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Summary. This article introduces the Riemann definite integral on the
closed interval of real. We present the definitions and related lemmas of the
closed interval. We formalize the concept of the Riemann definite integral and
the division of the closed interval of real, and prove the additivity of the integral.
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The notation and terminology used in this paper are introduced in the following

papers: [28], [31], [8], [14], [2], [5], [6], [30], [22], [32], [18], [15], [7], [20], [26], [10],

[12], [3], [27], [21], [4], [29], [16], [17], [24], [9], [11], [19], [25], [13], [23], and [1].

1. Definition of Closed Interval and its Properties

For simplicity, we adopt the following rules: a, a1, a2, b, b1, b2 are real

numbers, p is a finite sequence, F , G, H are finite sequences of elements of R,

i, j, k are natural numbers, f is a function from R into R, and x1 is a set.

Let I1 be a subset of R. We say that I1 is closed-interval if and only if:

(Def. 1) There exist real numbers a, b such that a ¬ b and I1 = [a, b].

Let us mention that there exists a subset of R which is closed-interval.

In the sequel A, A1, A2 are closed-interval subsets of R.

The following propositions are true:

(1) Every closed-interval subset of R is compact.

1This paper was written while the second author visited Shinshu University, winter 1999.
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(2) If A is a closed-interval subset of R, then A is non empty.

Let us observe that every subset of R which is closed-interval is also non

empty and compact.

The following proposition is true

(3) If A is a closed-interval subset of R, then A is lower bounded and upper

bounded.

Let us observe that every subset of R which is closed-interval is also bounded.

One can verify that there exists a subset of R which is closed-interval.

Next we state three propositions:

(4) If A is a closed-interval subset of R, then there exist a, b such that a ¬ b

and a = inf A and b = supA.

(5) If A is a closed-interval subset of R, then A = [inf A, supA].

(6) If A = [a1, b1] and A = [a2, b2], then a1 = a2 and b1 = b2.

2. Definition of Division of Closed Interval and its Properties

Let A be a closed-interval subset of R. A non empty increasing finite sequence

of elements of R is said to be a DivisionPoint of A if:

(Def. 2) rng it ⊆ A and it(len it) = supA.

Let A be a closed-interval subset of R. The functor divsA yielding a set is

defined by:

(Def. 3) x1 ∈ divsA iff x1 is a DivisionPoint of A.

Let A be a closed-interval subset of R. One can check that divsA is non

empty.

Let A be a closed-interval subset of R. A non empty set is called a Division

of A if:

(Def. 4) x1 ∈ it iff x1 is a DivisionPoint of A.

Let A be a closed-interval subset of R. Observe that there exists a Division

of A which is non empty.

The following proposition is true

(7) For every closed-interval subset A of R and for every non empty Division

S of A holds every element of S is a DivisionPoint of A.

Let A be a closed-interval subset of R and let S be a non empty Division of

A. We see that the element of S is a DivisionPoint of A.

In the sequel S denotes a non empty Division of A and D, D1, D2 denote

elements of S.

Next we state two propositions:

(8) If i ∈ domD, then D(i) ∈ A.
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(9) If i ∈ domD and i 6= 1, then i − 1 ∈ domD and D(i − 1) ∈ A and

i− 1 ∈ N.

Let A be a closed-interval subset of R, let S be a non empty Division of A,

let D be an element of S, and let i be a natural number. Let us assume that

i ∈ domD. The functor divset(D, i) yielding a closed-interval subset of R is

defined as follows:

(Def. 5)(i) inf divset(D, i) = inf A and sup divset(D, i) = D(i) if i = 1,

(ii) inf divset(D, i) = D(i− 1) and sup divset(D, i) = D(i), otherwise.

Next we state the proposition

(10) If i ∈ domD, then divset(D, i) ⊆ A.

Let A be a subset of R. The functor vol(A) yielding a real number is defined

by:

(Def. 6) vol(A) = supA− inf A.

One can prove the following proposition

(11) For every closed-interval subset A of R holds 0 ¬ vol(A).

3. Definitions of Integrability and Related Topics

Let A be a closed-interval subset of R, let f be a partial function from A

to R, let S be a non empty Division of A, and let D be an element of S. The

functor upper volume(f,D) yielding a finite sequence of elements of R is defined

as follows:

(Def. 7) len upper volume(f, D) = lenD and for every i such that i ∈

Seg lenD holds (upper volume(f,D))(i) = sup rng(f↾divset(D, i)) ·

vol(divset(D, i)).

The functor lower volume(f, D) yielding a finite sequence of elements of R is

defined by:

(Def. 8) len lower volume(f, D) = lenD and for every i such that i ∈ Seg lenD

holds (lower volume(f, D))(i) = inf rng(f↾ divset(D, i)) · vol(divset(D, i)).

Let A be a closed-interval subset of R, let f be a partial function from A

to R, let S be a non empty Division of A, and let D be an element of S. The

functor upper sum(f, D) yields a real number and is defined by:

(Def. 9) upper sum(f,D) =
∑
upper volume(f, D).

The functor lower sum(f, D) yields a real number and is defined by:

(Def. 10) lower sum(f, D) =
∑
lower volume(f,D).

Let A be a closed-interval subset of R. Then divsA is a Division of A.
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Let A be a closed-interval subset of R and let f be a partial function from

A to R. The functor upper sum set f yielding a partial function from divsA to

R is defined as follows:

(Def. 11) domupper sum set f = divsA and for every element D of divsA

such that D ∈ domupper sum set f holds (upper sum set f)(D) =

upper sum(f, D).

