Propositional Calculus for Boolean Valued Functions. Part II

Shunichi Kobayashi Shinshu University Nagano Yatsuka Nakamura Shinshu University Nagano

Summary. In this paper, we have proved some elementary propositional calculus formulae for Boolean valued functions.

MML Identifier: BVFUNC_6.

The articles [3], [4], [2], and [1] provide the terminology and notation for this paper.

In this paper Y denotes a non empty set.

The following propositions are true:

- (1) For all elements a, b of BVF(Y) holds $a \Rightarrow b \Rightarrow a \land b = true(Y)$.
- (2) For all elements a, b of BVF(Y) holds $a \Rightarrow b \Rightarrow b \Rightarrow a \Rightarrow a \Leftrightarrow b = true(Y)$.
- (3) For all elements a, b of BVF(Y) holds $a \lor b \Leftrightarrow b \lor a = true(Y)$.
- (4) For all elements a, b, c of BVF(Y) holds $a \wedge b \Rightarrow c \Rightarrow a \Rightarrow b \Rightarrow c = true(Y)$.
- (5) For all elements a, b, c of BVF(Y) holds $a \Rightarrow b \Rightarrow c \Rightarrow a \land b \Rightarrow c = true(<math>Y$).
- (6) For all elements a, b, c of BVF(Y) holds $c \Rightarrow a \Rightarrow c \Rightarrow b \Rightarrow c \Rightarrow a \land b = true(Y)$.
- (7) For all elements a, b, c of BVF(Y) holds $a \lor b \Rightarrow c \Rightarrow (a \Rightarrow c) \lor (b \Rightarrow c) = true(Y)$.
- (8) For all elements a, b, c of BVF(Y) holds $a \Rightarrow c \Rightarrow b \Rightarrow c \Rightarrow a \lor b \Rightarrow c = true(Y)$.
- (9) For all elements a, b, c of BVF(Y) holds $(a \Rightarrow c) \land (b \Rightarrow c) \Rightarrow a \lor b \Rightarrow c = true(Y)$.

- (10) For all elements a, b of BVF(Y) holds $a \Rightarrow b \land \neg b \Rightarrow \neg a = true(<math>Y$).
- (11) For all elements a, b, c of BVF(Y) holds $(a \lor b) \land (a \lor c) \Rightarrow a \lor b \land c = true(Y)$.
- (12) For all elements a, b, c of BVF(Y) holds $a \land (b \lor c) \Rightarrow a \land b \lor a \land c = true(Y)$.
- (13) For all elements a, b, c of BVF(Y) holds $(a \lor c) \land (b \lor c) \Rightarrow a \land b \lor c = true(Y)$.
- (14) For all elements a, b, c of BVF(Y) holds $(a \lor b) \land c \Rightarrow a \land c \lor b \land c = true(Y)$.
- (15) For all elements a, b of BVF(Y) such that $a \wedge b = true(Y)$ holds $a \vee b = true(Y)$.
- (16) For all elements a, b, c of BVF(Y) such that $a \Rightarrow b = true(Y)$ holds $a \lor c \Rightarrow b \lor c = true(Y)$.
- (17) For all elements a, b, c of BVF(Y) such that $a \Rightarrow b = true(Y)$ holds $a \wedge c \Rightarrow b \wedge c = true(Y)$.
- (18) For all elements a, b, c of BVF(Y) such that $c \Rightarrow a = true(Y)$ and $c \Rightarrow b = true(Y)$ holds $c \Rightarrow a \land b = true(Y)$.
- (19) For all elements a, b, c of BVF(Y) such that $a \Rightarrow c = true(Y)$ and $b \Rightarrow c = true(Y)$ holds $a \lor b \Rightarrow c = true(Y)$.
- (20) For all elements a, b of BVF(Y) such that $a \lor b = true(Y)$ and $\neg a = true(Y)$ holds b = true(Y).
- (21) For all elements a, b, c, d of BVF(Y) such that $a \Rightarrow b = true(Y)$ and $c \Rightarrow d = true(Y)$ holds $a \land c \Rightarrow b \land d = true(Y)$.
- (22) For all elements a, b, c, d of BVF(Y) such that $a \Rightarrow b = true(Y)$ and $c \Rightarrow d = true(Y)$ holds $a \lor c \Rightarrow b \lor d = true(Y)$.
- (23) For all elements a, b of BVF(Y) such that $a \land \neg b \Rightarrow \neg a = true(Y)$ holds $a \Rightarrow b = true(Y)$.
- (24) For all elements a, b of BVF(Y) such that $\neg a \Rightarrow \neg b = true(Y)$ holds $b \Rightarrow a = true(Y)$.
- (25) For all elements a, b of BVF(Y) such that $a \Rightarrow \neg b = true(Y)$ holds $b \Rightarrow \neg a = true(Y)$.
- (26) For all elements a, b of BVF(Y) such that $\neg a \Rightarrow b = true(Y)$ holds $\neg b \Rightarrow a = true(Y)$.
- (27) For all elements a, b of BVF(Y) holds $a \Rightarrow a \lor b = true(Y)$.
- (28) For all elements a, b of BVF(Y) holds $a \lor b \Rightarrow \neg a \Rightarrow b = true(Y)$.
- (29) For all elements a, b of BVF(Y) holds $\neg(a \lor b) \Rightarrow \neg a \land \neg b = true(Y)$.
- (30) For all elements a, b of BVF(Y) holds $\neg a \land \neg b \Rightarrow \neg (a \lor b) = true(Y)$.
- (31) For all elements a, b of BVF(Y) holds $\neg(a \lor b) \Rightarrow \neg a = true(Y)$.
- (32) For every element a of BVF(Y) holds $a \lor a \Rightarrow a = true(Y)$.
- (33) For all elements a, b of BVF(Y) holds $a \land \neg a \Rightarrow b = true(Y)$.

