT1 q2, R) and NE n5 iff
NE AND2(q1, R). Then

(i) NE n1 iff NE AND2(s0, R),
(ii) NE n3 iff NE AND2(s1, R),
(iii) NE n2 iff NE AND2(s3, R), and
(iv) NE n0 iff NE OR2(AND2(s2, R), NOT1 R).

(3) Let s0, s1, s2, s3, s4, s5, s6, s7, n0, n1, n2, n3, n6, n7, n8, n9, q1, q2, q3, n4,
n5, n10 be sets such that NE s0 iff NE AND3(NOT1 q3, NOT1 q2, NOT1 q1)
and NE s1 iff NE AND3(NOT1 q3, NOT1 q2, q1) and NE s2 iff NE
AND3(NOT1 q3, q2, NOT1 q1) and NE s3 iff NE AND3(NOT1 q3, q2, q1)
and NE s4 iff NE AND3(q3, NOT1 q2, NOT1 q1) and NE s5 iff NE
AND3(q3, NOT1 q2, q1) and NE s6 iff NE AND3(q3, q2, NOT1 q1) and NE
s7 iff NE AND3(q3, q2, q1) and NE n0 iff NE AND3(NOT1 n10, NOT1 n5,

NOT1 n4) and NE n1 iff NE AND3(NOT1 n10, NOT1 n5, n4) and
NE n2 iff NE AND3(NOT1 n10, n5, NOT1 n4) and NE n3 iff NE
AND3(NOT1 n10, n5, n4) and NE n6 iff NE AND3(n10, NOT1 n5, NOT1 n4)
and NE n7 iff NE AND3(n10, NOT1 n5, n4) and NE n8 iff NE
AND3(n10, n5, NOT1 n4) and NE n9 iff NE AND3(n10, n5, n4) and NE
n4 iff NE NOT1 q3 and NE n5 iff NE q1 and NE n10 iff NE q2. Then

(i) NE n1 iff NE s0,
(ii) NE n3 iff NE s1,
(iii) NE n9 iff NE s3,
(iv) NE n8 iff NE s7,
(v) NE n6 iff NE s6,
(vi) NE n0 iff NE s4,
(vii) NE n2 iff NE s5, and
(viii) NE n7 iff NE s2.

(4) Let s0, s1, s2, s3, s4, s5, s6, s7, n0, n1, n2, n3, n6, n7,
n8, n9, q1, q2, q3, n4, n5, n10, R be sets such that NE
s0 iff NE AND3(NOT1 q3, NOT1 q2, NOT1 q1) and NE s1 iff NE
AND3(NOT1 q3, NOT1 q2, q1) and NE s2 iff NE AND3(NOT1 q3, q2,

NOT1 q1) and NE s3 iff NE AND3(NOT1 q3, q2, q1) and NE s4 iff NE
AND3(q3, NOT1 q2, NOT1 q1) and NE s5 iff NE AND3(q3, NOT1 q2, q1)
and NE s6 iff NE AND3(q3, q2, NOT1 q1) and NE s7 iff NE
AND3(q3, q2, q1) and NE n0 iff NE AND3(NOT1 n10, NOT1 n5, NOT1 n4)
and NE n1 iff NE AND3(NOT1 n10, NOT1 n5, n4) and NE n2 iff NE
AND3(NOT1 n10, n5, NOT1 n4) and NE n3 iff NE AND3(NOT1 n10, n5, n4)
and NE n6 iff NE AND3(n10, NOT1 n5, NOT1 n4) and NE n7 iff NE
AND3(n10, NOT1 n5, n4) and NE n8 iff NE AND3(n10, n5, NOT1 n4) and
NE n9 iff NE AND3(n10, n5, n4) and NE n4 iff NE AND2(NOT1 q3, R)
and NE n5 iff NE AND2(q1, R) and NE n10 iff NE AND2(q2, R). Then

correctness of johnson counter circuits 89

(i) NE n1 iff NE AND2(s0, R),
(ii) NE n3 iff NE AND2(s1, R),
(iii) NE n9 iff NE AND2(s3, R),
(iv) NE n8 iff NE AND2(s7, R),
(v) NE n6 iff NE AND2(s6, R),
(vi) NE n0 iff NE OR2(AND2(s4, R), NOT1 R),
(vii) NE n2 iff NE AND2(s5, R), and
(viii) NE n7 iff NE AND2(s2, R).

(5) Let s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13,
s14, s15, n0, n1, n2, n3, n6, n7, n8, n9, n11, n12, n13, n14,
n15, n16, n17, n18, q1, q2, q3, q4, n4, n5, n10, n19 be sets
such that NE s0 iff NE AND4(NOT1 q4, NOT1 q3, NOT1 q2, NOT1 q1)
and NE s1 iff NE AND4(NOT1 q4, NOT1 q3, NOT1 q2, q1) and NE
s2 iff NE AND4(NOT1 q4, NOT1 q3, q2, NOT1 q1) and NE s3 iff NE
AND4(NOT1 q4, NOT1 q3, q2, q1) and NE s4 iff NE AND4(NOT1 q4, q3,

NOT1 q2, NOT1 q1) and NE s5 iff NE AND4(NOT1 q4, q3, NOT1 q2, q1)
and NE s6 iff NE AND4(NOT1 q4, q3, q2, NOT1 q1) and NE s7 iff NE
AND4(NOT1 q4, q3, q2, q1) and NE s8 iff NE AND4(q4, NOT1 q3, NOT1 q2,

NOT1 q1) and NE s9 iff NE AND4(q4, NOT1 q3, NOT1 q2, q1) and
NE s10 iff NE AND4(q4, NOT1 q3, q2, NOT1 q1) and NE s11 iff NE
AND4(q4, NOT1 q3, q2, q1) and NE s12 iff NE AND4(q4, q3, NOT1 q2, NOT1
q1) and NE s13 iff NE AND4(q4, q3, NOT1 q2, q1) and NE s14 iff
NE AND4(q4, q3, q2, NOT1 q1) and NE s15 iff NE AND4(q4, q3, q2, q1)
and NE n0 iff NE AND4(NOT1 n19, NOT1 n10, NOT1 n5, NOT1 n4)
and NE n1 iff NE AND4(NOT1 n19, NOT1 n10, NOT1 n5, n4) and
NE n2 iff NE AND4(NOT1 n19, NOT1 n10, n5, NOT1 n4) and NE
n3 iff NE AND4(NOT1 n19, NOT1 n10, n5, n4) and NE n6 iff NE
AND4(NOT1 n19, n10, NOT1 n5, NOT1 n4) and NE n7 iff NE AND4(NOT1
n19, n10, NOT1 n5, n4) and NE n8 iff NE AND4(NOT1 n19, n10, n5, NOT1 n4)
and NE n9 iff NE AND4(NOT1 n19, n10, n5, n4) and NE n11 iff
NE AND4(n19, NOT1 n10, NOT1 n5, NOT1 n4) and NE n12 iff NE
AND4(n19, NOT1 n10, NOT1 n5, n4) and NE n13 iff NE AND4(n19, NOT1
n10, n5, NOT1 n4) and NE n14 iff NE AND4(n19, NOT1 n10, n5, n4) and
NE n15 iff NE AND4(n19, n10, NOT1 n5, NOT1 n4) and NE n16 iff NE
AND4(n19, n10, NOT1 n5, n4) and NE n17 iff NE AND4(n19, n10, n5, NOT1 n4)
and NE n18 iff NE AND4(n19, n10, n5, n4) and NE n4 iff NE NOT1 q4 and
NE n5 iff NE q1 and NE n10 iff NE q2 and NE n19 iff NE q3. Then

(i) NE n1 iff NE s0,
(ii) NE n3 iff NE s1,
(iii) NE n9 iff NE s3,
(iv) NE n18 iff NE s7,
(v) NE n17 iff NE s15,

90 yuguang yang et al.

(vi) NE n15 iff NE s14,
(vii) NE n11 iff NE s12,
(viii) NE n0 iff NE s8,
(ix) NE n7 iff NE s2,
(x) NE n14 iff NE s5,
(xi) NE n8 iff NE s11,
(xii) NE n16 iff NE s6,
(xiii) NE n13 iff NE s13,
(xiv) NE n6 iff NE s10,
(xv) NE n12 iff NE s4, and
(xvi) NE n2 iff NE s9.

(6) Let s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13,
s14, s15, n0, n1, n2, n3, n6, n7, n8, n9, n11, n12, n13, n14,
n15, n16, n17, n18, q1, q2, q3, q4, n4, n5, n10, n19, R be sets
such that NE s0 iff NE AND4(NOT1 q4, NOT1 q3, NOT1 q2, NOT1 q1)
and NE s1 iff NE AND4(NOT1 q4, NOT1 q3, NOT1 q2, q1) and NE
s2 iff NE AND4(NOT1 q4, NOT1 q3, q2, NOT1 q1) and NE s3 iff NE
AND4(NOT1 q4, NOT1 q3, q2, q1) and NE s4 iff NE AND4(NOT1 q4, q3,

NOT1 q2, NOT1 q1) and NE s5 iff NE AND4(NOT1 q4, q3, NOT1 q2, q1)
and NE s6 iff NE AND4(NOT1 q4, q3, q2, NOT1 q1) and NE s7 iff NE
AND4(NOT1 q4, q3, q2, q1) and NE s8 iff NE AND4(q4, NOT1 q3, NOT1 q2,

NOT1 q1) and NE s9 iff NE AND4(q4, NOT1 q3, NOT1 q2, q1) and
NE s10 iff NE AND4(q4, NOT1 q3, q2, NOT1 q1) and NE s11 iff NE
AND4(q4, NOT1 q3, q2, q1) and NE s12 iff NE AND4(q4, q3, NOT1 q2, NOT1
q1) and NE s13 iff NE AND4(q4, q3, NOT1 q2, q1) and NE s14 iff
NE AND4(q4, q3, q2, NOT1 q1) and NE s15 iff NE AND4(q4, q3, q2, q1)
and NE n0 iff NE AND4(NOT1 n19, NOT1 n10, NOT1 n5, NOT1 n4)
and NE n1 iff NE AND4(NOT1 n19, NOT1 n10, NOT1 n5, n4) and
NE n2 iff NE AND4(NOT1 n19, NOT1 n10, n5, NOT1 n4) and NE
n3 iff NE AND4(NOT1 n19, NOT1 n10, n5, n4) and NE n6 iff NE
AND4(NOT1 n19, n10, NOT1 n5, NOT1 n4) and NE n7 iff NE AND4(NOT1
n19, n10, NOT1 n5, n4) and NE n8 iff NE AND4(NOT1 n19, n10, n5, NOT1 n4)
and NE n9 iff NE AND4(NOT1 n19, n10, n5, n4) and NE n11 iff
NE AND4(n19, NOT1 n10, NOT1 n5, NOT1 n4) and NE n12 iff NE
AND4(n19, NOT1 n10, NOT1 n5, n4) and NE n13 iff NE AND4(n19, NOT1
n10, n5, NOT1 n4) and NE n14 iff NE AND4(n19, NOT1 n10, n5, n4) and
NE n15 iff NE AND4(n19, n10, NOT1 n5, NOT1 n4) and NE n16 iff NE
AND4(n19, n10, NOT1 n5, n4) and NE n17 iff NE AND4(n19, n10, n5, NOT1
n4) and NE n18 iff NE AND4(n19, n10, n5, n4) and NE n4 iff NE
AND2(NOT1 q4, R) and NE n5 iff NE AND2(q1, R) and NE n10 iff NE
AND2(q2, R) and NE n19 iff NE AND2(q3, R). Then

(i) NE n1 iff NE AND2(s0, R),

correctness of johnson counter circuits 91

(ii) NE n3 iff NE AND2(s1, R),
(iii) NE n9 iff NE AND2(s3, R),
(iv) NE n18 iff NE AND2(s7, R),
(v) NE n17 iff NE AND2(s15, R),
(vi) NE n15 iff NE AND2(s14, R),
(vii) NE n11 iff NE AND2(s12, R),
(viii) NE n0 iff NE OR2(AND2(s8, R), NOT1 R),
(ix) NE n7 iff NE AND2(s2, R),
(x) NE n14 iff NE AND2(s5, R),
(xi) NE n8 iff NE AND2(s11, R),
(xii) NE n16 iff NE AND2(s6, R),
(xiii) NE n13 iff NE AND2(s13, R),
(xiv) NE n6 iff NE AND2(s10, R),
(xv) NE n12 iff NE AND2(s4, R), and
(xvi) NE n2 iff NE AND2(s9, R).

References

[1] Yatsuka Nakamura. Logic gates and logical equivalence of adders. Formalized Mathematics,
8(1):35–45, 1999.

Received March 13, 1999

92 yuguang yang et al.

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

The Definition of the Riemann Definite
Integral and some Related Lemmas

Noboru Endou
Shinshu University

Nagano

Artur Korniłowicz1

University of Bialystok

Summary. This article introduces the Riemann definite integral on the
closed interval of real. We present the definitions and related lemmas of the
closed interval. We formalize the concept of the Riemann definite integral and
the division of the closed interval of real, and prove the additivity of the integral.

MML Identifier: INTEGRA1.

The notation and terminology used in this paper are introduced in the following
papers: [28], [31], [8], [14], [2], [5], [6], [30], [22], [32], [18], [15], [7], [20], [26], [10],
[12], [3], [27], [21], [4], [29], [16], [17], [24], [9], [11], [19], [25], [13], [23], and [1].

1. Definition of Closed Interval and its Properties

For simplicity, we adopt the following rules: a, a1, a2, b, b1, b2 are real
numbers, p is a finite sequence, F , G, H are finite sequences of elements of R,
i, j, k are natural numbers, f is a function from R into R, and x1 is a set.

Let I1 be a subset of R. We say that I1 is closed-interval if and only if:

(Def. 1) There exist real numbers a, b such that a ¬ b and I1 = [a, b].
Let us mention that there exists a subset of R which is closed-interval.
In the sequel A, A1, A2 are closed-interval subsets of R.
The following propositions are true:

(1) Every closed-interval subset of R is compact.

1This paper was written while the second author visited Shinshu University, winter 1999.

93
c© 1999 University of Białystok

ISSN 1426–2630

94 noboru endou and artur korniłowicz

(2) If A is a closed-interval subset of R, then A is non empty.

Let us observe that every subset of R which is closed-interval is also non
empty and compact.

The following proposition is true

(3) If A is a closed-interval subset of R, then A is lower bounded and upper
bounded.

Let us observe that every subset of R which is closed-interval is also bounded.
One can verify that there exists a subset of R which is closed-interval.
Next we state three propositions:

(4) If A is a closed-interval subset of R, then there exist a, b such that a ¬ b

and a = inf A and b = sup A.

(5) If A is a closed-interval subset of R, then A = [inf A, sup A].
(6) If A = [a1, b1] and A = [a2, b2], then a1 = a2 and b1 = b2.

2. Definition of Division of Closed Interval and its Properties

Let A be a closed-interval subset of R. A non empty increasing finite sequence
of elements of R is said to be a DivisionPoint of A if:

(Def. 2) rng it ⊆ A and it(len it) = sup A.

Let A be a closed-interval subset of R. The functor divs A yielding a set is
defined by:

(Def. 3) x1 ∈ divs A iff x1 is a DivisionPoint of A.

Let A be a closed-interval subset of R. One can check that divs A is non
empty.

Let A be a closed-interval subset of R. A non empty set is called a Division
of A if:

(Def. 4) x1 ∈ it iff x1 is a DivisionPoint of A.

Let A be a closed-interval subset of R. Observe that there exists a Division
of A which is non empty.

The following proposition is true

(7) For every closed-interval subset A of R and for every non empty Division
S of A holds every element of S is a DivisionPoint of A.

Let A be a closed-interval subset of R and let S be a non empty Division of
A. We see that the element of S is a DivisionPoint of A.

In the sequel S denotes a non empty Division of A and D, D1, D2 denote
elements of S.

Next we state two propositions:

(8) If i ∈ dom D, then D(i) ∈ A.

the definition of the riemann definite . . . 95

(9) If i ∈ dom D and i 6= 1, then i − 1 ∈ dom D and D(i − 1) ∈ A and
i− 1 ∈ N.

Let A be a closed-interval subset of R, let S be a non empty Division of A,
let D be an element of S, and let i be a natural number. Let us assume that
i ∈ dom D. The functor divset(D, i) yielding a closed-interval subset of R is
defined as follows:

(Def. 5)(i) inf divset(D, i) = inf A and sup divset(D, i) = D(i) if i = 1,

(ii) inf divset(D, i) = D(i− 1) and sup divset(D, i) = D(i), otherwise.

Next we state the proposition

(10) If i ∈ dom D, then divset(D, i) ⊆ A.

Let A be a subset of R. The functor vol(A) yielding a real number is defined
by:

(Def. 6) vol(A) = sup A− inf A.

One can prove the following proposition

(11) For every closed-interval subset A of R holds 0 ¬ vol(A).

3. Definitions of Integrability and Related Topics

Let A be a closed-interval subset of R, let f be a partial function from A

to R, let S be a non empty Division of A, and let D be an element of S. The
functor upper volume(f,D) yielding a finite sequence of elements of R is defined
as follows:

(Def. 7) len upper volume(f, D) = len D and for every i such that i ∈
Seg len D holds (upper volume(f,D))(i) = sup rng(f¹ divset(D, i)) ·
vol(divset(D, i)).

The functor lower volume(f, D) yielding a finite sequence of elements of R is
defined by:

(Def. 8) len lower volume(f, D) = len D and for every i such that i ∈ Seg len D

holds (lower volume(f, D))(i) = inf rng(f¹ divset(D, i)) · vol(divset(D, i)).

Let A be a closed-interval subset of R, let f be a partial function from A

to R, let S be a non empty Division of A, and let D be an element of S. The
functor upper sum(f, D) yields a real number and is defined by:

(Def. 9) upper sum(f,D) =
∑

upper volume(f, D).

The functor lower sum(f, D) yields a real number and is defined by:

(Def. 10) lower sum(f, D) =
∑

lower volume(f,D).

Let A be a closed-interval subset of R. Then divs A is a Division of A.

96 noboru endou and artur korniłowicz

Let A be a closed-interval subset of R and let f be a partial function from
A to R. The functor upper sum set f yielding a partial function from divs A to
R is defined as follows:

(Def. 11) dom upper sum set f = divs A and for every element D of divs A

such that D ∈ dom upper sum set f holds (upper sum set f)(D) =
upper sum(f, D).

The functor lower sum set f yields a partial function from divs A to R and is
defined as follows:

(Def. 12) dom lower sum set f = divs A and for every element D of divs A

such that D ∈ dom lower sum set f holds (lower sum set f)(D) =
lower sum(f, D).

Let A be a closed-interval subset of R and let f be a partial function from
A to R. We say that f is upper integrable on A if and only if:

(Def. 13) rng upper sum set f is lower bounded.

We say that f is lower integrable on A if and only if:

(Def. 14) rng lower sum set f is upper bounded.

Let A be a closed-interval subset of R and let f be a partial function from
A to R. The functor upper integral f yielding a real number is defined by:

(Def. 15) upper integral f = inf rng upper sum set f.

Let A be a closed-interval subset of R and let f be a partial function from A

to R. The functor lower integral f yields a real number and is defined as follows:

(Def. 16) lower integral f = sup rng lower sum set f.

Let A be a closed-interval subset of R and let f be a partial function from
A to R. We say that f is integrable on A if and only if:

(Def. 17) f is upper integrable on A and f is lower integrable on A and
upper integral f = lower integral f.

Let A be a closed-interval subset of R and let f be a partial function from
A to R. The functor integral f yields a real number and is defined by:

(Def. 18) integral f = upper integral f.

4. Real Function’s Properties

Next we state several propositions:

(12) For every non empty set X and for all partial functions f , g from X to
R holds rng(f + g) ⊆ rng f + rng g.

(13) Let A be a closed-interval subset of R and f be a partial function from
A to R. If f is lower bounded on A, then rng f is lower bounded.

the definition of the riemann definite . . . 97

(14) Let A be a closed-interval subset of R and f be a partial function from
A to R. If rng f is lower bounded, then f is lower bounded on A.

(15) Let A be a closed-interval subset of R and f be a partial function from
A to R. If f is upper bounded on A, then rng f is upper bounded.

(16) Let A be a closed-interval subset of R and f be a partial function from
A to R. If rng f is upper bounded, then f is upper bounded on A.

(17) Let A be a closed-interval subset of R and f be a partial function from
A to R. If f is bounded on A, then rng f is bounded.

5. Characteristic Function’s Properties

The following propositions are true:

(18) For every closed-interval subset A of R holds χA,A is a constant on A.

(19) For every closed-interval subset A of R holds rng(χA,A) = {1}.
(20) For every closed-interval subset A of R and for every set B such that

B ∩ dom(χA,A) 6= ∅ holds rng(χA,A¹B) = {1}.
(21) If i ∈ Seg len D, then vol(divset(D, i)) = (lower volume(χA,A, D))(i).
(22) If i ∈ Seg len D, then vol(divset(D, i)) = (upper volume(χA,A, D))(i).
(23) If len F = len G and len F = len H and for every k such that k ∈ dom F

holds H(k) = Fk + Gk, then
∑

H =
∑

F +
∑

G.

(24) If len F = len G and len F = len H and for every k such that k ∈ dom F

holds H(k) = Fk −Gk, then
∑

H =
∑

F −∑
G.

(25) Let A be a closed-interval subset of R, S be a non empty Division of A,
and D be an element of S. Then

∑
lower volume(χA,A, D) = vol(A).

(26) Let A be a closed-interval subset of R, S be a non empty Division of A,
and D be an element of S. Then

∑
upper volume(χA,A, D) = vol(A).

6. Some Properties of Darboux Sum

Let A be a closed-interval subset of R, let f be a partial function from A

to R, let S be a non empty Division of A, and let D be an element of S. Then
upper volume(f, D) is a non empty finite sequence of elements of R.

Let A be a closed-interval subset of R, let f be a partial function from A

to R, let S be a non empty Division of A, and let D be an element of S. Then
lower volume(f,D) is a non empty finite sequence of elements of R.

One can prove the following propositions:

98 noboru endou and artur korniłowicz

(27) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, and D be an element of S. If f is
total and lower bounded on A, then inf rng f · vol(A) ¬ lower sum(f, D).

(28) Let A be a closed-interval subset of R, f be a partial function from
A to R, S be a non empty Division of A, D be an element of S, and i

be a natural number. Suppose f is total and upper bounded on A and
i ∈ Seg len D. Then sup rng f ·vol(divset(D, i)) ­ sup rng(f¹ divset(D, i)) ·
vol(divset(D, i)).

(29) Let A be a closed-interval subset of R, f be a partial function from A to
R, S be a non empty Division of A, and D be an element of S. If f is total
and upper bounded on A, then upper sum(f,D) ¬ sup rng f · vol(A).

(30) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, and D be an element of S. If f is
total and bounded on A, then lower sum(f, D) ¬ upper sum(f, D).

Let x be a non empty finite sequence of elements of R. Then rng x is a finite
non empty subset of R.

Let A be a closed-interval subset of R and let D be an element of divs A.

The functor δD yielding a real number is defined by:

(Def. 19) δD = max rng upper volume(χA,A, D).
Let A be a closed-interval subset of R, let S be a non empty Division of A,

and let D1, D2 be elements of S. The predicate D1 ¬ D2 is defined as follows:

(Def. 20) len D1 ¬ len D2 and rng D1 ⊆ rng D2.

We introduce D2 ­ D1 as a synonym of D1 ¬ D2.

One can prove the following propositions:

(31) Let A be a closed-interval subset of R, S be a non empty Division of A,
and D1, D2 be elements of S. If len D1 = 1, then D1 ¬ D2.

(32) Let A be a closed-interval subset of R, f be a partial function from A to
R, S be a non empty Division of A, and D1, D2 be elements of S. If f is
total and upper bounded on A and len D1 = 1, then upper sum(f, D1) ­
upper sum(f, D2).

(33) Let A be a closed-interval subset of R, f be a partial function from A to
R, S be a non empty Division of A, and D1, D2 be elements of S. If f is
total and lower bounded on A and len D1 = 1, then lower sum(f, D1) ¬
lower sum(f, D2).

(34) Let A be a closed-interval subset of R, S be a non empty Division of A,
and D be an element of S. If i ∈ dom D, then there exist A1, A2 such that
A1 = [inf A,D(i)] and A2 = [D(i), sup A] and A = A1 ∪A2.

(35) Let A be a closed-interval subset of R, S be a non empty Division of A,
and D1, D2 be elements of S. If i ∈ dom D1, then if D1 ¬ D2, then there
exists j such that j ∈ dom D2 and D1(i) = D2(j).

the definition of the riemann definite . . . 99

Let A be a closed-interval subset of R, let S be a non empty Division of A,
let D1, D2 be elements of S, and let i be a natural number. Let us assume that
D1 ¬ D2. The functor indx(D2, D1, i) yields a natural number and is defined as
follows:

(Def. 21)(i) indx(D2, D1, i) ∈ dom D2 and D1(i) = D2(indx(D2, D1, i)) if i ∈
dom D1,

(ii) indx(D2, D1, i) = 0, otherwise.

Next we state four propositions:

(36) Let p be an increasing finite sequence of elements of R and n be a natural
number. Suppose n ¬ len p. Then pºn is an increasing finite sequence of
elements of R.

(37) Let p be an increasing finite sequence of elements of R and i, j be natural
numbers. Suppose j ∈ dom p and i ¬ j. Then mid(p, i, j) is an increasing
finite sequence of elements of R.

(38) Let A be a closed-interval subset of R, S be a non empty Division of A, D

be an element of S, and i, j be natural numbers. Suppose i ∈ dom D and
j ∈ dom D and i ¬ j. Then there exists a closed-interval subset B of R such
that inf B = (mid(D, i, j))(1) and sup B = (mid(D, i, j))(len mid(D, i, j))
and len mid(D, i, j) = (j − i) + 1 and mid(D, i, j) is a DivisionPoint of B.

(39) Let A, B be closed-interval subsets of R, S be a non empty Division
of A, S1 be a non empty Division of B, D be an element of S, and i, j

be natural numbers. Suppose i ∈ dom D and j ∈ dom D and i ¬ j and
D(i) ­ inf B and D(j) = sup B. Then mid(D, i, j) is an element of S1.

Let p be a finite sequence of elements of R. The functor PartSums p yielding
a finite sequence of elements of R is defined by:

(Def. 22) len PartSums p = len p and for every i such that i ∈ Seg len p holds
(PartSums p)(i) =

∑
(p¹i).

We now state a number of propositions:

(40) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, and D1, D2 be elements of S.
Suppose D1 ¬ D2 and f is total and upper bounded on A. Let i be a non
empty natural number. If i ∈ dom D1, then

∑
(upper volume(f,D1)¹i) ­∑

(upper volume(f, D2)¹ indx(D2, D1, i)).
(41) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, and D1, D2 be elements of S.
Suppose D1 ¬ D2 and f is total and lower bounded on A. Let i be a non
empty natural number. If i ∈ dom D1, then

∑
(lower volume(f, D1)¹i) ¬∑

(lower volume(f,D2)¹ indx(D2, D1, i)).
(42) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, D1, D2 be elements of S, and i

100 noboru endou and artur korniłowicz

be a natural number. Suppose D1 ¬ D2 and i ∈ dom D1 and f is to-
tal and upper bounded on A. Then (PartSums upper volume(f, D1))(i) ­
(PartSums upper volume(f, D2))(indx(D2, D1, i)).

(43) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, D1, D2 be elements of S, and
i be a natural number. Suppose D1 ¬ D2 and i ∈ dom D1 and f is
total and lower bounded on A. Then (PartSums lower volume(f, D1))(i) ¬
(PartSums lower volume(f,D2))(indx(D2, D1, i)).

(44) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, and D be an element of S. Then
(PartSums upper volume(f, D))(len D) = upper sum(f,D).

(45) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, and D be an element of S. Then
(PartSums lower volume(f,D))(len D) = lower sum(f, D).

(46) Let A be a closed-interval subset of R, S be a non empty Division of A,
and D1, D2 be elements of S. If D1 ¬ D2, then indx(D2, D1, len D1) =
len D2.

(47) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, and D1, D2 be elements of S. If
D1 ¬ D2 and f is total and upper bounded on A, then upper sum(f, D2) ¬
upper sum(f, D1).

(48) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, and D1, D2 be elements of S. If
D1 ¬ D2 and f is total and lower bounded on A, then lower sum(f, D2) ­
lower sum(f, D1).

(49) Let A be a closed-interval subset of R, S be a non empty Division of A,
and D1, D2 be elements of S. Then there exists an element D of S such
that D1 ¬ D and D2 ¬ D.

(50) Let A be a closed-interval subset of R, f be a partial function from A to
R, S be a non empty Division of A, and D1, D2 be elements of S. If f is
total and bounded on A, then lower sum(f, D1) ¬ upper sum(f, D2).

7. Additivity of Integral

One can prove the following propositions:

(51) Let A be a closed-interval subset of R and f be a partial function from
A to R. Suppose f is upper integrable on A and f is lower integrable on A

and f is total and bounded on A. Then upper integral f ­ lower integral f.

(52) For all subsets X, Y of R holds −X +−Y = −(X + Y).

the definition of the riemann definite . . . 101

(53) For all subsets X, Y of R such that X is upper bounded and Y 6= ∅ and
Y is upper bounded holds X + Y is upper bounded.

(54) For all non empty subsets X, Y of R such that X is upper bounded and
Y is upper bounded holds sup(X + Y) = sup X + sup Y.

(55) Let A be a closed-interval subset of R, f , g be partial functions from
A to R, S be a non empty Division of A, and D be an element of S.
Suppose i ∈ Seg len D and f is upper bounded on A and total and g

is upper bounded on A and total. Then (upper volume(f + g, D))(i) ¬
(upper volume(f, D))(i) + (upper volume(g, D))(i).

(56) Let A be a closed-interval subset of R, f , g be partial functions from A

to R, S be a non empty Division of A, and D be an element of S. Suppose
i ∈ Seg len D and f is lower bounded on A and total and g is lower bounded
on A and total. Then (lower volume(f, D))(i)+(lower volume(g, D))(i) ¬
(lower volume(f + g, D))(i).

(57) Let A be a closed-interval subset of R, f , g be partial functions from A

to R, S be a non empty Division of A, and D be an element of S. Suppose
f is upper bounded on A and total and g is upper bounded on A and
total. Then upper sum(f + g,D) ¬ upper sum(f, D) + upper sum(g, D).

(58) Let A be a closed-interval subset of R, f , g be partial functions from A

to R, S be a non empty Division of A, and D be an element of S. Suppose
f is lower bounded on A and total and g is lower bounded on A and total.
Then lower sum(f,D) + lower sum(g, D) ¬ lower sum(f + g, D).

(59) Let X be a non empty set and f be a partial function from X to R. If
f is upper bounded on X and total, then rng f is upper bounded.

(60) Let X be a non empty set and f be a partial function from X to R. If
rng f is upper bounded and f is total, then f is upper bounded on X.

(61) Let X be a non empty set and f be a partial function from X to R. If
f is lower bounded on X and total, then rng f is lower bounded.

(62) Let X be a non empty set and f be a partial function from X to R. If
rng f is lower bounded and f is total, then f is lower bounded on X.

(63) Let A be a closed-interval subset of R and f , g be partial functions from
A to R. Suppose that

(i) f is total and bounded on A,
(ii) g is total and bounded on A,
(iii) f is integrable on A, and
(iv) g is integrable on A.

Then f + g is integrable on A and integral f + g = integral f + integral g.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.

102 noboru endou and artur korniłowicz

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[9] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized

Mathematics, 1(4):661–668, 1990.
[10] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E2. Formalized

Mathematics, 6(3):427–440, 1997.
[11] Czesław Byliński and Andrzej Trybulec. Complex spaces. Formalized Mathematics,

2(1):151–158, 1991.
[12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[13] Agata Darmochwał and Yatsuka Nakamura. The topological space E2

T. Arcs, line segments
and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.

[14] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[15] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real
numbers. Formalized Mathematics, 1(3):477–481, 1990.

[16] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathema-
tics, 1(4):697–702, 1990.

[17] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized
Mathematics, 1(4):703–709, 1990.

[18] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathema-
tics, 1(2):269–272, 1990.

[19] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathe-
matics, 3(2):275–278, 1992.

[20] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized
Mathematics, 3(1):107–115, 1992.

[21] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields
and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.

[22] Robert Milewski. Natural numbers. Formalized Mathematics, 7(1):19–22, 1998.
[23] Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. For-

malized Mathematics, 6(2):255–263, 1997.
[24] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preli-

minaries to circuits, I. Formalized Mathematics, 5(2):167–172, 1996.
[25] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,

4(1):83–86, 1993.
[26] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real num-

bers. Formalized Mathematics, 1(4):777–780, 1990.
[27] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[28] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[29] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[30] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[31] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[32] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received March 13, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Properties of the Trigonometric Function

Takashi Mitsuishi
Shinshu University

Nagano

Yuguang Yang
Shinshu University

Nagano

Summary. This article introduces the monotone increasing and the mo-
notone decreasing of sinus and cosine, and definitions of hyperbolic sinus, hyper-
bolic cosine and hyperbolic tangent, and some related formulas about them.

MML Identifier: SIN COS2.

The papers [21], [6], [17], [22], [4], [14], [15], [20], [2], [19], [3], [18], [13], [5], [7],
[8], [16], [9], [10], [1], [23], [11], and [12] provide the notation and terminology
for this paper.

1. Monotone Increasing and Monotone Decreasing of Sinus and
Cosine

We adopt the following rules: p, q, r, t1 are elements of R and n is a natural
number.

Next we state a number of propositions:

(1) If p ­ 0 and r ­ 0, then p + r ­ 2 · √p · r.
(2) sin is increasing on]0, Pai

2 [.
(3) sin is decreasing on]Pai

2 , Pai[.
(4) cos is decreasing on]0, Pai

2 [.
(5) cos is decreasing on]Pai

2 , Pai[.
(6) sin is decreasing on]Pai, 3

2 · Pai[.
(7) sin is increasing on]32 · Pai, 2 · Pai[.
(8) cos is increasing on]Pai, 3

2 · Pai[.

103
c© 1999 University of Białystok

ISSN 1426–2630

104 takashi mitsuishi and yuguang yang

(9) cos is increasing on]32 · Pai, 2 · Pai[.
(10) (sin)(t1) = (sin)(2 · Pai ·n + t1).
(11) (cos)(t1) = (cos)(2 · Pai ·n + t1).

2. Hyperbolic Sinus, Hyperbolic Cosine and Hyperbolic Tangent

The partial function sinh from R to R is defined as follows:

(Def. 1) dom sinh = R and for every real number d holds (sinh)(d) =
(exp)(d)−(exp)(−d)

2 .

Let d be a real number. The functor sinh d yielding an element of R is defined
by:

(Def. 2) sinh d = (sinh)(d).
The partial function cosh from R to R is defined as follows:

(Def. 3) dom cosh = R and for every real number d holds (cosh)(d) =
(exp)(d)+(exp)(−d)

2 .

Let d be a real number. The functor cosh d yields an element of R and is
defined as follows:

(Def. 4) cosh d = (cosh)(d).
The partial function tanh from R to R is defined as follows:

(Def. 5) dom tanh = R and for every real number d holds (tanh)(d) =
(exp)(d)−(exp)(−d)
(exp)(d)+(exp)(−d) .

Let d be a real number. The functor tanh d yields an element of R and is
defined as follows:

(Def. 6) tanh d = (tanh)(d).
We now state a number of propositions:

(12) (exp)(p + q) = (exp)(p) · (exp)(q).
(13) (exp)(0) = 1.
(14) (cosh)(p)2 − (sinh)(p)2 = 1 and (cosh)(p) · (cosh)(p) − (sinh)(p) ·

(sinh)(p) = 1.
(15) (cosh)(p) 6= 0 and (cosh)(p) > 0 and (cosh)(0) = 1.
(16) (sinh)(0) = 0.

(17) (tanh)(p) = (sinh)(p)
(cosh)(p) .

(18) (sinh)(p)2 = 1
2 · ((cosh)(2 · p)− 1) and (cosh)(p)2 = 1

2 · ((cosh)(2 · p)+ 1).
(19) (cosh)(−p) = (cosh)(p) and (sinh)(−p) = −(sinh)(p) and (tanh)(−p) =
−(tanh)(p).

(20) (cosh)(p+ r) = (cosh)(p) · (cosh)(r)+ (sinh)(p) · (sinh)(r) and (cosh)(p−
r) = (cosh)(p) · (cosh)(r)− (sinh)(p) · (sinh)(r).

properties of the trigonometric function 105

(21) (sinh)(p + r) = (sinh)(p) · (cosh)(r) + (cosh)(p) · (sinh)(r) and (sinh)(p−
r) = (sinh)(p) · (cosh)(r)− (cosh)(p) · (sinh)(r).

(22) (tanh)(p+r) = (tanh)(p)+(tanh)(r)
1+(tanh)(p)·(tanh)(r) and (tanh)(p−r) = (tanh)(p)−(tanh)(r)

1−(tanh)(p)·(tanh)(r) .

(23) (sinh)(2 ·p) = 2 · (sinh)(p) · (cosh)(p) and (cosh)(2 ·p) = 2 · (cosh)(p)2−1
and (tanh)(2 · p) = 2·(tanh)(p)

1+(tanh)(p)2
.

(24) (sinh)(p)2 − (sinh)(q)2 = (sinh)(p + q) · (sinh)(p − q) and (sinh)(p +
q) · (sinh)(p − q) = (cosh)(p)2 − (cosh)(q)2 and (sinh)(p)2 − (sinh)(q)2 =
(cosh)(p)2 − (cosh)(q)2.

(25) (sinh)(p)2 + (cosh)(q)2 = (cosh)(p + q) · (cosh)(p − q) and (cosh)(p +
q) · (cosh)(p− q) = (cosh)(p)2 + (sinh)(q)2 and (sinh)(p)2 + (cosh)(q)2 =
(cosh)(p)2 + (sinh)(q)2.

(26) (sinh)(p) + (sinh)(r) = 2 · (sinh)(p
2 + r

2) · (cosh)(p
2 − r

2) and (sinh)(p) −
(sinh)(r) = 2 · (sinh)(p

2 − r
2) · (cosh)(p

2 + r
2).

(27) (cosh)(p) + (cosh)(r) = 2 · (cosh)(p
2 + r

2) · (cosh)(p
2 − r

2) and (cosh)(p)−
(cosh)(r) = 2 · (sinh)(p

2 − r
2) · (sinh)(p

2 + r
2).

(28) (tanh)(p) + (tanh)(r) = (sinh)(p+r)
(cosh)(p)·(cosh)(r) and (tanh)(p) − (tanh)(r) =

(sinh)(p−r)
(cosh)(p)·(cosh)(r) .

(29) ((cosh)(p) + (sinh)(p))n
N = (cosh)(n · p) + (sinh)(n · p).

One can check the following observations:

∗ sinh is total,

∗ cosh is total, and

∗ tanh is total.

One can prove the following propositions:

(30) dom sinh = R and dom cosh = R and dom tanh = R.

(31) sinh is differentiable in p and (sinh)′(p) = (cosh)(p).
(32) cosh is differentiable in p and (cosh)′(p) = (sinh)(p).
(33) tanh is differentiable in p and (tanh)′(p) = 1

(cosh)(p)2
.

(34) sinh is differentiable on R and (sinh)′(p) = (cosh)(p).
(35) cosh is differentiable on R and (cosh)′(p) = (sinh)(p).
(36) tanh is differentiable on R and (tanh)′(p) = 1

(cosh)(p)2
.

