Correctness of Johnson Counter Circuits

Yuguang Yang
Shinshu University
Nagano

Katsumi Wasaki
Shinshu University
Nagano
Yatsuka Nakamura
Shinshu University
Nagano

Yasushi Fuwa
Shinshu University
Nagano

Abstract

Summary. This article introduces the verification of the correctness for the operations and the specification of the Johnson counter. We formalize the concepts of 2 -bit, 3 -bit and 4 -bit Johnson counter circuits with a reset input, and define the specification of the state transitions without the minor loop.

MML Identifier: GATE_3.

The notation and terminology used here are introduced in the paper [1].
The following propositions are true:
(1) Let $s_{0}, s_{1}, s_{2}, s_{3}, n_{0}, n_{1}, n_{2}, n_{3}, q_{1}, q_{2}, n_{4}, n_{5}$ be sets such that NE s_{0} iff NE AND2(NOT1 q_{2}, NOT1 q_{1}) and NE s_{1} iff NE AND2(NOT1 q_{2}, q_{1}) and NE s_{2} iff NE AND2 $\left(q_{2}, \operatorname{NOT} q_{1}\right)$ and $\operatorname{NE} s_{3}$ iff NE $\operatorname{AND} 2\left(q_{2}, q_{1}\right)$ and NE n_{0} iff NE $\operatorname{AND} 2\left(\operatorname{NOT} 1 n_{5}, \operatorname{NOT} 1 n_{4}\right)$ and NE n_{1} iff NE AND2(NOT1 $\left.n_{5}, n_{4}\right)$ and NE n_{2} iff NE AND2 $\left(n_{5}\right.$, NOT1 $\left.n_{4}\right)$ and NE n_{3} iff $\operatorname{NE} \operatorname{AND} 2\left(n_{5}, n_{4}\right)$ and NE n_{4} iff NE NOT1 q_{2} and NE n_{5} iff NE q_{1}. Then
(i) $\mathrm{NE} n_{1}$ iff $\mathrm{NE} s_{0}$,
(ii) $\mathrm{NE} n_{3}$ iff $\mathrm{NE} s_{1}$,
(iii) $\mathrm{NE} n_{2}$ iff $\mathrm{NE} s_{3}$, and
(iv) $\mathrm{NE} n_{0}$ iff NE s_{2}.
(2) Let $s_{0}, s_{1}, s_{2}, s_{3}, n_{0}, n_{1}, n_{2}, n_{3}, q_{1}, q_{2}, n_{4}, n_{5}, R$ be sets such that NE s_{0} iff NE AND2(NOT1 q_{2}, NOT1 q_{1}) and NE s_{1} iff NE AND2(NOT1 q_{2}, q_{1}) and NE s_{2} iff NE AND2 $\left(q_{2}, \operatorname{NOT1} q_{1}\right)$ and NE s_{3} iff NE $\operatorname{AND} 2\left(q_{2}, q_{1}\right)$ and NE n_{0} iff NE AND2(NOT1 $\left.n_{5}, \operatorname{NOT} 1 n_{4}\right)$ and NE n_{1} iff NE $\operatorname{AND} 2\left(\mathrm{NOT} 1 n_{5}, n_{4}\right)$ and NE n_{2} iff $\operatorname{NE} \operatorname{AND} 2\left(n_{5}, \operatorname{NOT} 1 n_{4}\right)$ and NE n_{3}
iff NE AND2 $\left(n_{5}, n_{4}\right)$ and NE n_{4} iff NE AND2(NOT1 $\left.q_{2}, R\right)$ and NE n_{5} iff NE AND2 $\left(q_{1}, R\right)$. Then
(i) $\mathrm{NE} n_{1}$ iff $\operatorname{NE} \operatorname{AND} 2\left(s_{0}, R\right)$,
(ii) $\mathrm{NE} n_{3}$ iff $\operatorname{NE} \operatorname{AND} 2\left(s_{1}, R\right)$,
(iii) $\mathrm{NE} n_{2}$ iff NE AND2 $\left(s_{3}, R\right)$, and
(iv) NE n_{0} iff NE OR2(AND2 $\left(s_{2}, R\right)$, NOT1 $\left.R\right)$.