- (34) For all elements a, b of BVF(Y) holds $a \Rightarrow b \Rightarrow \neg a \lor b = true(Y)$.
- (35) For all elements a, b of BVF(Y) holds $a \land b \Rightarrow \neg(a \Rightarrow \neg b) = true(Y)$.
- (36) For all elements a, b of BVF(Y) holds $\neg(a \Rightarrow \neg b) \Rightarrow a \land b = true(Y)$.
- (37) For all elements a, b of BVF(Y) holds $\neg(a \land b) \Rightarrow \neg a \lor \neg b = true(Y)$.
- (38) For all elements a, b of BVF(Y) holds $\neg a \lor \neg b \Rightarrow \neg (a \land b) = true(Y)$.
- (39) For all elements a, b of BVF(Y) holds $a \wedge b \Rightarrow a = true(Y)$.
- (40) For all elements a, b of BVF(Y) holds $a \land b \Rightarrow a \lor b = true(Y)$.
- (41) For all elements a, b of BVF(Y) holds $a \wedge b \Rightarrow b = true(Y)$.
- (42) For every element a of BVF(Y) holds $a \Rightarrow a \land a = true(Y)$.
- (43) For all elements a, b of BVF(Y) holds $a \Leftrightarrow b \Rightarrow a \Rightarrow b = true(Y)$.
- (44) For all elements a, b of BVF(Y) holds $a \Leftrightarrow b \Rightarrow a = true(Y)$.
- (45) For all elements a, b, c of BVF(Y) holds $a \lor b \lor c \Rightarrow a \lor (b \lor c) = true(Y)$.
- (46) For all elements a, b, c of BVF(Y) holds $a \land b \land c \Rightarrow a \land (b \land c) = true(Y)$.
- (47) For all elements a, b, c of BVF(Y) holds $a \lor (b \lor c) \Rightarrow a \lor b \lor c = true(Y)$.

References

- [1] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions. Formalized Mathematics, 7(2):249–254, 1998.
- [2] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [3] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [4] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.

Received March 13, 1999