(37) (cosh)(p) ­ 1.

(38) sinh is continuous in p.

(39) cosh is continuous in p.

(40) tanh is continuous in p.

(41) sinh is continuous on R.

(42) cosh is continuous on R.

(43) tanh is continuous on R.

106 takashi mitsuishi and yuguang yang

(44) (tanh)(p) < 1 and (tanh)(p) > −1.

References

[1] Agnieszka Banachowicz and Anna Winnicka. Complex sequences. Formalized Mathema-
tics, 4(1):121–124, 1993.

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[7] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathe-

matics, 1(2):273–275, 1990.
[8] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics,

1(3):471–475, 1990.
[9] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized

Mathematics, 1(4):703–709, 1990.
[10] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781–786,

1990.
[11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathema-

tics, 1(2):269–272, 1990.
[12] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields

and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
[13] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125–

130, 1991.
[14] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathe-

matics, 1(4):787–791, 1990.
[15] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized

Mathematics, 1(4):797–801, 1990.
[16] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real num-

bers. Formalized Mathematics, 1(4):777–780, 1990.
[17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[18] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized

Mathematics, 1(3):445–449, 1990.
[19] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[21] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[23] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle

ratio. Formalized Mathematics, 7(2):255–263, 1998.

Received March 13, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Predicate Calculus for Boolean Valued
Functions. Part II

Shunichi Kobayashi
Shinshu University

Nagano

Yatsuka Nakamura
Shinshu University

Nagano

Summary. In this paper, we have proved some elementary predicate calcu-
lus formulae containing the quantifiers of Boolean valued functions with respect
to partitions. Such a theory is an analogy of usual predicate logic.

MML Identifier: BVFUNC 4.

The terminology and notation used in this paper are introduced in the following
articles: [8], [10], [11], [2], [3], [7], [6], [9], [1], [4], and [5].

1. Preliminaries

In this paper Y denotes a non empty set.
Next we state a number of propositions:

(1) For all elements a, b, c of BVF(Y) such that a b b⇒ c holds a ∧ b b c.

(2) For all elements a, b, c of BVF(Y) such that a ∧ b b c holds a b b⇒ c.

(3) For all elements a, b of BVF(Y) holds a ∨ a ∧ b = a.

(4) For all elements a, b of BVF(Y) holds a ∧ (a ∨ b) = a.

(5) For every element a of BVF(Y) holds a ∧ ¬a = false(Y).
(6) For every element a of BVF(Y) holds a ∨ ¬a = true(Y).
(7) For all elements a, b of BVF(Y) holds a⇔ b = (a⇒ b) ∧ (b⇒ a).
(8) For all elements a, b of BVF(Y) holds a⇒ b = ¬a ∨ b.

(9) For all elements a, b of BVF(Y) holds a⊕ b = ¬a ∧ b ∨ a ∧ ¬b.

107
c© 1999 University of Białystok

ISSN 1426–2630

108 shunichi kobayashi and yatsuka nakamura

(10) For all elements a, b of BVF(Y) holds a ⇔ b = true(Y) iff a ⇒ b =
true(Y) and b⇒ a = true(Y).

(11) For all elements a, b, c of BVF(Y) such that a ⇔ b = true(Y) and
b⇔ c = true(Y) holds a⇔ c = true(Y).

(12) For all elements a, b of BVF(Y) such that a ⇔ b = true(Y) holds
¬a⇔ ¬b = true(Y).

(13) For all elements a, b, c, d of BVF(Y) such that a ⇔ b = true(Y) and
c⇔ d = true(Y) holds a ∧ c⇔ b ∧ d = true(Y).

(14) For all elements a, b, c, d of BVF(Y) such that a ⇔ b = true(Y) and
c⇔ d = true(Y) holds a⇒ c⇔ b⇒ d = true(Y).

(15) For all elements a, b, c, d of BVF(Y) such that a ⇔ b = true(Y) and
c⇔ d = true(Y) holds a ∨ c⇔ b ∨ d = true(Y).

(16) For all elements a, b, c, d of BVF(Y) such that a ⇔ b = true(Y) and
c⇔ d = true(Y) holds a⇔ c⇔ b⇔ d = true(Y).

2. Predicate Calculus

Next we state a number of propositions:

(17) Let a, b be elements of BVF(Y), G be a subset of PARTITIONS(Y), and
P1 be a partition of Y . If G is a coordinate and P1 ∈ G, then ∀a⇔b,P1G =
∀a⇒b,P1G ∧ ∀b⇒a,P1G.

(18) Let a be an element of BVF(Y), G be a subset of PARTITIONS(Y),
and P1, P2 be partitions of Y . Suppose G is a coordinate and P1 ∈ G and
P2 ∈ G. Then ∀a,P1G b ∃a,P1G and ∀a,P1G b ∃a,P2G.

(19) Let a, u be elements of BVF(Y), G be a subset of PARTITIONS(Y),
and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. If a⇒ u = true(Y), then ∀a,P1G⇒ u = true(Y).
(20) Let u be an element of BVF(Y), G be a subset of PARTITIONS(Y),

and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. Then ∃u,P1G b u.

(21) Let u be an element of BVF(Y), G be a subset of PARTITIONS(Y),
and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. Then u b ∀u,P1G.

(22) Let u be an element of BVF(Y), G be a subset of PARTITIONS(Y),
and P1, P2 be partitions of Y . Suppose G is a coordinate and P1 ∈ G and
P2 ∈ G and u is independent of P2, G. Then ∀u,P1G b ∀u,P2G.

(23) Let u be an element of BVF(Y), G be a subset of PARTITIONS(Y),
and P1, P2 be partitions of Y . Suppose G is a coordinate and P1 ∈ G and
P2 ∈ G and u is independent of P1, G. Then ∃u,P1G b ∃u,P2G.

predicate calculus for boolean valued . . . 109

(24) Let a, b be elements of BVF(Y), G be a subset of PARTITIONS(Y), and
P1 be a partition of Y . If G is a coordinate and P1 ∈ G, then ∀a⇔b,P1G b
∀a,P1G⇔ ∀b,P1G.

(25) Let a, b be elements of BVF(Y), G be a subset of PARTITIONS(Y), and
P1 be a partition of Y . If G is a coordinate and P1 ∈ G, then ∀a∧b,P1G b
a ∧ ∀b,P1G.

(26) Let a, u be elements of BVF(Y), G be a subset of PARTITIONS(Y),
and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G and u

is independent of P1, G. Then ∀a,P1G⇒ u b ∃a⇒u,P1G.

(27) Let a, b be elements of BVF(Y), G be a subset of PARTITIONS(Y),
and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G. If
a⇔ b = true(Y), then ∀a,P1G⇔ ∀b,P1G = true(Y).

(28) Let a, b be elements of BVF(Y), G be a subset of PARTITIONS(Y),
and P1 be a partition of Y . Suppose G is a coordinate and P1 ∈ G. If
a⇔ b = true(Y), then ∃a,P1G⇔ ∃b,P1G = true(Y).

References

[1] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[4] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions.
Formalized Mathematics, 7(2):249–254, 1998.

[5] Shunichi Kobayashi and Yatsuka Nakamura. A theory of Boolean valued functions and
quantifiers with respect to partitions. Formalized Mathematics, 7(2):307–312, 1998.

[6] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[7] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction.
Formalized Mathematics, 1(3):441–444, 1990.

[8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[9] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[10] Edmund Woronowicz. Many–argument relations. Formalized Mathematics, 1(4):733–737,

1990.
[11] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received March 13, 1999

110 shunichi kobayashi and yatsuka nakamura

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Propositional Calculus for Boolean Valued
Functions. Part I

Shunichi Kobayashi
Shinshu University

Nagano

Yatsuka Nakamura
Shinshu University

Nagano

Summary. In this paper, we have proved some elementary propositional
calculus formulae for Boolean valued functions.

MML Identifier: BVFUNC 5.

The terminology and notation used in this paper have been introduced in the
following articles: [6], [8], [9], [2], [3], [5], [1], [7], and [4].

In this paper Y is a non empty set.
Next we state a number of propositions:

(1) For all elements a, b of BVF(Y) holds a = true(Y) and b = true(Y) iff
a ∧ b = true(Y).

(2) For all elements a, b of BVF(Y) such that a = true(Y) and a ⇒ b =
true(Y) holds b = true(Y).

(3) For all elements a, b of BVF(Y) such that a = true(Y) holds a ∨ b =
true(Y).

(5)1 For all elements a, b of BVF(Y) such that b = true(Y) holds a ⇒ b =
true(Y).

(6) For all elements a, b of BVF(Y) such that ¬a = true(Y) holds a⇒ b =
true(Y).

(7) For every element a of BVF(Y) holds ¬(a ∧ ¬a) = true(Y).
(8) For every element a of BVF(Y) holds a⇒ a = true(Y).
(9) For all elements a, b of BVF(Y) holds a ⇒ b = true(Y) iff ¬b ⇒ ¬a =

true(Y).
1The proposition (4) has been removed.

111
c© 1999 University of Białystok

ISSN 1426–2630

112 shunichi kobayashi and yatsuka nakamura

(10) For all elements a, b, c of BVF(Y) such that a ⇒ b = true(Y) and
b⇒ c = true(Y) holds a⇒ c = true(Y).

(11) For all elements a, b of BVF(Y) such that a ⇒ b = true(Y) and a ⇒
¬b = true(Y) holds ¬a = true(Y).

(12) For every element a of BVF(Y) holds ¬a⇒ a⇒ a = true(Y).
(13) For all elements a, b, c of BVF(Y) holds a⇒ b⇒ ¬(b∧ c)⇒ ¬(a∧ c) =

true(Y).
(14) For all elements a, b, c of BVF(Y) holds a ⇒ b ⇒ b ⇒ c ⇒ a ⇒ c =

true(Y).
(15) For all elements a, b, c of BVF(Y) such that a ⇒ b = true(Y) holds

b⇒ c⇒ a⇒ c = true(Y).
(16) For all elements a, b of BVF(Y) holds b⇒ a⇒ b = true(Y).
(17) For all elements a, b, c of BVF(Y) holds a⇒ b⇒ c⇒ b⇒ c = true(Y).
(18) For all elements a, b of BVF(Y) holds b⇒ b⇒ a⇒ a = true(Y).
(19) For all elements a, b, c of BVF(Y) holds c ⇒ b ⇒ a ⇒ b ⇒ c ⇒ a =

true(Y).
(20) For all elements a, b, c of BVF(Y) holds b ⇒ c ⇒ a ⇒ b ⇒ a ⇒ c =

true(Y).
(21) For all elements a, b, c of BVF(Y) holds b⇒ b⇒ c⇒ b⇒ c = true(Y).
(22) For all elements a, b, c of BVF(Y) holds a ⇒ b ⇒ c ⇒ a ⇒ b ⇒ a ⇒

c = true(Y).
(23) For all elements a, b of BVF(Y) such that a = true(Y) holds a ⇒ b ⇒

b = true(Y).
(24) For all elements a, b, c of BVF(Y) such that c⇒ b⇒ a = true(Y) holds

b⇒ c⇒ a = true(Y).
(25) For all elements a, b, c of BVF(Y) such that c ⇒ b ⇒ a = true(Y) and

b = true(Y) holds c⇒ a = true(Y).
(26) For all elements a, b, c of BVF(Y) such that c ⇒ b ⇒ a = true(Y) and

b = true(Y) and c = true(Y) holds a = true(Y).
(27) For all elements b, c of BVF(Y) such that b ⇒ b ⇒ c = true(Y) holds

b⇒ c = true(Y).
(28) For all elements a, b, c of BVF(Y) such that a⇒ b⇒ c = true(Y) holds

a⇒ b⇒ a⇒ c = true(Y).
(29) For all elements a, b, c of BVF(Y) such that a ⇒ b ⇒ c = true(Y) and

a⇒ b = true(Y) holds a⇒ c = true(Y).
(30) For all elements a, b, c of BVF(Y) such that a ⇒ b ⇒ c = true(Y) and

a⇒ b = true(Y) and a = true(Y) holds c = true(Y).
(31) For all elements a, b, c, d of BVF(Y) such that a ⇒ b ⇒ c = true(Y)

and a⇒ c⇒ d = true(Y) holds a⇒ b⇒ d = true(Y).

propositional calculus for boolean valued . . . 113

(32) For all elements a, b of BVF(Y) holds ¬a⇒ ¬b⇒ b⇒ a = true(Y).
(33) For all elements a, b of BVF(Y) holds a⇒ b⇒ ¬b⇒ ¬a = true(Y).
(34) For all elements a, b of BVF(Y) holds a⇒ ¬b⇒ b⇒ ¬a = true(Y).
(35) For all elements a, b of BVF(Y) holds ¬a⇒ b⇒ ¬b⇒ a = true(Y).
(36) For every element a of BVF(Y) holds a⇒ ¬a⇒ ¬a = true(Y).
(37) For all elements a, b of BVF(Y) holds ¬a⇒ a⇒ b = true(Y).
(38) For all elements a, b, c of BVF(Y) holds ¬(a ∧ b ∧ c) = ¬a ∨ ¬b ∨ ¬c.

(39) For all elements a, b, c of BVF(Y) holds ¬(a ∨ b ∨ c) = ¬a ∧ ¬b ∧ ¬c.

(40) For all elements a, b, c, d of BVF(Y) holds a ∨ b ∧ c ∧ d = (a ∨ b) ∧ (a ∨
c) ∧ (a ∨ d).

(41) For all elements a, b, c, d of BVF(Y) holds a∧(b∨c∨d) = a∧b∨a∧c∨a∧d.

References

[1] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[4] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions.
Formalized Mathematics, 7(2):249–254, 1998.

[5] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[7] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[8] Edmund Woronowicz. Many–argument relations. Formalized Mathematics, 1(4):733–737,

1990.
[9] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received March 13, 1999

114 shunichi kobayashi and yatsuka nakamura

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Propositional Calculus for Boolean Valued
Functions. Part II

Shunichi Kobayashi
Shinshu University

Nagano

Yatsuka Nakamura
Shinshu University

Nagano

Summary. In this paper, we have proved some elementary propositional
calculus formulae for Boolean valued functions.

MML Identifier: BVFUNC 6.

The articles [3], [4], [2], and [1] provide the terminology and notation for this
paper.

In this paper Y denotes a non empty set.
The following propositions are true:

(1) For all elements a, b of BVF(Y) holds a⇒ b⇒ a ∧ b = true(Y).
(2) For all elements a, b of BVF(Y) holds a ⇒ b ⇒ b ⇒ a ⇒ a ⇔ b =

true(Y).
(3) For all elements a, b of BVF(Y) holds a ∨ b⇔ b ∨ a = true(Y).
(4) For all elements a, b, c of BVF(Y) holds a ∧ b ⇒ c ⇒ a ⇒ b ⇒ c =

true(Y).
(5) For all elements a, b, c of BVF(Y) holds a ⇒ b ⇒ c ⇒ a ∧ b ⇒ c =

true(Y).
(6) For all elements a, b, c of BVF(Y) holds c⇒ a⇒ c⇒ b⇒ c⇒ a ∧ b =

true(Y).
(7) For all elements a, b, c of BVF(Y) holds a ∨ b ⇒ c ⇒ (a ⇒ c) ∨ (b ⇒

c) = true(Y).
(8) For all elements a, b, c of BVF(Y) holds a⇒ c⇒ b⇒ c⇒ a ∨ b⇒ c =

true(Y).
(9) For all elements a, b, c of BVF(Y) holds (a ⇒ c) ∧ (b ⇒ c) ⇒ a ∨ b ⇒

c = true(Y).

115
c© 1999 University of Białystok

ISSN 1426–2630

116 shunichi kobayashi and yatsuka nakamura

(10) For all elements a, b of BVF(Y) holds a⇒ b ∧ ¬b⇒ ¬a = true(Y).
(11) For all elements a, b, c of BVF(Y) holds (a ∨ b) ∧ (a ∨ c)⇒ a ∨ b ∧ c =

true(Y).
(12) For all elements a, b, c of BVF(Y) holds a∧(b∨c)⇒ a∧b∨a∧c = true(Y).
(13) For all elements a, b, c of BVF(Y) holds (a ∨ c) ∧ (b ∨ c) ⇒ a ∧ b ∨ c =

true(Y).
(14) For all elements a, b, c of BVF(Y) holds (a∨b)∧c⇒ a∧c∨b∧c = true(Y).
(15) For all elements a, b of BVF(Y) such that a∧ b = true(Y) holds a∨ b =

true(Y).
(16) For all elements a, b, c of BVF(Y) such that a ⇒ b = true(Y) holds

a ∨ c⇒ b ∨ c = true(Y).
(17) For all elements a, b, c of BVF(Y) such that a ⇒ b = true(Y) holds

a ∧ c⇒ b ∧ c = true(Y).
(18) For all elements a, b, c of BVF(Y) such that c ⇒ a = true(Y) and

c⇒ b = true(Y) holds c⇒ a ∧ b = true(Y).
(19) For all elements a, b, c of BVF(Y) such that a ⇒ c = true(Y) and

b⇒ c = true(Y) holds a ∨ b⇒ c = true(Y).
(20) For all elements a, b of BVF(Y) such that a ∨ b = true(Y) and ¬a =

true(Y) holds b = true(Y).
(21) For all elements a, b, c, d of BVF(Y) such that a ⇒ b = true(Y) and

c⇒ d = true(Y) holds a ∧ c⇒ b ∧ d = true(Y).
(22) For all elements a, b, c, d of BVF(Y) such that a ⇒ b = true(Y) and

c⇒ d = true(Y) holds a ∨ c⇒ b ∨ d = true(Y).
(23) For all elements a, b of BVF(Y) such that a∧¬b⇒ ¬a = true(Y) holds

a⇒ b = true(Y).
(24) For all elements a, b of BVF(Y) such that ¬a ⇒ ¬b = true(Y) holds

b⇒ a = true(Y).
(25) For all elements a, b of BVF(Y) such that a ⇒ ¬b = true(Y) holds

b⇒ ¬a = true(Y).
(26) For all elements a, b of BVF(Y) such that ¬a ⇒ b = true(Y) holds
¬b⇒ a = true(Y).

(27) For all elements a, b of BVF(Y) holds a⇒ a ∨ b = true(Y).
(28) For all elements a, b of BVF(Y) holds a ∨ b⇒ ¬a⇒ b = true(Y).
(29) For all elements a, b of BVF(Y) holds ¬(a ∨ b)⇒ ¬a ∧ ¬b = true(Y).
(30) For all elements a, b of BVF(Y) holds ¬a ∧ ¬b⇒ ¬(a ∨ b) = true(Y).
(31) For all elements a, b of BVF(Y) holds ¬(a ∨ b)⇒ ¬a = true(Y).
(32) For every element a of BVF(Y) holds a ∨ a⇒ a = true(Y).
(33) For all elements a, b of BVF(Y) holds a ∧ ¬a⇒ b = true(Y).

propositional calculus for boolean valued . . . 117

(34) For all elements a, b of BVF(Y) holds a⇒ b⇒ ¬a ∨ b = true(Y).
(35) For all elements a, b of BVF(Y) holds a ∧ b⇒ ¬(a⇒ ¬b) = true(Y).
(36) For all elements a, b of BVF(Y) holds ¬(a⇒ ¬b)⇒ a ∧ b = true(Y).
(37) For all elements a, b of BVF(Y) holds ¬(a ∧ b)⇒ ¬a ∨ ¬b = true(Y).
(38) For all elements a, b of BVF(Y) holds ¬a ∨ ¬b⇒ ¬(a ∧ b) = true(Y).
(39) For all elements a, b of BVF(Y) holds a ∧ b⇒ a = true(Y).
(40) For all elements a, b of BVF(Y) holds a ∧ b⇒ a ∨ b = true(Y).
(41) For all elements a, b of BVF(Y) holds a ∧ b⇒ b = true(Y).
(42) For every element a of BVF(Y) holds a⇒ a ∧ a = true(Y).
(43) For all elements a, b of BVF(Y) holds a⇔ b⇒ a⇒ b = true(Y).
(44) For all elements a, b of BVF(Y) holds a⇔ b⇒ b⇒ a = true(Y).
(45) For all elements a, b, c of BVF(Y) holds a∨b∨c⇒ a∨ (b∨c) = true(Y).
(46) For all elements a, b, c of BVF(Y) holds a∧b∧c⇒ a∧ (b∧c) = true(Y).
(47) For all elements a, b, c of BVF(Y) holds a∨ (b∨c)⇒ a∨b∨c = true(Y).

References

[1] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions.
Formalized Mathematics, 7(2):249–254, 1998.

[2] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[3] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[4] Edmund Woronowicz. Many–argument relations. Formalized Mathematics, 1(4):733–737,

1990.

Received March 13, 1999

118 shunichi kobayashi and yatsuka nakamura

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Insert Sort on SCMFSA
1

Jing-Chao Chen
Shanghai Jiaotong University

Summary. This article describes the insert sorting algorithm using macro
instructions such as if-Macro (conditional branch macro instructions), for-loop
macro instructions and While-Macro instructions etc. From the viewpoint of
initialization, we generalize the halting and computing problem of the While-
Macro. Generally speaking, it is difficult to judge whether the While-Macro is
halting or not by way of loop inspection. For this reason, we introduce a practical
and simple method, called body-inspection. That is, in many cases, we can prove
the halting problem of the While-Macro by only verifying the nature of the body
of the While-Macro, rather than the While-Macro itself. In fact, we have used
this method in justifying the halting of the insert sorting algorithm. Finally, we
prove that the insert sorting algorithm given in the article is autonomic and its
computing result is correct.

MML Identifier: SCMISORT.

The articles [28], [39], [20], [8], [13], [40], [14], [38], [15], [16], [12], [7], [10], [9],
[23], [30], [11], [26], [34], [31], [32], [33], [25], [5], [6], [3], [1], [17], [2], [35], [37],
[18], [27], [29], [24], [4], [22], [19], [21], and [36] provide the terminology and
notation for this paper.

1. Preliminaries

Let i be a good instruction of SCMFSA. Observe that Macro(i) is good.
Let a be a read-write integer location and let b be an integer location. Note

that AddTo(a, b) is good.
We now state several propositions:

1This research is supported by the National Natural Science Foundation of China Grant
No. 69873033.

119
c© 1999 University of Białystok

ISSN 1426–2630

120 jing-chao chen

(1) For every function f and for all sets d, r such that d ∈ dom f holds
dom f = dom(f+·(d 7−→. r)).

(2) Let p be a programmed finite partial state of SCMFSA, l be an
instruction-location of SCMFSA, and i1 be an instruction of SCMFSA.
Suppose l ∈ dom p and there exists an instruction p1 of SCMFSA such that
p1 = p(l) and UsedIntLoc(p1) = UsedIntLoc(i1). Then UsedIntLoc(p) =
UsedIntLoc(p+·(l 7−→. i1)).

(3) For every integer location a and for every macro instruction I holds
(if a > 0 then I; Goto(insloc(0)) else (StopSCMFSA

))(insloc(card I +
4)) = goto insloc(card I + 4).

(4) Let p be a programmed finite partial state of SCMFSA, l be an
instruction-location of SCMFSA, and i1 be an instruction of SCMFSA.
Suppose l ∈ dom p and there exists an instruction p1 of SCMFSA

such that p1 = p(l) and UsedInt∗ Loc(p1) = UsedInt∗ Loc(i1). Then
UsedInt∗ Loc(p) = UsedInt∗ Loc(p+·(l 7−→. i1)).

(5) For every natural number k holds k + 1 > 0.

For simplicity, we adopt the following convention: s is a state of SCMFSA, I

is a macro instruction, a is a read-write integer location, and j, k, n are natural
numbers.

Next we state a number of propositions:

(6) For every state s of SCMFSA and for every macro instruction I such
that s(intloc(0)) = 1 and ICs = insloc(0) holds s+·I = s+· Initialized(I).

(7) Let I be a macro instruction and a, b be integer locations. If I does not
destroy b, then while a > 0 do I does not destroy b.

(8) If n ¬ 11, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5 or
n = 6 or n = 7 or n = 8 or n = 9 or n = 10 or n = 11.

(9) Let f , g be finite sequences of elements of Z and m, n be natural numbers.
Suppose 1 ¬ n and n ¬ len f and 1 ¬ m and m ¬ len f and g = f +·
(m,πnf) +· (n, πmf). Then

(i) f(m) = g(n),
(ii) f(n) = g(m),
(iii) for every set k such that k 6= m and k 6= n and k ∈ dom f holds

f(k) = g(k), and
(iv) f and g are fiberwise equipotent.

(10) Let s be a state of SCMFSA and I be a macro instruction. Sup-
pose I is halting on Initialize(s). Let a be an integer location. Then
(IExec(I, s))(a) = (Computation(Initialize(s)+·(I+· Start-At(insloc(0)))))
(LifeSpan(Initialize(s)+·(I+· Start-At(insloc(0)))))(a).

(11) Let s1, s2 be states of SCMFSA and I be a InitHalting ma-
cro instruction. Suppose Initialized(I) ⊆ s1 and Initialized(I) ⊆

insert sort on SCMFSA 121

s2 and s1 and s2 are equal outside the instruction locations of
SCMFSA. Let k be a natural number. Then (Computation(s1))(k)
and (Computation(s2))(k) are equal outside the instruction locations of
SCMFSA and CurInstr((Computation(s1))(k)) = CurInstr((Computation
(s2))(k)).

(12) Let s1, s2 be states of SCMFSA and I be a InitHalting macro in-
struction. Suppose Initialized(I) ⊆ s1 and Initialized(I) ⊆ s2 and s1

and s2 are equal outside the instruction locations of SCMFSA. Then
LifeSpan(s1) = LifeSpan(s2) and Result(s1) and Result(s2) are equal out-
side the instruction locations of SCMFSA.

(13) For every macro instruction I and for every finite sequence location f

holds f /∈ dom I.

(14) For every macro instruction I and for every integer location a holds
a /∈ dom I.

(15) Let N be a non empty set with non empty elements, S be a hal-
ting von Neumann definite AMI over N , and s be a state of S.
If LifeSpan(s) ¬ j and s is halting, then (Computation(s))(j) =
(Computation(s))(LifeSpan(s)).

2. Basic Property of while Macro

We now state several propositions:

(16) Let s be a state of SCMFSA, I be a macro instruction, and a be a
read-write integer location. Suppose s(a) ¬ 0. Then while a > 0 do I is
halting onInit s and while a > 0 do I is closed onInit s.

(17) Let a be an integer location, I be a macro instruction, s be a state of
SCMFSA, and k be a natural number. Suppose that

(i) I is closed onInit s,
(ii) I is halting onInit s,
(iii) k < LifeSpan(s+· Initialized(I)),
(iv) IC(Computation(s+· Initialized(while a>0 do I)))(1+k) =

IC(Computation(s+· Initialized(I)))(k) + 4, and
(v) (Computation(s+· Initialized(while a > 0 do I)))(1 + k)¹D =

(Computation(s+· Initialized(I)))(k)¹D.

Then IC(Computation(s+· Initialized(while a>0 do I)))(1+k+1) =
IC(Computation(s+· Initialized(I)))(k+1) + 4 and (Computation(s+· Initialized
(while a > 0 do I)))(1+k+1)¹D = (Computation(s+· Initialized(I)))(k+
1)¹D, where D = Int-Locations∪FinSeq-Locations.

122 jing-chao chen

(18) Let a be an integer location, I be a macro instruction, and s be a
state of SCMFSA. Suppose I is closed onInit s and I is halting onInit s

and IC(Computation(s+· Initialized(while a>0 do I)))(1+LifeSpan(s+· Initialized(I))) =
IC(Computation(s+· Initialized(I)))(LifeSpan(s+· Initialized(I))) + 4.

Then CurInstr((Computation(s+· Initialized(while a > 0 do I)))(1 +
LifeSpan(s+· Initialized(I)))) = goto insloc(card I + 4).

(19) Let s be a state of SCMFSA, I be a macro instruction,
and a be a read-write integer location. Suppose I is closed
onInit s and I is halting onInit s and s(a) > 0. Then
IC(Computation(s+· Initialized(while a>0 do I)))(LifeSpan(s+· Initialized(I))+3) =
insloc(0) and for every natural number k such that k ¬ LifeSpan(s+·
Initialized(I)) + 3 holds IC(Computation(s+· Initialized(while a>0 do I)))(k) ∈
dom(while a > 0 do I).

(20) Let s be a state of SCMFSA, I be a macro instruction, and
a be a read-write integer location. Suppose I is closed onI-
nit s and I is halting onInit s and s(a) > 0. Let k be
a natural number. If k ¬ LifeSpan(s+· Initialized(I)) + 3, then
IC(Computation(s+· Initialized(while a>0 do I)))(k) ∈ dom(while a > 0 do I).

(21) Let s be a state of SCMFSA, I be a macro instruction,
and a be a read-write integer location. Suppose I is closed
onInit s and I is halting onInit s and s(a) > 0. Then
IC(Computation(s+· Initialized(while a>0 do I)))(LifeSpan(s+· Initialized(I))+3) =
insloc(0) and (Computation(s+· Initialized(while a > 0 do I)))(LifeSpan
(s+· Initialized(I)) + 3)¹D = (Computation(s+· Initialized(I)))(LifeSpan
(s+· Initialized(I)))¹D, where D = Int-Locations∪FinSeq-Locations.

(22) Let s be a state of SCMFSA, I be a InitHalting macro instruction, and
a be a read-write integer location. Suppose s(a) > 0. Then there exists a
state s2 of SCMFSA and there exists a natural number k such that

(i) s2 = s+· Initialized(while a > 0 do I),
(ii) k = LifeSpan(s+· Initialized(I)) + 3,

(iii) IC(Computation(s2))(k) = insloc(0),
(iv) for every integer location b holds (Computation(s2))(k)(b) =

(IExec(I, s))(b), and
(v) for every finite sequence location f holds (Computation(s2))(k)(f) =

(IExec(I, s))(f).

Let us consider s, I, a. The functor StepWhile>0 (a, s, I) yields a function
from N into

∏
(the object kind of SCMFSA) and is defined by the conditions

(Def. 1).

(Def. 1)(i) (StepWhile>0 (a, s, I))(0) = s qua element of
∏

(the object kind of
SCMFSA) qua non empty set, and

insert sort on SCMFSA 123

(ii) for every natural number i and for every element x of∏
(the object kind of SCMFSA) qua non empty set such that

x = (StepWhile>0 (a, s, I))(i) holds (StepWhile>0 (a, s, I))(i + 1) =
(Computation(x+· Initialized(while a > 0 do I)))(LifeSpan(x+· Initialized
(I)) + 3).

We now state several propositions:

(23) (StepWhile>0 (a, s, I))(0) = s.

(24) (StepWhile>0 (a, s, I))(k+1) = (Computation((StepWhile>0 (a, s, I))(k)
+· Initialized(while a > 0 do I)))(LifeSpan((StepWhile>0 (a, s, I))(k)+·
Initialized(I)) + 3).

(25) (StepWhile>0 (a, s, I))(k+1) = (StepWhile>0 (a, (StepWhile>0 (a, s, I))
(k), I))(1).

(26) Let I be a macro instruction, a be a read-write integer location,
and s be a state of SCMFSA. Then (StepWhile>0 (a, s, I))(0 + 1) =
(Computation(s+· Initialized(while a > 0 do I)))(LifeSpan(s+· Initialized
(I)) + 3).

(27) Let I be a macro instruction, a be a read-write integer location,
s be a state of SCMFSA, and k, n be natural numbers. Suppose
IC(StepWhile>0 (a,s,I))(k) = insloc(0) and (StepWhile>0 (a, s, I))(k) =
(Computation(s+· Initialized(while a > 0 do I)))(n) and (StepWhile>0
(a, s, I))(k)(intloc(0)) = 1.
Then (StepWhile>0 (a, s, I))(k) = (StepWhile>0 (a, s, I))(k)+· Initialized
(while a > 0 do I) and (StepWhile>0 (a, s, I))(k+1) = (Computation(s+·
Initialized(while a > 0 do I)))(n+(LifeSpan((StepWhile>0 (a, s, I))(k)+·
Initialized(I)) + 3)).

(28) Let I be a macro instruction, a be a read-write integer location, and s

be a state of SCMFSA. Given a function f from
∏

(the object kind of
SCMFSA) into N such that let k be a natural number. Then

(i) if f((StepWhile>0 (a, s, I))(k)) 6= 0, then f((StepWhile>0 (a, s, I))(k+
1)) < f((StepWhile>0 (a, s, I))(k)) and I is closed onInit (StepWhile>0
(a, s, I))(k) and I is halting onInit (StepWhile>0 (a, s, I))(k),

(ii) (StepWhile>0 (a, s, I))(k + 1)(intloc(0)) = 1, and
(iii) f((StepWhile>0 (a, s, I))(k)) = 0 iff (StepWhile>0 (a, s, I))(k)(a) ¬ 0.

Then while a > 0 do I is halting onInit s and while a > 0 do I is closed
onInit s.

(29) Let I be a good InitHalting macro instruction and a be a read-write inte-
ger location. Suppose that for every state s of SCMFSA such that s(a) > 0
holds (IExec(I, s))(a) < s(a). Then while a > 0 do I is InitHalting.

(30) Let I be a good InitHalting macro instruction and a be a read-
write integer location. Suppose that for every state s of SCMFSA holds

124 jing-chao chen

(IExec(I, s))(a) < s(a) or (IExec(I, s))(a) ¬ 0. Then while a > 0 do I is
InitHalting.

Let D be a set, let f be a function from D into Z, and let d be an element
of D. Then f(d) is an integer.

One can prove the following propositions:

(31) Let I be a good InitHalting macro instruction and a be a read-write
integer location. Given a function f from

∏
(the object kind of SCMFSA)

into Z such that let s, t be states of SCMFSA. Then
(i) if f(s) > 0, then f(IExec(I, s)) < f(s),
(ii) if s¹D = t¹D, then f(s) = f(t), and
(iii) f(s) ¬ 0 iff s(a) ¬ 0.

Then while a > 0 do I is InitHalting, where
D = Int-Locations∪FinSeq-Locations.

(32) Let s be a state of SCMFSA, I be a macro instruction,
and a be a read-write integer location. If s(a) ¬ 0, then
IExec(while a > 0 do I, s)¹(Int-Locations∪FinSeq-Locations) =
Initialize(s)¹(Int-Locations∪FinSeq-Locations).

(33) Let s be a state of SCMFSA, I be a good InitHalting ma-
cro instruction, and a be a read-write integer location. If s(a) >

0 and while a > 0 do I is InitHalting, then IExec(while a >

0 do I, s)¹(Int-Locations∪FinSeq-Locations) = IExec(while a >

0 do I, IExec(I, s))¹(Int-Locations∪FinSeq-Locations).
(34) Let s be a state of SCMFSA, I be a macro instruction, f be a finite

sequence location, and a be a read-write integer location. If s(a) ¬ 0, then
(IExec(while a > 0 do I, s))(f) = s(f).

(35) Let s be a state of SCMFSA, I be a macro instruction, b be an inte-
ger location, and a be a read-write integer location. If s(a) ¬ 0, then
(IExec(while a > 0 do I, s))(b) = (Initialize(s))(b).

(36) Let s be a state of SCMFSA, I be a good InitHalting macro instruction,
f be a finite sequence location, and a be a read-write integer location.
If s(a) > 0 and while a > 0 do I is InitHalting, then (IExec(while a >

0 do I, s))(f) = (IExec(while a > 0 do I, IExec(I, s)))(f).
(37) Let s be a state of SCMFSA, I be a good InitHalting macro instruc-

tion, b be an integer location, and a be a read-write integer location. If
s(a) > 0 and while a > 0 do I is InitHalting, then (IExec(while a >

0 do I, s))(b) = (IExec(while a > 0 do I, IExec(I, s)))(b).

insert sort on SCMFSA 125

3. Insert Sort Algorithm

Let f be a finite sequence location. The functor insert− sort f yields a macro
instruction and is defined as follows:

(Def. 2) insert− sort f = i2;(a1:=lenf);SubFrom(a1, a0); Times(a1, (a2:=lenf);
SubFrom(a2, a1);(a3:=a2);AddTo(a3, a0);(a6:=fa3);SubFrom(a4, a4);
(while a2 > 0 do ((a5:=fa2);SubFrom(a5, a6);(if a5 > 0 then Macro
(SubFrom(a2, a2)) else (AddTo(a4, a0);SubFrom(a2, a0))))); Times(a4,

(a2:=a3);SubFrom(a3, a0);(a5:=fa2);(a6:=fa3);(fa2 :=a6);(fa3 :=a5))), where
i2 = (a2:=a0);(a3:=a0);(a4:=a0);(a5:=a0);(a6:=a0), a2 = intloc(2), a0 =
intloc(0), a3 = intloc(3), a4 = intloc(4), a5 = intloc(5), a6 = intloc(6),
and a1 = intloc(1).

The macro instruction Insert− Sort−Algorithm is defined by:

(Def. 3) Insert− Sort−Algorithm = insert− sort fsloc(0).
We now state a number of propositions:

(38) For every finite sequence location f holds UsedIntLoc(insert− sort f) =
{a0, a1, a2, a3, a4, a5, a6}, where a0 = intloc(0), a1 = intloc(1), a2 =
intloc(2), a3 = intloc(3), a4 = intloc(4), a5 = intloc(5), and a6 = intloc(6).

(39) For every finite sequence location f holds UsedInt∗ Loc(insert− sort f) =
{f}.

(40) For all instructions k1, k2, k3, k4 of SCMFSA holds card(k1;k2;k3;k4) = 8.

(41) For all instructions k1, k2, k3, k4, k5 of SCMFSA holds
card(k1;k2;k3;k4;k5) = 10.

(42) For every finite sequence location f holds card insert− sort f = 82.

(43) For every finite sequence location f and for every natural number k such
that k < 82 holds insloc(k) ∈ dom insert− sort f.

(44) insert− sort fsloc(0) is keepInt0 1 and InitHalting.

(45) Let s be a state of SCMFSA. Then
(i) s(f0) and (IExec(insert− sort f0, s))(f0) are fiberwise equipotent, and
(ii) for all natural numbers i, j such that i ­ 1 and j ¬ len s(f0) and i < j

and for all integers x1, x2 such that x1 = (IExec(insert− sort f0, s))(f0)(i)
and x2 = (IExec(insert− sort f0, s))(f0)(j) holds x1 ­ x2,

where f0 = fsloc(0).
(46) Let i be a natural number, s be a state of SCMFSA, and w be a finite se-

quence of elements of Z. If Initialized(Insert− Sort−Algorithm)+·(fsloc(0)
7−→. w) ⊆ s, then IC(Computation(s))(i) ∈ dom Insert− Sort−Algorithm .

(47) Let s be a state of SCMFSA and t be a finite sequence of elements of Z.
Suppose Initialized(Insert− Sort−Algorithm)+·(fsloc(0)7−→. t) ⊆ s. Then
there exists a finite sequence u of elements of R such that

126 jing-chao chen

(i) t and u are fiberwise equipotent,
(ii) u is non-increasing and a finite sequence of elements of Z, and
(iii) (Result(s))(fsloc(0)) = u.

(48) For every finite sequence w of elements of Z holds
Initialized(Insert− Sort−Algorithm)+·(fsloc(0)7−→. w) is autonomic.

(49) Initialized(Insert− Sort−Algorithm) computes Sorting-Function.

References

[1] Noriko Asamoto. Conditional branch macro instructions of SCMFSA. Part I. Formalized
Mathematics, 6(1):65–72, 1997.

