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Summary. In this article we introduce the ring of Integers, Euclidean
rings and Integers modulo p. In particular we prove that the Ring of Integers is

an Euclidean ring and that the Integers modulo p constitutes a field if and only

if p is a prime.

MML Identifier: INT 3.

The notation and terminology used here are introduced in the following papers:

[16], [21], [20], [17], [22], [4], [5], [14], [10], [12], [13], [3], [8], [7], [15], [18], [2], [6],

[11], [9], [1], and [19].

1. The Ring of Integers

The binary operation multint on Z is defined as follows:

(Def. 1) For all elements a, b of Z holds (multint)(a, b) = ·R(a, b).

The unary operation compint on Z is defined as follows:

(Def. 2) For every element a of Z holds (compint)(a) = −R(a).

The double loop structure INT.Ring is defined by:

(Def. 3) INT.Ring = 〈Z, +Z,multint, 1(∈ Z), 0(∈ Z)〉.

Let us mention that INT.Ring is strict and non empty.

Let us mention that INT.Ring is Abelian add-associative right zeroed ri-

ght complementable well unital distributive commutative associative integral

domain-like and non degenerated.

Let a, b be elements of the carrier of INT.Ring. The predicate a ¬ b is

defined by:
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(Def. 4) There exist integers a′, b′ such that a′ = a and b′ = b and a′ ¬ b′.

Let us notice that the predicate a ¬ b is reflexive and connected. We introduce

b ­ a as a synonym of a ¬ b. We introduce b < a and a > b as antonyms of

a ¬ b.

Let a be an element of the carrier of INT.Ring. The functor |a| yields an

element of the carrier of INT.Ring and is defined as follows:

(Def. 5) |a| =

{

a, if a ­ 0INT.Ring,

−a, otherwise.

The function absint from the carrier of INT.Ring into N is defined as follows:

(Def. 6) For every element a of the carrier of INT.Ring holds (absint)(a) =

|¤|R(a).

One can prove the following two propositions:

(1) For every element a of the carrier of INT.Ring holds (absint)(a) = |a|.

(2) Let a, b, q1, q2, r1, r2 be elements of the carrier of INT.Ring. Suppose

b 6= 0INT.Ring and a = q1 · b + r1 and 0INT.Ring ¬ r1 and r1 < |b| and

a = q2 · b + r2 and 0INT.Ring ¬ r2 and r2 < |b|. Then q1 = q2 and r1 = r2.

Let a, b be elements of the carrier of INT.Ring. Let us assume that b 6=

0INT.Ring. The functor a÷ b yields an element of the carrier of INT.Ring and is

defined by:

(Def. 7) There exists an element r of the carrier of INT.Ring such that a =

(a÷ b) · b + r and 0INT.Ring ¬ r and r < |b|.

Let a, b be elements of the carrier of INT.Ring. Let us assume that b 6=

0INT.Ring. The functor amod b yields an element of the carrier of INT.Ring and

is defined as follows:

(Def. 8) There exists an element q of the carrier of INT.Ring such that a =

q · b + (amod b) and 0INT.Ring ¬ amod b and amod b < |b|.

Next we state the proposition

(3) For all elements a, b of the carrier of INT.Ring such that b 6= 0INT.Ring

holds a = (a÷ b) · b + (amod b).

2. Euclidean Rings

Let I be a non empty double loop structure. We say that I is Euclidian if

and only if the condition (Def. 9) is satisfied.

(Def. 9) There exists a function f from the carrier of I into N such that for all

elements a, b of the carrier of I if b 6= 0I , then there exist elements q, r of

the carrier of I such that a = q · b + r but r = 0I or f(r) < f(b).
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One can check that INT.Ring is Euclidian.

Let us observe that there exists a ring which is strict, Euclidian, integral

domain-like, non degenerated, well unital, and distributive.

A EuclidianRing is a Euclidian integral domain-like non degenerated well

unital distributive ring.

Let us mention that there exists a EuclidianRing which is strict.

Let E be a Euclidian non empty double loop structure. A function from the

carrier of E into N is said to be a DegreeFunction of E if it satisfies the condition

(Def. 10).

(Def. 10) Let a, b be elements of the carrier of E. Suppose b 6= 0E . Then there

exist elements q, r of the carrier of E such that a = q · b + r but r = 0E

or it(r) < it(b).

Next we state the proposition

(4) Every EuclidianRing is a gcdDomain.