(3) Let $s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}, s_{7}, n_{0}, n_{1}, n_{2}, n_{3}, n_{6}, n_{7}, n_{8}, n_{9}, q_{1}, q_{2}, q_{3}, n_{4}$, n_{5}, n_{10} be sets such that NE s_{0} iff NE AND3(NOT1 q_{3}, NOT1 q_{2}, NOT1 q_{1}) and NE s_{1} iff NE AND3(NOT1 $q_{3}, \mathrm{NOT} 1 q_{2}, q_{1}$) and NE s_{2} iff NE AND3(NOT1 q_{3}, q_{2}, NOT1 q_{1}) and NE s_{3} iff NE AND3(NOT1 $\left.q_{3}, q_{2}, q_{1}\right)$ and $\mathrm{NE} s_{4}$ iff $\mathrm{NE} \operatorname{AND} 3\left(q_{3}, \operatorname{NOT} 1 q_{2}, \operatorname{NOT1} q_{1}\right)$ and NE s_{5} iff NE $\operatorname{AND} 3\left(q_{3}, \operatorname{NOT1} q_{2}, q_{1}\right)$ and NE s_{6} iff NE $\operatorname{AND} 3\left(q_{3}, q_{2}, \operatorname{NOT1} q_{1}\right)$ and NE s_{7} iff NE $\operatorname{AND} 3\left(q_{3}, q_{2}, q_{1}\right)$ and NE n_{0} iff NE AND3(NOT1 n_{10}, NOT1 n_{5}, NOT1 n_{4}) and NE n_{1} iff NE AND3(NOT1 n_{10}, NOT1 n_{5}, n_{4}) and NE n_{2} iff NE AND3(NOT1 n_{10}, n_{5}, NOT1 n_{4}) and NE n_{3} iff NE AND3(NOT1 $\left.n_{10}, n_{5}, n_{4}\right)$ and NE n_{6} iff NE AND3 $\left(n_{10}\right.$, NOT1 n_{5}, NOT1 $\left.n_{4}\right)$ and NE n_{7} iff NE $\operatorname{AND} 3\left(n_{10}, \operatorname{NOT1} n_{5}, n_{4}\right)$ and NE n_{8} iff NE $\operatorname{AND} 3\left(n_{10}, n_{5}, \operatorname{NOT} 1 n_{4}\right)$ and NE n_{9} iff $\operatorname{NE} \operatorname{AND} 3\left(n_{10}, n_{5}, n_{4}\right)$ and NE n_{4} iff NE NOT1 q_{3} and NE n_{5} iff NE q_{1} and NE n_{10} iff NE q_{2}. Then
(i) NE n_{1} iff NE s_{0},
(ii) $\mathrm{NE} n_{3}$ iff NE s_{1},
(iii) $\mathrm{NE} n_{9}$ iff NE s_{3},
(iv) NE n_{8} iff NE s_{7},
(v) NE n_{6} iff NE s_{6},
(vi) NE n_{0} iff NE s_{4},
(vii) NE n_{2} iff NE s_{5}, and
(viii) NE n_{7} iff NE s_{2}.
(4) Let $s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}, s_{7}, n_{0}, n_{1}, n_{2}, n_{3}, n_{6}, n_{7}$, $n_{8}, \quad n_{9}, \quad q_{1}, \quad q_{2}, \quad q_{3}, \quad n_{4}, \quad n_{5}, \quad n_{10}, \quad R$ be sets such that NE s_{0} iff NE AND3(NOT1 $q_{3}, \operatorname{NOT1} q_{2}$, NOT1 q_{1}) and NE s_{1} iff NE AND3(NOT1 q_{3}, NOT1 q_{2}, q_{1}) and NE s_{2} iff NE AND3(NOT1 q_{3}, q_{2},
NOT1 q_{1}) and NE s_{3} iff NE AND3(NOT1 q_{3}, q_{2}, q_{1}) and NE s_{4} iff NE $\operatorname{AND} 3\left(q_{3}, \operatorname{NOT1} q_{2}, \operatorname{NOT1} q_{1}\right)$ and NE $s_{5} \operatorname{iff} \operatorname{NE} \operatorname{AND} 3\left(q_{3}, \operatorname{NOT1} q_{2}, q_{1}\right)$ and $\mathrm{NE} \quad s_{6}$ iff $\mathrm{NE} \operatorname{AND} 3\left(q_{3}, q_{2}, \mathrm{NOT} 1 q_{1}\right)$ and $\mathrm{NE} s_{7}$ iff NE $\operatorname{AND} 3\left(q_{3}, q_{2}, q_{1}\right)$ and NE n_{0} iff NE AND3(NOT1 n_{10}, NOT1 $\left.n_{5}, \operatorname{NOT1} n_{4}\right)$ and NE n_{1} iff NE AND3(NOT1 n_{10}, NOT1 n_{5}, n_{4}) and NE n_{2} iff NE AND3(NOT1 n_{10}, n_{5}, NOT1 n_{4}) and NE n_{3} iff NE AND3(NOT1 n_{10}, n_{5}, n_{4}) and NE n_{6} iff NE $\operatorname{AND} 3\left(n_{10}, \operatorname{NOT1} n_{5}, \operatorname{NOT1} n_{4}\right)$ and NE n_{7} iff NE $\operatorname{AND} 3\left(n_{10}, \operatorname{NOT} 1 n_{5}, n_{4}\right)$ and NE n_{8} iff NE AND3 $\left(n_{10}, n_{5}, \operatorname{NOT1} n_{4}\right)$ and NE n_{9} iff NE AND3 $\left(n_{10}, n_{5}, n_{4}\right)$ and NE n_{4} iff NE AND2(NOT1 $\left.q_{3}, R\right)$ and NE n_{5} iff NE AND2 $\left(q_{1}, R\right)$ and NE n_{10} iff NE AND2 $\left(q_{2}, R\right)$. Then
(i) $\mathrm{NE} n_{1}$ iff $\mathrm{NE} \operatorname{AND} 2\left(s_{0}, R\right)$,
(ii) $\mathrm{NE} n_{3}$ iff $\operatorname{NE} \operatorname{AND} 2\left(s_{1}, R\right)$,
(iii) $\mathrm{NE} n_{9}$ iff $\mathrm{NE} \operatorname{AND} 2\left(s_{3}, R\right)$,
(iv) $\operatorname{NE} n_{8}$ iff NE AND2 $\left(s_{7}, R\right)$,
(v) $\operatorname{NE~} n_{6}$ iff $\operatorname{NE} \operatorname{AND} 2\left(s_{6}, R\right)$,
(vi) NE n_{0} iff NE OR2(AND2 $\left(s_{4}, R\right)$, NOT1 $\left.R\right)$,
(vii) $\operatorname{NE~} n_{2}$ iff $\operatorname{NE} \operatorname{AND} 2\left(s_{5}, R\right)$, and
(viii) $\mathrm{NE} n_{7}$ iff $\operatorname{NE} \operatorname{AND} 2\left(s_{2}, R\right)$.
(5) Let $s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}, s_{7}, s_{8}, s_{9}, s_{10}, s_{11}, s_{12}, s_{13}$, $s_{14}, s_{15}, n_{0}, n_{1}, n_{2}, n_{3}, n_{6}, n_{7}, n_{8}, n_{9}, n_{11}, n_{12}, n_{13}, n_{14}$, $n_{15}, \quad n_{16}, \quad n_{17}, \quad n_{18}, \quad q_{1}, q_{2}, \quad q_{3}, \quad q_{4}, n_{4}, n_{5}, n_{10}, n_{19}$ be sets such that NE s_{0} iff NE AND4(NOT1 q_{4}, NOT1 q_{3}, NOT1 q_{2}, NOT1 q_{1}) and NE s_{1} iff NE AND4(NOT1 q_{4}, NOT1 q_{3}, NOT1 q_{2}, q_{1}) and NE s_{2} iff NE AND4(NOT1 q_{4}, NOT1 q_{3}, q_{2}, NOT1 q_{1}) and NE s_{3} iff NE AND4(NOT1 q_{4}, NOT1 q_{3}, q_{2}, q_{1}) and NE s_{4} iff NE AND4(NOT1 q_{4}, q_{3}, NOT1 $q_{2}, \operatorname{NOT1} q_{1}$) and NE s_{5} iff NE AND4(NOT1 q_{4}, q_{3}, NOT1 q_{2}, q_{1}) and NE s_{6} iff NE AND4(NOT1 q_{4}, q_{3}, q_{2}, NOT1 q_{1}) and NE s_{7} iff NE $\operatorname{AND} 4\left(\mathrm{NOT} 1 q_{4}, q_{3}, q_{2}, q_{1}\right)$ and NE $s_{8} \operatorname{iff} \operatorname{NE~AND4}\left(q_{4}, \operatorname{NOT} 1 q_{3}, \mathrm{NOT} 1 q_{2}\right.