[2] Noriko Asamoto. Conditional branch macro instructions of SCMFSA. Part II. Formalized
Mathematics, 6(1):73–80, 1997.

[3] Noriko Asamoto. Constant assignment macro instructions of SCMFSA. Part II. Forma-
lized Mathematics, 6(1):59–63, 1997.

[4] Noriko Asamoto. The loop and Times macroinstruction for SCMFSA. Formalized Ma-
thematics, 6(4):483–497, 1997.

[5] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part II. Formalized Mathematics, 6(1):41–47, 1997.

[6] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the
composition of macro instructions. Part III. Formalized Mathematics, 6(1):53–57, 1997.

[7] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[8] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[9] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.

[10] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[11] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Formalized
Mathematics, 4(1):61–67, 1993.

[12] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[13] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676,
1990.

[14] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[15] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[16] Czesław Byliński. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[17] Jing-Chao Chen. While macro instructions of SCMFSA. Formalized Mathematics,
6(4):553–561, 1997.

[18] Jing-Chao Chen and Yatsuka Nakamura. Bubble sort on SCMFSA. Formalized Mathe-
matics, 7(1):153–161, 1998.

[19] Jing-Chao Chen and Yatsuka Nakamura. Initialization halting concepts and their basic
properties of SCMFSA. Formalized Mathematics, 7(1):139–151, 1998.

[20] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[21] Krzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics, 1(2):321–328,
1990.

[22] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathe-
matics, 3(2):275–278, 1992.

[23] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[24] Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
[25] Piotr Rudnicki and Andrzej Trybulec. Memory handling for SCMFSA. Formalized Ma-

thematics, 6(1):29–36, 1997.

insert sort on SCMFSA 127

[26] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1–8, 1996.

[27] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[28] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[29] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics,

1(1):187–190, 1990.
[30] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51–56, 1993.
[31] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of

SCMFSA. Formalized Mathematics, 5(4):571–576, 1996.
[32] Andrzej Trybulec and Yatsuka Nakamura. Relocability for SCMFSA. Formalized Mathe-

matics, 5(4):583–586, 1996.
[33] Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of

macro instructions. Part I. Formalized Mathematics, 6(1):21–27, 1997.
[34] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCMFSA computer.

Formalized Mathematics, 5(4):519–528, 1996.
[35] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[36] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[37] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[38] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[39] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[40] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received March 13, 1999

128 jing-chao chen

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Correctness of a Cyclic Redundancy Check
Code Generator

Yuguang Yang
Shinshu University

Nagano

Katsumi Wasaki
Shinshu University

Nagano

Yasushi Fuwa
Shinshu University

Nagano

Yatsuka Nakamura
Shinshu University

Nagano

Summary. We prove the correctness of the division circuit and the CRC
(cyclic redundancy checks) circuit by verifying the contents of the register after
one shift. Circuits with 12-bit register and 16-bit register are taken as examples.
All the proofs are done formally.

MML Identifier: GATE 4.

The terminology and notation used here are introduced in the article [1].

1. Correctness of Division Circuits with 12-bit Register and
16-bit Register

One can prove the following propositions:

(1) Let g0, g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12, a0, a1, a2,
a3, a4, a5, a6, a7, a8, a9, a10, a11, b0, b1, b2, b3, b4, b5, b6, b7, b8,
b9, b10, b11, p be sets such that NE g0 and NE g12 and NE b0 iff
NE XOR2(p, AND2(g0, a11)) and NE b1 iff NE XOR2(a0, AND2(g1, a11))
and NE b2 iff NE XOR2(a1, AND2(g2, a11)) and NE b3 iff NE
XOR2(a2, AND2(g3, a11)) and NE b4 iff NE XOR2(a3, AND2(g4, a11))
and NE b5 iff NE XOR2(a4, AND2(g5, a11)) and NE b6 iff NE
XOR2(a5, AND2(g6, a11)) and NE b7 iff NE XOR2(a6, AND2(g7, a11))

129
c© 1999 University of Białystok

ISSN 1426–2630

130 yuguang yang et al.

and NE b8 iff NE XOR2(a7, AND2(g8, a11)) and NE b9 iff NE
XOR2(a8, AND2(g9, a11)) and NE b10 iff NE XOR2(a9, AND2(g10, a11))
and NE b11 iff NE XOR2(a10, AND2(g11, a11)). Then

(i) NE a11 iff NE AND2(g12, a11),
(ii) NE a10 iff NE XOR2(b11, AND2(g11, a11)),
(iii) NE a9 iff NE XOR2(b10, AND2(g10, a11)),
(iv) NE a8 iff NE XOR2(b9, AND2(g9, a11)),
(v) NE a7 iff NE XOR2(b8, AND2(g8, a11)),
(vi) NE a6 iff NE XOR2(b7, AND2(g7, a11)),
(vii) NE a5 iff NE XOR2(b6, AND2(g6, a11)),
(viii) NE a4 iff NE XOR2(b5, AND2(g5, a11)),
(ix) NE a3 iff NE XOR2(b4, AND2(g4, a11)),
(x) NE a2 iff NE XOR2(b3, AND2(g3, a11)),
(xi) NE a1 iff NE XOR2(b2, AND2(g2, a11)),
(xii) NE a0 iff NE XOR2(b1, AND2(g1, a11)), and
(xiii) NE p iff NE XOR2(b0, AND2(g0, a11)).

(2) Let g0, g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12, g13, g14, g15, g16,
a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, b0, b1, b2,
b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15, p be sets such that NE
g0 and NE g16 and NE b0 iff NE XOR2(p, AND2(g0, a15)) and NE b1 iff
NE XOR2(a0, AND2(g1, a15)) and NE b2 iff NE XOR2(a1, AND2(g2, a15))
and NE b3 iff NE XOR2(a2, AND2(g3, a15)) and NE b4 iff NE
XOR2(a3, AND2(g4, a15)) and NE b5 iff NE XOR2(a4, AND2(g5, a15))
and NE b6 iff NE XOR2(a5, AND2(g6, a15)) and NE b7 iff NE
XOR2(a6, AND2(g7, a15)) and NE b8 iff NE XOR2(a7, AND2(g8, a15))
and NE b9 iff NE XOR2(a8, AND2(g9, a15)) and NE b10 iff NE
XOR2(a9, AND2(g10, a15)) and NE b11 iff NE XOR2(a10, AND2(g11, a15))
and NE b12 iff NE XOR2(a11, AND2(g12, a15)) and NE b13 iff NE
XOR2(a12, AND2(g13, a15)) and NE b14 iff NE XOR2(a13, AND2(g14, a15))
and NE b15 iff NE XOR2(a14, AND2(g15, a15)). Then

(i) NE a15 iff NE AND2(g16, a15),
(ii) NE a14 iff NE XOR2(b15, AND2(g15, a15)),
(iii) NE a13 iff NE XOR2(b14, AND2(g14, a15)),
(iv) NE a12 iff NE XOR2(b13, AND2(g13, a15)),
(v) NE a11 iff NE XOR2(b12, AND2(g12, a15)),
(vi) NE a10 iff NE XOR2(b11, AND2(g11, a15)),
(vii) NE a9 iff NE XOR2(b10, AND2(g10, a15)),
(viii) NE a8 iff NE XOR2(b9, AND2(g9, a15)),
(ix) NE a7 iff NE XOR2(b8, AND2(g8, a15)),
(x) NE a6 iff NE XOR2(b7, AND2(g7, a15)),
(xi) NE a5 iff NE XOR2(b6, AND2(g6, a15)),
(xii) NE a4 iff NE XOR2(b5, AND2(g5, a15)),

correctness of a cyclic redundancy check . . . 131

(xiii) NE a3 iff NE XOR2(b4, AND2(g4, a15)),
(xiv) NE a2 iff NE XOR2(b3, AND2(g3, a15)),
(xv) NE a1 iff NE XOR2(b2, AND2(g2, a15)),
(xvi) NE a0 iff NE XOR2(b1, AND2(g1, a15)), and
(xvii) NE p iff NE XOR2(b0, AND2(g0, a15)).

2. Correctness of CRC Circuits with Generator Polynomial of
Degree 12 and 16

Next we state two propositions:

(3) Let g0, g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12, a0, a1, a2, a3, a4,
a5, a6, a7, a8, a9, a10, a11, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, z,
p be sets such that NE g0 and NE g12 and not NE z and NE b0 iff NE
XOR2(p, a11) and NE b1 iff NE XOR2(a0, AND2(g1, b0)) and NE b2 iff
NE XOR2(a1, AND2(g2, b0)) and NE b3 iff NE XOR2(a2, AND2(g3, b0))
and NE b4 iff NE XOR2(a3, AND2(g4, b0)) and NE b5 iff NE
XOR2(a4, AND2(g5, b0)) and NE b6 iff NE XOR2(a5, AND2(g6, b0))
and NE b7 iff NE XOR2(a6, AND2(g7, b0)) and NE b8 iff NE
XOR2(a7, AND2(g8, b0)) and NE b9 iff NE XOR2(a8, AND2(g9, b0))
and NE b10 iff NE XOR2(a9, AND2(g10, b0)) and NE b11 iff NE
XOR2(a10, AND2(g11, b0)). Then

(i) NE b11 iff NE XOR2(XOR2(a10, AND2(g11, a11)), XOR2(z, AND2(g11, p))),
(ii) NE b10 iff NE XOR2(XOR2(a9, AND2(g10, a11)), XOR2(z, AND2(g10, p))),
(iii) NE b9 iff NE XOR2(XOR2(a8, AND2(g9, a11)), XOR2(z, AND2(g9, p))),
(iv) NE b8 iff NE XOR2(XOR2(a7, AND2(g8, a11)), XOR2(z, AND2(g8, p))),
(v) NE b7 iff NE XOR2(XOR2(a6, AND2(g7, a11)), XOR2(z, AND2(g7, p))),
(vi) NE b6 iff NE XOR2(XOR2(a5, AND2(g6, a11)), XOR2(z, AND2(g6, p))),
(vii) NE b5 iff NE XOR2(XOR2(a4, AND2(g5, a11)), XOR2(z, AND2(g5, p))),
(viii) NE b4 iff NE XOR2(XOR2(a3, AND2(g4, a11)), XOR2(z, AND2(g4, p))),
(ix) NE b3 iff NE XOR2(XOR2(a2, AND2(g3, a11)), XOR2(z, AND2(g3, p))),
(x) NE b2 iff NE XOR2(XOR2(a1, AND2(g2, a11)), XOR2(z, AND2(g2, p))),
(xi) NE b1 iff NE XOR2(XOR2(a0, AND2(g1, a11)), XOR2(z, AND2(g1, p))),

and
(xii) NE b0 iff NE XOR2(XOR2(z, AND2(g0, a11)), XOR2(z, AND2(g0, p))).
(4) Let g0, g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12, g13, g14, g15,

g16, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15,
b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15, z, p be
sets such that NE g0 and NE g16 and not NE z and NE b0 iff NE
XOR2(p, a15) and NE b1 iff NE XOR2(a0, AND2(g1, b0)) and NE b2 iff
NE XOR2(a1, AND2(g2, b0)) and NE b3 iff NE XOR2(a2, AND2(g3, b0))

132 yuguang yang et al.

and NE b4 iff NE XOR2(a3, AND2(g4, b0)) and NE b5 iff NE
XOR2(a4, AND2(g5, b0)) and NE b6 iff NE XOR2(a5, AND2(g6, b0))
and NE b7 iff NE XOR2(a6, AND2(g7, b0)) and NE b8 iff NE
XOR2(a7, AND2(g8, b0)) and NE b9 iff NE XOR2(a8, AND2(g9, b0))
and NE b10 iff NE XOR2(a9, AND2(g10, b0)) and NE b11 iff NE
XOR2(a10, AND2(g11, b0)) and NE b12 iff NE XOR2(a11, AND2(g12, b0))
and NE b13 iff NE XOR2(a12, AND2(g13, b0)) and NE b14 iff NE
XOR2(a13, AND2(g14, b0)) and NE b15 iff NE XOR2(a14, AND2(g15, b0)).
Then

(i) NE b15 iff NE XOR2(XOR2(a14, AND2(g15, a15)), XOR2(z, AND2(g15, p))),
(ii) NE b14 iff NE XOR2(XOR2(a13, AND2(g14, a15)), XOR2(z, AND2(g14, p))),
(iii) NE b13 iff NE XOR2(XOR2(a12, AND2(g13, a15)), XOR2(z, AND2(g13, p))),
(iv) NE b12 iff NE XOR2(XOR2(a11, AND2(g12, a15)), XOR2(z, AND2(g12, p))),
(v) NE b11 iff NE XOR2(XOR2(a10, AND2(g11, a15)), XOR2(z, AND2(g11, p))),
(vi) NE b10 iff NE XOR2(XOR2(a9, AND2(g10, a15)), XOR2(z, AND2(g10, p))),
(vii) NE b9 iff NE XOR2(XOR2(a8, AND2(g9, a15)), XOR2(z, AND2(g9, p))),
(viii) NE b8 iff NE XOR2(XOR2(a7, AND2(g8, a15)), XOR2(z, AND2(g8, p))),
(ix) NE b7 iff NE XOR2(XOR2(a6, AND2(g7, a15)), XOR2(z, AND2(g7, p))),
(x) NE b6 iff NE XOR2(XOR2(a5, AND2(g6, a15)), XOR2(z, AND2(g6, p))),
(xi) NE b5 iff NE XOR2(XOR2(a4, AND2(g5, a15)), XOR2(z, AND2(g5, p))),
(xii) NE b4 iff NE XOR2(XOR2(a3, AND2(g4, a15)), XOR2(z, AND2(g4, p))),
(xiii) NE b3 iff NE XOR2(XOR2(a2, AND2(g3, a15)), XOR2(z, AND2(g3, p))),
(xiv) NE b2 iff NE XOR2(XOR2(a1, AND2(g2, a15)), XOR2(z, AND2(g2, p))),
(xv) NE b1 iff NE XOR2(XOR2(a0, AND2(g1, a15)), XOR2(z, AND2(g1, p))),

and
(xvi) NE b0 iff NE XOR2(XOR2(z, AND2(g0, a15)), XOR2(z, AND2(g0, p))).

References

[1] Yatsuka Nakamura. Logic gates and logical equivalence of adders. Formalized Mathematics,
8(1):35–45, 1999.

Received April 16, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Defining by Structural Induction in the
Positive Propositional Language

Andrzej Trybulec
University of Białystok

Summary. The main goal of the paper consists in proving schemes for
defining by structural induction in the language defined by Adam Grabowski
[13]. The article consists of four parts. Besides the preliminaries where we prove
some simple facts still missing in the library, they are:

- “About the language” in which the consequences of the fact that the algebra
of formulae is free are formulated,

- “Defining by structural induction” in which two schemes are proved,

- “The tree of the subformulae” in which a scheme proved in the previous
section is used to define the tree of subformulae; also some simple facts about
the tree are proved.

MML Identifier: HILBERT2.

The terminology and notation used in this paper are introduced in the following
papers: [16], [19], [1], [14], [20], [10], [12], [18], [8], [15], [9], [11], [3], [17], [2], [4],
[5], [6], [7], and [13].

1. Preliminaries

In this paper X, x denote sets.
We now state four propositions:

(1) Let Z be a set and M be a many sorted set indexed by Z. Suppose that
for every set x such that x ∈ Z holds M(x) is a many sorted set indexed
by x. Let f be a function. If f = Union M, then dom f =

⋃
Z.

(2) For all sets x, y and for all finite sequences f , g such that 〈x〉af = 〈y〉ag

holds f = g.

133
c© 1999 University of Białystok

ISSN 1426–2630

134 andrzej trybulec

(3) If 〈x〉 is a finite sequence of elements of X, then x ∈ X.

(4) Let given X and f be a finite sequence of elements of X. Suppose f 6= ε.

Then there exists a finite sequence g of elements of X and there exists an
element d of X such that f = g a 〈d〉.

We adopt the following rules: m, n are natural numbers, p, q, r, s are elements
of HP-WFF, and T1, T2 are trees.

Next we state the proposition

(5) 〈x〉 ∈
︷ ︸︸ ︷
T1, T2 iff x = 0 or x = 1.

Let us mention that ε is tree yielding.
The scheme InTreeInd deals with a tree A and and states that:

For every element f of A holds P[f]
provided the following conditions are satisfied:
• P[εN], and
• For every element f of A such that P[f] and for every n such that

f a 〈n〉 ∈ A holds P[f a 〈n〉].
In the sequel D is a non empty set and T1, T2 are decorated trees.
Next we state three propositions:

(6) For every set x and for all T1, T2 holds (x-tree(T1, T2))(ε) = x.

(7) (x-tree(T1, T2))(〈0〉) = T1(ε) and (x-tree(T1, T2))(〈1〉) = T2(ε).
(8) (x-tree(T1, T2))¹〈0〉 = T1 and (x-tree(T1, T2))¹〈1〉 = T2.

Let us consider x and let p be a decorated tree yielding non empty finite
sequence. Observe that x-tree(p) is non root.

Let us consider x and let T1 be a decorated tree. Observe that x-tree(T1) is
non root. Let T2 be a decorated tree. Observe that x-tree(T1, T2) is non root.

2. About the Language

Let us consider n. The functor prop n yielding an element of HP-WFF is
defined as follows:

(Def. 1) prop n = 〈3 + n〉.
Let D be a set. Let us observe that D has VERUM if and only if:

(Def. 2) VERUM ∈ D.

Let us observe that D has propositional variables if and only if:

(Def. 3) For every n holds prop n ∈ D.

Let D be a subset of HP-WFF. Let us observe that D has implication if and
only if:

(Def. 4) For all p, q such that p ∈ D and q ∈ D holds p⇒ q ∈ D.

Let us observe that D has conjunction if and only if:

defining by structural induction in the . . . 135

(Def. 5) For all p, q such that p ∈ D and q ∈ D holds p ∧ q ∈ D.

In the sequel t denotes a finite sequence.
Let us consider p. We say that p is conjunctive if and only if:

(Def. 6) There exist r, s such that p = r ∧ s.

We say that p is conditional if and only if:

(Def. 7) There exist r, s such that p = r ⇒ s.

We say that p is simple if and only if:

(Def. 8) There exists n such that p = prop n.

The scheme HP Ind concerns and states that:
For every r holds P[r]

provided the following requirements are met:
• P[VERUM],
• For every n holds P[prop n], and
• For all r, s such that P[r] and P[s] holds P[r ∧ s] and P[r ⇒ s].

Next we state a number of propositions:

(9) p is conjunctive, or conditional, or simple or p = VERUM .

(10) len p ­ 1.

(11) If p(1) = 1, then p is conditional.

(12) If p(1) = 2, then p is conjunctive.

(13) If p(1) = 3 + n, then p is simple.

(14) If p(1) = 0, then p = VERUM .

(15) len p < len(p ∧ q) and len q < len(p ∧ q).
(16) len p < len(p⇒ q) and len q < len(p⇒ q).
(17) If p = q a t, then p = q.

(18) If p a q = r a s, then p = r and q = s.

(19) If p ∧ q = r ∧ s, then p = r and s = q.

(20) If p⇒ q = r ⇒ s, then p = r and s = q.

(21) If prop n = prop m, then n = m.

(22) p ∧ q 6= r ⇒ s.

(23) p ∧ q 6= VERUM .

(24) p ∧ q 6= prop n.

(25) p⇒ q 6= VERUM .

(26) p⇒ q 6= prop n.

(27) p ∧ q 6= p and p ∧ q 6= q.

(28) p⇒ q 6= p and p⇒ q 6= q.

(29) VERUM 6= prop n.

136 andrzej trybulec

3. Defining by Structural Induction

Now we present two schemes. The scheme HP MSSExL deals with a set A,

a unary functor F yielding a set, and a 5-ary predicate Q, and states that:
There exists a many sorted set M indexed by HP-WFF such that
(i) M(VERUM) = A,

(ii) for every n holds M(prop n) = F(n), and
(iii) for all p, q and for all sets a, b, c, d such that a = M(p) and
b = M(q) and c = M(p∧q) and d = M(p⇒ q) holds P[p, q, a, b, c]
and Q[p, q, a, b, d]

provided the following conditions are met:
• For all p, q and for all sets a, b there exists a set c such that
P[p, q, a, b, c],

• For all p, q and for all sets a, b there exists a set d such that
Q[p, q, a, b, d],

• For all p, q and for all sets a, b, c, d such that P[p, q, a, b, c] and
P[p, q, a, b, d] holds c = d, and

• For all p, q and for all sets a, b, c, d such that Q[p, q, a, b, c] and
Q[p, q, a, b, d] holds c = d.

The scheme HP MSSLambda deals with a set A, a unary functor F yielding
a set, and two binary functors G and H yielding sets, and states that:

There exists a many sorted set M indexed by HP-WFF such that
(i) M(VERUM) = A,

(ii) for every n holds M(prop n) = F(n), and
(iii) for all p, q and for all sets x, y such that x = M(p) and
y = M(q) holds M(p ∧ q) = G(x, y) and M(p⇒ q) = H(x, y)

for all values of the parameters.

4. The Tree of the Subformulae

The many sorted set HP-Subformulae indexed by HP-WFF is defined by the
conditions (Def. 9).

(Def. 9)(i) (HP-Subformulae)(VERUM) = the root tree of VERUM,
(ii) for every n holds (HP-Subformulae)(prop n) = the root tree of prop n,

and
(iii) for all p, q there exist trees p′, q′ decorated with elements of HP-WFF

such that p′ = (HP-Subformulae)(p) and q′ = (HP-Subformulae)(q) and
(HP-Subformulae)(p ∧ q) = p ∧ q-tree(p′, q′) and (HP-Subformulae)(p ⇒
q) = (p⇒ q)-tree(p′, q′).

defining by structural induction in the . . . 137

Let us consider p. The functor Subformulae p yielding a tree decorated with
elements of HP-WFF is defined by:

(Def. 10) Subformulae p = (HP-Subformulae)(p).
The following propositions are true:

(30) Subformulae VERUM = the root tree of VERUM.

(31) Subformulae prop n = the root tree of prop n.

(32) Subformulae(p ∧ q) = p ∧ q-tree(Subformulae p, Subformulae q).
(33) Subformulae(p⇒ q) = (p⇒ q)-tree(Subformulae p, Subformulae q).
(34) (Subformulae p)(ε) = p.

(35) For every element f of dom Subformulae p holds Subformulae p¹f =
Subformulae(Subformulae p)(f).

(36) If p ∈ Leaves(Subformulae q), then p = VERUM or p is simple.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421–427, 1990.
[3] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547–

552, 1991.
[4] Grzegorz Bancerek. König’s lemma. Formalized Mathematics, 2(3):397–402, 1991.
[5] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Formalized

Mathematics, 3(2):195–204, 1992.
[6] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77–82,

1993.
[7] Grzegorz Bancerek. Subtrees. Formalized Mathematics, 5(2):185–190, 1996.
[8] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[9] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676,

1990.
[10] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[11] Czesław Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[12] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[13] Adam Grabowski. Hilbert positive propositional calculus. Formalized Mathematics,

8(1):69–72, 1999.
[14] Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
[15] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics,

1(3):495–500, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[17] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[19] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received April 23, 1999

138 andrzej trybulec

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Some Properties of Cells on Go-Board

Czesław Byliński
University of Białystok

MML Identifier: GOBRD13.

The terminology and notation used in this paper have been introduced in the
following articles: [23], [9], [13], [3], [20], [22], [25], [26], [7], [8], [2], [1], [5], [6],
[24], [10], [19], [4], [15], [14], [21], [11], [12], [16], [17], and [18].

We use the following convention: i, i1, i2, j, j1, j2, k, n are natural numbers,
D is a non empty set, and f is a finite sequence of elements of D.

Let E be a non empty set, let S be a non empty set of finite sequences of
the carrier of E2

T, let F be a function from E into S, and let e be an element of
E. Then F (e) is a finite sequence of elements of E2

T.
Let F be a function. The functor Values F yielding a set is defined by:

(Def. 1) Values F = Union(rngκ F (κ)).
We now state three propositions:

(1) Let M be a finite sequence of elements of D∗. If i ∈ dom M, then M(i)
is a finite sequence of elements of D.

(2) For every finite sequence M of elements of D∗ holds dom(rngκ M(κ)) =
dom M.

(3) For every finite sequence M of elements of D∗ holds Values M =⋃{rng f ; f ranges over elements of D∗: f ∈ rng M}.
Let D be a non empty set and let M be a finite sequence of elements of D∗.

Note that Values M is finite.
The following propositions are true:

(4) For every matrix M over D such that i ∈ dom M and M(i) = f holds
len f = width M.

(5) For every matrix M over D such that i ∈ dom M and M(i) = f and
j ∈ dom f holds 〈〈i, j〉〉 ∈ the indices of M .

(6) For every matrix M over D such that 〈〈i, j〉〉 ∈ the indices of M and
M(i) = f holds len f = width M and j ∈ dom f.

139
c© 1999 University of Białystok

ISSN 1426–2630

140 czesław byliński

(7) For every matrix M over D holds Values M = {Mi,j : 〈〈i, j〉〉 ∈ the indices
of M}.

(8) For every non empty set D and for every matrix M over D holds
card Values M ¬ len M · width M.

In the sequel f , f1, f2 are finite sequences of elements of E2
T and G is a

Go-board.
Next we state a number of propositions:

(9) If f is a sequence which elements belong to G, then rng f ⊆ Values G.

(10) For all Go-boards G1, G2 such that Values G1 ⊆ Values G2 and 〈〈i1, j1〉〉 ∈
the indices of G1 and 1 ¬ j2 and j2 ¬ width G2 and (G1)i1,j1 = (G2)1,j2

holds i1 = 1.

(11) For all Go-boards G1, G2 such that Values G1 ⊆ Values G2 and 〈〈i1,
j1〉〉 ∈ the indices of G1 and 1 ¬ j2 and j2 ¬ width G2 and (G1)i1,j1 =
(G2)len G2,j2 holds i1 = len G1.

(12) For all Go-boards G1, G2 such that Values G1 ⊆ Values G2 and 〈〈i1,
j1〉〉 ∈ the indices of G1 and 1 ¬ i2 and i2 ¬ len G2 and (G1)i1,j1 = (G2)i2,1

holds j1 = 1.

(13) For all Go-boards G1, G2 such that Values G1 ⊆ Values G2 and 〈〈i1, j1〉〉 ∈
the indices of G1 and 1 ¬ i2 and i2 ¬ len G2 and (G1)i1,j1 = (G2)i2,width G2

holds j1 = width G1.

(14) Let G1, G2 be Go-boards. Suppose Values G1 ⊆ Values G2 and 1 ¬ i1
and i1 < len G1 and 1 ¬ j1 and j1 ¬ width G1 and 1 ¬ i2 and i2 <

len G2 and 1 ¬ j2 and j2 ¬ width G2 and (G1)i1,j1 = (G2)i2,j2 . Then
((G2)i2+1,j2)1 ¬ ((G1)i1+1,j1)1.

(15) Let G1, G2 be Go-boards. Suppose Values G1 ⊆ Values G2 and 1 < i1
and i1 ¬ len G1 and 1 ¬ j1 and j1 ¬ width G1 and 1 < i2 and i2 ¬
len G2 and 1 ¬ j2 and j2 ¬ width G2 and (G1)i1,j1 = (G2)i2,j2 . Then
((G1)i1−′1,j1)1 ¬ ((G2)i2−′1,j2)1.

(16) Let G1, G2 be Go-boards. Suppose Values G1 ⊆ Values G2 and 1 ¬ i1
and i1 ¬ len G1 and 1 ¬ j1 and j1 < width G1 and 1 ¬ i2 and i2 ¬
len G2 and 1 ¬ j2 and j2 < width G2 and (G1)i1,j1 = (G2)i2,j2 . Then
((G2)i2,j2+1)2 ¬ ((G1)i1,j1+1)2.

(17) Let G1, G2 be Go-boards. Suppose Values G1 ⊆ Values G2 and 1 ¬ i1
and i1 ¬ len G1 and 1 < j1 and j1 ¬ width G1 and 1 ¬ i2 and i2 ¬
len G2 and 1 < j2 and j2 ¬ width G2 and (G1)i1,j1 = (G2)i2,j2 . Then
((G1)i1,j1−′1)2 ¬ ((G2)i2,j2−′1)2.

(18) Let G1, G2 be Go-boards. Suppose Values G1 ⊆ Values G2 and 〈〈i1, j1〉〉 ∈
the indices of G1 and 〈〈i2, j2〉〉 ∈ the indices of G2 and (G1)i1,j1 = (G2)i2,j2 .

Then cell(G2, i2, j2) ⊆ cell(G1, i1, j1).
(19) Let G1, G2 be Go-boards. Suppose Values G1 ⊆ Values G2 and 〈〈i1, j1〉〉 ∈

some properties of cells on go-board 141

the indices of G1 and 〈〈i2, j2〉〉 ∈ the indices of G2 and (G1)i1,j1 = (G2)i2,j2 .

Then cell(G2, i2 −′ 1, j2) ⊆ cell(G1, i1 −′ 1, j1).
(20) Let G1, G2 be Go-boards. Suppose Values G1 ⊆ Values G2 and 〈〈i1, j1〉〉 ∈

the indices of G1 and 〈〈i2, j2〉〉 ∈ the indices of G2 and (G1)i1,j1 = (G2)i2,j2 .

Then cell(G2, i2, j2 −′ 1) ⊆ cell(G1, i1, j1 −′ 1).
(21) Let f be a standard special circular sequence. Suppose f is a sequence

which elements belong to G. Then Values the Go-board of f ⊆ Values G.

Let us consider f , G, k. Let us assume that 1 ¬ k and k + 1 ¬ len f and f

is a sequence which elements belong to G. The functor right cell(f, k, G) yields
a subset of E2

T and is defined by the condition (Def. 2).

(Def. 2) Let i1, j1, i2, j2 be natural numbers. Suppose 〈〈i1, j1〉〉 ∈ the indices of G

and 〈〈i2, j2〉〉 ∈ the indices of G and πkf = Gi1,j1 and πk+1f = Gi2,j2 . Then
(i) i1 = i2 and j1 + 1 = j2 and right cell(f, k,G) = cell(G, i1, j1), or
(ii) i1 + 1 = i2 and j1 = j2 and right cell(f, k,G) = cell(G, i1, j1 −′ 1), or
(iii) i1 = i2 + 1 and j1 = j2 and right cell(f, k,G) = cell(G, i2, j2), or
(iv) i1 = i2 and j1 = j2 + 1 and right cell(f, k,G) = cell(G, i1 −′ 1, j2).

The functor left cell(f, k,G) yields a subset of E2
T and is defined by the condition

(Def. 3).

(Def. 3) Let i1, j1, i2, j2 be natural numbers. Suppose 〈〈i1, j1〉〉 ∈ the indices of G

and 〈〈i2, j2〉〉 ∈ the indices of G and πkf = Gi1,j1 and πk+1f = Gi2,j2 . Then
(i) i1 = i2 and j1 + 1 = j2 and left cell(f, k,G) = cell(G, i1 −′ 1, j1), or
(ii) i1 + 1 = i2 and j1 = j2 and left cell(f, k,G) = cell(G, i1, j1), or
(iii) i1 = i2 + 1 and j1 = j2 and left cell(f, k,G) = cell(G, i2, j2 −′ 1), or
(iv) i1 = i2 and j1 = j2 + 1 and left cell(f, k,G) = cell(G, i1, j2).

We now state a number of propositions:

(22) Suppose that
1 ¬ k and k + 1 ¬ len f and f is a sequence which elements belong to
G and 〈〈i, j〉〉 ∈ the indices of G and 〈〈i, j + 1〉〉 ∈ the indices of G and
πkf = Gi,j and πk+1f = Gi,j+1. Then left cell(f, k, G) = cell(G, i−′ 1, j).

(23) Suppose that
1 ¬ k and k + 1 ¬ len f and f is a sequence which elements belong to
G and 〈〈i, j〉〉 ∈ the indices of G and 〈〈i, j + 1〉〉 ∈ the indices of G and
πkf = Gi,j and πk+1f = Gi,j+1. Then right cell(f, k, G) = cell(G, i, j).

(24) Suppose that
1 ¬ k and k + 1 ¬ len f and f is a sequence which elements belong to
G and 〈〈i, j〉〉 ∈ the indices of G and 〈〈i + 1, j〉〉 ∈ the indices of G and
πkf = Gi,j and πk+1f = Gi+1,j . Then left cell(f, k, G) = cell(G, i, j).

(25) Suppose that
1 ¬ k and k+1 ¬ len f and f is a sequence which elements belong to G and
〈〈i, j〉〉 ∈ the indices of G and 〈〈i + 1, j〉〉 ∈ the indices of G and πkf = Gi,j

142 czesław byliński

and πk+1f = Gi+1,j . Then right cell(f, k, G) = cell(G, i, j −′ 1).

(26) Suppose that
1 ¬ k and k + 1 ¬ len f and f is a sequence which elements belong to
G and 〈〈i, j〉〉 ∈ the indices of G and 〈〈i + 1, j〉〉 ∈ the indices of G and
πkf = Gi+1,j and πk+1f = Gi,j . Then left cell(f, k, G) = cell(G, i, j −′ 1).

(27) Suppose that
1 ¬ k and k + 1 ¬ len f and f is a sequence which elements belong to
G and 〈〈i, j〉〉 ∈ the indices of G and 〈〈i + 1, j〉〉 ∈ the indices of G and
πkf = Gi+1,j and πk+1f = Gi,j . Then right cell(f, k,G) = cell(G, i, j).

(28) Suppose that
1 ¬ k and k + 1 ¬ len f and f is a sequence which elements belong to
G and 〈〈i, j + 1〉〉 ∈ the indices of G and 〈〈i, j〉〉 ∈ the indices of G and
πkf = Gi,j+1 and πk+1f = Gi,j . Then left cell(f, k, G) = cell(G, i, j).

(29) Suppose that
1 ¬ k and k+1 ¬ len f and f is a sequence which elements belong to G and
〈〈i, j +1〉〉 ∈ the indices of G and 〈〈i, j〉〉 ∈ the indices of G and πkf = Gi,j+1

and πk+1f = Gi,j . Then right cell(f, k, G) = cell(G, i−′ 1, j).

(30) If 1 ¬ k and k + 1 ¬ len f and f is a sequence which elements belong to
G, then left cell(f, k,G) ∩ right cell(f, k,G) = L(f, k).

(31) If 1 ¬ k and k + 1 ¬ len f and f is a sequence which elements belong to
G, then right cell(f, k, G) is closed.

(32) Suppose 1 ¬ k and k + 1 ¬ len f and f is a sequence which elements
belong to G and k + 1 ¬ n. Then left cell(f, k, G) = left cell(f¹n, k,G)
and right cell(f, k, G) = right cell(f¹n, k, G).

(33) Suppose 1 ¬ k and k + 1 ¬ len(fºn) and n ¬ len f and f is a sequence
which elements belong to G. Then left cell(f, k+n,G) = left cell(fºn, k, G)
and right cell(f, k + n,G) = right cell(fºn, k, G).

(34) Let G be a Go-board and f be a standard special circular sequence.
Suppose 1 ¬ n and n + 1 ¬ len f and f is a sequence which elements
belong to G. Then left cell(f, n, G) ⊆ leftcell(f, n) and right cell(f, n, G) ⊆
rightcell(f, n).

Let us consider f , G, k. Let us assume that 1 ¬ k and k + 1 ¬ len f and f

is a sequence which elements belong to G. The functor front right cell(f, k,G)
yielding a subset of E2

T is defined by the condition (Def. 4).

(Def. 4) Let i1, j1, i2, j2 be natural numbers. Suppose 〈〈i1, j1〉〉 ∈ the indices of G

and 〈〈i2, j2〉〉 ∈ the indices of G and πkf = Gi1,j1 and πk+1f = Gi2,j2 . Then
(i) i1 = i2 and j1 + 1 = j2 and front right cell(f, k, G) = cell(G, i2, j2), or
(ii) i1 +1 = i2 and j1 = j2 and front right cell(f, k, G) = cell(G, i2, j2−′ 1),

or

some properties of cells on go-board 143

(iii) i1 = i2 +1 and j1 = j2 and front right cell(f, k, G) = cell(G, i2−′ 1, j2),
or

(iv) i1 = i2 and j1 = j2+1 and front right cell(f, k, G) = cell(G, i2−′1, j2−′
1).

The functor front left cell(f, k, G) yields a subset of E2
T and is defined by the

condition (Def. 5).

(Def. 5) Let i1, j1, i2, j2 be natural numbers. Suppose 〈〈i1, j1〉〉 ∈ the indices of G

and 〈〈i2, j2〉〉 ∈ the indices of G and πkf = Gi1,j1 and πk+1f = Gi2,j2 . Then
(i) i1 = i2 and j1 + 1 = j2 and front left cell(f, k, G) = cell(G, i2 −′ 1, j2),

or
(ii) i1 + 1 = i2 and j1 = j2 and front left cell(f, k,G) = cell(G, i2, j2), or
(iii) i1 = i2+1 and j1 = j2 and front left cell(f, k,G) = cell(G, i2−′1, j2−′1),

or
(iv) i1 = i2 and j1 = j2 + 1 and front left cell(f, k,G) = cell(G, i2, j2 −′ 1).

Next we state several propositions:

(35) Suppose that
1 ¬ k and k+1 ¬ len f and f is a sequence which elements belong to G and
〈〈i, j〉〉 ∈ the indices of G and 〈〈i, j + 1〉〉 ∈ the indices of G and πkf = Gi,j

and πk+1f = Gi,j+1. Then front left cell(f, k, G) = cell(G, i−′ 1, j + 1).
(36) Suppose that

1 ¬ k and k+1 ¬ len f and f is a sequence which elements belong to G and
〈〈i, j〉〉 ∈ the indices of G and 〈〈i, j + 1〉〉 ∈ the indices of G and πkf = Gi,j

and πk+1f = Gi,j+1. Then front right cell(f, k, G) = cell(G, i, j + 1).
(37) Suppose that

1 ¬ k and k+1 ¬ len f and f is a sequence which elements belong to G and
〈〈i, j〉〉 ∈ the indices of G and 〈〈i + 1, j〉〉 ∈ the indices of G and πkf = Gi,j

and πk+1f = Gi+1,j . Then front left cell(f, k, G) = cell(G, i + 1, j).
(38) Suppose that

1 ¬ k and k+1 ¬ len f and f is a sequence which elements belong to G and
〈〈i, j〉〉 ∈ the indices of G and 〈〈i + 1, j〉〉 ∈ the indices of G and πkf = Gi,j

and πk+1f = Gi+1,j . Then front right cell(f, k, G) = cell(G, i + 1, j −′ 1).
(39) Suppose that

1 ¬ k and k+1 ¬ len f and f is a sequence which elements belong to G and
〈〈i, j〉〉 ∈ the indices of G and 〈〈i+1, j〉〉 ∈ the indices of G and πkf = Gi+1,j

and πk+1f = Gi,j . Then front left cell(f, k, G) = cell(G, i−′ 1, j −′ 1).
(40) Suppose that

1 ¬ k and k+1 ¬ len f and f is a sequence which elements belong to G and
〈〈i, j〉〉 ∈ the indices of G and 〈〈i+1, j〉〉 ∈ the indices of G and πkf = Gi+1,j

and πk+1f = Gi,j . Then front right cell(f, k, G) = cell(G, i−′ 1, j).
(41) Suppose that

144 czesław byliński

1 ¬ k and k+1 ¬ len f and f is a sequence which elements belong to G and
〈〈i, j +1〉〉 ∈ the indices of G and 〈〈i, j〉〉 ∈ the indices of G and πkf = Gi,j+1

and πk+1f = Gi,j . Then front left cell(f, k, G) = cell(G, i, j −′ 1).
(42) Suppose that

1 ¬ k and k+1 ¬ len f and f is a sequence which elements belong to G and
〈〈i, j +1〉〉 ∈ the indices of G and 〈〈i, j〉〉 ∈ the indices of G and πkf = Gi,j+1

and πk+1f = Gi,j . Then front right cell(f, k, G) = cell(G, i−′ 1, j −′ 1).
(43) Suppose 1 ¬ k and k + 1 ¬ len f and f is a sequence which ele-

ments belong to G and k + 1 ¬ n. Then front left cell(f, k, G) =
front left cell(f¹n, k, G) and front right cell(f, k,G) =
front right cell(f¹n, k, G).