Let us note that every integral domain-like non degenerated Abelian add-

associative right zeroed right complementable associative commutative right

unital right-distributive non empty double loop structure which is Euclidian is

also gcd-like.

absint is a DegreeFunction of INT.Ring.

One can prove the following proposition

(5) Every commutative associative left unital field-like right zeroed non

empty double loop structure is Euclidian.

Let us observe that every non empty double loop structure which is com-

mutative, associative, left unital, field-like, right zeroed, and field-like is also

Euclidian.

One can prove the following proposition

(6) Let F be a commutative associative left unital field-like right zeroed non

empty double loop structure. Then every function from the carrier of F

into N is a DegreeFunction of F .

3. Some Theorems about Div and Mod

The following propositions are true:

(7) Let n be a natural number. Suppose n > 0. Let a be an integer and a′ be

a natural number. If a′ = a, then a÷ n = a′ ÷ n and amod n = a′ mod n.

(8) For every natural number n such that n > 0 and for all integers a, k

holds (a + n · k)÷ n = (a÷ n) + k and (a + n · k)mod n = amod n.

(9) For every natural number n such that n > 0 and for every integer a

holds amod n ­ 0 and amod n < n.
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(10) Let n be a natural number. Suppose n > 0. Let a be an integer. Then

(i) if 0 ¬ a and a < n, then amod n = a, and

(ii) if 0 > a and a ­ −n, then amod n = n + a.

(11) For every natural number n such that n > 0 and for every integer a

holds amod n = 0 iff n | a.

(12) For every natural number n such that n > 0 and for all integers a, b

holds amod n = bmod n iff a ≡ b(modn).

(13) For every natural number n such that n > 0 and for every integer a

holds amod nmod n = amod n.

(14) For every natural number n such that n > 0 and for all integers a, b

holds (a + b)mod n = ((amod n) + (bmod n))mod n.

(15) For every natural number n such that n > 0 and for all integers a, b

holds a · bmod n = (amod n) · (bmod n)mod n.

(16) For all integers a, b there exist integers s, t such that a gcd b = s ·a+ t ·b.

4. Modulo Integers

Let n be a natural number. Let us assume that n > 0. The functor multintn

yielding a binary operation on Zn is defined as follows:

(Def. 11) For all elements k, l of Zn holds (multintn)(k, l) = k · lmod n.

Let n be a natural number. Let us assume that n > 0. The functor compintn

yielding a unary operation on Zn is defined by:

(Def. 12) For every element k of Zn holds (compintn)(k) = (n− k)mod n.

Next we state three propositions:

(17) Let n be a natural number. Suppose n > 0. Let a, b be elements of Zn.

Then

(i) a + b < n iff +n(a, b) = a + b, and

(ii) a + b ­ n iff +n(a, b) = (a + b)− n.

(18) Let n be a natural number. Suppose n > 0. Let a, b be elements of Zn

and k be a natural number. Then k · n ¬ a · b and a · b < (k + 1) · n if and

only if (multintn)(a, b) = a · b− k · n.

(19) Let n be a natural number. Suppose n > 0. Let a be an element of Zn.

Then

(i) a = 0 iff (compintn)(a) = 0, and

(ii) a 6= 0 iff (compintn)(a) = n− a.

Let n be a natural number. The functor INT.Ringn yields a double loop

structure and is defined by:

(Def. 13) INT.Ringn = 〈Zn, +n,multintn, 1(∈ Zn), 0(∈ Zn)〉.
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Let n be a natural number. Observe that INT.Ringn is strict and non empty.

We now state the proposition

(20) INT.Ring 1 is degenerated and INT.Ring 1 is a ring and INT.Ring 1 is

field-like, well unital, and distributive.

Let us note that there exists a ring which is strict, degenerated, well unital,

distributive, and field-like.

One can prove the following propositions:

(21) For every natural number n such that n > 1 holds INT.Ringn is non

degenerated and INT.Ringn is a well unital distributive ring.

(22) Let p be a natural number. Suppose p > 1. Then INT.Ring p is an

add-associative right zeroed right complementable Abelian commutative

associative left unital distributive field-like non degenerated non empty

double loop structure if and only if p is a prime number.

Let p be a prime number. Observe that INT.Ring p is add-associative ri-

ght zeroed right complementable Abelian commutative associative left unital

distributive field-like and non degenerated.
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