$, NOT1 q_{1}) and NE s_{9} iff NE AND4 $\left(q_{4}, \operatorname{NOT1~} q_{3}, \mathrm{NOT1} q_{2}, q_{1}\right)$ and $\mathrm{NE} s_{10}$ iff $\mathrm{NE} \operatorname{AND} 4\left(q_{4}, \mathrm{NOT} 1 q_{3}, q_{2}, \mathrm{NOT} 1 q_{1}\right)$ and NE s_{11} iff NE $\operatorname{AND} 4\left(q_{4}, \operatorname{NOT} 1 q_{3}, q_{2}, q_{1}\right)$ and NE s_{12} iff NE AND4 $\left(q_{4}, q_{3}\right.$, NOT1 q_{2}, NOT1 $\left.q_{1}\right)$ and $\mathrm{NE} s_{13}$ iff $\mathrm{NE} \operatorname{AND} 4\left(q_{4}, q_{3}, \mathrm{NOT} 1 q_{2}, q_{1}\right)$ and $\mathrm{NE} s_{14}$ iff $\mathrm{NE} \operatorname{AND} 4\left(q_{4}, q_{3}, q_{2}, \mathrm{NOT} 1 q_{1}\right)$ and $\mathrm{NE} s_{15}$ iff $\operatorname{NE} \operatorname{AND} 4\left(q_{4}, q_{3}, q_{2}, q_{1}\right)$ and NE n_{0} iff NE AND4(NOT1 n_{19}, NOT1 n_{10}, NOT1 n_{5}, NOT1 $\left.n_{4}\right)$ and NE n_{1} iff NE AND4(NOT1 n_{19}, NOT1 n_{10}, NOT1 n_{5}, n_{4}) and NE $\quad n_{2}$ iff NE AND4(NOT1 $n_{19}, \operatorname{NOT1} n_{10}, n_{5}$, NOT1 n_{4}) and NE n_{3} iff NE AND4(NOT1 n_{19}, NOT1 $\left.n_{10}, n_{5}, n_{4}\right)$ and NE n_{6} iff NE AND4(NOT1 n_{19}, n_{10}, NOT1 n_{5}, NOT1 n_{4}) and NE n_{7} iff NE AND4(NOT1 n_{19}, n_{10}, NOT1 $\left.n_{5}, n_{4}\right)$ and NE n_{8} iff NE AND4(NOT1 n_{19}, n_{10}, n_{5}, NOT1 n_{4}) and NE n_{9} iff NE AND4(NOT1 $\left.n_{19}, n_{10}, n_{5}, n_{4}\right)$ and NE n_{11} iff NE $\operatorname{AND} 4\left(n_{19}, \operatorname{NOT} 1 n_{10}, \operatorname{NOT} 1 n_{5}, \operatorname{NOT} 1 n_{4}\right)$ and NE n_{12} iff NE $\operatorname{AND} 4\left(n_{19}, \operatorname{NOT} 1 n_{10}, \operatorname{NOT1} n_{5}, n_{4}\right)$ and NE n_{13} iff NE AND4 $\left(n_{19}\right.$, NOT1 $\left.n_{10}, n_{5}, \operatorname{NOT} 1 n_{4}\right)$ and NE n_{14} iff NE AND4 $\left(n_{19}, \operatorname{NOT1} n_{10}, n_{5}, n_{4}\right)$ and NE n_{15} iff NE AND4 $\left(n_{19}, n_{10}\right.$, NOT1 n_{5}, NOT1 $\left.n_{4}\right)$ and NE n_{16} iff NE $\operatorname{AND} 4\left(n_{19}, n_{10}, \mathrm{NOT} 1 n_{5}, n_{4}\right)$ and NE n_{17} iff NE AND4 $\left(n_{19}, n_{10}, n_{5}\right.$, NOT1 $\left.n_{4}\right)$ and NE n_{18} iff NE AND4 $\left(n_{19}, n_{10}, n_{5}, n_{4}\right)$ and NE n_{4} iff NE NOT1 q_{4} and NE n_{5} iff NE q_{1} and NE n_{10} iff NE q_{2} and NE n_{19} iff NE q_{3}. Then
(i) NE n_{1} iff NE s_{0},
(ii) NE n_{3} iff NE s_{1},
(iii) $\mathrm{NE} n_{9}$ iff NE s_{3},
(iv) NE n_{18} iff NE s_{7},
(v) NE n_{17} iff NE s_{15},
(vi) NE n_{15} iff NE s_{14},
(vii) NE n_{11} iff NE s_{12},
(viii) NE n_{0} iff NE s_{8},
(ix) NE n_{7} iff NE s_{2},
(x) NE n_{14} iff NE s_{5},
(xi) NE n_{8} iff NE s_{11},
(xii) NE n_{16} iff NE s_{6},
(xiii) NE n_{13} iff NE s_{13},
(xiv) NE n_{6} iff NE s_{10},
(xv) NE n_{12} iff NE s_{4}, and
(xvi) NE n_{2} iff NE s_{9}.