Let us consider f , G, k. We say that f turns right k, G if and only if the
condition (Def. 6) is satisfied.

(Def. 6) Let i1, j1, i2, j2 be natural numbers. Suppose 〈〈i1, j1〉〉 ∈ the indices of G

and 〈〈i2, j2〉〉 ∈ the indices of G and πkf = Gi1,j1 and πk+1f = Gi2,j2 . Then
(i) i1 = i2 and j1 + 1 = j2 and 〈〈i2 + 1, j2〉〉 ∈ the indices of G and

πk+2f = Gi2+1,j2 , or
(ii) i1 + 1 = i2 and j1 = j2 and 〈〈i2, j2 −′ 1〉〉 ∈ the indices of G and

πk+2f = Gi2,j2−′1, or
(iii) i1 = i2 + 1 and j1 = j2 and 〈〈i2, j2 + 1〉〉 ∈ the indices of G and

πk+2f = Gi2,j2+1, or
(iv) i1 = i2 and j1 = j2 + 1 and 〈〈i2 −′ 1, j2〉〉 ∈ the indices of G and

πk+2f = Gi2−′1,j2 .

We say that f turns left k, G if and only if the condition (Def. 7) is satisfied.

(Def. 7) Let i1, j1, i2, j2 be natural numbers. Suppose 〈〈i1, j1〉〉 ∈ the indices of G

and 〈〈i2, j2〉〉 ∈ the indices of G and πkf = Gi1,j1 and πk+1f = Gi2,j2 . Then
(i) i1 = i2 and j1 + 1 = j2 and 〈〈i2 −′ 1, j2〉〉 ∈ the indices of G and

πk+2f = Gi2−′1,j2 , or
(ii) i1 + 1 = i2 and j1 = j2 and 〈〈i2, j2 + 1〉〉 ∈ the indices of G and

πk+2f = Gi2,j2+1, or
(iii) i1 = i2 + 1 and j1 = j2 and 〈〈i2, j2 −′ 1〉〉 ∈ the indices of G and

πk+2f = Gi2,j2−′1, or
(iv) i1 = i2 and j1 = j2 + 1 and 〈〈i2 + 1, j2〉〉 ∈ the indices of G and

πk+2f = Gi2+1,j2 .

We say that f goes straight k, G if and only if the condition (Def. 8) is satisfied.

(Def. 8) Let i1, j1, i2, j2 be natural numbers. Suppose 〈〈i1, j1〉〉 ∈ the indices of G

and 〈〈i2, j2〉〉 ∈ the indices of G and πkf = Gi1,j1 and πk+1f = Gi2,j2 . Then
(i) i1 = i2 and j1 + 1 = j2 and 〈〈i2, j2 + 1〉〉 ∈ the indices of G and

πk+2f = Gi2,j2+1, or
(ii) i1 + 1 = i2 and j1 = j2 and 〈〈i2 + 1, j2〉〉 ∈ the indices of G and

πk+2f = Gi2+1,j2 , or

some properties of cells on go-board 145

(iii) i1 = i2 + 1 and j1 = j2 and 〈〈i2 −′ 1, j2〉〉 ∈ the indices of G and
πk+2f = Gi2−′1,j2 , or

(iv) i1 = i2 and j1 = j2 + 1 and 〈〈i2, j2 −′ 1〉〉 ∈ the indices of G and
πk+2f = Gi2,j2−′1.

One can prove the following propositions:

(44) Suppose 1 ¬ k and k + 2 ¬ len f and f is a sequence which elements
belong to G and k + 2 ¬ n and f¹n turns right k, G. Then f turns right
k, G.

(45) Suppose 1 ¬ k and k + 2 ¬ len f and f is a sequence which elements
belong to G and k + 2 ¬ n and f¹n turns left k, G. Then f turns left k,
G.

(46) Suppose 1 ¬ k and k + 2 ¬ len f and f is a sequence which elements
belong to G and k+2 ¬ n and f¹n goes straight k, G. Then f goes straight
k, G.

(47) Suppose that
1 < k and k + 1 ¬ len f1 and k + 1 ¬ len f2 and f1 is a sequence which
elements belong to G and f2 is a sequence which elements belong to G

and f1¹k = f2¹k and f1 turns right k−′ 1, G and f2 turns right k−′ 1, G.
Then f1¹(k + 1) = f2¹(k + 1).

(48) Suppose that
1 < k and k + 1 ¬ len f1 and k + 1 ¬ len f2 and f1 is a sequence which
elements belong to G and f2 is a sequence which elements belong to G

and f1¹k = f2¹k and f1 turns left k −′ 1, G and f2 turns left k −′ 1, G.
Then f1¹(k + 1) = f2¹(k + 1).

(49) Suppose that
1 < k and k + 1 ¬ len f1 and k + 1 ¬ len f2 and f1 is a sequence which
elements belong to G and f2 is a sequence which elements belong to G

and f1¹k = f2¹k and f1 goes straight k−′ 1, G and f2 goes straight k−′ 1,

G. Then f1¹(k + 1) = f2¹(k + 1).

References

[1] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543–547, 1990.
[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[4] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547–

552, 1991.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized

Mathematics, 1(3):529–536, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.

146 czesław byliński

[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[11] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
[12] Agata Darmochwał and Yatsuka Nakamura. The topological space E2

T. Arcs, line segments
and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.

[13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[14] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics,
2(4):475–480, 1991.

[15] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathe-
matics, 3(2):275–278, 1992.

[16] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized
Mathematics, 3(1):107–115, 1992.

[17] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part II. Formalized
Mathematics, 3(1):117–121, 1992.

[18] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized
Mathematics, 5(3):323–328, 1996.

[19] Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
[20] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,

4(1):83–86, 1993.
[21] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[22] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics,

1(2):263–264, 1990.
[23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[24] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received April 23, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Propositional Calculus for Boolean Valued
Functions. Part III

Shunichi Kobayashi
Shinshu University

Nagano

Summary. In this paper, we have proved some elementary propositional
calculus formulae for Boolean valued functions.

MML Identifier: BVFUNC 7.

The articles [6], [8], [9], [2], [3], [5], [1], [7], and [4] provide the terminology and
notation for this paper.

In this paper Y is a non empty set.
Next we state a number of propositions:

(1) For all elements a, b of BVF(Y) holds (a⇒ b) ∧ (¬a⇒ b) = b.

(2) For all elements a, b of BVF(Y) holds (a⇒ b) ∧ (a⇒ ¬b) = ¬a.

(3) For all elements a, b, c of BVF(Y) holds a⇒ b ∨ c = (a⇒ b) ∨ (a⇒ c).
(4) For all elements a, b, c of BVF(Y) holds a⇒ b ∧ c = (a⇒ b) ∧ (a⇒ c).
(5) For all elements a, b, c of BVF(Y) holds a ∨ b⇒ c = (a⇒ c) ∧ (b⇒ c).
(6) For all elements a, b, c of BVF(Y) holds a ∧ b⇒ c = (a⇒ c) ∨ (b⇒ c).
(7) For all elements a, b, c of BVF(Y) holds a ∧ b⇒ c = a⇒ b⇒ c.

(8) For all elements a, b, c of BVF(Y) holds a ∧ b⇒ c = a⇒ ¬b ∨ c.

(9) For all elements a, b, c of BVF(Y) holds a⇒ b ∨ c = a ∧ ¬b⇒ c.

(10) For all elements a, b of BVF(Y) holds a ∧ (a⇒ b) = a ∧ b.

(11) For all elements a, b of BVF(Y) holds (a⇒ b) ∧ ¬b = ¬a ∧ ¬b.
(12) For all elements a, b, c of BVF(Y) holds (a ⇒ b) ∧ (b ⇒ c) = (a ⇒

b) ∧ (b⇒ c) ∧ (a⇒ c).
(13) For every element a of BVF(Y) holds true(Y)⇒ a = a.

(14) For every element a of BVF(Y) holds a⇒ false(Y) = ¬a.

147
c© 1999 University of Białystok

ISSN 1426–2630

148 shunichi kobayashi

(15) For every element a of BVF(Y) holds false(Y)⇒ a = true(Y).
(16) For every element a of BVF(Y) holds a⇒ true(Y) = true(Y).
(17) For every element a of BVF(Y) holds a⇒ ¬a = ¬a.

(18) For all elements a, b, c of BVF(Y) holds a⇒ b b c⇒ a⇒ c⇒ b.

(19) For all elements a, b, c of BVF(Y) holds a⇔ b b a⇔ c⇔ b⇔ c.

(20) For all elements a, b, c of BVF(Y) holds a⇔ b b a⇒ c⇔ b⇒ c.

(21) For all elements a, b, c of BVF(Y) holds a⇔ b b c⇒ a⇔ c⇒ b.

(22) For all elements a, b, c of BVF(Y) holds a⇔ b b a ∧ c⇔ b ∧ c.

(23) For all elements a, b, c of BVF(Y) holds a⇔ b b a ∨ c⇔ b ∨ c.

(24) For all elements a, b of BVF(Y) holds a b a⇔ b⇔ b⇔ a⇔ a.

(25) For all elements a, b of BVF(Y) holds a b a⇒ b⇔ b.

(26) For all elements a, b of BVF(Y) holds a b b⇒ a⇔ a.

(27) For all elements a, b of BVF(Y) holds a b a ∧ b⇔ b ∧ a⇔ a.

References

[1] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[4] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions.
Formalized Mathematics, 7(2):249–254, 1998.

[5] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[7] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[8] Edmund Woronowicz. Many–argument relations. Formalized Mathematics, 1(4):733–737,

1990.
[9] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received April 23, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Propositional Calculus for Boolean Valued
Functions. Part IV

Shunichi Kobayashi
Shinshu University

Nagano

Summary. In this paper, we have proved some elementary propositional
calculus formulae for Boolean valued functions.

MML Identifier: BVFUNC 8.

The notation and terminology used here are introduced in the following articles:
[6], [7], [8], [2], [3], [5], [1], and [4].

In this paper Y denotes a non empty set.
One can prove the following propositions:

(1) For all elements a, b, c, d of BVF(Y) holds a⇒ b∧c∧d = (a⇒ b)∧(a⇒
c) ∧ (a⇒ d).

(2) For all elements a, b, c, d of BVF(Y) holds a⇒ b∨c∨d = (a⇒ b)∨(a⇒
c) ∨ (a⇒ d).

(3) For all elements a, b, c, d of BVF(Y) holds a∧b∧c⇒ d = (a⇒ d)∨(b⇒
d) ∨ (c⇒ d).

(4) For all elements a, b, c, d of BVF(Y) holds a∨b∨c⇒ d = (a⇒ d)∧(b⇒
d) ∧ (c⇒ d).

(5) For all elements a, b, c of BVF(Y) holds (a⇒ b) ∧ (b⇒ c) ∧ (c⇒ a) =
(a⇒ b) ∧ (b⇒ c) ∧ (c⇒ a) ∧ (b⇒ a) ∧ (a⇒ c).

(6) For all elements a, b of BVF(Y) holds a = a ∧ b ∨ a ∧ ¬b.

(7) For all elements a, b of BVF(Y) holds a = (a ∨ b) ∧ (a ∨ ¬b).
(8) For all elements a, b, c of BVF(Y) holds a = a ∧ b ∧ c ∨ a ∧ b ∧ ¬c ∨ a ∧
¬b ∧ c ∨ a ∧ ¬b ∧ ¬c.

(9) For all elements a, b, c of BVF(Y) holds a = (a ∨ b ∨ c) ∧ (a ∨ b ∨ ¬c) ∧
(a ∨ ¬b ∨ c) ∧ (a ∨ ¬b ∨ ¬c).

149
c© 1999 University of Białystok

ISSN 1426–2630

150 shunichi kobayashi

(10) For all elements a, b of BVF(Y) holds a ∧ b = a ∧ (¬a ∨ b).
(11) For all elements a, b of BVF(Y) holds a ∨ b = a ∨ ¬a ∧ b.

(12) For all elements a, b of BVF(Y) holds a⊕ b = ¬(a⇔ b).
(13) For all elements a, b of BVF(Y) holds a⊕ b = (a ∨ b) ∧ (¬a ∨ ¬b).
(14) For every element a of BVF(Y) holds a⊕ true(Y) = ¬a.

(15) For every element a of BVF(Y) holds a⊕ false(Y) = a.

(16) For all elements a, b of BVF(Y) holds a⊕ b = ¬a⊕ ¬b.

(17) For all elements a, b of BVF(Y) holds ¬(a⊕ b) = a⊕ ¬b.

(18) For all elements a, b of BVF(Y) holds a⇔ b = (a ∨ ¬b) ∧ (¬a ∨ b).
(19) For all elements a, b of BVF(Y) holds a⇔ b = a ∧ b ∨ ¬a ∧ ¬b.
(20) For every element a of BVF(Y) holds a⇔ true(Y) = a.

(21) For every element a of BVF(Y) holds a⇔ false(Y) = ¬a.

(22) For all elements a, b of BVF(Y) holds ¬(a⇔ b) = a⇔ ¬b.
(23) For all elements a, b of BVF(Y) holds ¬a b a⇒ b⇔ ¬a.

(24) For all elements a, b of BVF(Y) holds ¬a b b⇒ a⇔ ¬b.
(25) For all elements a, b of BVF(Y) holds a b a ∨ b⇔ b ∨ a⇔ a.

(26) For every element a of BVF(Y) holds a⇒ ¬a⇔ ¬a = true(Y).
(27) For all elements a, b of BVF(Y) holds a⇒ b⇒ a⇒ a = true(Y).
(28) For all elements a, b, c, d of BVF(Y) holds (a⇒ c)∧(b⇒ d)∧(¬c∨¬d)⇒
¬a ∨ ¬b = true(Y).

(29) For all elements a, b, c of BVF(Y) holds a ⇒ b ⇒ a ⇒ b ⇒ c ⇒ a ⇒
c = true(Y).

References

[1] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[4] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions.
Formalized Mathematics, 7(2):249–254, 1998.

[5] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[6] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[7] Edmund Woronowicz. Many–argument relations. Formalized Mathematics, 1(4):733–737,

1990.
[8] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received April 23, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Basic Properties of Genetic Algorithm

Akihiko Uchibori
Yamaguchi University

Ube

Noboru Endou
Shinshu University

Nagano

Summary. We defined the set of the gene, the space treated by the genetic
algorithm and the individual of the space. Moreover, we defined some genetic
operators such as one point crossover and two points crossover, and the validity
of many characters were proven.

MML Identifier: GENEALG1.

The terminology and notation used in this paper have been introduced in the
following articles: [10], [6], [1], [4], [13], [12], [3], [8], [2], [11], [7], [9], and [5].

1. Definitions of Gene-Set, GA-Space and Individual

We follow the rules: D is a non empty set, f1, f2 are finite sequences of
elements of D, and i, n, n1, n2, n3, n4, n5, n6 are natural numbers.

We now state two propositions:

(1) If n ¬ len f1, then (f1
a f2)ºn = ((f1)ºn) a f2.

(2) (f1
a f2)¹(len f1 + i) = f1

a (f2¹i).
A Gene-Set is a non-empty non empty finite sequence.
Let S be a Gene-Set. We introduce GA− Space S as a synonym of Union S.

Let f be a non-empty non empty function. Note that Union f is non empty.
Let S be a Gene-Set. A finite sequence of elements of GA− Space S is said

to be a Individual of S if:

(Def. 1) len it = len S and for every i such that i ∈ dom it holds it(i) ∈ S(i).

151
c© 1999 University of Białystok

ISSN 1426–2630

152 akihiko uchibori and noboru endou

2. Definitions of Several Genetic Operators

Let S be a Gene-Set, let p1, p2 be finite sequences of elements of
GA− Space S, and let us consider n. The functor crossover(p1, p2, n) yields a
finite sequence of elements of GA− Space S and is defined as follows:

(Def. 2) crossover(p1, p2, n) = (p1¹n) a ((p2)ºn).

Let S be a Gene-Set, let p1, p2 be finite sequences of elements of
GA− Space S, and let us consider n1, n2. The functor crossover(p1, p2, n1, n2)
yields a finite sequence of elements of GA− Space S and is defined as follows:

(Def. 3) crossover(p1, p2, n1, n2) =
crossover(crossover(p1, p2, n1), crossover(p2, p1, n1), n2).

Let S be a Gene-Set, let p1, p2 be finite sequences of ele-
ments of GA− Space S, and let us consider n1, n2, n3. The functor
crossover(p1, p2, n1, n2, n3) yields a finite sequence of elements of GA− Space S

and is defined as follows:

(Def. 4) crossover(p1, p2, n1, n2, n3) =
crossover(crossover(p1, p2, n1, n2), crossover(p2, p1, n1, n2), n3).

Let S be a Gene-Set, let p1, p2 be finite sequences of ele-
ments of GA− Space S, and let us consider n1, n2, n3, n4. The func-
tor crossover(p1, p2, n1, n2, n3, n4) yields a finite sequence of elements of
GA− Space S and is defined as follows:

(Def. 5) crossover(p1, p2, n1, n2, n3, n4) =
crossover(crossover(p1, p2, n1, n2, n3), crossover(p2, p1, n1, n2, n3), n4).

Let S be a Gene-Set, let p1, p2 be finite sequences of elements
of GA− Space S, and let us consider n1, n2, n3, n4, n5. The functor
crossover(p1, p2, n1, n2, n3, n4, n5) yielding a finite sequence of elements of
GA− Space S is defined by:

(Def. 6) crossover(p1, p2, n1, n2, n3, n4, n5) =
crossover(crossover(p1, p2, n1, n2, n3, n4), crossover(p2, p1, n1, n2, n3, n4), n5).

Let S be a Gene-Set, let p1, p2 be finite sequences of elements of
GA− Space S, and let us consider n1, n2, n3, n4, n5, n6. The functor
crossover(p1, p2, n1, n2, n3, n4, n5, n6) yielding a finite sequence of elements of
GA− Space S is defined as follows:

(Def. 7) crossover(p1, p2, n1, n2, n3, n4, n5, n6) =
crossover(crossover(p1, p2, n1, n2, n3, n4, n5),
crossover(p2, p1, n1, n2, n3, n4, n5), n6).

basic properties of genetic algorithm 153

3. Properties of 1-point Crossover

In the sequel S denotes a Gene-Set and p1, p2 denote Individual of S.
The following proposition is true

(3) crossover(p1, p2, n) is a Individual of S.

Let S be a Gene-Set, let p1, p2 be Individual of S, and let us consider n.
Then crossover(p1, p2, n) is a Individual of S.

One can prove the following propositions:

(4) crossover(p1, p2, 0) = p2.

(5) If n ­ len p1, then crossover(p1, p2, n) = p1.

4. Properties of 2-points Crossover

We now state the proposition

(6) crossover(p1, p2, n1, n2) is a Individual of S.

Let S be a Gene-Set, let p1, p2 be Individual of S, and let us consider n1,
n2. Then crossover(p1, p2, n1, n2) is a Individual of S.

We now state several propositions:

(7) crossover(p1, p2, 0, n) = crossover(p2, p1, n).
(8) crossover(p1, p2, n, 0) = crossover(p2, p1, n).
(9) If n1 ­ len p1, then crossover(p1, p2, n1, n2) = crossover(p1, p2, n2).

(10) If n2 ­ len p1, then crossover(p1, p2, n1, n2) = crossover(p1, p2, n1).
(11) If n1 ­ len p1 and n2 ­ len p1, then crossover(p1, p2, n1, n2) = p1.

(12) crossover(p1, p2, n1, n1) = p1.

(13) crossover(p1, p2, n1, n2) = crossover(p1, p2, n2, n1).

5. Properties of 3-points Crossover

Next we state the proposition

(14) crossover(p1, p2, n1, n2, n3) is a Individual of S.

Let S be a Gene-Set, let p1, p2 be Individual of S, and let us consider n1,
n2, n3. Then crossover(p1, p2, n1, n2, n3) is a Individual of S.

We now state a number of propositions:

(15) crossover(p1, p2, 0, n2, n3) = crossover(p2, p1, n2, n3) and
crossover(p1, p2, n1, 0, n3) = crossover(p2, p1, n1, n3) and
crossover(p1, p2, n1, n2, 0) = crossover(p2, p1, n1, n2).

154 akihiko uchibori and noboru endou

(16) crossover(p1, p2, 0, 0, n3) = crossover(p1, p2, n3) and
crossover(p1, p2, n1, 0, 0) = crossover(p1, p2, n1) and
crossover(p1, p2, 0, n2, 0) = crossover(p1, p2, n2).

(17) crossover(p1, p2, 0, 0, 0) = p2.

(18) If n1 ­ len p1, then crossover(p1, p2, n1, n2, n3) = crossover(p1, p2, n2, n3).
(19) If n2 ­ len p1, then crossover(p1, p2, n1, n2, n3) = crossover(p1, p2, n1, n3).
(20) If n3 ­ len p1, then crossover(p1, p2, n1, n2, n3) = crossover(p1, p2, n1, n2).
(21) If n1 ­ len p1 and n2 ­ len p1, then crossover(p1, p2, n1, n2, n3) =

crossover(p1, p2, n3).
(22) If n1 ­ len p1 and n3 ­ len p1, then crossover(p1, p2, n1, n2, n3) =

crossover(p1, p2, n2).
(23) If n2 ­ len p1 and n3 ­ len p1, then crossover(p1, p2, n1, n2, n3) =

crossover(p1, p2, n1).
(24) If n1 ­ len p1 and n2 ­ len p1 and n3 ­ len p1, then

crossover(p1, p2, n1, n2, n3) = p1.

(25) crossover(p1, p2, n1, n2, n3) = crossover(p1, p2, n2, n1, n3) and
crossover(p1, p2, n1, n2, n3) = crossover(p1, p2, n1, n3, n2).

(26) crossover(p1, p2, n1, n2, n3) = crossover(p1, p2, n3, n1, n2).
(27) crossover(p1, p2, n1, n1, n3) = crossover(p1, p2, n3) and

crossover(p1, p2, n1, n2, n1) = crossover(p1, p2, n2) and
crossover(p1, p2, n1, n2, n2) = crossover(p1, p2, n1).

6. Properties of 4-points Crossover

Next we state the proposition

(28) crossover(p1, p2, n1, n2, n3, n4) is a Individual of S.

Let S be a Gene-Set, let p1, p2 be Individual of S, and let us consider n1,
n2, n3, n4. Then crossover(p1, p2, n1, n2, n3, n4) is a Individual of S.

The following propositions are true:

(29) crossover(p1, p2, 0, n2, n3, n4) = crossover(p2, p1, n2, n3, n4) and
crossover(p1, p2, n1, 0, n3, n4) = crossover(p2, p1, n1, n3, n4) and
crossover(p1, p2, n1, n2, 0, n4) = crossover(p2, p1, n1, n2, n4) and
crossover(p1, p2, n1, n2, n3, 0) = crossover(p2, p1, n1, n2, n3).

(30) crossover(p1, p2, 0, 0, n3, n4) = crossover(p1, p2, n3, n4) and
crossover(p1, p2, 0, n2, 0, n4) = crossover(p1, p2, n2, n4) and
crossover(p1, p2, 0, n2, n3, 0) = crossover(p1, p2, n2, n3) and
crossover(p1, p2, n1, 0, n3, 0) = crossover(p1, p2, n1, n3) and
crossover(p1, p2, n1, 0, 0, n4) = crossover(p1, p2, n1, n4) and

basic properties of genetic algorithm 155

crossover(p1, p2, n1, n2, 0, 0) = crossover(p1, p2, n1, n2).
(31) crossover(p1, p2, n1, 0, 0, 0) = crossover(p2, p1, n1) and

crossover(p1, p2, 0, n2, 0, 0) = crossover(p2, p1, n2) and
crossover(p1, p2, 0, 0, n3, 0) = crossover(p2, p1, n3) and
crossover(p1, p2, 0, 0, 0, n4) = crossover(p2, p1, n4).

(32) crossover(p1, p2, 0, 0, 0, 0) = p1.

(33)(i) If n1 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4) =
crossover(p1, p2, n2, n3, n4),

(ii) if n2 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4) =
crossover(p1, p2, n1, n3, n4),

(iii) if n3 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4) =
crossover(p1, p2, n1, n2, n4), and

(iv) if n4 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4) =
crossover(p1, p2, n1, n2, n3).

(34)(i) If n1 ­ len p1 and n2 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4) =
crossover(p1, p2, n3, n4),

(ii) if n1 ­ len p1 and n3 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4) =
crossover(p1, p2, n2, n4),

(iii) if n1 ­ len p1 and n4 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4) =
crossover(p1, p2, n2, n3),

(iv) if n2 ­ len p1 and n3 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4) =
crossover(p1, p2, n1, n4),

(v) if n2 ­ len p1 and n4 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4) =
crossover(p1, p2, n1, n3), and

(vi) if n3 ­ len p1 and n4 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4) =
crossover(p1, p2, n1, n2).

(35)(i) If n1 ­ len p1 and n2 ­ len p1 and n3 ­ len p1, then
crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n4),

(ii) if n1 ­ len p1 and n2 ­ len p1 and n4 ­ len p1, then
crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n3),

(iii) if n1 ­ len p1 and n3 ­ len p1 and n4 ­ len p1, then
crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n2), and

(iv) if n2 ­ len p1 and n3 ­ len p1 and n4 ­ len p1, then
crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n1).

(36) If n1 ­ len p1 and n2 ­ len p1 and n3 ­ len p1 and n4 ­ len p1, then
crossover(p1, p2, n1, n2, n3, n4) = p1.

(37) crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n1, n2, n4, n3) and
crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n1, n3, n2, n4) and
crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n1, n3, n4, n2) and
crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n1, n4, n2, n3) and
crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n1, n4, n3, n2) and

156 akihiko uchibori and noboru endou

crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n2, n1, n3, n4) and
crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n2, n1, n4, n3) and
crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n2, n3, n1, n4) and
crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n2, n3, n4, n1) and
crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n2, n4, n1, n3) and
crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n2, n4, n3, n1) and
crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n3, n1, n2, n4) and
crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n3, n1, n4, n2) and
crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n3, n2, n1, n4) and
crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n3, n2, n4, n1) and
crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n3, n4, n1, n2) and
crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n3, n4, n2, n1) and
crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n4, n1, n2, n3) and
crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n4, n1, n3, n2) and
crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n4, n2, n1, n3) and
crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n4, n2, n3, n1) and
crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n4, n3, n1, n2) and
crossover(p1, p2, n1, n2, n3, n4) = crossover(p1, p2, n4, n3, n2, n1).

(38) crossover(p1, p2, n1, n1, n3, n4) = crossover(p1, p2, n3, n4) and
crossover(p1, p2, n1, n2, n1, n4) = crossover(p1, p2, n2, n4) and
crossover(p1, p2, n1, n2, n3, n1) = crossover(p1, p2, n2, n3) and
crossover(p1, p2, n1, n2, n2, n4) = crossover(p1, p2, n1, n4) and
crossover(p1, p2, n1, n2, n3, n2) = crossover(p1, p2, n1, n3) and
crossover(p1, p2, n1, n2, n3, n3) = crossover(p1, p2, n1, n2).

(39) crossover(p1, p2, n1, n1, n3, n3) = p1 and crossover(p1, p2, n1, n2, n1, n2) =
p1 and crossover(p1, p2, n1, n2, n2, n1) = p1.

7. Properties of 5-points Crossover

Next we state the proposition

(40) crossover(p1, p2, n1, n2, n3, n4, n5) is a Individual of S.

Let S be a Gene-Set, let p1, p2 be Individual of S, and let us consider n1,
n2, n3, n4, n5. Then crossover(p1, p2, n1, n2, n3, n4, n5) is a Individual of S.

Next we state a number of propositions:

(41) crossover(p1, p2, 0, n2, n3, n4, n5) = crossover(p2, p1, n2, n3, n4, n5) and
crossover(p1, p2, n1, 0, n3, n4, n5) = crossover(p2, p1, n1, n3, n4, n5) and
crossover(p1, p2, n1, n2, 0, n4, n5) = crossover(p2, p1, n1, n2, n4, n5) and
crossover(p1, p2, n1, n2, n3, 0, n5) = crossover(p2, p1, n1, n2, n3, n5) and
crossover(p1, p2, n1, n2, n3, n4, 0) = crossover(p2, p1, n1, n2, n3, n4).

basic properties of genetic algorithm 157

(42) crossover(p1, p2, 0, 0, n3, n4, n5) = crossover(p1, p2, n3, n4, n5) and
crossover(p1, p2, 0, n2, 0, n4, n5) = crossover(p1, p2, n2, n4, n5) and
crossover(p1, p2, 0, n2, n3, 0, n5) = crossover(p1, p2, n2, n3, n5) and
crossover(p1, p2, 0, n2, n3, n4, 0) = crossover(p1, p2, n2, n3, n4) and
crossover(p1, p2, n1, 0, 0, n4, n5) = crossover(p1, p2, n1, n4, n5) and
crossover(p1, p2, n1, 0, n3, 0, n5) = crossover(p1, p2, n1, n3, n5) and
crossover(p1, p2, n1, 0, n3, n4, 0) = crossover(p1, p2, n1, n3, n4) and
crossover(p1, p2, n1, n2, 0, 0, n5) = crossover(p1, p2, n1, n2, n5) and
crossover(p1, p2, n1, n2, 0, n4, 0) = crossover(p1, p2, n1, n2, n4) and
crossover(p1, p2, n1, n2, n3, 0, 0) = crossover(p1, p2, n1, n2, n3).

(43) crossover(p1, p2, 0, 0, 0, n4, n5) = crossover(p2, p1, n4, n5) and
crossover(p1, p2, 0, 0, n3, 0, n5) = crossover(p2, p1, n3, n5) and
crossover(p1, p2, 0, 0, n3, n4, 0) = crossover(p2, p1, n3, n4) and
crossover(p1, p2, 0, n2, 0, 0, n5) = crossover(p2, p1, n2, n5) and
crossover(p1, p2, 0, n2, 0, n4, 0) = crossover(p2, p1, n2, n4) and
crossover(p1, p2, 0, n2, n3, 0, 0) = crossover(p2, p1, n2, n3) and
crossover(p1, p2, n1, 0, 0, 0, n5) = crossover(p2, p1, n1, n5) and
crossover(p1, p2, n1, 0, 0, n4, 0) = crossover(p2, p1, n1, n4) and
crossover(p1, p2, n1, 0, n3, 0, 0) = crossover(p2, p1, n1, n3) and
crossover(p1, p2, n1, n2, 0, 0, 0) = crossover(p2, p1, n1, n2).

(44) crossover(p1, p2, 0, 0, 0, 0, n5) = crossover(p1, p2, n5) and
crossover(p1, p2, 0, 0, 0, n4, 0) = crossover(p1, p2, n4) and
crossover(p1, p2, 0, 0, n3, 0, 0) = crossover(p1, p2, n3) and
crossover(p1, p2, 0, n2, 0, 0, 0) = crossover(p1, p2, n2) and
crossover(p1, p2, n1, 0, 0, 0, 0) = crossover(p1, p2, n1).

(45) crossover(p1, p2, 0, 0, 0, 0, 0) = p2.

(46)(i) If n1 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4, n5) =
crossover(p1, p2, n2, n3, n4, n5),

(ii) if n2 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4, n5) =
crossover(p1, p2, n1, n3, n4, n5),

(iii) if n3 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4, n5) =
crossover(p1, p2, n1, n2, n4, n5),

(iv) if n4 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4, n5) =
crossover(p1, p2, n1, n2, n3, n5), and

(v) if n5 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4, n5) =
crossover(p1, p2, n1, n2, n3, n4).

(47)(i) If n1 ­ len p1 and n2 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4, n5) =
crossover(p1, p2, n3, n4, n5),

(ii) if n1 ­ len p1 and n3 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4, n5) =
crossover(p1, p2, n2, n4, n5),

158 akihiko uchibori and noboru endou

(iii) if n1 ­ len p1 and n4 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4, n5) =
crossover(p1, p2, n2, n3, n5),

(iv) if n1 ­ len p1 and n5 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4, n5) =
crossover(p1, p2, n2, n3, n4),

(v) if n2 ­ len p1 and n3 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4, n5) =
crossover(p1, p2, n1, n4, n5),

(vi) if n2 ­ len p1 and n4 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4, n5) =
crossover(p1, p2, n1, n3, n5),

(vii) if n2 ­ len p1 and n5 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4, n5) =
crossover(p1, p2, n1, n3, n4),

(viii) if n3 ­ len p1 and n4 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4, n5) =
crossover(p1, p2, n1, n2, n5),

(ix) if n3 ­ len p1 and n5 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4, n5) =
crossover(p1, p2, n1, n2, n4), and

(x) if n4 ­ len p1 and n5 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4, n5) =
crossover(p1, p2, n1, n2, n3).

(48)(i) If n1 ­ len p1 and n2 ­ len p1 and n3 ­ len p1, then
crossover(p1, p2, n1, n2, n3, n4, n5) = crossover(p1, p2, n4, n5),

(ii) if n1 ­ len p1 and n2 ­ len p1 and n4 ­ len p1, then
crossover(p1, p2, n1, n2, n3, n4, n5) = crossover(p1, p2, n3, n5),

(iii) if n1 ­ len p1 and n2 ­ len p1 and n5 ­ len p1, then
crossover(p1, p2, n1, n2, n3, n4, n5) = crossover(p1, p2, n3, n4),

(iv) if n1 ­ len p1 and n3 ­ len p1 and n4 ­ len p1, then
crossover(p1, p2, n1, n2, n3, n4, n5) = crossover(p1, p2, n2, n5),

(v) if n1 ­ len p1 and n3 ­ len p1 and n5 ­ len p1, then
crossover(p1, p2, n1, n2, n3, n4, n5) = crossover(p1, p2, n2, n4),

(vi) if n1 ­ len p1 and n4 ­ len p1 and n5 ­ len p1, then
crossover(p1, p2, n1, n2, n3, n4, n5) = crossover(p1, p2, n2, n3),

(vii) if n2 ­ len p1 and n3 ­ len p1 and n4 ­ len p1, then
crossover(p1, p2, n1, n2, n3, n4, n5) = crossover(p1, p2, n1, n5),

(viii) if n2 ­ len p1 and n3 ­ len p1 and n5 ­ len p1, then
crossover(p1, p2, n1, n2, n3, n4, n5) = crossover(p1, p2, n1, n4),

(ix) if n2 ­ len p1 and n4 ­ len p1 and n5 ­ len p1, then
crossover(p1, p2, n1, n2, n3, n4, n5) = crossover(p1, p2, n1, n3), and

(x) if n3 ­ len p1 and n4 ­ len p1 and n5 ­ len p1, then
crossover(p1, p2, n1, n2, n3, n4, n5) = crossover(p1, p2, n1, n2).

(49)(i) If n1 ­ len p1 and n2 ­ len p1 and n3 ­ len p1 and n4 ­ len p1, then
crossover(p1, p2, n1, n2, n3, n4, n5) = crossover(p1, p2, n5),

(ii) if n1 ­ len p1 and n2 ­ len p1 and n3 ­ len p1 and n5 ­ len p1, then
crossover(p1, p2, n1, n2, n3, n4, n5) = crossover(p1, p2, n4),

basic properties of genetic algorithm 159

(iii) if n1 ­ len p1 and n2 ­ len p1 and n4 ­ len p1 and n5 ­ len p1, then
crossover(p1, p2, n1, n2, n3, n4, n5) = crossover(p1, p2, n3),

(iv) if n1 ­ len p1 and n3 ­ len p1 and n4 ­ len p1 and n5 ­ len p1, then
crossover(p1, p2, n1, n2, n3, n4, n5) = crossover(p1, p2, n2), and

(v) if n2 ­ len p1 and n3 ­ len p1 and n4 ­ len p1 and n5 ­ len p1, then
crossover(p1, p2, n1, n2, n3, n4, n5) = crossover(p1, p2, n1).

(50) If n1 ­ len p1 and n2 ­ len p1 and n3 ­ len p1 and n4 ­ len p1 and
n5 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4, n5) = p1.

(51) crossover(p1, p2, n1, n2, n3, n4, n5) = crossover(p1, p2, n2, n1, n3, n4, n5)
and crossover(p1, p2, n1, n2, n3, n4, n5) = crossover(p1, p2, n3, n2, n1, n4, n5)
and crossover(p1, p2, n1, n2, n3, n4, n5) = crossover(p1, p2, n4, n2, n3, n1, n5)
and crossover(p1, p2, n1, n2, n3, n4, n5) = crossover(p1, p2, n5, n2, n3, n4, n1).

(52) crossover(p1, p2, n1, n1, n3, n4, n5) = crossover(p1, p2, n3, n4, n5) and
crossover(p1, p2, n1, n2, n1, n4, n5) = crossover(p1, p2, n2, n4, n5) and
crossover(p1, p2, n1, n2, n3, n1, n5) = crossover(p1, p2, n2, n3, n5) and
crossover(p1, p2, n1, n2, n3, n4, n1) = crossover(p1, p2, n2, n3, n4).

8. Properties of 6-points Crossover

Next we state the proposition

(53) crossover(p1, p2, n1, n2, n3, n4, n5, n6) is a Individual of S.

Let S be a Gene-Set, let p1, p2 be Individual of S, and let us consider n1,
n2, n3, n4, n5, n6. Then crossover(p1, p2, n1, n2, n3, n4, n5, n6) is a Individual of
S.

We now state four propositions:

(54)(i) crossover(p1, p2, 0, n2, n3, n4, n5, n6) = crossover(p2, p1, n2, n3, n4, n5, n6),
(ii) crossover(p1, p2, n1, 0, n3, n4, n5, n6) = crossover(p2, p1, n1, n3, n4, n5, n6),
(iii) crossover(p1, p2, n1, n2, 0, n4, n5, n6) = crossover(p2, p1, n1, n2, n4, n5, n6),
(iv) crossover(p1, p2, n1, n2, n3, 0, n5, n6) = crossover(p2, p1, n1, n2, n3, n5, n6),
(v) crossover(p1, p2, n1, n2, n3, n4, 0, n6) = crossover(p2, p1, n1, n2, n3, n4, n6),

and
(vi) crossover(p1, p2, n1, n2, n3, n4, n5, 0) = crossover(p2, p1, n1, n2, n3, n4, n5).

