Propositional Calculus for Boolean Valued Functions, Part I

Shunichi Kobayashi Shinshu University Nagano Yatsuka Nakamura Shinshu University Nagano

Summary. In this paper, we have proved some elementary propositional calculus formulae for Boolean valued functions.

MML Identifier: BVFUNC_5.

The terminology and notation used in this paper have been introduced in the following articles: [6], [8], [9], [2], [3], [5], [1], [7], and [4].

In this paper Y is a non empty set.

Next we state a number of propositions:

- (1) For all elements a, b of BVF(Y) holds a = true(Y) and b = true(Y) iff $a \wedge b = true(Y)$.
- (2) For all elements a, b of BVF(Y) such that a = true(Y) and $a \Rightarrow b = true(Y)$ holds b = true(Y).
- (3) For all elements a, b of BVF(Y) such that a = true(Y) holds $a \lor b = true(Y)$.
- (5)¹ For all elements a, b of BVF(Y) such that b = true(Y) holds $a \Rightarrow b = true(Y)$.
- (6) For all elements a, b of BVF(Y) such that $\neg a = true(Y)$ holds $a \Rightarrow b = true(Y)$.
- (7) For every element a of BVF(Y) holds $\neg(a \land \neg a) = true(Y)$.
- (8) For every element a of BVF(Y) holds $a \Rightarrow a = true(Y)$.
- (9) For all elements a, b of BVF(Y) holds $a \Rightarrow b = true(Y)$ iff $\neg b \Rightarrow \neg a = true(Y)$.

¹The proposition (4) has been removed.

- (10) For all elements a, b, c of BVF(Y) such that $a \Rightarrow b = true(Y)$ and $b \Rightarrow c = true(Y)$ holds $a \Rightarrow c = true(Y)$.
- (11) For all elements a, b of BVF(Y) such that $a \Rightarrow b = true(Y)$ and $a \Rightarrow \neg b = true(Y)$ holds $\neg a = true(Y)$.
- (12) For every element a of BVF(Y) holds $\neg a \Rightarrow a \Rightarrow a = true(Y)$.
- (13) For all elements a, b, c of BVF(Y) holds $a \Rightarrow b \Rightarrow \neg(b \land c) \Rightarrow \neg(a \land c) = true(Y)$.
- (14) For all elements a, b, c of BVF(Y) holds $a \Rightarrow b \Rightarrow b \Rightarrow c \Rightarrow a \Rightarrow c = true(<math>Y$).
- (15) For all elements a, b, c of BVF(Y) such that $a \Rightarrow b = true(Y)$ holds $b \Rightarrow c \Rightarrow a \Rightarrow c = true(Y)$.
- (16) For all elements a, b of BVF(Y) holds $b \Rightarrow a \Rightarrow b = true(Y)$.
- (17) For all elements a, b, c of BVF(Y) holds $a \Rightarrow b \Rightarrow c \Rightarrow b \Rightarrow c = true(Y)$.
- (18) For all elements a, b of BVF(Y) holds $b \Rightarrow b \Rightarrow a \Rightarrow a = true(<math>Y$).
- (19) For all elements a, b, c of BVF(Y) holds $c \Rightarrow b \Rightarrow a \Rightarrow b \Rightarrow c \Rightarrow a = true(Y)$.
- (20) For all elements a, b, c of BVF(Y) holds $b \Rightarrow c \Rightarrow a \Rightarrow b \Rightarrow a \Rightarrow c = true(Y)$.
- (21) For all elements a, b, c of BVF(Y) holds $b \Rightarrow b \Rightarrow c \Rightarrow b \Rightarrow c = true(Y)$.
- (22) For all elements a, b, c of BVF(Y) holds $a \Rightarrow b \Rightarrow c \Rightarrow a \Rightarrow b \Rightarrow a \Rightarrow c = true(<math>Y$).
- (23) For all elements a, b of BVF(Y) such that a = true(Y) holds $a \Rightarrow b \Rightarrow b = true(Y)$.
- (24) For all elements a, b, c of BVF(Y) such that $c \Rightarrow b \Rightarrow a = true(Y)$ holds $b \Rightarrow c \Rightarrow a = true(Y)$.
- (25) For all elements a, b, c of BVF(Y) such that $c \Rightarrow b \Rightarrow a = true(Y)$ and b = true(Y) holds $c \Rightarrow a = true(Y)$.
- (26) For all elements a, b, c of BVF(Y) such that $c \Rightarrow b \Rightarrow a = true(Y)$ and b = true(Y) and c = true(Y) holds a = true(Y).
- (27) For all elements b, c of BVF(Y) such that $b \Rightarrow c = true(Y)$ holds $b \Rightarrow c = true(Y)$.
- (28) For all elements a, b, c of BVF(Y) such that $a \Rightarrow b \Rightarrow c = true(Y)$ holds $a \Rightarrow b \Rightarrow a \Rightarrow c = true(Y)$.
- (29) For all elements a, b, c of BVF(Y) such that $a \Rightarrow b \Rightarrow c = true(Y)$ and $a \Rightarrow b = true(Y)$ holds $a \Rightarrow c = true(Y)$.
- (30) For all elements a, b, c of BVF(Y) such that $a \Rightarrow b \Rightarrow c = true(Y)$ and $a \Rightarrow b = true(Y)$ and a = true(Y) holds c = true(Y).
- (31) For all elements a, b, c, d of BVF(Y) such that $a \Rightarrow b \Rightarrow c = true(Y)$ and $a \Rightarrow c \Rightarrow d = true(Y)$ holds $a \Rightarrow b \Rightarrow d = true(Y)$.

- (32) For all elements a, b of BVF(Y) holds $\neg a \Rightarrow \neg b \Rightarrow b \Rightarrow a = true(Y)$.
- (33) For all elements a, b of BVF(Y) holds $a \Rightarrow b \Rightarrow \neg b \Rightarrow \neg a = true(Y)$.
- (34) For all elements a, b of BVF(Y) holds $a \Rightarrow \neg b \Rightarrow b \Rightarrow \neg a = true(Y)$.
- (35) For all elements a, b of BVF(Y) holds $\neg a \Rightarrow b \Rightarrow \neg b \Rightarrow a = true(Y)$.
- (36) For every element a of BVF(Y) holds $a \Rightarrow \neg a \Rightarrow \neg a = true(Y)$.
- (37) For all elements a, b of BVF(Y) holds $\neg a \Rightarrow a \Rightarrow b = true(Y)$.
- (38) For all elements a, b, c of BVF(Y) holds $\neg(a \land b \land c) = \neg a \lor \neg b \lor \neg c$.
- (39) For all elements a, b, c of BVF(Y) holds $\neg (a \lor b \lor c) = \neg a \land \neg b \land \neg c$.
- (40) For all elements a, b, c, d of BVF(Y) holds $a \lor b \land c \land d = (a \lor b) \land (a \lor c) \land (a \lor d)$.
- (41) For all elements a, b, c, d of BVF(Y) holds $a \land (b \lor c \lor d) = a \land b \lor a \land c \lor a \land d$.

References

- [1] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485–492, 1996.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [4] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions. Formalized Mathematics, 7(2):249–254, 1998.
- [5] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [7] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [8] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.
- [9] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received March 13, 1999