(6) Let $s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}, s_{7}, s_{8}, s_{9}, s_{10}, s_{11}, s_{12}, s_{13}$, $s_{14}, s_{15}, n_{0}, n_{1}, n_{2}, n_{3}, n_{6}, n_{7}, n_{8}, n_{9}, n_{11}, n_{12}, n_{13}, n_{14}$, $n_{15}, n_{16}, n_{17}, n_{18}, q_{1}, q_{2}, q_{3}, q_{4}, n_{4}, n_{5}, n_{10}, n_{19}, R$ be sets such that NE s_{0} iff NE AND4(NOT1 q_{4}, NOT1 q_{3}, NOT1 q_{2}, NOT1 q_{1}) and NE s_{1} iff NE AND4(NOT1 q_{4},NOT1 q_{3},NOT1 q_{2}, q_{1}) and NE s_{2} iff NE AND4(NOT1 $\left.q_{4}, \operatorname{NOT} 1 q_{3}, q_{2}, \operatorname{NOT} 1 q_{1}\right)$ and NE s_{3} iff NE AND4(NOT1 q_{4}, NOT1 q_{3}, q_{2}, q_{1}) and NE s_{4} iff NE AND4(NOT1 q_{4}, q_{3}, NOT1 q_{2}, NOT1 q_{1}) and NE s_{5} iff NE AND4(NOT1 q_{4}, q_{3}, NOT1 q_{2}, q_{1}) and NE s_{6} iff NE AND4(NOT1 q_{4}, q_{3}, q_{2}, NOT1 q_{1}) and NE s_{7} iff NE AND4(NOT1 $\left.q_{4}, q_{3}, q_{2}, q_{1}\right)$ and NE s_{8} iff NE AND4 $\left(q_{4}, \operatorname{NOT1} q_{3}, \operatorname{NOT1} q_{2}\right.$, NOT1 q_{1}) and NE s_{9} iff NE $\operatorname{AND} 4\left(q_{4}, \operatorname{NOT1} q_{3}, \operatorname{NOT1} q_{2}, q_{1}\right)$ and NE s_{10} iff NE $\operatorname{AND} 4\left(q_{4}\right.$, NOT1 q_{3}, q_{2}, NOT1 q_{1}) and NE s_{11} iff NE $\operatorname{AND} 4\left(q_{4}, \operatorname{NOT1} q_{3}, q_{2}, q_{1}\right)$ and NE s_{12} iff NE AND4 $\left(q_{4}, q_{3}\right.$, NOT1 q_{2}, NOT1 q_{1}) and NE s_{13} iff $\operatorname{NE} \operatorname{AND} 4\left(q_{4}, q_{3}, \operatorname{NOT1} q_{2}, q_{1}\right)$ and NE s_{14} iff $\operatorname{NE} \operatorname{AND} 4\left(q_{4}, q_{3}, q_{2}, \operatorname{NOT1} q_{1}\right)$ and NE s_{15} iff NE AND4 $\left(q_{4}, q_{3}, q_{2}, q_{1}\right)$ and NE n_{0} iff NE AND4(NOT1 n_{19}, NOT1 n_{10}, NOT1 n_{5}, NOT1 n_{4}) and NE n_{1} iff NE AND4(NOT1 n_{19}, NOT1 n_{10}, NOT1 n_{5}, n_{4}) and NE n_{2} iff NE AND4(NOT1 n_{19}, NOT1 n_{10}, n_{5}, NOT1 n_{4}) and NE n_{3} iff NE AND4(NOT1 $\left.n_{19}, \operatorname{NOT1} n_{10}, n_{5}, n_{4}\right)$ and NE n_{6} iff NE AND4(NOT1 n_{19}, n_{10}, NOT1 n_{5}, NOT1 n_{4}) and NE n_{7} iff NE AND4(NOT1 n_{19}, n_{10}, NOT1 n_{5}, n_{4}) and NE n_{8} iff NE AND4(NOT1 n_{19}, n_{10}, n_{5}, NOT1 n_{4}) and NE n_{9} iff NE AND4(NOT1 $\left.n_{19}, n_{10}, n_{5}, n_{4}\right)$ and NE n_{11} iff NE AND4 $\left(n_{19}\right.