(55)(i) If n1 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4, n5, n6) =
crossover(p1, p2, n2, n3, n4, n5, n6),

(ii) if n2 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4, n5, n6) =
crossover(p1, p2, n1, n3, n4, n5, n6),

(iii) if n3 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4, n5, n6) =
crossover(p1, p2, n1, n2, n4, n5, n6),

(iv) if n4 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4, n5, n6) =
crossover(p1, p2, n1, n2, n3, n5, n6),

160 akihiko uchibori and noboru endou

(v) if n5 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4, n5, n6) =
crossover(p1, p2, n1, n2, n3, n4, n6), and

(vi) if n6 ­ len p1, then crossover(p1, p2, n1, n2, n3, n4, n5, n6) =
crossover(p1, p2, n1, n2, n3, n4, n5).

(56)(i) crossover(p1, p2, n1, n2, n3, n4, n5, n6) = crossover(p1, p2, n2, n1, n3, n4, n5, n6),
(ii) crossover(p1, p2, n1, n2, n3, n4, n5, n6) = crossover(p1, p2, n3, n2, n1, n4, n5, n6),
(iii) crossover(p1, p2, n1, n2, n3, n4, n5, n6) = crossover(p1, p2, n4, n2, n3, n1, n5, n6),
(iv) crossover(p1, p2, n1, n2, n3, n4, n5, n6) = crossover(p1, p2, n5, n2, n3, n4, n1, n6),

and
(v) crossover(p1, p2, n1, n2, n3, n4, n5, n6) = crossover(p1, p2, n6, n2, n3, n4, n5, n1).

(57)(i) crossover(p1, p2, n1, n1, n3, n4, n5, n6) = crossover(p1, p2, n3, n4, n5, n6),
(ii) crossover(p1, p2, n1, n2, n1, n4, n5, n6) = crossover(p1, p2, n2, n4, n5, n6),
(iii) crossover(p1, p2, n1, n2, n3, n1, n5, n6) = crossover(p1, p2, n2, n3, n5, n6),
(iv) crossover(p1, p2, n1, n2, n3, n4, n1, n6) = crossover(p1, p2, n2, n3, n4, n6),

and
(v) crossover(p1, p2, n1, n2, n3, n4, n5, n1) = crossover(p1, p2, n2, n3, n4, n5).

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. The reflection theorem. Formalized Mathematics, 1(5):973–977, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[5] Agata Darmochwał and Yatsuka Nakamura. The topological space E2

T. Arcs, line segments
and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.

[6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[7] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathe-
matics, 3(2):275–278, 1992.

[8] Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
[9] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,

4(1):83–86, 1993.
[10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[11] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[13] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received April 24, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Propositional Calculus for Boolean Valued
Functions. Part V

Shunichi Kobayashi
Shinshu University

Nagano

Summary. In this paper, we have proved some elementary propositional
calculus formulae for Boolean valued functions.

MML Identifier: BVFUNC 9.

The terminology and notation used here have been introduced in the following
articles: [3], [4], [5], [2], and [1].

In this paper Y denotes a non empty set.
We now state a number of propositions:

(1) For all elements a, b, c of BVF(Y) holds (a ∨ b) ∧ (b⇒ c) b a ∨ c.

(2) For all elements a, b of BVF(Y) holds a ∧ (a⇒ b) b b.

(3) For all elements a, b of BVF(Y) holds (a⇒ b) ∧ ¬b b ¬a.

(4) For all elements a, b of BVF(Y) holds (a ∨ b) ∧ ¬a b b.

(5) For all elements a, b of BVF(Y) holds (a⇒ b) ∧ (¬a⇒ b) b b.

(6) For all elements a, b of BVF(Y) holds (a⇒ b) ∧ (a⇒ ¬b) b ¬a.

(7) For all elements a, b, c of BVF(Y) holds a⇒ b ∧ c b a⇒ b.

(8) For all elements a, b, c of BVF(Y) holds a ∨ b⇒ c b a⇒ c.

(9) For all elements a, b, c of BVF(Y) holds a⇒ b b a ∧ c⇒ b.

(10) For all elements a, b, c of BVF(Y) holds a⇒ b b a ∧ c⇒ b ∧ c.

(11) For all elements a, b, c of BVF(Y) holds a⇒ b b a⇒ b ∨ c.

(12) For all elements a, b, c of BVF(Y) holds a⇒ b b a ∨ c⇒ b ∨ c.

(13) For all elements a, b, c of BVF(Y) holds a ∧ b ∨ c b a ∨ c.

(14) For all elements a, b, c, d of BVF(Y) holds a ∧ b ∨ c ∧ d b a ∨ c.

161
c© 1999 University of Białystok

ISSN 1426–2630

162 shunichi kobayashi

(15) For all elements a, b, c of BVF(Y) holds (a ∨ b) ∧ (b⇒ c) b a ∨ c.

(16) For all elements a, b, c of BVF(Y) holds (a⇒ b) ∧ (¬a⇒ c) b b ∨ c.

(17) For all elements a, b, c of BVF(Y) holds (a⇒ c) ∧ (b⇒ ¬c) b ¬a ∨ ¬b.

(18) For all elements a, b, c of BVF(Y) holds (a ∨ b) ∧ (¬a ∨ c) b b ∨ c.

(19) For all elements a, b, c of BVF(Y) holds (a⇒ b) ∧ (a⇒ c) b a⇒ b ∧ c.

(20) For all elements a, b, c, d of BVF(Y) holds (a⇒ b)∧ (c⇒ d) b a∧ c⇒
b ∧ d.

(21) For all elements a, b, c of BVF(Y) holds (a⇒ c) ∧ (b⇒ c) b a ∨ b⇒ c.

(22) For all elements a, b, c, d of BVF(Y) holds (a⇒ b)∧ (c⇒ d) b a∨ c⇒
b ∨ d.

(23) For all elements a, b, c of BVF(Y) holds (a⇒ b) ∧ (a⇒ c) b a⇒ b ∨ c.

(24) For all elements a1, b1, c1, a2, b2, c2 of BVF(Y) holds (b1 ⇒ b2)∧ (c1 ⇒
c2) ∧ (a1 ∨ b1 ∨ c1) ∧ ¬(a2 ∧ b2) ∧ ¬(a2 ∧ c2) b a2 ⇒ a1.

(25) For all elements a1, b1, c1, a2, b2, c2 of BVF(Y) holds (a1 ⇒ a2)∧ (b1 ⇒
b2)∧ (c1 ⇒ c2)∧ (a1∨ b1∨ c1)∧¬(a2∧ b2)∧¬(a2∧ c2)∧¬(b2∧ c2) b (a2 ⇒
a1) ∧ (b2 ⇒ b1) ∧ (c2 ⇒ c1).

(26) For all elements a1, b1, a2, b2 of BVF(Y) holds (a1 ⇒ a2) ∧ (b1 ⇒
b2) ∧ ¬(a2 ∧ b2)⇒ ¬(a1 ∧ b1) = true(Y).

(27) For all elements a1, b1, c1, a2, b2, c2 of BVF(Y) holds (a1 ⇒ a2)∧ (b1 ⇒
b2)∧ (c1 ⇒ c2)∧¬(a2 ∧ b2)∧¬(a2 ∧ c2)∧¬(b2 ∧ c2) b ¬(a1 ∧ b1)∧¬(a1 ∧
c1) ∧ ¬(b1 ∧ c1).

References

[1] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions.
Formalized Mathematics, 7(2):249–254, 1998.

[2] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[4] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[5] Edmund Woronowicz. Many–argument relations. Formalized Mathematics, 1(4):733–737,

1990.

Received May 5, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Properties of Left and Right Components

Artur Korniłowicz1

University of Białystok

MML Identifier: GOBRD14.

The notation and terminology used here have been introduced in the following
papers: [33], [42], [43], [6], [7], [41], [5], [16], [35], [1], [30], [38], [31], [17], [27],
[8], [19], [39], [18], [20], [15], [4], [2], [3], [40], [32], [29], [44], [12], [28], [11], [13],
[14], [21], [22], [25], [34], [10], [24], [23], [37], [36], [26], and [9].

1. Components

For simplicity, we adopt the following rules: r denotes a real number, i, j,
n denote natural numbers, f denotes a non constant standard special circular
sequence, g denotes a clockwise oriented non constant standard special circular
sequence, p, q denote points of E2

T, P , Q, R denote subsets of E2
T, C denotes a

compact non vertical non horizontal subset of E2
T, and G denotes a Go-board.

Next we state several propositions:

(1) Let T be a topological space, A be a subset of the carrier of T , and B

be a subset of T . If B is a component of A, then B is connected.

(2) Let A be a subset of the carrier of En
T and B be a subset of En

T. If B is
inside component of A, then B is connected.

(3) Let A be a subset of the carrier of En
T and B be a subset of En

T. If B is
outside component of A, then B is connected.

(4) For every subset A of the carrier of En
T and for every subset B of En

T such
that B is a component of Ac holds A ∩B = ∅.

(5) If P is outside component of Q and R is inside component of Q, then
P ∩R = ∅.

1This paper was written while the author visited Shinshu University, winter 1999.

163
c© 1999 University of Białystok

ISSN 1426–2630

164 artur korniłowicz

(6) Let A, B be subsets of E2
T. Suppose A is outside component of L̃(f) and

B is outside component of L̃(f). Then A = B.

(7) Let p be a point of E2. Suppose p = 0E2T and P is outside component of

L̃(f). Then there exists a real number r such that r > 0 and Ball(p, r)c ⊆
P.

Let C be a closed subset of E2
T. Observe that BDD C is open and UBD C is

open.
Let C be a compact subset of E2

T. Observe that UBD C is connected.

2. Go-Boards

One can prove the following proposition

(8) For every finite sequence f of elements of En
T such that L̃(f) 6= ∅ holds

2 ¬ len f.

Let n be a natural number and let a, b be points of En
T. The functor ρ(a, b)

yields a real number and is defined by:

(Def. 1) There exist points p, q of En such that p = a and q = b and ρ(a, b) =
ρ(p, q).

Let us notice that the functor ρ(a, b) is commutative.
The following propositions are true:

(9) ρ(p, q) =
√

(p1 − q1)2 + (p2 − q2)2.

(10) For every point p of En
T holds ρ(p, p) = 0.

(11) For all points p, q, r of En
T holds ρ(p, r) ¬ ρ(p, q) + ρ(q, r).

(12) Let x1, x2, y1, y2 be real numbers and a, b be points of E2
T. Suppose

x1 ¬ a1 and a1 ¬ x2 and y1 ¬ a2 and a2 ¬ y2 and x1 ¬ b1 and b1 ¬ x2

and y1 ¬ b2 and b2 ¬ y2. Then ρ(a, b) ¬ |x2 − x1|+ |y2 − y1|.
(13) If 1 ¬ i and i < len G and 1 ¬ j and j < width G, then cell(G, i, j) =∏

[1 7−→ [(Gi,1)1, (Gi+1,1)1], 2 7−→ [(G1,j)2, (G1,j+1)2]].
(14) If 1 ¬ i and i < len G and 1 ¬ j and j < width G, then cell(G, i, j) is

compact.

(15) If 〈〈i, j〉〉 ∈ the indices of G and 〈〈i + n, j〉〉 ∈ the indices of G, then
ρ(Gi,j , Gi+n,j) = (Gi+n,j)1 − (Gi,j)1.

(16) If 〈〈i, j〉〉 ∈ the indices of G and 〈〈i, j + n〉〉 ∈ the indices of G, then
ρ(Gi,j , Gi,j+n) = (Gi,j+n)2 − (Gi,j)2.

(17) 3 ¬ len Gauge(C, n)−′ 1.

(18) Suppose i ¬ j. Let a, b be natural numbers. Suppose 2 ¬ a and a ¬
len Gauge(C, i) − 1 and 2 ¬ b and b ¬ len Gauge(C, i) − 1. Then there
exist natural numbers c, d such that

properties of left and right components 165

2 ¬ c and c ¬ len Gauge(C, j) − 1 and 2 ¬ d and d ¬ len Gauge(C, j) −
1 and 〈〈c, d〉〉 ∈ the indices of Gauge(C, j) and (Gauge(C, i))a,b =
(Gauge(C, j))c,d and c = 2 + 2j−′i · (a−′ 2) and d = 2 + 2j−′i · (b−′ 2).

(19) If 〈〈i, j〉〉 ∈ the indices of Gauge(C, n) and 〈〈i, j + 1〉〉 ∈ the in-
dices of Gauge(C, n), then ρ((Gauge(C, n))i,j , (Gauge(C, n))i,j+1) =
N-bound C−S-bound C

2n .

(20) If 〈〈i, j〉〉 ∈ the indices of Gauge(C, n) and 〈〈i + 1, j〉〉 ∈ the in-
dices of Gauge(C, n), then ρ((Gauge(C, n))i,j , (Gauge(C, n))i+1,j) =
E-bound C−W-bound C

2n .

(21) If r > 0, then there exists a natural number n such that
ρ((Gauge(C, n))1,1, (Gauge(C, n))1,2) < r and
ρ((Gauge(C, n))1,1, (Gauge(C, n))2,1) < r.

3. LeftComp and RightComp

One can prove the following propositions:

(22) For every subset P of (E2
T)¹(L̃(f))c such that P is a component of

(E2
T)¹(L̃(f))c holds P = RightComp(f) or P = LeftComp(f).

(23) Let A1, A2 be subsets of E2
T. Suppose that

(i) (L̃(f))c = A1 ∪A2,

(ii) A1 ∩A2 = ∅, and
(iii) for all subsets C1, C2 of (E2

T)¹(L̃(f))c such that C1 = A1 and C2 =
A2 holds C1 is a component of (E2

T)¹(L̃(f))c and C2 is a component of
(E2

T)¹(L̃(f))c.

Then A1 = RightComp(f) and A2 = LeftComp(f) or A1 = LeftComp(f)
and A2 = RightComp(f).

(24) LeftComp(f) ∩ RightComp(f) = ∅.
(25) L̃(f) ∪ RightComp(f) ∪ LeftComp(f) = the carrier of E2

T.

(26) p ∈ L̃(f) iff p /∈ LeftComp(f) and p /∈ RightComp(f).
(27) p ∈ LeftComp(f) iff p /∈ L̃(f) and p /∈ RightComp(f).
(28) p ∈ RightComp(f) iff p /∈ L̃(f) and p /∈ LeftComp(f).
(29) L̃(f) = RightComp(f) \ RightComp(f).
(30) L̃(f) = LeftComp(f) \ LeftComp(f).
(31) RightComp(f) = RightComp(f) ∪ L̃(f).
(32) LeftComp(f) = LeftComp(f) ∪ L̃(f).

Let f be a non constant standard special circular sequence. One can verify
that L̃(f) is Jordan.

The following propositions are true:

166 artur korniłowicz

(33) If π1g = N-min L̃(g) and p ∈ RightComp(g), then W-bound L̃(g) < p1.

(34) If π1g = N-min L̃(g) and p ∈ RightComp(g), then E-bound L̃(g) > p1.

(35) If π1g = N-min L̃(g) and p ∈ RightComp(g), then N-bound L̃(g) > p2.

(36) If π1g = N-min L̃(g) and p ∈ RightComp(g), then S-bound L̃(g) < p2.

(37) If p ∈ RightComp(f) and q ∈ LeftComp(f), then L(p, q) ∩ L̃(f) 6= ∅.
(38) RightComp(SpStSeq C) =

∏
[1 7−→ [W-bound L̃(SpStSeq C),

E-bound L̃(SpStSeq C)], 2 7−→ [S-bound L̃(SpStSeq C),
N-bound L̃(SpStSeq C)]].

(39) (proj1)◦L̃(f) ⊆ (proj1)◦RightComp(f) and if π1f = N-min L̃(f) and f

is clockwise oriented, then (proj1)◦RightComp(f) = (proj1)◦L̃(f).
(40) (proj2)◦L̃(f) ⊆ (proj2)◦RightComp(f) and if π1f = N-min L̃(f) and f

is clockwise oriented, then (proj2)◦RightComp(f) = (proj2)◦L̃(f).
(41) If π1g = N-min L̃(g), then RightComp(g) ⊆ RightComp(SpStSeq L̃(g)).
(42) If π1g = N-min L̃(g), then RightComp(g) is compact.

(43) If π1g = N-min L̃(g), then LeftComp(g) is non Bounded.

(44) If π1g = N-min L̃(g), then LeftComp(g) is outside component of L̃(g).
(45) If π1g = N-min L̃(g), then RightComp(g) is inside component of L̃(g).
(46) If π1g = N-min L̃(g), then UBD L̃(g) = LeftComp(g).
(47) If π1g = N-min L̃(g), then BDD L̃(g) = RightComp(g).
(48) If π1g = N-min L̃(g) and P is outside component of L̃(g), then P =

LeftComp(g).
(49) If π1g = N-min L̃(g) and P is inside component of L̃(g), then P ∩

RightComp(g) 6= ∅.
(50) If π1g = N-min L̃(g) and P is inside component of L̃(g), then P =

BDD L̃(g).
(51) If π1g = N-min L̃(g), then W-bound L̃(g) = W-bound RightComp(g).
(52) If π1g = N-min L̃(g), then E-bound L̃(g) = E-bound RightComp(g).
(53) If π1g = N-min L̃(g), then N-bound L̃(g) = N-bound RightComp(g).
(54) If π1g = N-min L̃(g), then S-bound L̃(g) = S-bound RightComp(g).

Acknowledgments

I would like to thank Professor Yatsuka Nakamura for his help in the pre-
paration of the article.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.

properties of left and right components 167

[3] Grzegorz Bancerek. Countable sets and Hessenberg’s theorem. Formalized Mathematics,
2(1):65–69, 1991.

[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[8] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics,

2(5):701–709, 1991.
[9] Czesław Byliński. Gauges. Formalized Mathematics, 8(1):25–27, 1999.

[10] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E2. Formalized
Mathematics, 6(3):427–440, 1997.

[11] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
[12] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces.

Formalized Mathematics, 1(2):257–261, 1990.
[13] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
[14] Agata Darmochwał and Yatsuka Nakamura. The topological space E2

T. Arcs, line segments
and special polygonal arcs. Formalized Mathematics, 2(5):617–621, 1991.

[15] Alicia de la Cruz. Totally bounded metric spaces. Formalized Mathematics, 2(4):559–562,
1991.

[16] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[17] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics,
2(4):475–480, 1991.

[18] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathe-
matics, 1(3):607–610, 1990.

[19] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real
numbers. Formalized Mathematics, 1(3):477–481, 1990.

[20] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics,
2(1):17–28, 1991.

[21] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part I. Formalized
Mathematics, 3(1):107–115, 1992.

[22] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-board - part II. Formalized
Mathematics, 3(1):117–121, 1992.

[23] Yatsuka Nakamura. Graph theoretical properties of arcs in the plane and Fashoda Meet
Theorem. Formalized Mathematics, 7(2):193–201, 1998.

[24] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special
polygons. Part I. Formalized Mathematics, 5(1):97–102, 1996.

[25] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-board into cells. Formalized
Mathematics, 5(3):323–328, 1996.

[26] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and
unbounded domains. Formalized Mathematics, 8(1):1–13, 1999.

[27] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[28] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
[29] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[30] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics,

1(2):263–264, 1990.
[31] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized

Mathematics, 2(2):213–216, 1991.
[32] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real num-

bers. Formalized Mathematics, 1(4):777–780, 1990.
[33] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[34] Andrzej Trybulec. Left and right component of the complement of a special closed curve.

Formalized Mathematics, 5(4):465–468, 1996.

168 artur korniłowicz

[35] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized
Mathematics, 1(3):445–449, 1990.

[36] Andrzej Trybulec and Yatsuka Nakamura. On the order on a special polygon. Formalized
Mathematics, 6(4):541–548, 1997.

[37] Andrzej Trybulec and Yatsuka Nakamura. On the rectangular finite sequences of the
points of the plane. Formalized Mathematics, 6(4):531–539, 1997.

[38] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[39] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[40] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[41] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[42] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[43] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[44] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized

Mathematics, 1(1):231–237, 1990.

Received May 5, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Noetherian Lattices

Christoph Schwarzweller
University of Tuebingen

Summary. In this article we define noetherian and co-noetherian lattices
and show how some properties concerning upper and lower neighbours, irreduci-
bility and density can be improved when restricted to these kinds of lattices. In
addition we define atomic lattices.

MML Identifier: LATTICE6.

The notation and terminology used here are introduced in the following papers:
[18], [13], [17], [14], [19], [7], [1], [8], [6], [20], [3], [9], [2], [10], [15], [16], [5], [11],
[4], and [12].

Let us observe that there exists a lattice which is finite.
Let us mention that every lattice which is finite is also complete.
Let L be a lattice and let D be a subset of the carrier of L. The functor D·

yields a subset of Poset(L) and is defined by:

(Def. 1) D· = {d·; d ranges over elements of the carrier of L: d ∈ D}.
Let L be a lattice and let D be a subset of the carrier of Poset(L). The

functor ·D yielding a subset of the carrier of L is defined by:

(Def. 2) ·D = {·d; d ranges over elements of Poset(L): d ∈ D}.
Let L be a finite lattice. Note that Poset(L) is well founded.
Let L be a lattice. We say that L is noetherian if and only if:

(Def. 3) Poset(L) is well founded.

We say that L is co-noetherian if and only if:

(Def. 4) Poset(L)` is well founded.

One can verify the following observations:

∗ there exists a lattice which is noetherian and upper-bounded,

∗ there exists a lattice which is noetherian and lower-bounded, and

∗ there exists a lattice which is noetherian and complete.

169
c© 1999 University of Białystok

ISSN 1426–2630

170 christoph schwarzweller

One can verify the following observations:

∗ there exists a lattice which is co-noetherian and upper-bounded,

∗ there exists a lattice which is co-noetherian and lower-bounded, and

∗ there exists a lattice which is co-noetherian and complete.

Next we state the proposition

(1) For every lattice L holds L is noetherian iff L◦ is co-noetherian.

One can check that every lattice which is finite is also noetherian and every
lattice which is finite is also co-noetherian.

Let L be a lattice and let a, b be elements of the carrier of L. We say that
a is-upper-neighbour-of b if and only if:

(Def. 5) a 6= b and b v a and for every element c of the carrier of L such that
b v c and c v a holds c = a or c = b.

We introduce b is-lower-neighbour-of a as a synonym of a is-upper-neighbour-of
b.

We now state several propositions:

(2) Let L be a lattice, a be an element of the carrier of L, and b, c be elements
of the carrier of L such that b 6= c. Then

(i) if b is-upper-neighbour-of a and c is-upper-neighbour-of a, then a = cub,

and
(ii) if b is-lower-neighbour-of a and c is-lower-neighbour-of a, then a = ctb.

(3) Let L be a noetherian lattice, a be an element of the carrier of L, and d

be an element of the carrier of L. Suppose a v d and a 6= d. Then there
exists an element c of the carrier of L such that c v d and c is-upper-
neighbour-of a.

(4) Let L be a co-noetherian lattice, a be an element of the carrier of L,
and d be an element of the carrier of L. Suppose d v a and a 6= d. Then
there exists an element c of the carrier of L such that d v c and c is-lower-
neighbour-of a.

(5) Let L be an upper-bounded lattice. Then it is not true that there exists
an element b of the carrier of L such that b is-upper-neighbour-of >L.

(6) Let L be a noetherian upper-bounded lattice and a be an element of the
carrier of L. Then a = >L if and only if it is not true that there exists an
element b of the carrier of L such that b is-upper-neighbour-of a.

(7) Let L be a lower-bounded lattice. Then it is not true that there exists
an element b of the carrier of L such that b is-lower-neighbour-of ⊥L.

(8) Let L be a co-noetherian lower-bounded lattice and a be an element of
the carrier of L. Then a = ⊥L if and only if it is not true that there exists
an element b of the carrier of L such that b is-lower-neighbour-of a.

noetherian lattices 171

Let L be a complete lattice and let a be an element of the carrier of L. The
functor a∗ yielding an element of the carrier of L is defined by:

(Def. 6) a∗ = d−eL{d; d ranges over elements of the carrier of L: a v d ∧ d 6= a}.
The functor ∗a yields an element of the carrier of L and is defined as follows:

(Def. 7) ∗a =
⊔

L{d; d ranges over elements of the carrier of L: d v a ∧ d 6= a}.
Let L be a complete lattice and let a be an element of the carrier of L. We

say that a is completely-meet-irreducible if and only if:

(Def. 8) a∗ 6= a.

We say that a is completely-join-irreducible if and only if:

(Def. 9) ∗a 6= a.

The following propositions are true:

(9) For every complete lattice L and for every element a of the carrier of L

holds a v a∗ and ∗a v a.

(10) For every complete lattice L holds (>L)∗ = >L and (>L)· is meet-
irreducible.

(11) For every complete lattice L holds ∗(⊥L) = ⊥L and (⊥L)· is join-
irreducible.

(12) Let L be a complete lattice and a be an element of the carrier of L.
Suppose a is completely-meet-irreducible. Then

(i) a∗ is-upper-neighbour-of a, and
(ii) for every element c of the carrier of L such that c is-upper-neighbour-of

a holds c = a∗.
(13) Let L be a complete lattice and a be an element of the carrier of L.

Suppose a is completely-join-irreducible. Then
(i) ∗a is-lower-neighbour-of a, and
(ii) for every element c of the carrier of L such that c is-lower-neighbour-of

a holds c = ∗a.

(14) Let L be a noetherian complete lattice and a be an element of the carrier
of L. Suppose a 6= >L. Then a is completely-meet-irreducible if and only if
there exists an element b of the carrier of L such that b is-upper-neighbour-
of a and for every element c of the carrier of L such that c is-upper-
neighbour-of a holds c = b.

(15) Let L be a co-noetherian complete lattice and a be an element of the
carrier of L. Suppose a 6= ⊥L. Then a is completely-join-irreducible if and
only if there exists an element b of the carrier of L such that b is-lower-
neighbour-of a and for every element c of the carrier of L such that c

is-lower-neighbour-of a holds c = b.

(16) Let L be a complete lattice and a be an element of the carrier of L. If a

is completely-meet-irreducible, then a· is meet-irreducible.

172 christoph schwarzweller

(17) Let L be a complete noetherian lattice and a be an element of the carrier
of L. Suppose a 6= >L. Then a is completely-meet-irreducible if and only
if a· is meet-irreducible.

(18) Let L be a complete lattice and a be an element of the carrier of L. If a

is completely-join-irreducible, then a· is join-irreducible.

(19) Let L be a complete co-noetherian lattice and a be an element of the
carrier of L. Suppose a 6= ⊥L. Then a is completely-join-irreducible if and
only if a· is join-irreducible.

(20) Let L be a finite lattice and a be an element of the carrier of L such that
a 6= ⊥L and a 6= >L. Then

(i) a is completely-meet-irreducible iff a· is meet-irreducible, and
(ii) a is completely-join-irreducible iff a· is join-irreducible.

Let L be a lattice and let a be an element of the carrier of L. We say that
a is atomic if and only if:

(Def. 10) a is-upper-neighbour-of ⊥L.

We say that a is co-atomic if and only if:

(Def. 11) a is-lower-neighbour-of >L.

One can prove the following propositions:

(21) Let L be a complete lattice and a be an element of the carrier of L. If a

is atomic, then a is completely-join-irreducible.

(22) Let L be a complete lattice and a be an element of the carrier of L. If a

is co-atomic, then a is completely-meet-irreducible.

Let L be a lattice. We say that L is atomic if and only if the condition
(Def. 12) is satisfied.

(Def. 12) Let a be an element of the carrier of L. Then there exists a subset X of
the carrier of L such that for every element x of the carrier of L such that
x ∈ X holds x is atomic and a =

⊔
L X.

One can verify that there exists a lattice which is atomic and complete.
Let L be a complete lattice and let D be a subset of L. We say that D is

supremum-dense if and only if:

(Def. 13) For every element a of the carrier of L there exists a subset D′ of D such
that a =

⊔
L D′.

We say that D is infimum-dense if and only if:

(Def. 14) For every element a of the carrier of L there exists a subset D′ of D such
that a = d−eLD′.

One can prove the following propositions:

(23) Let L be a complete lattice and D be a subset of L. Then D is supremum-
dense if and only if for every element a of the carrier of L holds a =⊔

L{d; d ranges over elements of the carrier of L: d ∈ D ∧ d v a}.

noetherian lattices 173

(24) Let L be a complete lattice and D be a subset of L. Then D is infimum-
dense if and only if for every element a of the carrier of L holds a =
d−eL{d; d ranges over elements of the carrier of L: d ∈ D ∧ a v d}.

(25) Let L be a complete lattice and D be a subset of L. Then D is infimum-
dense if and only if D· is order-generating.

Let L be a complete lattice. The functor MIRRS L yields a subset of L and
is defined by:

(Def. 15) MIRRS L = {a; a ranges over elements of the carrier of L: a is
completely-meet-irreducible}.

The functor JIRRS L yielding a subset of L is defined by:

(Def. 16) JIRRS L = {a; a ranges over elements of the carrier of L: a is completely-
join-irreducible}.

One can prove the following two propositions:

(26) For every complete lattice L and for every subset D of L such that D is
supremum-dense holds JIRRS L ⊆ D.

(27) For every complete lattice L and for every subset D of L such that D is
infimum-dense holds MIRRS L ⊆ D.

Let L be a co-noetherian complete lattice. Note that MIRRS L is infimum-
dense.

Let L be a noetherian complete lattice. One can check that JIRRS L is
supremum-dense.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. The well ordering relations. Formalized Mathematics, 1(1):123–129,
1990.

[3] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[4] Grzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathe-

matics, 6(1):81–91, 1997.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[6] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.

[10] Beata Madras. Irreducible and prime elements. Formalized Mathematics, 6(2):233–239,
1997.

[11] Piotr Rudnicki and Andrzej Trybulec. On same equivalents of well-foundedness. Forma-
lized Mathematics, 6(3):339–343, 1997.

[12] Andrzej Trybulec. Finite join and finite meet and dual lattices. Formalized Mathematics,
1(5):983–988, 1990.

[13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[14] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,
1(1):97–105, 1990.

174 christoph schwarzweller

[15] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[16] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319,

1990.
[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[18] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[20] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215–

222, 1990.

Received June 9, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

A Small Computer Model with Push-Down
Stack1

Jing-Chao Chen
Shanghai Jiaotong University

Summary. The SCMFSA computer can prove the correctness of many
algorithms. Unfortunately, it cannot prove the correctness of recursive algorithms.
For this reason, this article improves the SCMFSA computer and presents a
Small Computer Model with Push-Down Stack (called SCMPDS for short). In
addition to conventional arithmetic and ”goto” instructions, we increase two new
instructions such as ”return” and ”save instruction-counter” in order to be able
to design recursive programs.

MML Identifier: SCMPDS 1.

The articles [15], [21], [8], [13], [22], [5], [6], [20], [12], [16], [2], [17], [1], [3], [14],
[19], [4], [7], [9], [11], [10], and [18] provide the terminology and notation for this
paper.

1. Preliminaries

For simplicity, we follow the rules: x1, x2, x3, x4, x5 are sets, i, j, k are natural
numbers, I, I2, I3, I4 are elements of Z14, i1 is an element of Instr-LocSCM, d1,
d2, d3, d4, d5 are elements of Data-LocSCM, and k1, k2, k3, k4, k5, k6 are integers.

Let x1, x2, x3, x4 be sets. The functor < ∗x1, x2, x3, x4∗ > yields a set and
is defined as follows:

(Def. 1) < ∗x1, x2, x3, x4∗ >= 〈x1, x2, x3〉 a 〈x4〉.
Let x5 be a set. The functor < ∗x1, x2, x3, x4, x5∗ > yielding a set is defined by:

(Def. 2) < ∗x1, x2, x3, x4, x5∗ >= 〈x1, x2, x3〉 a 〈x4, x5〉.
1This work was done while the author visited Shinshu University March–April 1999.

175
c© 1999 University of Białystok

ISSN 1426–2630

176 jing-chao chen

Let x1, x2, x3, x4 be sets. One can verify that < ∗x1, x2, x3, x4∗ > is function-
like and relation-like. Let x5 be a set. One can verify that < ∗x1, x2, x3, x4, x5∗ >

is function-like and relation-like.
Let x1, x2, x3, x4 be sets. One can verify that < ∗x1, x2, x3, x4∗ > is finite

sequence-like. Let x5 be a set. One can check that < ∗x1, x2, x3, x4, x5∗ > is
finite sequence-like.

Let D be a non empty set and let x1, x2, x3, x4 be elements of D. Then
< ∗x1, x2, x3, x4∗ > is a finite sequence of elements of D.

Let D be a non empty set and let x1, x2, x3, x4, x5 be elements of D. Then
< ∗x1, x2, x3, x4, x5∗ > is a finite sequence of elements of D.

One can prove the following propositions:

(1) < ∗x1, x2, x3, x4∗ >= 〈x1, x2, x3〉 a 〈x4〉 and < ∗x1, x2, x3, x4∗ >=
〈x1, x2〉 a 〈x3, x4〉 and < ∗x1, x2, x3, x4∗ >= 〈x1〉 a 〈x2, x3, x4〉 and <

∗x1, x2, x3, x4∗ >= 〈x1〉 a 〈x2〉 a 〈x3〉 a 〈x4〉.
(2) < ∗x1, x2, x3, x4, x5∗ >= 〈x1, x2, x3〉a〈x4, x5〉 and < ∗x1, x2, x3, x4, x5∗ >

=< ∗x1, x2, x3, x4∗ > a〈x5〉 and < ∗x1, x2, x3, x4, x5∗ >= 〈x1〉 a 〈x2〉 a

〈x3〉 a 〈x4〉 a 〈x5〉 and < ∗x1, x2, x3, x4, x5∗ >= 〈x1, x2〉 a 〈x3, x4, x5〉 and
< ∗x1, x2, x3, x4, x5∗ >= 〈x1〉a < ∗x2, x3, x4, x5∗ > .

We adopt the following rules: N1 is a non empty set, y1, y2, y3, y4, y5 are
elements of N1, and p is a finite sequence.

We now state several propositions:

(3) p =< ∗x1, x2, x3, x4∗ > iff len p = 4 and p(1) = x1 and p(2) = x2 and
p(3) = x3 and p(4) = x4.

(4) dom < ∗x1, x2, x3, x4∗ >= Seg 4.

(5) p =< ∗x1, x2, x3, x4, x5∗ > iff len p = 5 and p(1) = x1 and p(2) = x2 and
p(3) = x3 and p(4) = x4 and p(5) = x5.

(6) dom < ∗x1, x2, x3, x4, x5∗ >= Seg 5.

(7) π1 < ∗y1, y2, y3, y4∗ >= y1 and π2 < ∗y1, y2, y3, y4∗ >= y2 and π3 <

∗y1, y2, y3, y4∗ >= y3 and π4 < ∗y1, y2, y3, y4∗ >= y4.

(8) π1 < ∗y1, y2, y3, y4, y5∗ >= y1 and π2 < ∗y1, y2, y3, y4, y5∗ >= y2 and
π3 < ∗y1, y2, y3, y4, y5∗ >= y3 and π4 < ∗y1, y2, y3, y4, y5∗ >= y4 and
π5 < ∗y1, y2, y3, y4, y5∗ >= y5.

(9) For every integer k holds k ∈ ⋃{Z} ∪ N.

(10) For every integer k holds k ∈ Data-LocSCM ∪ Z.

(11) For every element d of Data-LocSCM holds d ∈ Data-LocSCM ∪ Z.m

2. The Construction of SCM with Push-Down Stack

The subset SCMPDS− Instr of [:Z14, (
⋃{Z} ∪ N)∗ :] is defined by the condition

(Def. 3).

a small computer model with push-down stack 177

(Def. 3) SCMPDS− Instr = {〈〈0, 〈l〉〉〉 : l ranges over integers} ∪ {〈〈1, 〈s1〉〉〉 : s1

ranges over elements of Data-LocSCM} ∪ {〈〈I, 〈v, c〉〉〉; I ranges over ele-
ments of Z14, v ranges over elements of Data-LocSCM, c ranges over inte-
gers: I ∈ {2, 3}} ∪ {〈〈I, 〈v, c1, c2〉〉〉; I ranges over elements of Z14, v ranges
over elements of Data-LocSCM, c1 ranges over integers, c2 ranges over
integers: I ∈ {4, 5, 6, 7, 8}} ∪ {〈〈I, < ∗v1, v2, c1, c2∗ > 〉〉; I ranges over ele-
ments of Z14, v1 ranges over elements of Data-LocSCM, v2 ranges over
elements of Data-LocSCM, c1 ranges over integers, c2 ranges over integers:
I ∈ {9, 10, 11, 12, 13}}.

We now state two propositions:

(12) SCMPDS− Instr = {〈〈0, 〈k1〉〉〉} ∪ {〈〈1, 〈d1〉〉〉} ∪ {〈〈I2, 〈d2, k2〉〉〉 : I2 ∈
{2, 3}} ∪ {〈〈I3, 〈d3, k3, k4〉〉〉 : I3 ∈ {4, 5, 6, 7, 8}} ∪ {〈〈I4, < ∗d4, d5, k5, k6∗ >

〉〉 : I4 ∈ {9, 10, 11, 12, 13}}.
(13) 〈〈0, 〈0〉〉〉 ∈ SCMPDS− Instr .

One can verify that SCMPDS− Instr is non empty.
We now state three propositions:

(14) k = 0 or there exists j such that k = 2 · j + 1 or there exists j such that
k = 2 · j + 2.

(15) If k = 0, then it is not true that there exists j such that k = 2 · j + 1
and it is not true that there exists j such that k = 2 · j + 2.

(16)(i) If there exists j such that k = 2 · j + 1, then k 6= 0 and it is not true
that there exists j such that k = 2 · j + 2, and

(ii) if there exists j such that k = 2 · j + 2, then k 6= 0 and it is not true
that there exists j such that k = 2 · j + 1.

The function SCMPDS−OK from N into {Z}∪{SCMPDS− Instr, Instr-LocSCM}
is defined as follows:

(Def. 4) (SCMPDS−OK)(0) = Instr-LocSCM and for every natural number k

holds (SCMPDS−OK)(2 · k + 1) = Z and (SCMPDS−OK)(2 · k + 2) =
SCMPDS− Instr .

A SCMPDS-State is an element of
∏

SCMPDS−OK .

Next we state several propositions:

(17) Instr-LocSCM 6= SCMPDS− Instr and SCMPDS− Instr 6= Z.

(18) (SCMPDS−OK)(i) = Instr-LocSCM iff i = 0.

(19) (SCMPDS−OK)(i) = Z iff there exists k such that i = 2 · k + 1.

(20) (SCMPDS−OK)(i) = SCMPDS− Instr iff there exists k such that i =
2 · k + 2.

(21) (SCMPDS−OK)(d1) = Z.

(22) (SCMPDS−OK)(i1) = SCMPDS− Instr .

(23) π0
∏

SCMPDS−OK = Instr-LocSCM.

178 jing-chao chen

(24) πd1

∏
SCMPDS−OK = Z.

(25) πi1

∏
SCMPDS−OK = SCMPDS− Instr .

Let s be a SCMPDS-State. The functor ICs yielding an element of
Instr-LocSCM is defined as follows:

(Def. 5) ICs = s(0).
Let s be a SCMPDS-State and let u be an element of Instr-LocSCM. The

functor ChgSCM(s, u) yielding a SCMPDS-State is defined as follows:

(Def. 6) ChgSCM(s, u) = s+·(0 7−→. u).
We now state three propositions:

(26) For every SCMPDS-State s and for every element u of Instr-LocSCM

holds (ChgSCM(s, u))(0) = u.

(27) For every SCMPDS-State s and for every element u of Instr-LocSCM and
for every element m1 of Data-LocSCM holds (ChgSCM(s, u))(m1) = s(m1).

(28) For every SCMPDS-State s and for all elements u, v of Instr-LocSCM

holds (ChgSCM(s, u))(v) = s(v).
Let s be a SCMPDS-State, let t be an element of Data-LocSCM, and let u be

an integer. The functor ChgSCM(s, t, u) yields a SCMPDS-State and is defined
as follows:

(Def. 7) ChgSCM(s, t, u) = s+·(t 7−→. u).
The following propositions are true:

(29) For every SCMPDS-State s and for every element t of Data-LocSCM and
for every integer u holds (ChgSCM(s, t, u))(0) = s(0).

(30) For every SCMPDS-State s and for every element t of Data-LocSCM and
for every integer u holds (ChgSCM(s, t, u))(t) = u.

(31) Let s be a SCMPDS-State, t be an element of Data-LocSCM, u be
an integer, and m1 be an element of Data-LocSCM. If m1 6= t, then
(ChgSCM(s, t, u))(m1) = s(m1).

(32) Let s be a SCMPDS-State, t be an element of Data-LocSCM, u be an
integer, and v be an element of Instr-LocSCM. Then (ChgSCM(s, t, u))(v) =
s(v).

Let s be a SCMPDS-State and let a be an element of Data-LocSCM. Then
s(a) is an integer.

Let s be a SCMPDS-State, let a be an element of Data-LocSCM, and let n be
an integer. The functor Address Add(s, a, n) yields an element of Data-LocSCM

and is defined by:

(Def. 8) Address Add(s, a, n) = 2 · |s(a) + n|+ 1.

Let s be a SCMPDS-State and let n be an integer. The functor
jump address(s, n) yielding an element of Instr-LocSCM is defined as follows:

(Def. 9) jump address(s, n) = |((ICs qua natural number)−2) + 2 · n|+ 2.

a small computer model with push-down stack 179

Let d be an element of Data-LocSCM and let s be an integer. Then 〈d, s〉 is
a finite sequence of elements of Data-LocSCM ∪ Z.

Let x be an element of SCMPDS− Instr. Let us assume that there exist
an element m1 of Data-LocSCM and I such that x = 〈〈I, 〈m1〉〉〉. The functor
x address1 yielding an element of Data-LocSCM is defined as follows:

(Def. 10) There exists a finite sequence f of elements of Data-LocSCM such that
f = x2 and x address1 = π1f.

The following proposition is true

(33) For every element x of SCMPDS− Instr and for every element m1 of
Data-LocSCM such that x = 〈〈I, 〈m1〉〉〉 holds x address1 = m1.

Let x be an element of SCMPDS− Instr. Let us assume that there exist
an integer r and I such that x = 〈〈I, 〈r〉〉〉. The functor x const INT yielding an
integer is defined by:

(Def. 11) There exists a finite sequence f of elements of Z such that f = x2 and
x const INT = π1f.

The following proposition is true

(34) For every element x of SCMPDS− Instr and for every integer k such
that x = 〈〈I, 〈k〉〉〉 holds x const INT = k.

Let x be an element of SCMPDS− Instr. Let us assume that there exist an
element m1 of Data-LocSCM, an integer r, and I such that x = 〈〈I, 〈m1, r〉〉〉. The
functor x P21address yielding an element of Data-LocSCM is defined as follows:

(Def. 12) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such
that f = x2 and x P21address = π1f.

The functor x P22const yielding an integer is defined as follows:

(Def. 13) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such
that f = x2 and x P22const = π2f.

The following proposition is true

(35) Let x be an element of SCMPDS− Instr, m1 be an element
of Data-LocSCM, and r be an integer. If x = 〈〈I, 〈m1, r〉〉〉, then
x P21address = m1 and x P22const = r.

Let x be an element of SCMPDS− Instr. Let us assume that there exist an
element m2 of Data-LocSCM, integers k1, k2, and I such that x = 〈〈I, 〈m2, k1,

k2〉〉〉. The functor x P31address yielding an element of Data-LocSCM is defined
as follows:

(Def. 14) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such
that f = x2 and x P31address = π1f.

The functor x P32const yielding an integer is defined as follows:

(Def. 15) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such
that f = x2 and x P32const = π2f.

180 jing-chao chen

The functor x P33const yields an integer and is defined by:

(Def. 16) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such
that f = x2 and x P33const = π3f.

We now state the proposition

(36) Let x be an element of SCMPDS− Instr, d1 be an element of
Data-LocSCM, and k1, k2 be integers. If x = 〈〈I, 〈d1, k1, k2〉〉〉, then
x P31address = d1 and x P32const = k1 and x P33const = k2.

Let x be an element of SCMPDS− Instr. Let us assume that there exist
elements m2, m3 of Data-LocSCM, integers k1, k2, and I such that x =
〈〈I, < ∗m2,m3, k1, k2∗ > 〉〉. The functor x P41address yields an element of
Data-LocSCM and is defined by:

(Def. 17) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such
that f = x2 and x P41address = π1f.

The functor x P42address yields an element of Data-LocSCM and is defined as
follows:

(Def. 18) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such
that f = x2 and x P42address = π2f.

The functor x P43const yielding an integer is defined as follows:

(Def. 19) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such
that f = x2 and x P43const = π3f.

The functor x P44const yielding an integer is defined as follows:

(Def. 20) There exists a finite sequence f of elements of Data-LocSCM ∪ Z such
that f = x2 and x P44const = π4f.

We now state the proposition

(37) Let x be an element of SCMPDS− Instr, d1, d2 be elements of
Data-LocSCM, and k1, k2 be integers. If x = 〈〈I, < ∗d1, d2, k1, k2∗ > 〉〉,
then x P41address = d1 and x P42address = d2 and x P43const = k1 and
x P44const = k2.

Let s be a SCMPDS-State and let a be an element of Data-LocSCM. The
functor PopInstrLoc(s, a) yielding an element of Instr-LocSCM is defined as fol-
lows:

(Def. 21) PopInstrLoc(s, a) = 2 · (|s(a)| ÷ 2) + 4.
The natural number RetSP is defined as follows:

(Def. 22) RetSP = 0.

The natural number RetIC is defined as follows:

(Def. 23) RetIC = 1.

Let x be an element of SCMPDS− Instr and let s be a SCMPDS-State. The
functor Exec-ResSCM(x, s) yielding a SCMPDS-State is defined as follows:

a small computer model with push-down stack 181

(Def. 24) Exec-ResSCM(x, s) =



ChgSCM(s, jump address(s, x const INT)), if there exists k1 such that
x = 〈〈0, 〈k1〉〉〉,

ChgSCM(ChgSCM(s, x P21address, x P22const), Next(ICs)), if there exist
d1, k1 such that x = 〈〈2, 〈d1, k1〉〉〉,

ChgSCM(ChgSCM(s, Address Add(s, x P21address, x P22const), (ICs qua natural
number)), Next(ICs)), if there exist d1, k1 such that x = 〈〈3, 〈d1, k1〉〉〉,

ChgSCM(ChgSCM(s, x address1, s(Address Add(s, x address1, RetSP))), PopInstrLoc
(s, Address Add(s, x address1, RetIC))), if there exists d1 such that x = 〈〈1, 〈d1〉〉〉,

ChgSCM(s, (s(Address Add(s, x P31address, x P32const)) = 0→ Next(ICs), jump
address(s, x P33const))), if there exist d1, k1, k2 such that x = 〈〈4, 〈d1, k1, k2〉〉〉,

ChgSCM(s, (s(Address Add(s, x P31address, x P32const)) > 0→ Next(ICs), jump
address(s, x P33const))), if there exist d1, k1, k2 such that x = 〈〈5, 〈d1, k1, k2〉〉〉,

ChgSCM(s, (0 > s(Address Add(s, x P31address, x P32const))→ Next(ICs), jump
address(s, x P33const))), if there exist d1, k1, k2 such that x = 〈〈6, 〈d1, k1, k2〉〉〉,

ChgSCM(ChgSCM(s, Address Add(s, x P31address, x P32const), x P33const),
Next(ICs)), if there exist d1, k1, k2 such that x = 〈〈7, 〈d1, k1, k2〉〉〉,

ChgSCM(ChgSCM(s, Address Add(s, x P31address, x P32const),
s(Address Add(s, x P31address, x P32const)) + x P33const), Next(ICs)),
if there exist d1, k1, k2 such that x = 〈〈8, 〈d1, k1, k2〉〉〉,

ChgSCM(ChgSCM(s, Address Add(s, x P41address, x P43const), s(Address Add
(s, x P41address, x P43const)) + s(Address Add(s, x P42address, x P44const))),
Next(ICs)), if there exist d1, d2, k1, k2 such that x = 〈〈9, < ∗d1, d2, k1, k2∗ > 〉〉,

ChgSCM(ChgSCM(s, Address Add(s, x P41address, x P43const), s(Address Add
(s, x P41address, x P43const))− s(Address Add(s, x P42address, x P44const))),
Next(ICs)), if there exist d1, d2, k1, k2 such that x = 〈〈10, < ∗d1, d2, k1, k2∗ > 〉〉,

ChgSCM(ChgSCM(s, Address Add(s, x P41address, x P43const), s(Address Add
(s, x P41address, x P43const)) · s(Address Add(s, x P42address, x P44const))),
Next(ICs)), if there exist d1, d2, k1, k2 such that x = 〈〈11, < ∗d1, d2, k1, k2∗ > 〉〉,

ChgSCM(ChgSCM(s, Address Add(s, x P41address, x P43const),
s(Address Add(s, x P42address, x P44const))), Next(ICs)), if there exist d1, d2,

k1, k2 such that x = 〈〈13, < ∗d1, d2, k1, k2∗ > 〉〉,
ChgSCM(ChgSCM(ChgSCM(s, Address Add(s, x P41address, x P43const),

s(Address Add(s, x P41address, x P43const))÷ s(Address Add(s, x P42address,
x P44const))), Address Add(s, x P42address, x P44const), s(Address Add(s,
x P41address, x P43const)) mod s(Address Add(s, x P42address, x P44const))),
Next(ICs)), if there exist d1, d2, k1, k2 such that x = 〈〈12, < ∗d1, d2, k1, k2∗ > 〉〉,

s, otherwise.
Let f be a function from SCMPDS− Instr into
(
∏

SCMPDS−OK)
Q

SCMPDS−OK and let x be an element of SCMPDS− Instr.
Note that f(x) is function-like and relation-like.

The function SCMPDS− Exec from SCMPDS− Instr into

182 jing-chao chen

(
∏

SCMPDS−OK)
Q

SCMPDS−OK is defined by:

(Def. 25) For every element x of SCMPDS− Instr and for every SCMPDS-State
y holds (SCMPDS− Exec)(x)(y) = Exec-ResSCM(x, y).

Acknowledgments

We wish to thank Prof. Y. Nakamura for many helpful suggestions.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[4] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676,

1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[7] Czesław Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[9] Czesław Byliński. Subcategories and products of categories. Formalized Mathematics,

1(4):725–732, 1990.
[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[11] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-

malized Mathematics, 3(2):241–250, 1992.
[12] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathe-

matics, 2(5):623–627, 1991.
[13] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[14] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics,

1(3):495–500, 1990.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[16] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97–105, 1990.
[17] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[18] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[19] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[21] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received June 15, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

The SCMPDS Computer and the Basic
Semantics of its Instructions1

Jing-Chao Chen
Shanghai Jiaotong University

Summary. The article defines the SCMPDS computer and its instructions.
The SCMPDS computer consists of such instructions as conventional arithme-
tic, ”goto”, ”return” and ”save instruction-counter” (”saveIC” for short). The
address used in the ”goto” instruction is an offset value rather than a pointer
in the standard sense. Thus, we don’t define halting instruction directly but de-
fine it by ”goto 0” instruction. The ”saveIC” and ”return” equal almost call and
return statements in the usual high programming language. Theoretically, the
SCMPDS computer can implement all algorithms described by the usual high
programming language including recursive routine. In addition, we describe the
execution semantics and halting properties of each instruction.

MML Identifier: SCMPDS 2.

The papers [15], [21], [14], [5], [6], [10], [20], [18], [1], [16], [4], [2], [13], [22], [7],
[9], [3], [11], [12], [8], [17], and [19] provide the notation and terminology for this
paper.

1. The SCMPDS Computer

In this paper x denotes a set and i, k denote natural numbers.
The strict AMI SCMPDS over {Z} is defined as follows:

(Def. 1) SCMPDS = 〈N, 0, Instr-LocSCM,Z14, SCMPDS− Instr, SCMPDS−OK,

SCMPDS− Exec〉.
Next we state three propositions:

1This work was done while the author visited Shinshu University March–April 1999.

183
c© 1999 University of Białystok

ISSN 1426–2630

184 jing-chao chen

(1) There exists k such that x = 2 · k + 2 iff x ∈ Instr-LocSCM.

(2) SCMPDS is data-oriented.

(3) SCMPDS is definite.

Let us note that SCMPDS is von Neumann data-oriented and definite.
The following two propositions are true:

(4)(i) The instruction locations of SCMPDS 6= Z,

(ii) the instructions of SCMPDS 6= Z, and
(iii) the instruction locations of SCMPDS 6= the instructions of SCMPDS.

(5) N = {0} ∪Data-LocSCM ∪ Instr-LocSCM.

In the sequel s is a state of SCMPDS.
One can prove the following propositions:

(6) ICSCMPDS = 0.

(7) For every SCMPDS-State S such that S = s holds ICs = ICS .

2. The Memory Structure

An object of SCMPDS is called a Int position if:

(Def. 2) It ∈ Data-LocSCM.

In the sequel d1 denotes a Int position.
The following propositions are true:

(8) d1 ∈ Data-LocSCM.

(9) If x ∈ Data-LocSCM, then x is a Int position.

(10) Data-LocSCM misses the instruction locations of SCMPDS.

(11) The instruction locations of SCMPDS are infinite.

(12) Every Int position is a data-location.

(13) For every Int position l holds ObjectKind(l) = Z.

(14) For every set x such that x ∈ Instr-LocSCM holds x is an instruction-
location of SCMPDS.

3. The Instruction Structure

We use the following convention: d2, d3, d4, d5, d6 are elements of
Data-LocSCM and k1, k2, k3, k4, k5, k6 are integers.

Let I be an instruction of SCMPDS. The functor InsCode(I) yields a natural
number and is defined by:

(Def. 3) InsCode(I) = I1.

the scmpds computer and the basic . . . 185

In the sequel I is an instruction of SCMPDS.
Next we state the proposition

(15) For every instruction I of SCMPDS holds InsCode(I) ¬ 13.
Let s be a state of SCMPDS and let d be a Int position. Then s(d) is an

integer.
Let m, n be integers. The functor DataLoc(m,n) yields a Int position and

is defined as follows:

(Def. 4) DataLoc(m,n) = 2 · |m + n|+ 1.

One can prove the following propositions:

(16) 〈〈0, 〈k1〉〉〉 ∈ SCMPDS− Instr .

(17) 〈〈1, 〈d2〉〉〉 ∈ SCMPDS− Instr .

(18) If x ∈ {2, 3}, then 〈〈x, 〈d3, k2〉〉〉 ∈ SCMPDS− Instr .

(19) If x ∈ {4, 5, 6, 7, 8}, then 〈〈x, 〈d4, k3, k4〉〉〉 ∈ SCMPDS− Instr .

(20) If x ∈ {9, 10, 11, 12, 13}, then 〈〈x, < ∗d5, d6, k5, k6∗ > 〉〉 ∈
SCMPDS− Instr .

In the sequel a, b, c are Int position.
Let us consider k1. The functor goto k1 yielding an instruction of SCMPDS

is defined as follows:

(Def. 5) goto k1 = 〈〈0, 〈k1〉〉〉.
Let us consider a. The functor return a yields an instruction of SCMPDS

and is defined by:

(Def. 6) return a = 〈〈1, 〈a〉〉〉.
Let us consider a, k1. The functor a:=k1 yields an instruction of SCMPDS

and is defined as follows:

(Def. 7) a:=k1 = 〈〈2, 〈a, k1〉〉〉.
The functor saveIC(a, k1) yields an instruction of SCMPDS and is defined as
follows:

(Def. 8) saveIC(a, k1) = 〈〈3, 〈a, k1〉〉〉.
Let us consider a, k1, k2. The functor (a, k1) <> 0 gotok2 yields an instruc-

tion of SCMPDS and is defined as follows:

(Def. 9) (a, k1) <> 0 gotok2 = 〈〈4, 〈a, k1, k2〉〉〉.
The functor (a, k1) <= 0 gotok2 yielding an instruction of SCMPDS is defined
as follows:

(Def. 10) (a, k1) <= 0 gotok2 = 〈〈5, 〈a, k1, k2〉〉〉.
The functor (a, k1) >= 0 gotok2 yielding an instruction of SCMPDS is defined
by:

(Def. 11) (a, k1) >= 0 gotok2 = 〈〈6, 〈a, k1, k2〉〉〉.
The functor ak1 :=k2 yielding an instruction of SCMPDS is defined as follows:

186 jing-chao chen

(Def. 12) ak1 :=k2 = 〈〈7, 〈a, k1, k2〉〉〉.
The functor AddTo(a, k1, k2) yielding an instruction of SCMPDS is defined by:

(Def. 13) AddTo(a, k1, k2) = 〈〈8, 〈a, k1, k2〉〉〉.
Let us consider a, b, k1, k2. The functor AddTo(a, k1, b, k2) yields an instruc-

tion of SCMPDS and is defined by:

(Def. 14) AddTo(a, k1, b, k2) = 〈〈9, < ∗a, b, k1, k2∗ > 〉〉.
The functor SubFrom(a, k1, b, k2) yielding an instruction of SCMPDS is defined
by:

(Def. 15) SubFrom(a, k1, b, k2) = 〈〈10, < ∗a, b, k1, k2∗ > 〉〉.
The functor MultBy(a, k1, b, k2) yielding an instruction of SCMPDS is defined
as follows:

(Def. 16) MultBy(a, k1, b, k2) = 〈〈11, < ∗a, b, k1, k2∗ > 〉〉.
The functor Divide(a, k1, b, k2) yielding an instruction of SCMPDS is defined
by:

(Def. 17) Divide(a, k1, b, k2) = 〈〈12, < ∗a, b, k1, k2∗ > 〉〉.
The functor (a, k1) := (b, k2) yielding an instruction of SCMPDS is defined by:

(Def. 18) (a, k1) := (b, k2) = 〈〈13, < ∗a, b, k1, k2∗ > 〉〉.
One can prove the following propositions:

(21) InsCode(goto k1) = 0.

(22) InsCode(return a) = 1.

(23) InsCode(a:=k1) = 2.

(24) InsCode(saveIC(a, k1)) = 3.

(25) InsCode((a, k1) <> 0 gotok2) = 4.

(26) InsCode((a, k1) <= 0 gotok2) = 5.

(27) InsCode((a, k1) >= 0 gotok2) = 6.

(28) InsCode(ak1 :=k2) = 7.

(29) InsCode(AddTo(a, k1, k2)) = 8.

(30) InsCode(AddTo(a, k1, b, k2)) = 9.

(31) InsCode(SubFrom(a, k1, b, k2)) = 10.

(32) InsCode(MultBy(a, k1, b, k2)) = 11.

(33) InsCode(Divide(a, k1, b, k2)) = 12.

(34) InsCode((a, k1) := (b, k2)) = 13.

(35) For every instruction i1 of SCMPDS such that InsCode(i1) = 0 there
exists k1 such that i1 = goto k1.

(36) For every instruction i1 of SCMPDS such that InsCode(i1) = 1 there
exists a such that i1 = return a.

the scmpds computer and the basic . . . 187

(37) For every instruction i1 of SCMPDS such that InsCode(i1) = 2 there
exist a, k1 such that i1 = a:=k1.

(38) For every instruction i1 of SCMPDS such that InsCode(i1) = 3 there
exist a, k1 such that i1 = saveIC(a, k1).

(39) For every instruction i1 of SCMPDS such that InsCode(i1) = 4 there
exist a, k1, k2 such that i1 = (a, k1) <> 0 gotok2.

(40) For every instruction i1 of SCMPDS such that InsCode(i1) = 5 there
exist a, k1, k2 such that i1 = (a, k1) <= 0 gotok2.

(41) For every instruction i1 of SCMPDS such that InsCode(i1) = 6 there
exist a, k1, k2 such that i1 = (a, k1) >= 0 gotok2.

(42) For every instruction i1 of SCMPDS such that InsCode(i1) = 7 there
exist a, k1, k2 such that i1 = ak1 :=k2.

(43) For every instruction i1 of SCMPDS such that InsCode(i1) = 8 there
exist a, k1, k2 such that i1 = AddTo(a, k1, k2).

(44) For every instruction i1 of SCMPDS such that InsCode(i1) = 9 there
exist a, b, k1, k2 such that i1 = AddTo(a, k1, b, k2).

(45) For every instruction i1 of SCMPDS such that InsCode(i1) = 10 there
exist a, b, k1, k2 such that i1 = SubFrom(a, k1, b, k2).

(46) For every instruction i1 of SCMPDS such that InsCode(i1) = 11 there
exist a, b, k1, k2 such that i1 = MultBy(a, k1, b, k2).

(47) For every instruction i1 of SCMPDS such that InsCode(i1) = 12 there
exist a, b, k1, k2 such that i1 = Divide(a, k1, b, k2).

(48) For every instruction i1 of SCMPDS such that InsCode(i1) = 13 there
exist a, b, k1, k2 such that i1 = (a, k1) := (b, k2).

(49) For every state s of SCMPDS and for every Int position d holds d ∈
dom s.

(50) For every state s of SCMPDS holds Data-LocSCM ⊆ dom s.

(51) For every state s of SCMPDS holds dom(s¹Data-LocSCM) =
Data-LocSCM.

(52) For every Int position d7 holds d7 6= ICSCMPDS.

(53) For every instruction-location i2 of SCMPDS and for every Int position
d7 holds i2 6= d7.

(54) Let s1, s2 be states of SCMPDS. Suppose IC(s1) = IC(s2) and for every
Int position a holds s1(a) = s2(a) and for every instruction-location i of
SCMPDS holds s1(i) = s2(i). Then s1 = s2.

Let l1 be an instruction-location of SCMPDS. The functor Next(l1) yields
an instruction-location of SCMPDS and is defined by:

(Def. 19) There exists an element m1 of Instr-LocSCM such that m1 = l1 and
Next(l1) = Next(m1).

188 jing-chao chen

One can prove the following propositions:

(55) For every instruction-location l1 of SCMPDS and for every element m1

of Instr-LocSCM such that m1 = l1 holds Next(m1) = Next(l1).
(56) For every element i of SCMPDS− Instr such that i = I and for every

SCMPDS-State S such that S = s holds Exec(I, s) = Exec-ResSCM(i, S).

4. Execution Semantics of the SCMPDS instructions

The following propositions are true:

(57) (Exec(a:=k1, s))(ICSCMPDS) = Next(ICs) and (Exec(a:=k1, s))(a) = k1

and for every b such that b 6= a holds (Exec(a:=k1, s))(b) = s(b).
(58) (Exec(ak1 :=k2, s))(ICSCMPDS) = Next(ICs) and (Exec(ak1 :=k2, s))

(DataLoc(s(a), k1)) = k2 and for every b such that b 6= DataLoc(s(a), k1)
holds (Exec(ak1 :=k2, s))(b) = s(b).

(59) (Exec((a, k1) := (b, k2), s))(ICSCMPDS) = Next(ICs) and (Exec((a, k1) :=
(b, k2), s))(DataLoc(s(a), k1)) = s(DataLoc(s(b), k2)) and for every c such
that c 6= DataLoc(s(a), k1) holds (Exec((a, k1) := (b, k2), s))(c) = s(c).

(60) (Exec(AddTo(a, k1, k2), s))(ICSCMPDS) = Next(ICs) and (Exec(AddTo
(a, k1, k2), s))(DataLoc(s(a), k1)) = s(DataLoc(s(a), k1)) + k2 and for
every b such that b 6= DataLoc(s(a), k1) holds (Exec(AddTo(a, k1, k2), s))(b)
= s(b).

(61) (Exec(AddTo(a, k1, b, k2), s))(ICSCMPDS) = Next(ICs) and (Exec(AddTo
(a, k1, b, k2), s))(DataLoc(s(a), k1)) = s(DataLoc(s(a), k1))+s(DataLoc(s(b),
k2)) and for every c such that c 6= DataLoc(s(a), k1) holds
(Exec(AddTo(a, k1, b, k2), s))(c) = s(c).

(62) (Exec(SubFrom(a, k1, b, k2), s))(ICSCMPDS) = Next(ICs) and (Exec
(SubFrom(a, k1, b, k2), s))(DataLoc(s(a), k1)) = s(DataLoc(s(a), k1)) −
s(DataLoc(s(b), k2)) and for every c such that c 6= DataLoc(s(a), k1) holds
(Exec(SubFrom(a, k1, b, k2), s))(c) = s(c).

(63) (Exec(MultBy(a, k1, b, k2), s))(ICSCMPDS) = Next(ICs) and (Exec
(MultBy(a, k1, b, k2), s))(DataLoc(s(a), k1)) = s(DataLoc(s(a), k1)) ·
s(DataLoc(s(b), k2)) and for every c such that c 6= DataLoc(s(a), k1) holds
(Exec(MultBy(a, k1, b, k2), s))(c) = s(c).

(64)(i) (Exec(Divide(a, k1, b, k2), s))(ICSCMPDS) = Next(ICs),
(ii) if DataLoc(s(a), k1) 6= DataLoc(s(b), k2), then (Exec(Divide(a, k1, b, k2),

s))(DataLoc(s(a), k1)) = s(DataLoc(s(a), k1))÷ s(DataLoc(s(b), k2)),
(iii) (Exec(Divide(a, k1, b, k2), s))(DataLoc(s(b), k2)) = s(DataLoc(s(a), k1))

mod s(DataLoc(s(b), k2)), and

the scmpds computer and the basic . . . 189

(iv) for every c such that c 6= DataLoc(s(a), k1) and c 6= DataLoc(s(b), k2)
holds (Exec(Divide(a, k1, b, k2), s))(c) = s(c).

(65) (Exec(Divide(a, k1, a, k1), s))(ICSCMPDS) = Next(ICs) and (Exec(Divide
(a, k1, a, k1), s))(DataLoc(s(a), k1)) = s(DataLoc(s(a), k1))mods(DataLoc
(s(a), k1)) and for every c such that c 6= DataLoc(s(a), k1) holds
(Exec(Divide(a, k1, a, k1), s))(c) = s(c).

Let s be a state of SCMPDS and let c be an integer. The functor
ICplusConst(s, c) yields an instruction-location of SCMPDS and is defined by:

(Def. 20) There exists a natural number m such that m = ICs and
ICplusConst(s, c) = |(m− 2) + 2 · c|+ 2.

The following propositions are true:

(66) (Exec(goto k1, s))(ICSCMPDS) = ICplusConst(s, k1) and for every a

holds (Exec(goto k1, s))(a) = s(a).

(67) If s(DataLoc(s(a), k1)) 6= 0, then (Exec((a, k1) <> 0 gotok2, s))(ICSCMPDS)
= ICplusConst(s, k2) and if s(DataLoc(s(a), k1)) = 0, then
(Exec((a, k1) <> 0 gotok2, s))(ICSCMPDS) = Next(ICs) and (Exec((a, k1) <>

0 gotok2, s))(b) = s(b).

(68) If s(DataLoc(s(a), k1)) ¬ 0, then (Exec((a, k1) <= 0 gotok2, s))(ICSCMPDS)
= ICplusConst(s, k2) and if s(DataLoc(s(a), k1)) > 0, then
(Exec((a, k1) <= 0 gotok2, s))(ICSCMPDS) = Next(ICs) and (Exec((a, k1) <=
0 gotok2, s))(b) = s(b).

(69) If s(DataLoc(s(a), k1)) ­ 0, then (Exec((a, k1) >= 0 gotok2, s))(ICSCMPDS)
= ICplusConst(s, k2) and if s(DataLoc(s(a), k1)) < 0, then
(Exec((a, k1) >= 0 gotok2, s))(ICSCMPDS) = Next(ICs) and (Exec((a, k1) >=
0 gotok2, s))(b) = s(b).

(70) (Exec(return a, s))(ICSCMPDS) = 2 · (|s(DataLoc(s(a), RetIC))| ÷ 2) + 4
and (Exec(return a, s))(a) = s(DataLoc(s(a), RetSP)) and for every b such
that a 6= b holds (Exec(return a, s))(b) = s(b).

(71) (Exec(saveIC(a, k1), s))(ICSCMPDS) = Next(ICs) and (Exec(saveIC(a, k1),
s))(DataLoc(s(a), k1)) = ICs and for every b such that DataLoc(s(a), k1) 6=
b holds (Exec(saveIC(a, k1), s))(b) = s(b).

(72) For every integer k there exists a function f from Data-LocSCM into Z
such that for every element x of Data-LocSCM holds f(x) = k.

(73) For every integer k there exists a state s of SCMPDS such that for every
Int position d holds s(d) = k.

(74) Let k be an integer and l1 be an instruction-location of SCMPDS. Then
there exists a state s of SCMPDS such that s(0) = l1 and for every Int
position d holds s(d) = k.

(75) goto 0 is halting.

190 jing-chao chen

(76) For every instruction I of SCMPDS such that there exists s such that
(Exec(I, s))(ICSCMPDS) = Next(ICs) holds I is non halting.

(77) a:=k1 is non halting.

(78) ak1 :=k2 is non halting.

(79) (a, k1) := (b, k2) is non halting.

(80) AddTo(a, k1, k2) is non halting.

(81) AddTo(a, k1, b, k2) is non halting.

(82) SubFrom(a, k1, b, k2) is non halting.

(83) MultBy(a, k1, b, k2) is non halting.

(84) Divide(a, k1, b, k2) is non halting.

(85) If k1 6= 0, then goto k1 is non halting.

(86) (a, k1) <> 0 gotok2 is non halting.

(87) (a, k1) <= 0 gotok2 is non halting.

(88) (a, k1) >= 0 gotok2 is non halting.

(89) return a is non halting.

(90) saveIC(a, k1) is non halting.

(91) Let I be a set. Then I is an instruction of SCMPDS if and only if one
of the following conditions is satisfied:
there exists k1 such that I = goto k1 or there exists a such that I =
return a or there exist a, k1 such that I = saveIC(a, k1) or there exist a,
k1 such that I = a:=k1 or there exist a, k1, k2 such that I = ak1 :=k2

or there exist a, k1, k2 such that I = (a, k1) <> 0 gotok2 or there exist
a, k1, k2 such that I = (a, k1) <= 0 gotok2 or there exist a, k1, k2 such
that I = (a, k1) >= 0 gotok2 or there exist a, b, k1, k2 such that I =
AddTo(a, k1, k2) or there exist a, b, k1, k2 such that I = AddTo(a, k1, b, k2)
or there exist a, b, k1, k2 such that I = SubFrom(a, k1, b, k2) or there exist
a, b, k1, k2 such that I = MultBy(a, k1, b, k2) or there exist a, b, k1,
k2 such that I = Divide(a, k1, b, k2) or there exist a, b, k1, k2 such that
I = (a, k1) := (b, k2).

Let us observe that SCMPDS is halting.
We now state several propositions:

(92) For every instruction I of SCMPDS such that I is halting holds I =
haltSCMPDS.

(93) haltSCMPDS = goto 0.

(94) Exec(haltSCMPDS, s) = s.

(95) For every state s of SCMPDS and for every instruction-location i of
SCMPDS holds s(i) is an instruction of SCMPDS.

(96) For every state s of SCMPDS and for every instruction i of SCMPDS and
for every instruction-location l of SCMPDS holds (Exec(i, s))(l) = s(l).

the scmpds computer and the basic . . . 191

(97) SCMPDS is realistic.

Let us observe that SCMPDS is steady-programmed and realistic.
One can prove the following propositions:

(98) ICSCMPDS 6= di and ICSCMPDS 6= ii.

(99) For every instruction I of SCMPDS such that I = goto 0 holds I is
halting.

Acknowledgments

We wish to thank Prof. Y. Nakamura for many helpful suggestions.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[4] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676,

1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[7] Czesław Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[8] Jing-Chao Chen. A small computer model with push-down stack. Formalized Mathema-

tics, 8(1):175–182, 1999.
[9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.

[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[11] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[12] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241–250, 1992.

[13] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathe-
matics, 2(5):623–627, 1991.

[14] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[16] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97–105, 1990.
[17] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51–56, 1993.
[18] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[19] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[21] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received June 15, 1999

192 jing-chao chen

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Computation and Program Shift in the
SCMPDS Computer1

Jing-Chao Chen
Shanghai Jiaotong University

Summary. A finite partial state is said to be autonomic if the computation
results in any two states containing it are same on its domain. On the basis of
this definition, this article presents some computation results about autonomic
finite partial states of the SCMPDS computer. Because the instructions of the
SCMPDS computer are more complicated than those of the SCMFSA computer,
the results given by this article are weaker than those reported previously by the
article on the SCMFSA computer. The second task of this article is to define the
notion of program shift. The importance of this notion is that the computation of
some program blocks can be simplified by shifting a program block to the initial
position.

MML Identifier: SCMPDS 3.

The papers [5], [18], [24], [2], [12], [25], [4], [23], [6], [21], [1], [7], [16], [3], [11],
[8], [13], [14], [19], [17], [10], [9], [22], [15], and [20] provide the notation and
terminology for this paper.

1. Preliminaries

In this paper k, m, n denote natural numbers.
Next we state several propositions:

(1) Suppose n ¬ 13. Then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or
n = 5 or n = 6 or n = 7 or n = 8 or n = 9 or n = 10 or n = 11 or n = 12
or n = 13.

1This work was done while the author visited Shinshu University March–April 1999.

193
c© 1999 University of Białystok

ISSN 1426–2630

194 jing-chao chen

(2) For every integer k1 and for all states s1, s2 of SCMPDS such that
IC(s1) = IC(s2) holds ICplusConst(s1, k1) = ICplusConst(s2, k1).

(3) Let k1 be an integer, a be a Int position, and s1, s2 be states of SCMPDS.
If s1¹Data-LocSCM = s2¹Data-LocSCM, then s1(DataLoc(s1(a), k1)) =
s2(DataLoc(s2(a), k1)).

(4) For every Int position a and for all states s1, s2 of SCMPDS such that
s1¹Data-LocSCM = s2¹Data-LocSCM holds s1(a) = s2(a).

(5) The objects of SCMPDS = {ICSCMPDS}∪Data-LocSCM∪the instruction
locations of SCMPDS.

(6) ICSCMPDS /∈ Data-LocSCM.

(7) For all states s1, s2 of SCMPDS such that s1¹(Data-LocSCM ∪
{ICSCMPDS}) = s2¹(Data-LocSCM ∪ {ICSCMPDS}) and for every instruc-
tion l of SCMPDS holds Exec(l, s1)¹(Data-LocSCM ∪ {ICSCMPDS}) =
Exec(l, s2)¹(Data-LocSCM ∪ {ICSCMPDS}).

(8) For every instruction i of SCMPDS and for every state s of SCMPDS
holds Exec(i, s)¹Instr-LocSCM = s¹Instr-LocSCM.

2. Finite Partial States of SCMPDS

Next we state two propositions:

(9) For every finite partial state p of SCMPDS holds DataPart(p) =
p¹Data-LocSCM.

(10) For every finite partial state p of SCMPDS holds p is data-only iff
dom p ⊆ Data-LocSCM.

Let us mention that there exists a finite partial state of SCMPDS which is
data-only.

Next we state two propositions:

(11) For every finite partial state p of SCMPDS holds dom DataPart(p) ⊆
Data-LocSCM.

(12) For every finite partial state p of SCMPDS holds dom ProgramPart(p) ⊆
the instruction locations of SCMPDS.

Let I1 be a partial function from FinPartSt(SCMPDS) to FinPartSt(SCMPDS).
We say that I1 is data-only if and only if the condition (Def. 1) is satisfied.

(Def. 1) Let p be a finite partial state of SCMPDS. Suppose p ∈ dom I1. Then
p is data-only and for every finite partial state q of SCMPDS such that
q = I1(p) holds q is data-only.

Let us observe that there exists a partial function from FinPartSt(SCMPDS)
to FinPartSt(SCMPDS) which is data-only.

computation and program shift in the . . . 195

Next we state three propositions:

(13) Let i be an instruction of SCMPDS, s be a state of SCMPDS, and p

be a programmed finite partial state of SCMPDS. Then Exec(i, s+·p) =
Exec(i, s)+·p.

(14) For every state s of SCMPDS and for every instruction-location i1 of
SCMPDS and for every Int position a holds s(a) = (s+·Start-At(i1))(a).

(15) For all states s, t of SCMPDS holds s+·t¹Data-LocSCM is a state of
SCMPDS.

3. Autonomic Finite Partial States of SCMPDS and its
Computation

Let l1 be a Int position and let a be an integer. Then l1 7−→. a is a finite partial
state of SCMPDS.

Next we state the proposition

(16) For every autonomic finite partial state p of SCMPDS such that
DataPart(p) 6= ∅ holds ICSCMPDS ∈ dom p.

Let us observe that there exists a finite partial state of SCMPDS which is
autonomic and non programmed.

One can prove the following propositions:

(17) For every autonomic non programmed finite partial state p of SCMPDS
holds ICSCMPDS ∈ dom p.

(18) Let s1, s2 be states of SCMPDS and k1, k2, m be integers. If IC(s1) =
IC(s2) and k1 6= k2 and m = IC(s1) and (m− 2)+2 · k1 ­ 0 and (m− 2)+
2 · k2 ­ 0, then ICplusConst(s1, k1) 6= ICplusConst(s2, k2).

(19) For all states s1, s2 of SCMPDS and for all natural numbers k1, k2

such that IC(s1) = IC(s2) and k1 6= k2 holds ICplusConst(s1, k1) 6=
ICplusConst(s2, k2).

(20) For every state s of SCMPDS holds Next(ICs) = ICplusConst(s, 1).
(21) For every autonomic finite partial state p of SCMPDS such that

ICSCMPDS ∈ dom p holds ICp ∈ dom p.

(22) Let p be an autonomic non programmed finite partial state of SCMPDS
and s be a state of SCMPDS. If p ⊆ s, then for every natural number i

holds IC(Computation(s))(i) ∈ dom ProgramPart(p).
(23) Let p be an autonomic non programmed finite partial state of SCMPDS

and s1, s2 be states of SCMPDS. Suppose p ⊆ s1 and p ⊆ s2. Let i be
a natural number. Then IC(Computation(s1))(i) = IC(Computation(s2))(i) and
CurInstr((Computation(s1))(i)) = CurInstr((Computation(s2))(i)).

196 jing-chao chen

(24) Let p be an autonomic non programmed finite partial state of SCMPDS
and s1, s2 be states of SCMPDS. Suppose p ⊆ s1 and p ⊆ s2.

Let i be a natural number, k1, k2 be integers, and a, b be Int po-
sition. Suppose CurInstr((Computation(s1))(i)) = (a, k1) := (b, k2)
and a ∈ dom p and DataLoc((Computation(s1))(i)(a), k1) ∈ dom p.

Then (Computation(s1))(i)(DataLoc((Computation(s1))(i)(b), k2)) =
(Computation(s2))(i)(DataLoc((Computation(s2))(i)(b), k2)).

(25) Let p be an autonomic non programmed finite partial state of SCMPDS
and s1, s2 be states of SCMPDS. Suppose p ⊆ s1 and p ⊆ s2.