$, NOT1 n_{10}, NOT1 n_{5}, NOT1 $\left.n_{4}\right)$ and NE n_{12} iff NE AND4 $\left(n_{19}\right.$, NOT1 n_{10}, NOT1 $\left.n_{5}, n_{4}\right)$ and NE n_{13} iff NE AND4 $\left(n_{19}\right.$, NOT1 n_{10}, n_{5}, NOT1 $\left.n_{4}\right)$ and NE n_{14} iff NE AND4 $\left(n_{19}\right.$, NOT1 $\left.n_{10}, n_{5}, n_{4}\right)$ and NE n_{15} iff NE AND4 $\left(n_{19}, n_{10}\right.$, NOT1 n_{5}, NOT1 $\left.n_{4}\right)$ and NE n_{16} iff NE AND4 $\left(n_{19}, n_{10}\right.$, NOT1 $\left.n_{5}, n_{4}\right)$ and NE n_{17} iff NE AND4 $\left(n_{19}, n_{10}, n_{5}\right.$, NOT1 n_{4}) and NE n_{18} iff NE $\operatorname{AND} 4\left(n_{19}, n_{10}, n_{5}, n_{4}\right)$ and NE n_{4} iff NE AND2(NOT1 q_{4}, R) and NE n_{5} iff NE AND2 $\left(q_{1}, R\right)$ and NE n_{10} iff NE $\operatorname{AND} 2\left(q_{2}, R\right)$ and NE n_{19} iff NE AND2 $\left(q_{3}, R\right)$. Then
(i) $\mathrm{NE} n_{1}$ iff $\mathrm{NE} \operatorname{AND} 2\left(s_{0}, R\right)$,
(ii) $\mathrm{NE} n_{3}$ iff $\operatorname{NE} \operatorname{AND} 2\left(s_{1}, R\right)$,
(iii) $\mathrm{NE} n_{9}$ iff $\operatorname{NE~} \operatorname{AND} 2\left(s_{3}, R\right)$,
(iv) $\operatorname{NE} n_{18}$ iff $\operatorname{NE} \operatorname{AND} 2\left(s_{7}, R\right)$,
(v) $\operatorname{NE} n_{17}$ iff NE AND2 $\left(s_{15}, R\right)$,
(vi) NE n_{15} iff NE AND2 $\left(s_{14}, R\right)$,
(vii) NE n_{11} iff $\operatorname{NE} \operatorname{AND} 2\left(s_{12}, R\right)$,
(viii) NE n_{0} iff NE OR2(AND2 $\left(s_{8}, R\right)$, NOT1 $\left.R\right)$,
(ix) $\operatorname{NE~} n_{7}$ iff NE AND2 $\left(s_{2}, R\right)$,
(x) $\operatorname{NE~} n_{14}$ iff NE $\operatorname{AND} 2\left(s_{5}, R\right)$,
(xi) $\operatorname{NE~} n_{8}$ iff $\operatorname{NE} \operatorname{AND} 2\left(s_{11}, R\right)$,
(xii) NE n_{16} iff NE $\operatorname{AND} 2\left(s_{6}, R\right)$,
(xiii) NE n_{13} iff $\operatorname{NE} \operatorname{AND} 2\left(s_{13}, R\right)$,
(xiv) $\operatorname{NE~} n_{6}$ iff NE $\operatorname{AND} 2\left(s_{10}, R\right)$,
(xv) NE n_{12} iff $\operatorname{NE~} \operatorname{AND} 2\left(s_{4}, R\right)$, and
(xvi) NE n_{2} iff NE AND2 $\left(s_{9}, R\right)$.

References

[1] Yatsuka Nakamura. Logic gates and logical equivalence of adders. Formalized Mathematics, 8(1):35-45, 1999.