Let i be a natural number, k1, k2 be integers, and a, b be Int po-
sition. Suppose CurInstr((Computation(s1))(i)) = AddTo(a, k1, b, k2)
and a ∈ dom p and DataLoc((Computation(s1))(i)(a), k1) ∈ dom p.

Then (Computation(s1))(i)(DataLoc((Computation(s1))(i)(b), k2)) =
(Computation(s2))(i)(DataLoc((Computation(s2))(i)(b), k2)).

(26) Let p be an autonomic non programmed finite partial state of SCMPDS
and s1, s2 be states of SCMPDS. Suppose p ⊆ s1 and p ⊆ s2.

Let i be a natural number, k1, k2 be integers, and a, b be Int po-
sition. Suppose CurInstr((Computation(s1))(i)) = SubFrom(a, k1, b, k2)
and a ∈ dom p and DataLoc((Computation(s1))(i)(a), k1) ∈ dom p.

Then (Computation(s1))(i)(DataLoc((Computation(s1))(i)(b), k2)) =
(Computation(s2))(i)(DataLoc((Computation(s2))(i)(b), k2)).

(27) Let p be an autonomic non programmed finite partial state of SCMPDS
and s1, s2 be states of SCMPDS. Suppose p ⊆ s1 and p ⊆ s2.

Let i be a natural number, k1, k2 be integers, and a, b be Int posi-
tion. Suppose CurInstr((Computation(s1))(i)) = MultBy(a, k1, b, k2) and
a ∈ dom p and DataLoc((Computation(s1))(i)(a), k1) ∈ dom p. Then
(Computation(s1))(i)(DataLoc((Computation(s1))(i)(a), k1))·
(Computation(s1))(i)(DataLoc((Computation(s1))(i)(b), k2)) =
(Computation(s2))(i)(DataLoc((Computation(s2))(i)(a), k1))·
(Computation(s2))(i)(DataLoc((Computation(s2))(i)(b), k2)).

(28) Let p be an autonomic non programmed finite partial state of SCMPDS
and s1, s2 be states of SCMPDS. Suppose p ⊆ s1 and p ⊆ s2. Let
i, m be natural numbers, a be a Int position, and k1, k2 be inte-
gers. Suppose CurInstr((Computation(s1))(i)) = (a, k1) <> 0 gotok2 and
m = IC(Computation(s1))(i) and (m − 2) + 2 · k2 ­ 0 and k2 6= 1. Then
(Computation(s1))(i)(DataLoc((Computation(s1))(i)(a), k1)) = 0 if and
only if (Computation(s2))(i)(DataLoc((Computation(s2))(i)(a), k1)) = 0.

(29) Let p be an autonomic non programmed finite partial state of SCMPDS
and s1, s2 be states of SCMPDS. Suppose p ⊆ s1 and p ⊆ s2. Let
i, m be natural numbers, a be a Int position, and k1, k2 be inte-
gers. Suppose CurInstr((Computation(s1))(i)) = (a, k1) <= 0 gotok2 and

computation and program shift in the . . . 197

m = IC(Computation(s1))(i) and (m − 2) + 2 · k2 ­ 0 and k2 6= 1. Then
(Computation(s1))(i)(DataLoc((Computation(s1))(i)(a), k1)) > 0 if and
only if (Computation(s2))(i)(DataLoc((Computation(s2))(i)(a), k1)) > 0.

(30) Let p be an autonomic non programmed finite partial state of SCMPDS
and s1, s2 be states of SCMPDS. Suppose p ⊆ s1 and p ⊆ s2. Let
i, m be natural numbers, a be a Int position, and k1, k2 be inte-
gers. Suppose CurInstr((Computation(s1))(i)) = (a, k1) >= 0 gotok2 and
m = IC(Computation(s1))(i) and (m − 2) + 2 · k2 ­ 0 and k2 6= 1. Then
(Computation(s1))(i)(DataLoc((Computation(s1))(i)(a), k1)) < 0 if and
only if (Computation(s2))(i)(DataLoc((Computation(s2))(i)(a), k1)) < 0.

4. Program Shift in the SCMPDS Computer

Let us consider k. The functor inspos k yielding an instruction-location of
SCMPDS is defined by:

(Def. 2) inspos k = ik.

One can prove the following two propositions:

(31) For all natural numbers k1, k2 such that k1 6= k2 holds inspos k1 6=
inspos k2.

(32) For every instruction-location i2 of SCMPDS there exists a natural num-
ber i such that i2 = inspos i.

Let l2 be an instruction-location of SCMPDS and let k be a natural number.
The functor l2 + k yields an instruction-location of SCMPDS and is defined as
follows:

(Def. 3) There exists a natural number m such that l2 = inspos m and l2 + k =
inspos m + k.

The functor l2 −′ k yielding an instruction-location of SCMPDS is defined as
follows:

(Def. 4) There exists a natural number m such that l2 = inspos m and l2 −′ k =
inspos m−′ k.

Next we state four propositions:

(33) For every instruction-location l of SCMPDS and for all m, n holds (l +
m) + n = l + (m + n).

(34) For every instruction-location l2 of SCMPDS and for every natural num-
ber k holds (l2 + k)−′ k = l2.

(35) For all instructions-locations l3, l4 of SCMPDS and for every natural
number k holds Start-At(l3 + k) = Start-At(l4 + k) iff Start-At(l3) =
Start-At(l4).

198 jing-chao chen

(36) For all instructions-locations l3, l4 of SCMPDS and for every natural
number k such that Start-At(l3) = Start-At(l4) holds Start-At(l3 −′ k) =
Start-At(l4 −′ k).

Let I1 be a finite partial state of SCMPDS. We say that I1 is initial if and
only if:

(Def. 5) For all m, n such that inspos n ∈ dom I1 and m < n holds inspos m ∈
dom I1.

The finite partial state SCMPDS− Stop of SCMPDS is defined as follows:

(Def. 6) SCMPDS− Stop = inspos 07−→. haltSCMPDS.

Let us observe that SCMPDS− Stop is non empty initial and programmed.
Let us observe that there exists a finite partial state of SCMPDS which is

initial, programmed, and non empty.
Let p be a programmed finite partial state of SCMPDS and let k be a

natural number. The functor Shift(p, k) yielding a programmed finite partial
state of SCMPDS is defined as follows:

(Def. 7) dom Shift(p, k) = {inspos m+k : inspos m ∈ dom p} and for every m such
that inspos m ∈ dom p holds (Shift(p, k))(inspos m + k) = p(inspos m).

We now state several propositions:

(37) Let l be an instruction-location of SCMPDS, k be a natural number,
and p be a programmed finite partial state of SCMPDS. If l ∈ dom p, then
(Shift(p, k))(l + k) = p(l).

(38) Let p be a programmed finite partial state of SCMPDS and k be a
natural number. Then dom Shift(p, k) = {i2+k; i2 ranges over instructions-
locations of SCMPDS: i2 ∈ dom p}.

(39) For every programmed finite partial state I of SCMPDS holds
Shift(Shift(I, m), n) = Shift(I,m + n).

(40) Let s be a programmed finite partial state of SCMPDS, f be a function
from the instructions of SCMPDS into the instructions of SCMPDS, and
given n. Then Shift(f · s, n) = f · Shift(s, n).

(41) For all programmed finite partial states I, J of SCMPDS holds
Shift(I+·J, n) = Shift(I, n)+· Shift(J, n).

Acknowledgments

We wish to thank Prof. Y. Nakamura for many helpful suggestions.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[3] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676,

1990.

computation and program shift in the . . . 199

[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[6] Czesław Byliński. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[8] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics,

2(5):701–709, 1991.
[9] Jing-Chao Chen. The SCMPDS computer and the basic semantics of its instructions.

Formalized Mathematics, 8(1):183–191, 1999.
[10] Jing-Chao Chen. A small computer model with push-down stack. Formalized Mathema-

tics, 8(1):175–182, 1999.
[11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[13] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151–160, 1992.
[14] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-

malized Mathematics, 3(2):241–250, 1992.
[15] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,

4(1):83–86, 1993.
[16] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathe-

matics, 2(5):623–627, 1991.
[17] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,

5(1):1–8, 1996.
[18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[19] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51–56, 1993.
[20] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of

SCMFSA. Formalized Mathematics, 5(4):571–576, 1996.
[21] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[22] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[24] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received June 15, 1999

200 jing-chao chen

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

The Construction and Shiftability of
Program Blocks for SCMPDS1

Jing-Chao Chen
Shanghai Jiaotong University

Summary. In this article,a program block is defined as a finite sequence of
instructions stored consecutively on initial positions. Based on this definition,any
program block with more than two instructions can be viewed as the combina-
tion of two smaller program blocks. To describe the computation of a program
block by the result of its two sub-blocks, we introduce the notions of paraclosed,
parahalting, valid, and shiftable, the meaning of which may be stated as follows:

- a program is paraclosed if and only if any state containing it is closed,

- a program is parahalting if and only if any state containing it is halting,

- in a program block, a jumping instruction is valid if its jumping offset is
valid,

- a program block is shiftable if it does not contain any return and saveIC
instructions,and each instruction in it is valid.

When a program block is shiftable, its computing result does not depend on its
storage position.

MML Identifier: SCMPDS 4.

The articles [17], [23], [12], [24], [5], [6], [20], [22], [2], [4], [11], [7], [13], [14], [18],
[15], [3], [10], [9], [21], [19], [8], [1], and [16] provide the notation and terminology
for this paper.

1This research is partially supported by the National Natural Science Foundation of China
Grant No. 69873033.

201
c© 1999 University of Białystok

ISSN 1426–2630

202 jing-chao chen

1. Definition of a Program Block and its Basic Properties

A Program-block is an initial programmed finite partial state of SCMPDS.
We adopt the following convention: m, n are natural numbers, i, j, k are

instructions of SCMPDS, and I, J , K are Program-block.
Let us consider i. The functor Load(i) yielding a Program-block is defined

as follows:

(Def. 1) Load(i) = inspos 0 7−→. i.

Let us consider i. Note that Load(i) is non empty.
Next we state the proposition

(1) For every Program-block P and for every n holds n < card P iff
inspos n ∈ dom P.

Let I be an initial finite partial state of SCMPDS. Note that ProgramPart(I)
is initial.

Next we state four propositions:

(2) dom I misses dom Shift(J, card I).

(3) For every programmed finite partial state I of SCMPDS holds
card Shift(I, m) = card I.

(4) For all finite partial states I, J of SCMPDS holds ProgramPart(I+·J) =
ProgramPart(I)+·ProgramPart(J).

(5) For all finite partial states I, J of SCMPDS holds Shift(ProgramPart
(I+·J), n) = Shift(ProgramPart(I), n)+·Shift(ProgramPart(J), n).

We use the following convention: a, b are Int position, s, s1, s2 are states of
SCMPDS, and k1, k2 are integers.

Let us consider I. The functor Initialized(I) yields a finite partial state of
SCMPDS and is defined as follows:

(Def. 2) Initialized(I) = I+· Start-At(inspos 0).

We now state a number of propositions:

(6) InsCode(i) ∈ {0, 1, 4, 5, 6} or (Exec(i, s))(ICSCMPDS) = Next(ICs).

(7) ICSCMPDS ∈ dom Initialized(I).

(8) ICInitialized(I) = inspos 0.

(9) I ⊆ Initialized(I).

(10) s and s+·I are equal outside the instruction locations of SCMPDS.

(11) Let s1, s2 be states of SCMPDS. Suppose IC(s1) = IC(s2) and for every
Int position a holds s1(a) = s2(a). Then s1 and s2 are equal outside the
instruction locations of SCMPDS.

the construction and shiftability of program . . . 203

(13)2 Suppose s1 and s2 are equal outside the instruction locations of
SCMPDS. Let a be a Int position. Then s1(a) = s2(a).

(14) If s1 and s2 are equal outside the instruction locations of SCMPDS, then
s1(DataLoc(s1(a), k1)) = s2(DataLoc(s2(a), k1)).

(15) Suppose s1 and s2 are equal outside the instruction locations of
SCMPDS. Then Exec(i, s1) and Exec(i, s2) are equal outside the instruc-
tion locations of SCMPDS.

(16) Initialized(I)¹the instruction locations of SCMPDS = I.

(17) For all natural numbers k1, k2 such that k1 6= k2 holds DataLoc(k1, 0) 6=
DataLoc(k2, 0).

(18) For every Int position d1 there exists a natural number i such that d1 =
DataLoc(i, 0).

The scheme SCMPDSEx deals with a unary functor F yielding an instruction
of SCMPDS, a unary functor G yielding an integer, and an instruction-location
A of SCMPDS, and states that:

There exists a state S of SCMPDS such that ICS = A
and for every natural number i holds S(inspos i) = F(i) and
S(DataLoc(i, 0)) = G(i)

for all values of the parameters.
Next we state a number of propositions:

(19) For every state s of SCMPDS holds dom s = {ICSCMPDS} ∪
Data-LocSCM ∪ the instruction locations of SCMPDS.

(20) Let s be a state of SCMPDS and x be a set. Suppose x ∈ dom s. Then
x is a Int position or x = ICSCMPDS or x is an instruction-location of
SCMPDS.

(21) Let s1, s2 be states of SCMPDS. Then for every instruction-location l

of SCMPDS holds s1(l) = s2(l) if and only if s1¹the instruction locations
of SCMPDS = s2¹the instruction locations of SCMPDS.

(22) For every instruction-location i of SCMPDS holds i /∈ Data-LocSCM.

(23) For all states s1, s2 of SCMPDS holds for every Int position a holds
s1(a) = s2(a) iff s1¹Data-LocSCM = s2¹Data-LocSCM.

(24) Let s1, s2 be states of SCMPDS. Suppose s1 and s2 are equal out-
side the instruction locations of SCMPDS. Then s1¹Data-LocSCM =
s2¹Data-LocSCM.

(25) For all states s, s3 of SCMPDS and for every set A holds (s3+·s¹A)¹A =
s¹A.

(26) For all Program-block I, J holds I and J are equal outside the instruction
locations of SCMPDS.

2The proposition (12) has been removed.

204 jing-chao chen

(27) For every Program-block I holds dom Initialized(I) = dom I ∪
{ICSCMPDS}.

(28) For every Program-block I and for every set x such that x ∈
dom Initialized(I) holds x ∈ dom I or x = ICSCMPDS.

(29) For every Program-block I holds (Initialized(I))(ICSCMPDS) = inspos 0.

(30) For every Program-block I holds ICSCMPDS /∈ dom I.

(31) For every Program-block I and for every Int position a holds a /∈
dom Initialized(I).

In the sequel x denotes a set.
The following propositions are true:

(32) If x ∈ dom I, then I(x) = (I+· Start-At(inspos n))(x).

(33) For every Program-block I and for every set x such that x ∈ dom I holds
I(x) = (Initialized(I))(x).

(34) For all Program-block I, J and for every state s of SCMPDS such that
Initialized(J) ⊆ s holds s+· Initialized(I) = s+·I.

(35) For all Program-block I, J and for every state s of SCMPDS such that
Initialized(J) ⊆ s holds Initialized(I) ⊆ s+·I.

(36) Let I, J be Program-block and s be a state of SCMPDS. Then
s+· Initialized(I) and s+· Initialized(J) are equal outside the instruction
locations of SCMPDS.

2. Combining two Consecutive Blocks into One Program Block

Let I, J be Program-block. The functor I;J yields a Program-block and is
defined by:

(Def. 3) I;J = I+·Shift(J, card I).

One can prove the following propositions:

(37) For all Program-block I, J and for every instruction-location l of
SCMPDS such that l ∈ dom I holds (I;J)(l) = I(l).

(38) For all Program-block I, J and for every instruction-location l of
SCMPDS such that l ∈ dom J holds (I;J)(l + card I) = J(l).

(39) For all Program-block I, J holds dom I ⊆ dom(I;J).

(40) For all Program-block I, J holds I ⊆ I;J.

(41) For all Program-block I, J holds I+·(I;J) = I;J.

(42) For all Program-block I, J holds Initialized(I)+·(I;J) = Initialized(I;J).

the construction and shiftability of program . . . 205

3. Combining a Block and a Instruction into One Program Block

Let us consider i, J . The functor i;J yielding a Program-block is defined by:

(Def. 4) i;J = Load(i);J.

Let us consider I, j. The functor I;j yields a Program-block and is defined
by:

(Def. 5) I;j = I; Load(j).
Let us consider i, j. The functor i;j yielding a Program-block is defined as

follows:

(Def. 6) i;j = Load(i); Load(j).
The following propositions are true:

(43) i;j = Load(i);j.
(44) i;j = i; Load(j).
(45) card(I;J) = card I + card J.

(46) (I;J);K = I;(J ;K).
(47) (I;J);k = I;(J ;k).
(48) (I;j);K = I;(j;K).
(49) (I;j);k = I;(j;k).
(50) (i;J);K = i;(J ;K).
(51) (i;J);k = i;(J ;k).
(52) (i;j);K = i;(j;K).
(53) (i;j);k = i;(j;k).
(54) dom I ∩ dom Start-At(inspos n) = ∅.
(55) Start-At(inspos 0) ⊆ Initialized(I).
(56) If I+· Start-At(inspos n) ⊆ s, then I ⊆ s.

(57) If Initialized(I) ⊆ s, then I ⊆ s.

(58) (I+· Start-At(inspos n))¹the instruction locations of SCMPDS = I.

In the sequel l, l1 denote instructions-locations of SCMPDS.
Next we state four propositions:

(59) a /∈ dom Start-At(l).
(60) l1 /∈ dom Start-At(l).
(61) a /∈ dom(I+· Start-At(l)).
(62) s+·I+· Start-At(inspos 0) = s+· Start-At(inspos 0)+·I.

Let s be a state of SCMPDS, let l2 be a Int position, and let k be an integer.
Then s +· (l2, k) is a state of SCMPDS.

206 jing-chao chen

4. The Notions of Paraclosed, Parahalting and their Basic
Properties

Let I be a Program-block. The functor stop I yielding a Program-block is
defined as follows:

(Def. 7) stop I = I; SCMPDS− Stop .

Let I be a Program-block and let s be a state of SCMPDS. The functor
IExec(I, s) yielding a state of SCMPDS is defined as follows:

(Def. 8) IExec(I, s) = Result(s+· Initialized(stop I))+·s¹the instruction loca-
tions of SCMPDS.

Let I be a Program-block. We say that I is paraclosed if and only if:

(Def. 9) For every state s of SCMPDS and for every natural number n such that
Initialized(stop I) ⊆ s holds IC(Computation(s))(n) ∈ dom stop I.

We say that I is parahalting if and only if:

(Def. 10) Initialized(stop I) is halting.

Let us note that there exists a Program-block which is parahalting.
One can prove the following proposition

(63) For every parahalting Program-block I such that Initialized(stop I) ⊆ s

holds s is halting.

Let I be a parahalting Program-block. Note that Initialized(stop I) is hal-
ting.

Let l3, l4 be instructions-locations of SCMPDS and let a, b be instructions
of SCMPDS. Then [l3 7−→ a, l4 7−→ b] is a finite partial state of SCMPDS.

One can prove the following propositions:

(64) For every integer k such that k 6= 0 holds goto k 6= haltSCMPDS.

(65) ICs 6= Next(ICs).
(66) s2+·[IC(s2) 7−→ goto 1, Next(IC(s2)) 7−→ goto (−1)] is not halting.

(67) Suppose that
(i) s1 and s2 are equal outside the instruction locations of SCMPDS,
(ii) I ⊆ s1,

(iii) I ⊆ s2, and
(iv) for every m such that m < n holds IC(Computation(s2))(m) ∈ dom I.

Let given m. Suppose m ¬ n. Then (Computation(s1))(m) and
(Computation(s2))(m) are equal outside the instruction locations of
SCMPDS.

(68) For every state s of SCMPDS and for every instruction-location l of
SCMPDS holds l ∈ dom s.

In the sequel l1, l5 are instructions-locations of SCMPDS and i1, i2 are
instructions of SCMPDS.

the construction and shiftability of program . . . 207

The following propositions are true:

(69) s+·[l1 7−→ i1, l5 7−→ i2] = s +· (l1, i1) +· (l5, i2).
(70) Next(inspos n) = inspos n + 1.

(71) If ICs /∈ dom I, then Next(ICs) /∈ dom I.

Let us mention that every Program-block which is parahalting is also parac-
losed.

We now state several propositions:

(72) dom SCMPDS− Stop = {inspos 0}.
(73) inspos 0 ∈ dom SCMPDS− Stop and (SCMPDS− Stop)(inspos 0) =

haltSCMPDS.

(74) card SCMPDS− Stop = 1.

(75) inspos 0 ∈ dom stop I.

(76) Let p be a programmed finite partial state of SCMPDS, k be a natural
number, and i3 be an instruction-location of SCMPDS. If i3 ∈ dom p, then
i3 + k ∈ dom Shift(p, k).

5. Shiftability of Program Blocks and Instructions

Let i be an instruction of SCMPDS and let n be a natural number. We say
that i valid at n if and only if the conditions (Def. 11) are satisfied.

(Def. 11)(i) If InsCode(i) = 0, then there exists k1 such that i = goto k1 and
n + k1 ­ 0,

(ii) if InsCode(i) = 4, then there exist a, k1, k2 such that i = (a, k1) <>

0 gotok2 and n + k2 ­ 0,

(iii) if InsCode(i) = 5, then there exist a, k1, k2 such that i = (a, k1) <=
0 gotok2 and n + k2 ­ 0, and

(iv) if InsCode(i) = 6, then there exist a, k1, k2 such that i = (a, k1) >=
0 gotok2 and n + k2 ­ 0.

One can prove the following proposition

(77) Let i be an instruction of SCMPDS and m, n be natural numbers. If i

valid at m and m ¬ n, then i valid at n.

Let I1 be a finite partial state of SCMPDS. We say that I1 is shiftable if and
only if:

(Def. 12) For all n, i such that inspos n ∈ dom I1 and i = I1(inspos n) holds
InsCode(i) 6= 1 and InsCode(i) 6= 3 and i valid at n.

Let us mention that there exists a Program-block which is parahalting and
shiftable.

Let i be an instruction of SCMPDS. We say that i is shiftable if and only if:

208 jing-chao chen

(Def. 13) InsCode(i) = 2 or InsCode(i) > 6.

One can check that there exists an instruction of SCMPDS which is shiftable.
Let us consider a, k1. Observe that a:=k1 is shiftable.
Let us consider a, k1, k2. One can check that ak1 :=k2 is shiftable.
Let us consider a, k1, k2. Observe that AddTo(a, k1, k2) is shiftable.
Let us consider a, b, k1, k2. One can check the following observations:

∗ AddTo(a, k1, b, k2) is shiftable,

∗ SubFrom(a, k1, b, k2) is shiftable,

∗ MultBy(a, k1, b, k2) is shiftable,

∗ Divide(a, k1, b, k2) is shiftable, and

∗ (a, k1) := (b, k2) is shiftable.

Let I, J be shiftable Program-block. Observe that I;J is shiftable.
Let i be a shiftable instruction of SCMPDS. Observe that Load(i) is shifta-

ble.
Let i be a shiftable instruction of SCMPDS and let J be a shiftable Program-

block. Observe that i;J is shiftable.
Let I be a shiftable Program-block and let j be a shiftable instruction of

SCMPDS. Observe that I;j is shiftable.
Let i, j be shiftable instructions of SCMPDS. Note that i;j is shiftable.
Let us note that SCMPDS− Stop is parahalting and shiftable.
Let I be a shiftable Program-block. One can verify that stop I is shiftable.
Next we state the proposition

(78) For every shiftable Program-block I and for every integer k1 such that
card I + k1 ­ 0 holds I;goto k1 is shiftable.

Let n be a natural number. Note that Load(goto n) is shiftable.
One can prove the following proposition

(79) Let I be a shiftable Program-block, k1, k2 be integers, and a be a Int
position. If card I + k2 ­ 0, then I;((a, k1) <> 0 gotok2) is shiftable.

Let k1 be an integer, let a be a Int position, and let n be a natural number.
Note that Load((a, k1) <> 0 goton) is shiftable.

Next we state the proposition

(80) Let I be a shiftable Program-block, k1, k2 be integers, and a be a Int
position. If card I + k2 ­ 0, then I;((a, k1) <= 0 gotok2) is shiftable.

Let k1 be an integer, let a be a Int position, and let n be a natural number.
Observe that Load((a, k1) <= 0 goton) is shiftable.

One can prove the following proposition

(81) Let I be a shiftable Program-block, k1, k2 be integers, and a be a Int
position. If card I + k2 ­ 0, then I;((a, k1) >= 0 gotok2) is shiftable.

Let k1 be an integer, let a be a Int position, and let n be a natural number.
Observe that Load((a, k1) >= 0 goton) is shiftable.

the construction and shiftability of program . . . 209

We now state three propositions:

(82) Let s1, s2 be states of SCMPDS, n, m be natural numbers, and k1 be
an integer. If IC(s1) = inspos m and m + k1 ­ 0 and IC(s1) + n = IC(s2),

then ICplusConst(s1, k1) + n = ICplusConst(s2, k1).
(83) Let s1, s2 be states of SCMPDS, n, m be natural numbers, and i be

an instruction of SCMPDS. Suppose IC(s1) = inspos m and i valid at m

and InsCode(i) 6= 1 and InsCode(i) 6= 3 and IC(s1) + n = IC(s2) and
s1¹Data-LocSCM = s2¹Data-LocSCM. Then ICExec(i,s1) + n = ICExec(i,s2)

and Exec(i, s1)¹Data-LocSCM = Exec(i, s2)¹Data-LocSCM.

(84) Let J be a parahalting shiftable Program-block. Suppose Initialized(stop
J) ⊆ s1. Let n be a natural number. Suppose Shift(stop J, n) ⊆ s2 and
IC(s2) = inspos n and s1¹Data-LocSCM = s2¹Data-LocSCM. Let i be a na-
tural number. Then IC(Computation(s1))(i) + n = IC(Computation(s2))(i) and
CurInstr((Computation(s1))(i)) = CurInstr((Computation(s2))(i)) and
(Computation(s1))(i)¹Data-LocSCM = (Computation(s2))(i)¹Data-LocSCM.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized

Mathematics, 5(4):485–492, 1996.
[4] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676,

1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[6] Czesław Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[7] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics,

2(5):701–709, 1991.
[8] Jing-Chao Chen. Computation and program shift in the SCMPDS computer. Formalized

Mathematics, 8(1):193–199, 1999.
[9] Jing-Chao Chen. The SCMPDS computer and the basic semantics of its instructions.

Formalized Mathematics, 8(1):183–191, 1999.
[10] Jing-Chao Chen. A small computer model with push-down stack. Formalized Mathema-

tics, 8(1):175–182, 1999.
[11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[13] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151–160, 1992.
[14] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-

malized Mathematics, 3(2):241–250, 1992.
[15] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,

5(1):1–8, 1996.
[16] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[18] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51–56, 1993.

210 jing-chao chen

[19] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of
SCMFSA. Formalized Mathematics, 5(4):571–576, 1996.

[20] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[21] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[23] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received June 15, 1999

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

Computation of Two Consecutive Program
Blocks for SCMPDS1

Jing-Chao Chen
Shanghai Jiaotong University

Summary. In this article, a program block without halting instructions is
called No-StopCode program block. If a program consists of two blocks, where
the first block is parahalting (i.e. halt for all states) and No-StopCode, and
the second block is parahalting and shiftable, it can be computed by combining
the computation results of the two blocks. For a program which consists of a
instruction and a block, we obtain a similar conclusion. For a large amount of
programs, the computation method given in the article is useful, but it is not
suitable to recursive programs.

MML Identifier: SCMPDS 5.

The terminology and notation used here have been introduced in the following
articles: [16], [20], [11], [21], [5], [6], [18], [2], [12], [13], [17], [14], [4], [10], [9],
[19], [7], [1], [15], [8], and [3].

1. Preliminaries

For simplicity, we use the following convention: x denotes a set, m, n de-
note natural numbers, a, b denote Int position, i denotes an instruction of
SCMPDS, s, s1, s2 denote states of SCMPDS, k1, k2 denote integers, l1 de-
notes an instruction-location of SCMPDS, I, J denote Program-block, and N

denotes a set with non empty elements.
One can prove the following propositions:

1This research is partially supported by the National Natural Science Foundation of China
Grant No. 69873033.

211
c© 1999 University of Białystok

ISSN 1426–2630

212 jing-chao chen

(1) Let S be a halting von Neumann definite AMI over N and s be a state
of S. If s = Following(s), then for every n holds (Computation(s))(n) = s.

(2) x ∈ dom Load(i) iff x = inspos 0.

(3) If l1 ∈ dom stop I and (stop I)(l1) 6= haltSCMPDS, then l1 ∈ dom I.

(4) dom Load(i) = {inspos 0} and (Load(i))(inspos 0) = i.

(5) inspos 0 ∈ dom Load(i).
(6) card Load(i) = 1.

(7) card stop I = card I + 1.

(8) card stop Load(i) = 2.
(9) inspos 0 ∈ dom stop Load(i) and inspos 1 ∈ dom stop Load(i).

(10) (stop Load(i))(inspos 0) = i and (stop Load(i))(inspos 1) = haltSCMPDS.

(11) x ∈ dom stop Load(i) iff x = inspos 0 or x = inspos 1.

(12) dom stop Load(i) = {inspos 0, inspos 1}.
(13) inspos 0 ∈ dom Initialized(stop Load(i)) and inspos 1 ∈ dom Initialized

(stop Load(i)) and (Initialized(stop Load(i)))(inspos 0) = i and (Initialized
(stop Load(i)))(inspos 1) = haltSCMPDS.

(14) For all Program-block I, J holds Initialized(stop I;J) =
(I;(J ; SCMPDS− Stop))+·Start-At(inspos 0).

(15) For all Program-block I, J holds Initialized(I) ⊆ Initialized(stop I;J).
(16) dom stop I ⊆ dom stop I;J.

(17) For all Program-block I, J holds Initialized(stop I)+· Initialized(stop I;J)
= Initialized(stop I;J).

(18) If Initialized(I) ⊆ s, then ICs = inspos 0.

(19) (s+· Initialized(I))(a) = s(a).
(20) Let I be a parahalting Program-block. Suppose Initialized(stop I) ⊆

s1 and Initialized(stop I) ⊆ s2 and s1 and s2 are equal outside the
instruction locations of SCMPDS. Let k be a natural number. Then
(Computation(s1))(k) and (Computation(s2))(k) are equal outside the in-
struction locations of SCMPDS and CurInstr((Computation(s1))(k)) =
CurInstr((Computation(s2))(k)).

(21) Let I be a parahalting Program-block. Suppose Initialized(stop I) ⊆ s1

and Initialized(stop I) ⊆ s2 and s1 and s2 are equal outside the instruction
locations of SCMPDS. Then LifeSpan(s1) = LifeSpan(s2) and Result(s1)
and Result(s2) are equal outside the instruction locations of SCMPDS.

(22) For every Program-block I holds ICIExec(I,s) = ICResult(s+· Initialized(stop I)).

(23) Let I be a parahalting Program-block and J be a Program-block. Sup-
pose Initialized(stop I) ⊆ s. Let given m. Suppose m ¬ LifeSpan(s). Then
(Computation(s))(m) and (Computation(s+·(I;J)))(m) are equal outside
the instruction locations of SCMPDS.

computation of two consecutive program . . . 213

(24) Let I be a parahalting Program-block and J be a Program-block. Sup-
pose Initialized(stop I) ⊆ s. Let given m. Suppose m ¬ LifeSpan(s). Then
(Computation(s))(m) and (Computation(s+· Initialized(stop I;J)))(m)
are equal outside the instruction locations of SCMPDS.

2. Non Halting Instructions and Parahalting Instructions

Let i be an instruction of SCMPDS. We say that i is No-StopCode if and
only if:

(Def. 1) i 6= haltSCMPDS.

Let i be an instruction of SCMPDS. We say that i is parahalting if and only
if:

(Def. 2) Load(i) is parahalting.

One can verify that there exists an instruction of SCMPDS which is No-
StopCode, shiftable, and parahalting.

One can prove the following proposition

(25) If k1 6= 0, then goto k1 is No-StopCode.

Let us consider a. Observe that return a is No-StopCode.
Let us consider a, k1. Note that a:=k1 is No-StopCode and saveIC(a, k1) is

No-StopCode.
Let us consider a, k1, k2. One can check the following observations:

∗ (a, k1) <> 0 gotok2 is No-StopCode,

∗ (a, k1) <= 0 gotok2 is No-StopCode,

∗ (a, k1) >= 0 gotok2 is No-StopCode, and

∗ ak1 :=k2 is No-StopCode.

Let us consider a, k1, k2. Note that AddTo(a, k1, k2) is No-StopCode.
Let us consider a, b, k1, k2. One can verify the following observations:

∗ AddTo(a, k1, b, k2) is No-StopCode,

∗ SubFrom(a, k1, b, k2) is No-StopCode,

∗ MultBy(a, k1, b, k2) is No-StopCode,

∗ Divide(a, k1, b, k2) is No-StopCode, and

∗ (a, k1) := (b, k2) is No-StopCode.

Let us note that haltSCMPDS is parahalting.
Let i be a parahalting instruction of SCMPDS. Observe that Load(i) is

parahalting.
Let us consider a, k1. Observe that a:=k1 is parahalting.
Let us consider a, k1, k2. Note that ak1 :=k2 is parahalting and

AddTo(a, k1, k2) is parahalting.

214 jing-chao chen

Let us consider a, b, k1, k2. One can check the following observations:

∗ AddTo(a, k1, b, k2) is parahalting,

∗ SubFrom(a, k1, b, k2) is parahalting,

∗ MultBy(a, k1, b, k2) is parahalting,

∗ Divide(a, k1, b, k2) is parahalting, and

∗ (a, k1) := (b, k2) is parahalting.

Next we state the proposition

(26) If InsCode(i) = 1, then i is not parahalting.

Let I1 be a finite partial state of SCMPDS. We say that I1 is No-StopCode
if and only if:

(Def. 3) For every instruction-location x of SCMPDS such that x ∈ dom I1 holds
I1(x) 6= haltSCMPDS.

Let us observe that there exists a Program-block which is parahalting, shi-
ftable, and No-StopCode.

Let I, J be No-StopCode Program-block. Observe that I;J is No-StopCode.
Let i be a No-StopCode instruction of SCMPDS. Observe that Load(i) is

No-StopCode.
Let i be a No-StopCode instruction of SCMPDS and let J be a No-StopCode

Program-block. Note that i;J is No-StopCode.
Let I be a No-StopCode Program-block and let j be a No-StopCode instruc-

tion of SCMPDS. Observe that I;j is No-StopCode.
Let i, j be No-StopCode instructions of SCMPDS. Observe that i;j is No-

StopCode.
Next we state several propositions:

(27) For every parahalting No-StopCode Program-block I such that
Initialized(stop I) ⊆ s holds IC(Computation(s))(LifeSpan(s+· Initialized(stop I))) =
inspos card I.

(28) For every parahalting Program-block I and for every natural
number k such that k < LifeSpan(s+· Initialized(stop I)) holds
IC(Computation(s+· Initialized(stop I)))(k) ∈ dom I.

(29) Let I be a parahalting Program-block and k be a natural number.
Suppose Initialized(I) ⊆ s and k ¬ LifeSpan(s+· Initialized(stop I)).
Then (Computation(s))(k) and (Computation(s+· Initialized(stop I)))(k)
are equal outside the instruction locations of SCMPDS.

(30) For every parahalting No-StopCode Program-block I such that
Initialized(I) ⊆ s holds IC(Computation(s))(LifeSpan(s+· Initialized(stop I))) =
inspos card I.

(31) For every parahalting Program-block I such that Initialized(I) ⊆
s holds CurInstr((Computation(s))(LifeSpan(s+· Initialized(stop I)))) =
haltSCMPDS or IC(Computation(s))(LifeSpan(s+· Initialized(stop I))) = inspos card I.

computation of two consecutive program . . . 215

(32) Let I be a parahalting No-StopCode Program-block and k be a natural
number. If Initialized(I) ⊆ s and k < LifeSpan(s+· Initialized(stop I)),
then CurInstr((Computation(s))(k)) 6= haltSCMPDS.

(33) Let I be a parahalting Program-block, J be a Program-block, and k

be a natural number. Suppose k ¬ LifeSpan(s+· Initialized(stop I)). Then
(Computation(s+· Initialized(stop I)))(k) and (Computation(s+·((I;J)+·
Start-At(inspos 0))))(k) are equal outside the instruction locations of
SCMPDS.

(34) Let I be a parahalting Program-block, J be a Program-block, and k

be a natural number. Suppose k ¬ LifeSpan(s+· Initialized(stop I)). Then
(Computation(s+· Initialized(stop I)))(k) and (Computation(s+· Initialized
(stop I;J)))(k) are equal outside the instruction locations of SCMPDS.

Let I be a parahalting Program-block and let J be a parahalting shiftable
Program-block. One can verify that I;J is parahalting.

Let i be a parahalting instruction of SCMPDS and let J be a parahalting
shiftable Program-block. Note that i;J is parahalting.

Let I be a parahalting Program-block and let j be a parahalting shiftable
instruction of SCMPDS. Observe that I;j is parahalting.

Let i be a parahalting instruction of SCMPDS and let j be a parahalting
shiftable instruction of SCMPDS. One can check that i;j is parahalting.

Next we state the proposition

(35) Let s, s1 be states of SCMPDS and J be a parahalting shiftable
Program-block. If s = (Computation(s1+· Initialized(stop J)))(m), then
Exec(CurInstr(s), s+·Start-At(ICs + n)) =
Following(s)+·Start-At(ICFollowing(s) + n).

3. Computation of two Consecutive Program Blocks

The following propositions are true:

(36) Let I be a parahalting No-StopCode Program-block, J be a para-
halting shiftable Program-block, and k be a natural number. Suppose
Initialized(stop I;J) ⊆ s. Then (Computation(Result(s+· Initialized
(stop I))+· Initialized(stop J)))(k)+·Start-At
(IC(Computation(Result(s+· Initialized(stop I))+· Initialized(stop J)))(k) + card I) and
(Computation(s+· Initialized(stop I;J)))(LifeSpan(s+· Initialized(stop I))+
k) are equal outside the instruction locations of SCMPDS.

(37) Let I be a parahalting No-StopCode Program-block and J be a parahal-
ting shiftable Program-block. Then LifeSpan(s+· Initialized(stop I;J)) =
LifeSpan(s+· Initialized(stop I))+LifeSpan(Result(s+· Initialized(stop I))+·
Initialized(stop J)).

216 jing-chao chen

(38) Let I be a parahalting No-StopCode Program-block and J

be a parahalting shiftable Program-block. Then IExec(I;J, s) =
IExec(J, IExec(I, s))+· Start-At(ICIExec(J,IExec(I,s)) + card I).

(39) Let I be a parahalting No-StopCode Program-block and J be
a parahalting shiftable Program-block. Then (IExec(I;J, s))(a) =
(IExec(J, IExec(I, s)))(a).

4. Computation of the Program Consisting of a Instruction and a
Block

Let s be a state of SCMPDS. The functor Initialized(s) yields a state of
SCMPDS and is defined by:

(Def. 4) Initialized(s) = s+· Start-At(inspos 0).
Next we state several propositions:

(40) ICInitialized(s) = inspos 0 and (Initialized(s))(a) = s(a) and
(Initialized(s))(l1) = s(l1).

(41) s1 and s2 are equal outside the instruction locations of SCMPDS iff
s1¹(Data-LocSCM ∪ {ICSCMPDS}) = s2¹(Data-LocSCM ∪ {ICSCMPDS}).

(42) If s1¹Data-LocSCM = s2¹Data-LocSCM, then s1(DataLoc(s1(a), k1)) =
s2(DataLoc(s2(a), k1)).

(43) If s1¹Data-LocSCM = s2¹Data-LocSCM and InsCode(i) 6= 3, then
Exec(i, s1)¹Data-LocSCM = Exec(i, s2)¹Data-LocSCM.

(44) For every shiftable instruction i of SCMPDS such that s1¹Data-LocSCM =
s2¹Data-LocSCM holds Exec(i, s1)¹Data-LocSCM = Exec(i, s2)¹Data-LocSCM.

(45) For every parahalting instruction i of SCMPDS holds
Exec(i, Initialized(s)) = IExec(Load(i), s).

(46) Let I be a parahalting No-StopCode Program-block and j be a pa-
rahalting shiftable instruction of SCMPDS. Then (IExec(I;j, s))(a) =
(Exec(j, IExec(I, s)))(a).

(47) Let i be a No-StopCode parahalting instruction of SCMPDS and j be
a shiftable parahalting instruction of SCMPDS. Then (IExec(i;j, s))(a) =
(Exec(j, Exec(i, Initialized(s))))(a).

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Formalized

Mathematics, 4(1):61–67, 1993.

computation of two consecutive program . . . 217

[4] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[6] Czesław Byliński. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[7] Jing-Chao Chen. Computation and program shift in the SCMPDS computer. Formalized
Mathematics, 8(1):193–199, 1999.

[8] Jing-Chao Chen. The construction and shiftability of program blocks for SCMPDS.
Formalized Mathematics, 8(1):201–210, 1999.

[9] Jing-Chao Chen. The SCMPDS computer and the basic semantics of its instructions.
Formalized Mathematics, 8(1):183–191, 1999.

[10] Jing-Chao Chen. A small computer model with push-down stack. Formalized Mathema-
tics, 8(1):175–182, 1999.

[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[12] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[13] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241–250, 1992.

[14] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1–8, 1996.

[15] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[17] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model

of computer. Formalized Mathematics, 4(1):51–56, 1993.
[18] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[19] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[20] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received June 15, 1999

218 jing-chao chen

FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999
University of Białystok

The Construction and Computation of
Conditional Statements for SCMPDS1

Jing-Chao Chen
Shanghai Jiaotong University

Summary. We construct conditional statements like the usual high level
program language by program blocks of SCMPDS. Roughly speaking, the article
justifies such a fact that when the condition of a conditional statement is true
(false), and the true (false) branch is shiftable, parahalting and does not contain
any halting instruction, and the false branch is shiftable, then it is halting and
its computation result equals that of the true (false) branch. The parahalting
means some program halts for all states, this is strong condition. For this reason,
we introduce the notions of ”is closed on” and ”is halting on”. The predicate ”A
is closed on B” denotes program A is closed on state B, and ”A is halting on B”
denotes program A is halting on state B. We obtain a similar theorem to the
above fact by replacing parahalting by ”is closed on” and ”is halting on”.

MML Identifier: SCMPDS 6.

The terminology and notation used in this paper are introduced in the following
papers: [16], [19], [11], [14], [20], [5], [6], [18], [2], [12], [13], [17], [15], [4], [10],
[7], [1], [9], [3], and [8].

1. Preliminaries

For simplicity, we follow the rules: a denotes a Int position, i denotes an in-
struction of SCMPDS, s, s1, s2 denote states of SCMPDS, k1 denotes an integer,
l1 denotes an instruction-location of SCMPDS, and I, J denote Program-block.

One can prove the following propositions:

1This research is partially supported by the National Natural Science Foundation of China
Grant No. 69873033.

219
c© 1999 University of Białystok

ISSN 1426–2630

220 jing-chao chen

(1) For every state s of SCMPDS holds dom(s¹the instruction locations of
SCMPDS) = the instruction locations of SCMPDS.

(2) For every state s of SCMPDS such that s is halting and
for every natural number k such that LifeSpan(s) ¬ k holds
CurInstr((Computation(s))(k)) = haltSCMPDS.

(3) For every state s of SCMPDS such that s is halting and for every na-
tural number k such that LifeSpan(s) ¬ k holds IC(Computation(s))(k) =
IC(Computation(s))(LifeSpan(s)).

(4) Let s1, s2 be states of SCMPDS. Then s1 and s2 are equal outside
the instruction locations of SCMPDS if and only if IC(s1) = IC(s2) and
s1¹Data-LocSCM = s2¹Data-LocSCM.

(5) For every state s of SCMPDS and for every Program-block I holds
Initialized(s)+· Initialized(I) = s+· Initialized(I).

(6) For every Program-block I and for every instruction-location l of
SCMPDS holds I ⊆ I+· Start-At(l).

(7) For every state s of SCMPDS and for every instruction-location l of
SCMPDS holds s¹Data-LocSCM = (s+· Start-At(l))¹Data-LocSCM.

(8) For every state s of SCMPDS and for every Program-block I and
for every instruction-location l of SCMPDS holds s¹Data-LocSCM =
(s+·(I+·Start-At(l)))¹Data-LocSCM.

(9) For every state s of SCMPDS and for every Program-block I holds
s¹Data-LocSCM = (s+· Initialized(I))¹Data-LocSCM.

(10) Let s be a state of SCMPDS and l be an instruction-location of
SCMPDS. Then dom(s¹the instruction locations of SCMPDS) misses
dom Start-At(l).

(11) Let s be a state of SCMPDS, I, J be Program-block, and l be
an instruction-location of SCMPDS. Then s+·(I+· Start-At(l)) and
s+·(J+· Start-At(l)) are equal outside the instruction locations of
SCMPDS.

(12) Let s1, s2 be states of SCMPDS and I, J be Program-block. Sup-
pose s1¹Data-LocSCM = s2¹Data-LocSCM. Then s1+· Initialized(I) and
s2+· Initialized(J) are equal outside the instruction locations of SCMPDS.

(13) Let I be a programmed finite partial state of SCMPDS and x be a set.
If x ∈ dom I, then I(x) is an instruction of SCMPDS.

(14) For every state s of SCMPDS and for all instructions-locations l2, l3 of
SCMPDS holds s+· Start-At(l2)+·Start-At(l3) = s+·Start-At(l3).

(15) card(i;I) = card I + 1.

(16) (i;I)(inspos 0) = i.

(17) I ⊆ Initialized(stop I).

the construction and computation of . . . 221

(18) If l1 ∈ dom I, then l1 ∈ dom stop I.

(19) If l1 ∈ dom I, then (stop I)(l1) = I(l1).
(20) If l1 ∈ dom I, then (Initialized(stop I))(l1) = I(l1).
(21) ICs+· Initialized(I) = inspos 0.

(22) CurInstr(s+· Initialized(stop i;I)) = i.

(23) For every state s of SCMPDS and for all natural numbers m1, m2 such
that ICs = inspos m1 holds ICplusConst(s,m2) = inspos m1 + m2.

(24) For all Program-block I, J holds Shift(stop J, card I) ⊆ stop I;J.

(25) inspos card I ∈ dom stop I and (stop I)(inspos card I) = haltSCMPDS.

(26) For all instructions-locations x, l of SCMPDS holds (IExec(J, s))(x) =
(IExec(I, s)+· Start-At(l))(x).

(27) For all instructions-locations x, l of SCMPDS holds (IExec(I, s))(x) =
(s+· Start-At(l))(x).

(28) Let s be a state of SCMPDS, i be a No-StopCode parahalting instruction
of SCMPDS, J be a parahalting shiftable Program-block, and a be a Int
position. Then (IExec(i;J, s))(a) = (IExec(J, Exec(i, Initialized(s))))(a).

(29) For every Int position a and for all integers k1, k2 holds (a, k1) <>

0 gotok2 6= haltSCMPDS.

(30) For every Int position a and for all integers k1, k2 holds (a, k1) <=
0 gotok2 6= haltSCMPDS.

(31) For every Int position a and for all integers k1, k2 holds (a, k1) >=
0 gotok2 6= haltSCMPDS.

Let us consider k1. The functor Goto(k1) yielding a Program-block is defined
as follows:

(Def. 1) Goto(k1) = Load(goto k1).
Let n be a natural number. One can verify that goto (n+1) is No-StopCode

and goto (−(n + 1)) is No-StopCode.
Let n be a natural number. Observe that Goto(n + 1) is No-StopCode and

Goto(−(n + 1)) is No-StopCode.
The following two propositions are true:

(32) card Goto(k1) = 1.
(33) inspos 0 ∈ dom Goto(k1) and (Goto(k1))(inspos 0) = goto k1.

2. The Predicates of is closed on and is halting on

Let I be a Program-block and let s be a state of SCMPDS. We say that I

is closed on s if and only if:

222 jing-chao chen

(Def. 2) For every natural number k holds IC(Computation(s+· Initialized(stop I)))(k) ∈
dom stop I.

We say that I is halting on s if and only if:

(Def. 3) s+· Initialized(stop I) is halting.

We now state a number of propositions:

(34) For every Program-block I holds I is paraclosed iff for every state s of
SCMPDS holds I is closed on s.

(35) For every Program-block I holds I is parahalting iff for every state s of
SCMPDS holds I is halting on s.

(36) Let s1, s2 be states of SCMPDS and I be a Program-block. If
s1¹Data-LocSCM = s2¹Data-LocSCM, then if I is closed on s1, then I is
closed on s2.

(37) Let s1, s2 be states of SCMPDS and I be a Program-block. Suppose
s1¹Data-LocSCM = s2¹Data-LocSCM. Suppose I is closed on s1 and halting
on s1. Then I is closed on s2 and halting on s2.

(38) For every state s of SCMPDS and for all Program-block I, J holds I is
closed on s iff I is closed on s+· Initialized(J).

(39) Let I, J be Program-block and s be a state of SCMPDS. Suppose I is
closed on s and halting on s. Then

(i) for every natural number k such that k ¬ LifeSpan(s+· Initialized(stop I))
holds IC(Computation(s+· Initialized(stop I)))(k) =
IC(Computation(s+· Initialized(stop I;J)))(k), and

(ii) (Computation(s+· Initialized(stop I)))(LifeSpan(s+· Initialized(stop I)))
¹Data-LocSCM = (Computation(s+· Initialized(stop I;J)))(LifeSpan(s+·
Initialized(stop I)))¹Data-LocSCM.

(40) Let I be a Program-block and k be a natural number. If I is closed
on s and halting on s and k < LifeSpan(s+· Initialized(stop I)), then
IC(Computation(s+· Initialized(stop I)))(k) ∈ dom I.

(41) Let I, J be Program-block, s be a state of SCMPDS, and k be a
natural number. Suppose I is closed on s and halting on s and k <

LifeSpan(s+· Initialized(stop I)). Then CurInstr((Computation(s+·
Initialized(stop I)))(k)) =
CurInstr((Computation(s+· Initialized(stop I;J)))(k)).

(42) Let I be a No-StopCode Program-block, s be a state of
SCMPDS, and k be a natural number. If I is closed on s

and halting on s and k < LifeSpan(s+· Initialized(stop I)), then
CurInstr((Computation(s+· Initialized(stop I)))(k)) 6= haltSCMPDS.

(43) Let I be a No-StopCode Program-block and s be a state
of SCMPDS. If I is closed on s and halting on s, then
IC(Computation(s+· Initialized(stop I)))(LifeSpan(s+· Initialized(stop I))) = inspos card I.

the construction and computation of . . . 223

(44) Let I, J be Program-block and s be a state of SCMPDS. Suppose I is
closed on s and halting on s. Then I; Goto(card J + 1);J is halting on s

and I; Goto(card J + 1);J is closed on s.

(45) Let I be a shiftable Program-block. Suppose Initialized(stop I) ⊆ s1 and
I is closed on s1. Let n be a natural number. Suppose Shift(stop I, n) ⊆ s2

and IC(s2) = inspos n and s1¹Data-LocSCM = s2¹Data-LocSCM. Let i be a
natural number. Then IC(Computation(s1))(i) +n = IC(Computation(s2))(i) and
CurInstr((Computation(s1))(i)) = CurInstr((Computation(s2))(i)) and
(Computation(s1))(i)¹Data-LocSCM = (Computation(s2))(i)¹Data-LocSCM.

(46) Let s be a state of SCMPDS, I be a No-StopCode Program-block,
and J be a Program-block. If I is closed on s and halting on s, then
ICIExec(I; Goto(card J+1);J,s) = inspos card I + card J + 1.

(47) Let s be a state of SCMPDS, I be a No-StopCode Program-block,
and J be a Program-block. If I is closed on s and halting on s, then
IExec(I; Goto(card J + 1);J, s) = IExec(I, s)+· Start-At(inspos card I +
card J + 1).

(48) Let s be a state of SCMPDS and I be a No-StopCode Program-block.
If I is closed on s and halting on s, then ICIExec(I,s) = inspos card I.

3. The Construction of Conditional Statements

Let a be a Int position, let k be an integer, and let I, J be Program-block.
The functor if a = k then I else J yielding a Program-block is defined by:

(Def. 4) if a = k then I else J = ((a, k) <> 0 goto card I + 2);I; Goto(card J +
1);J.

The functor if a > k then I else J yielding a Program-block is defined by:

(Def. 5) if a > k then I else J = ((a, k) <= 0 goto card I + 2);I; Goto(card J +
1);J.

The functor if a < k then I else J yielding a Program-block is defined by:

(Def. 6) if a < k then I else J = ((a, k) >= 0 goto card I + 2);I; Goto(card J +
1);J.

Let a be a Int position, let k be an integer, and let I be a Program-block.
The functor if a = 0 then k else I yields a Program-block and is defined as
follows:

(Def. 7) if a = 0 then k else I = ((a, k) <> 0 goto card I + 1);I.

The functor if a 6= 0 then k else I yielding a Program-block is defined by:

(Def. 8) if a 6= 0 then k else I = ((a, k) <> 0 goto2);goto (card I + 1);I.

The functor if a > 0 then k else I yielding a Program-block is defined as fol-
lows:

224 jing-chao chen

(Def. 9) if a > 0 then k else I = ((a, k) <= 0 goto card I + 1);I.

The functor if a ¬ 0 then k else I yields a Program-block and is defined as
follows:

(Def. 10) if a ¬ 0 then k else I = ((a, k) <= 0 goto2);goto (card I + 1);I.

The functor if a < 0 then k else I yields a Program-block and is defined as
follows:

(Def. 11) if a < 0 then k else I = ((a, k) >= 0 goto card I + 1);I.

The functor if a ­ 0 then k else I yields a Program-block and is defined as
follows:

(Def. 12) if a ­ 0 then k else I = ((a, k) >= 0 goto2);goto (card I + 1);I.

4. The Computation of ”if var=0 then block1 else block2”

One can prove the following propositions:

(49) card(if a = k1 then I else J) = card I + card J + 2.

(50) inspos 0 ∈ dom(if a = k1 then I else J) and inspos 1 ∈ dom(if a =
k1 then I else J).

(51) (if a = k1 then I else J)(inspos 0) = (a, k1) <> 0 goto card I + 2.

(52) Let s be a state of SCMPDS, I, J be shiftable Program-block, a be a
Int position, and k1 be an integer. Suppose s(DataLoc(s(a), k1)) = 0 and
I is closed on s and halting on s. Then if a = k1 then I else J is closed
on s and if a = k1 then I else J is halting on s.

(53) Let s be a state of SCMPDS, I be a Program-block, J be a shifta-
ble Program-block, a be a Int position, and k1 be an integer. Suppose
s(DataLoc(s(a), k1)) 6= 0 and J is closed on s and halting on s. Then
if a = k1 then I else J is closed on s and if a = k1 then I else J is
halting on s.

(54) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, J be a shiftable Program-block, a be a Int position, and k1

be an integer. Suppose s(DataLoc(s(a), k1)) = 0 and I is closed
on s and halting on s. Then IExec(if a = k1 then I else J, s) =
IExec(I, s)+· Start-At(inspos card I + card J + 2).

(55) Let s be a state of SCMPDS, I be a Program-block, J be a
No-StopCode shiftable Program-block, a be a Int position, and k1

be an integer. Suppose s(DataLoc(s(a), k1)) 6= 0 and J is closed
on s and halting on s. Then IExec(if a = k1 then I else J, s) =
IExec(J, s)+· Start-At(inspos card I + card J + 2).

the construction and computation of . . . 225

Let I, J be shiftable parahalting Program-block, let a be a Int position,
and let k1 be an integer. Observe that if a = k1 then I else J is shiftable and
parahalting.

Let I, J be No-StopCode Program-block, let a be a Int position, and let k1

be an integer. Note that if a = k1 then I else J is No-StopCode.
We now state three propositions:

(56) Let s be a state of SCMPDS, I, J be No-StopCode shiftable para-
halting Program-block, a be a Int position, and k1 be an integer. Then
ICIExec(if a=k1 then I else J,s) = inspos card I + card J + 2.

(57) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-
ting Program-block, J be a shiftable Program-block, a, b be Int position,
and k1 be an integer. If s(DataLoc(s(a), k1)) = 0, then (IExec(if a =
k1 then I else J, s))(b) = (IExec(I, s))(b).

(58) Let s be a state of SCMPDS, I be a Program-block, J be a No-
StopCode parahalting shiftable Program-block, a, b be Int position,
and k1 be an integer. If s(DataLoc(s(a), k1)) 6= 0, then (IExec(if a =
k1 then I else J, s))(b) = (IExec(J, s))(b).

5. The Computation of ”if var=0 then block”

One can prove the following propositions:

(59) card(if a = 0 then k1 else I) = card I + 1.

(60) inspos 0 ∈ dom(if a = 0 then k1 else I).
(61) (if a = 0 then k1 else I)(inspos 0) = (a, k1) <> 0 goto card I + 1.

(62) Let s be a state of SCMPDS, I be a shiftable Program-block, a be a Int
position, and k1 be an integer. Suppose s(DataLoc(s(a), k1)) = 0 and I is
closed on s and halting on s. Then if a = 0 then k1 else I is closed on s

and if a = 0 then k1 else I is halting on s.

(63) Let s be a state of SCMPDS, I be a Program-block, a be a Int po-
sition, and k1 be an integer. If s(DataLoc(s(a), k1)) 6= 0, then if a =
0 then k1 else I is closed on s and if a = 0 then k1 else I is halting on
s.

(64) Let s be a state of SCMPDS, I be a No-StopCode shiftable
Program-block, a be a Int position, and k1 be an integer. Suppose
s(DataLoc(s(a), k1)) = 0 and I is closed on s and halting on s. Then
IExec(if a = 0 then k1 else I, s) = IExec(I, s)+· Start-At(inspos card I+
1).

(65) Let s be a state of SCMPDS, I be a Program-block, a be a Int posi-
tion, and k1 be an integer. If s(DataLoc(s(a), k1)) 6= 0, then IExec(if a =

226 jing-chao chen

0 then k1 else I, s) = s+·Start-At(inspos card I + 1).
Let I be a shiftable parahalting Program-block, let a be a Int position, and

let k1 be an integer. One can verify that if a = 0 then k1 else I is shiftable
and parahalting.

Let I be a No-StopCode Program-block, let a be a Int position, and let k1

be an integer. Observe that if a = 0 then k1 else I is No-StopCode.
Next we state three propositions:

(66) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-
ting Program-block, a be a Int position, and k1 be an integer. Then
ICIExec(if a=0 then k1 else I,s) = inspos card I + 1.

(67) Let s be a state of SCMPDS, I be a No-StopCode shiftable para-
halting Program-block, a, b be Int position, and k1 be an integer. If
s(DataLoc(s(a), k1)) = 0, then (IExec(if a = 0 then k1 else I, s))(b) =
(IExec(I, s))(b).

(68) Let s be a state of SCMPDS, I be a Program-block, a, b be Int position,
and k1 be an integer. If s(DataLoc(s(a), k1)) 6= 0, then (IExec(if a =
0 then k1 else I, s))(b) = s(b).

6. The Computation of ”if var<>0 then block”

One can prove the following propositions:

(69) card(if a 6= 0 then k1 else I) = card I + 2.

(70) inspos 0 ∈ dom(if a 6= 0 then k1 else I) and inspos 1 ∈ dom(if a 6=
0 then k1 else I).

(71) (if a 6= 0 then k1 else I)(inspos 0) = (a, k1) <> 0 goto2 and (if a 6=
0 then k1 else I)(inspos 1) = goto (card I + 1).

(72) Let s be a state of SCMPDS, I be a shiftable Program-block, a be a Int
position, and k1 be an integer. Suppose s(DataLoc(s(a), k1)) 6= 0 and I is
closed on s and halting on s. Then if a 6= 0 then k1 else I is closed on s

and if a 6= 0 then k1 else I is halting on s.

(73) Let s be a state of SCMPDS, I be a Program-block, a be a Int po-
sition, and k1 be an integer. If s(DataLoc(s(a), k1)) = 0, then if a 6=
0 then k1 else I is closed on s and if a 6= 0 then k1 else I is halting on
s.

(74) Let s be a state of SCMPDS, I be a No-StopCode shiftable
Program-block, a be a Int position, and k1 be an integer. Suppose
s(DataLoc(s(a), k1)) 6= 0 and I is closed on s and halting on s. Then
IExec(if a 6= 0 then k1 else I, s) = IExec(I, s)+·Start-At(inspos card I+
2).

the construction and computation of . . . 227

(75) Let s be a state of SCMPDS, I be a Program-block, a be a Int posi-
tion, and k1 be an integer. If s(DataLoc(s(a), k1)) = 0, then IExec(if a 6=
0 then k1 else I, s) = s+·Start-At(inspos card I + 2).

Let I be a shiftable parahalting Program-block, let a be a Int position,
and let k1 be an integer. Observe that if a 6= 0 then k1 else I is shiftable and
parahalting.

Let I be a No-StopCode Program-block, let a be a Int position, and let k1

be an integer. One can verify that if a 6= 0 then k1 else I is No-StopCode.
One can prove the following three propositions:

(76) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-
ting Program-block, a be a Int position, and k1 be an integer. Then
ICIExec(if a6=0 then k1 else I,s) = inspos card I + 2.

(77) Let s be a state of SCMPDS, I be a No-StopCode shiftable para-
halting Program-block, a, b be Int position, and k1 be an integer. If
s(DataLoc(s(a), k1)) 6= 0, then (IExec(if a 6= 0 then k1 else I, s))(b) =
(IExec(I, s))(b).

(78) Let s be a state of SCMPDS, I be a Program-block, a, b be Int position,
and k1 be an integer. If s(DataLoc(s(a), k1)) = 0, then (IExec(if a 6=
0 then k1 else I, s))(b) = s(b).

7. The Computation of ”if var>0 then block1 else block2”

We now state several propositions:

(79) card(if a > k1 then I else J) = card I + card J + 2.

(80) inspos 0 ∈ dom(if a > k1 then I else J) and inspos 1 ∈ dom(if a >

k1 then I else J).
(81) (if a > k1 then I else J)(inspos 0) = (a, k1) <= 0 goto card I + 2.

(82) Let s be a state of SCMPDS, I, J be shiftable Program-block, a be a
Int position, and k1 be an integer. Suppose s(DataLoc(s(a), k1)) > 0 and
I is closed on s and halting on s. Then if a > k1 then I else J is closed
on s and if a > k1 then I else J is halting on s.

(83) Let s be a state of SCMPDS, I be a Program-block, J be a shifta-
ble Program-block, a be a Int position, and k1 be an integer. Suppose
s(DataLoc(s(a), k1)) ¬ 0 and J is closed on s and halting on s. Then
if a > k1 then I else J is closed on s and if a > k1 then I else J is
halting on s.

(84) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, J be a shiftable Program-block, a be a Int position, and k1

be an integer. Suppose s(DataLoc(s(a), k1)) > 0 and I is closed

228 jing-chao chen

on s and halting on s. Then IExec(if a > k1 then I else J, s) =
IExec(I, s)+· Start-At(inspos card I + card J + 2).

(85) Let s be a state of SCMPDS, I be a Program-block, J be a
No-StopCode shiftable Program-block, a be a Int position, and k1

be an integer. Suppose s(DataLoc(s(a), k1)) ¬ 0 and J is closed
on s and halting on s. Then IExec(if a > k1 then I else J, s) =
IExec(J, s)+· Start-At(inspos card I + card J + 2).

Let I, J be shiftable parahalting Program-block, let a be a Int position,
and let k1 be an integer. Note that if a > k1 then I else J is shiftable and
parahalting.

Let I, J be No-StopCode Program-block, let a be a Int position, and let k1

be an integer. Note that if a > k1 then I else J is No-StopCode.
Next we state three propositions:

(86) Let s be a state of SCMPDS, I, J be No-StopCode shiftable para-
halting Program-block, a be a Int position, and k1 be an integer. Then
ICIExec(if a>k1 then I else J,s) = inspos card I + card J + 2.

(87) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-
ting Program-block, J be a shiftable Program-block, a, b be Int position,
and k1 be an integer. If s(DataLoc(s(a), k1)) > 0, then (IExec(if a >

k1 then I else J, s))(b) = (IExec(I, s))(b).
(88) Let s be a state of SCMPDS, I be a Program-block, J be a No-

StopCode parahalting shiftable Program-block, a, b be Int position,
and k1 be an integer. If s(DataLoc(s(a), k1)) ¬ 0, then (IExec(if a >

k1 then I else J, s))(b) = (IExec(J, s))(b).

8. The Computation of ”if var>0 then block”

The following propositions are true:

(89) card(if a > 0 then k1 else I) = card I + 1.

(90) inspos 0 ∈ dom(if a > 0 then k1 else I).
(91) (if a > 0 then k1 else I)(inspos 0) = (a, k1) <= 0 goto card I + 1.

(92) Let s be a state of SCMPDS, I be a shiftable Program-block, a be a Int
position, and k1 be an integer. Suppose s(DataLoc(s(a), k1)) > 0 and I is
closed on s and halting on s. Then if a > 0 then k1 else I is closed on s

and if a > 0 then k1 else I is halting on s.

(93) Let s be a state of SCMPDS, I be a Program-block, a be a Int po-
sition, and k1 be an integer. If s(DataLoc(s(a), k1)) ¬ 0, then if a >

0 then k1 else I is closed on s and if a > 0 then k1 else I is halting on
s.

the construction and computation of . . . 229

(94) Let s be a state of SCMPDS, I be a No-StopCode shiftable
Program-block, a be a Int position, and k1 be an integer. Suppose
s(DataLoc(s(a), k1)) > 0 and I is closed on s and halting on s. Then
IExec(if a > 0 then k1 else I, s) = IExec(I, s)+· Start-At(inspos card I+
1).

(95) Let s be a state of SCMPDS, I be a Program-block, a be a Int posi-
tion, and k1 be an integer. If s(DataLoc(s(a), k1)) ¬ 0, then IExec(if a >

0 then k1 else I, s) = s+·Start-At(inspos card I + 1).
Let I be a shiftable parahalting Program-block, let a be a Int position,

and let k1 be an integer. Observe that if a > 0 then k1 else I is shiftable and
parahalting.

Let I be a No-StopCode Program-block, let a be a Int position, and let k1

be an integer. Observe that if a > 0 then k1 else I is No-StopCode.
The following propositions are true:

(96) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-
ting Program-block, a be a Int position, and k1 be an integer. Then
ICIExec(if a>0 then k1 else I,s) = inspos card I + 1.

(97) Let s be a state of SCMPDS, I be a No-StopCode shiftable para-
halting Program-block, a, b be Int position, and k1 be an integer. If
s(DataLoc(s(a), k1)) > 0, then (IExec(if a > 0 then k1 else I, s))(b) =
(IExec(I, s))(b).

(98) Let s be a state of SCMPDS, I be a Program-block, a, b be Int position,
and k1 be an integer. If s(DataLoc(s(a), k1)) ¬ 0, then (IExec(if a >

0 then k1 else I, s))(b) = s(b).

9. The Computation of ”if var<=0 then block”

We now state several propositions:

(99) card(if a ¬ 0 then k1 else I) = card I + 2.

(100) inspos 0 ∈ dom(if a ¬ 0 then k1 else I) and inspos 1 ∈ dom(if a ¬
0 then k1 else I).

(101) (if a ¬ 0 then k1 else I)(inspos 0) = (a, k1) <= 0 goto2 and (if a ¬
0 then k1 else I)(inspos 1) = goto (card I + 1).

(102) Let s be a state of SCMPDS, I be a shiftable Program-block, a be a Int
position, and k1 be an integer. Suppose s(DataLoc(s(a), k1)) ¬ 0 and I is
closed on s and halting on s. Then if a ¬ 0 then k1 else I is closed on s

and if a ¬ 0 then k1 else I is halting on s.

(103) Let s be a state of SCMPDS, I be a Program-block, a be a Int po-
sition, and k1 be an integer. If s(DataLoc(s(a), k1)) > 0, then if a ¬

230 jing-chao chen

0 then k1 else I is closed on s and if a ¬ 0 then k1 else I is halting on
s.

(104) Let s be a state of SCMPDS, I be a No-StopCode shiftable
Program-block, a be a Int position, and k1 be an integer. Suppose
s(DataLoc(s(a), k1)) ¬ 0 and I is closed on s and halting on s. Then
IExec(if a ¬ 0 then k1 else I, s) = IExec(I, s)+·Start-At(inspos card I+
2).

(105) Let s be a state of SCMPDS, I be a Program-block, a be a Int posi-
tion, and k1 be an integer. If s(DataLoc(s(a), k1)) > 0, then IExec(if a ¬
0 then k1 else I, s) = s+·Start-At(inspos card I + 2).

Let I be a shiftable parahalting Program-block, let a be a Int position,
and let k1 be an integer. Observe that if a ¬ 0 then k1 else I is shiftable and
parahalting.

Let I be a No-StopCode Program-block, let a be a Int position, and let k1

be an integer. Note that if a ¬ 0 then k1 else I is No-StopCode.
We now state three propositions:

(106) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-
ting Program-block, a be a Int position, and k1 be an integer. Then
ICIExec(if a¬0 then k1 else I,s) = inspos card I + 2.

(107) Let s be a state of SCMPDS, I be a No-StopCode shiftable para-
halting Program-block, a, b be Int position, and k1 be an integer. If
s(DataLoc(s(a), k1)) ¬ 0, then (IExec(if a ¬ 0 then k1 else I, s))(b) =
(IExec(I, s))(b).

(108) Let s be a state of SCMPDS, I be a Program-block, a, b be Int position,
and k1 be an integer. If s(DataLoc(s(a), k1)) > 0, then (IExec(if a ¬
0 then k1 else I, s))(b) = s(b).

10. The Computation of ”if var<0 then block1 else block2”

One can prove the following propositions:

(109) card(if a < k1 then I else J) = card I + card J + 2.

(110) inspos 0 ∈ dom(if a < k1 then I else J) and inspos 1 ∈ dom(if a <

k1 then I else J).
(111) (if a < k1 then I else J)(inspos 0) = (a, k1) >= 0 goto card I + 2.

(112) Let s be a state of SCMPDS, I, J be shiftable Program-block, a be a
Int position, and k1 be an integer. Suppose s(DataLoc(s(a), k1)) < 0 and
I is closed on s and halting on s. Then if a < k1 then I else J is closed
on s and if a < k1 then I else J is halting on s.

the construction and computation of . . . 231

(113) Let s be a state of SCMPDS, I be a Program-block, J be a shifta-
ble Program-block, a be a Int position, and k1 be an integer. Suppose
s(DataLoc(s(a), k1)) ­ 0 and J is closed on s and halting on s. Then
if a < k1 then I else J is closed on s and if a < k1 then I else J is
halting on s.

(114) Let s be a state of SCMPDS, I be a No-StopCode shiftable Program-
block, J be a shiftable Program-block, a be a Int position, and k1

be an integer. Suppose s(DataLoc(s(a), k1)) < 0 and I is closed
on s and halting on s. Then IExec(if a < k1 then I else J, s) =
IExec(I, s)+· Start-At(inspos card I + card J + 2).

(115) Let s be a state of SCMPDS, I be a Program-block, J be a
No-StopCode shiftable Program-block, a be a Int position, and k1

be an integer. Suppose s(DataLoc(s(a), k1)) ­ 0 and J is closed
on s and halting on s. Then IExec(if a < k1 then I else J, s) =
IExec(J, s)+·Start-At(inspos card I + card J + 2).

Let I, J be shiftable parahalting Program-block, let a be a Int position,
and let k1 be an integer. Observe that if a < k1 then I else J is shiftable and
parahalting.

Let I, J be No-StopCode Program-block, let a be a Int position, and let k1

be an integer. Note that if a < k1 then I else J is No-StopCode.
Next we state three propositions:

(116) Let s be a state of SCMPDS, I, J be No-StopCode shiftable para-
halting Program-block, a be a Int position, and k1 be an integer. Then
ICIExec(if a<k1 then I else J,s) = inspos card I + card J + 2.

(117) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-
ting Program-block, J be a shiftable Program-block, a, b be Int position,
and k1 be an integer. If s(DataLoc(s(a), k1)) < 0, then (IExec(if a <

k1 then I else J, s))(b) = (IExec(I, s))(b).
(118) Let s be a state of SCMPDS, I be a Program-block, J be a No-

StopCode parahalting shiftable Program-block, a, b be Int position,
and k1 be an integer. If s(DataLoc(s(a), k1)) ­ 0, then (IExec(if a <

k1 then I else J, s))(b) = (IExec(J, s))(b).

11. The Computation of ”if var<0 then block”

One can prove the following propositions:

(119) card(if a < 0 then k1 else I) = card I + 1.

(120) inspos 0 ∈ dom(if a < 0 then k1 else I).
(121) (if a < 0 then k1 else I)(inspos 0) = (a, k1) >= 0 goto card I + 1.

232 jing-chao chen

(122) Let s be a state of SCMPDS, I be a shiftable Program-block, a be a Int
position, and k1 be an integer. Suppose s(DataLoc(s(a), k1)) < 0 and I is
closed on s and halting on s. Then if a < 0 then k1 else I is closed on s

and if a < 0 then k1 else I is halting on s.

(123) Let s be a state of SCMPDS, I be a Program-block, a be a Int po-
sition, and k1 be an integer. If s(DataLoc(s(a), k1)) ­ 0, then if a <

0 then k1 else I is closed on s and if a < 0 then k1 else I is halting on
s.

(124) Let s be a state of SCMPDS, I be a No-StopCode shiftable
Program-block, a be a Int position, and k1 be an integer. Suppose
s(DataLoc(s(a), k1)) < 0 and I is closed on s and halting on s. Then
IExec(if a < 0 then k1 else I, s) = IExec(I, s)+·Start-At(inspos card I+
1).

(125) Let s be a state of SCMPDS, I be a Program-block, a be a Int posi-
tion, and k1 be an integer. If s(DataLoc(s(a), k1)) ­ 0, then IExec(if a <

0 then k1 else I, s) = s+·Start-At(inspos card I + 1).
Let I be a shiftable parahalting Program-block, let a be a Int position,

and let k1 be an integer. Note that if a < 0 then k1 else I is shiftable and
parahalting.

Let I be a No-StopCode Program-block, let a be a Int position, and let k1

be an integer. One can check that if a < 0 then k1 else I is No-StopCode.
Next we state three propositions:

(126) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-
ting Program-block, a be a Int position, and k1 be an integer. Then
ICIExec(if a<0 then k1 else I,s) = inspos card I + 1.

(127) Let s be a state of SCMPDS, I be a No-StopCode shiftable para-
halting Program-block, a, b be Int position, and k1 be an integer. If
s(DataLoc(s(a), k1)) < 0, then (IExec(if a < 0 then k1 else I, s))(b) =
(IExec(I, s))(b).

(128) Let s be a state of SCMPDS, I be a Program-block, a, b be Int position,
and k1 be an integer. If s(DataLoc(s(a), k1)) ­ 0, then (IExec(if a <

0 then k1 else I, s))(b) = s(b).

12. The Computation of ”if var>=0 then block”

The following propositions are true:

(129) card(if a ­ 0 then k1 else I) = card I + 2.

(130) inspos 0 ∈ dom(if a ­ 0 then k1 else I) and inspos 1 ∈ dom(if a ­
0 then k1 else I).

the construction and computation of . . . 233

(131) (if a ­ 0 then k1 else I)(inspos 0) = (a, k1) >= 0 goto2 and (if a ­
0 then k1 else I)(inspos 1) = goto (card I + 1).

(132) Let s be a state of SCMPDS, I be a shiftable Program-block, a be a Int
position, and k1 be an integer. Suppose s(DataLoc(s(a), k1)) ­ 0 and I is
closed on s and halting on s. Then if a ­ 0 then k1 else I is closed on s

and if a ­ 0 then k1 else I is halting on s.

(133) Let s be a state of SCMPDS, I be a Program-block, a be a Int po-
sition, and k1 be an integer. If s(DataLoc(s(a), k1)) < 0, then if a ­
0 then k1 else I is closed on s and if a ­ 0 then k1 else I is halting on
s.

(134) Let s be a state of SCMPDS, I be a No-StopCode shiftable
Program-block, a be a Int position, and k1 be an integer. Suppose
s(DataLoc(s(a), k1)) ­ 0 and I is closed on s and halting on s. Then
IExec(if a ­ 0 then k1 else I, s) = IExec(I, s)+· Start-At(inspos card I+
2).

(135) Let s be a state of SCMPDS, I be a Program-block, a be a Int posi-
tion, and k1 be an integer. If s(DataLoc(s(a), k1)) < 0, then IExec(if a ­
0 then k1 else I, s) = s+·Start-At(inspos card I + 2).

Let I be a shiftable parahalting Program-block, let a be a Int position,
and let k1 be an integer. Note that if a ­ 0 then k1 else I is shiftable and
parahalting.

Let I be a No-StopCode Program-block, let a be a Int position, and let k1

be an integer. Observe that if a ­ 0 then k1 else I is No-StopCode.
We now state three propositions:

(136) Let s be a state of SCMPDS, I be a No-StopCode shiftable parahal-
ting Program-block, a be a Int position, and k1 be an integer. Then
ICIExec(if a­0 then k1 else I,s) = inspos card I + 2.

(137) Let s be a state of SCMPDS, I be a No-StopCode shiftable para-
halting Program-block, a, b be Int position, and k1 be an integer. If
s(DataLoc(s(a), k1)) ­ 0, then (IExec(if a ­ 0 then k1 else I, s))(b) =
(IExec(I, s))(b).

(138) Let s be a state of SCMPDS, I be a Program-block, a, b be Int position,
and k1 be an integer. If s(DataLoc(s(a), k1)) < 0, then (IExec(if a ­
0 then k1 else I, s))(b) = s(b).

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Formalized

Mathematics, 4(1):61–67, 1993.

234 jing-chao chen

[4] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[6] Czesław Byliński. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[7] Jing-Chao Chen. Computation and program shift in the SCMPDS computer. Formalized
Mathematics, 8(1):193–199, 1999.

[8] Jing-Chao Chen. Computation of two consecutive program blocks for SCMPDS. Forma-
lized Mathematics, 8(1):211–217, 1999.

[9] Jing-Chao Chen. The construction and shiftability of program blocks for SCMPDS.
Formalized Mathematics, 8(1):201–210, 1999.

[10] Jing-Chao Chen. The SCMPDS computer and the basic semantics of its instructions.
Formalized Mathematics, 8(1):183–191, 1999.

[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[12] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[13] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241–250, 1992.

[14] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics,
1(2):263–264, 1990.

[15] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics,
5(1):1–8, 1996.

[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[17] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[18] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[19] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-

thematics, 1(1):17–23, 1990.
[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received June 15, 1999