The functor lower sum set f yields a partial function from divsA to R and is

defined as follows:

(Def. 12) dom lower sum set f = divsA and for every element D of divsA

such that D ∈ dom lower sum set f holds (lower sum set f)(D) =

lower sum(f, D).

Let A be a closed-interval subset of R and let f be a partial function from

A to R. We say that f is upper integrable on A if and only if:

(Def. 13) rng upper sum set f is lower bounded.

We say that f is lower integrable on A if and only if:

(Def. 14) rng lower sum set f is upper bounded.

Let A be a closed-interval subset of R and let f be a partial function from

A to R. The functor upper integral f yielding a real number is defined by:

(Def. 15) upper integral f = inf rng upper sum set f.

Let A be a closed-interval subset of R and let f be a partial function from A

to R. The functor lower integral f yields a real number and is defined as follows:

(Def. 16) lower integral f = sup rng lower sum set f.

Let A be a closed-interval subset of R and let f be a partial function from

A to R. We say that f is integrable on A if and only if:

(Def. 17) f is upper integrable on A and f is lower integrable on A and

upper integral f = lower integral f.

Let A be a closed-interval subset of R and let f be a partial function from

A to R. The functor integral f yields a real number and is defined by:

(Def. 18) integral f = upper integral f.

4. Real Function’s Properties

Next we state several propositions:

(12) For every non empty set X and for all partial functions f , g from X to

R holds rng(f + g) ⊆ rng f + rng g.

(13) Let A be a closed-interval subset of R and f be a partial function from

A to R. If f is lower bounded on A, then rng f is lower bounded.
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(14) Let A be a closed-interval subset of R and f be a partial function from

A to R. If rng f is lower bounded, then f is lower bounded on A.

(15) Let A be a closed-interval subset of R and f be a partial function from

A to R. If f is upper bounded on A, then rng f is upper bounded.

(16) Let A be a closed-interval subset of R and f be a partial function from

A to R. If rng f is upper bounded, then f is upper bounded on A.

(17) Let A be a closed-interval subset of R and f be a partial function from

A to R. If f is bounded on A, then rng f is bounded.

5. Characteristic Function’s Properties

The following propositions are true:

(18) For every closed-interval subset A of R holds χA,A is a constant on A.

(19) For every closed-interval subset A of R holds rng(χA,A) = {1}.

(20) For every closed-interval subset A of R and for every set B such that

B ∩ dom(χA,A) 6= ∅ holds rng(χA,A↾B) = {1}.

(21) If i ∈ Seg lenD, then vol(divset(D, i)) = (lower volume(χA,A, D))(i).

(22) If i ∈ Seg lenD, then vol(divset(D, i)) = (upper volume(χA,A, D))(i).

(23) If lenF = lenG and lenF = lenH and for every k such that k ∈ domF

holds H(k) = Fk + Gk, then
∑

H =
∑

F +
∑

G.

(24) If lenF = lenG and lenF = lenH and for every k such that k ∈ domF

holds H(k) = Fk −Gk, then
∑

H =
∑

F −
∑

G.

(25) Let A be a closed-interval subset of R, S be a non empty Division of A,

and D be an element of S. Then
∑
lower volume(χA,A, D) = vol(A).

(26) Let A be a closed-interval subset of R, S be a non empty Division of A,

and D be an element of S. Then
∑
upper volume(χA,A, D) = vol(A).

6. Some Properties of Darboux Sum

Let A be a closed-interval subset of R, let f be a partial function from A

to R, let S be a non empty Division of A, and let D be an element of S. Then

upper volume(f, D) is a non empty finite sequence of elements of R.

Let A be a closed-interval subset of R, let f be a partial function from A

to R, let S be a non empty Division of A, and let D be an element of S. Then

lower volume(f,D) is a non empty finite sequence of elements of R.

One can prove the following propositions:
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(27) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, and D be an element of S. If f is

total and lower bounded on A, then inf rng f · vol(A) ¬ lower sum(f, D).

(28) Let A be a closed-interval subset of R, f be a partial function from

A to R, S be a non empty Division of A, D be an element of S, and i

be a natural number. Suppose f is total and upper bounded on A and

i ∈ Seg lenD. Then sup rng f ·vol(divset(D, i)) ­ sup rng(f↾divset(D, i)) ·

vol(divset(D, i)).

(29) Let A be a closed-interval subset of R, f be a partial function from A to

R, S be a non empty Division of A, and D be an element of S. If f is total

and upper bounded on A, then upper sum(f,D) ¬ sup rng f · vol(A).

(30) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, and D be an element of S. If f is

total and bounded on A, then lower sum(f, D) ¬ upper sum(f, D).

Let x be a non empty finite sequence of elements of R. Then rng x is a finite

non empty subset of R.

Let A be a closed-interval subset of R and let D be an element of divsA.

The functor δD yielding a real number is defined by:

(Def. 19) δD = max rng upper volume(χA,A, D).

Let A be a closed-interval subset of R, let S be a non empty Division of A,

and let D1, D2 be elements of S. The predicate D1 ¬ D2 is defined as follows:

(Def. 20) lenD1 ¬ lenD2 and rngD1 ⊆ rngD2.

We introduce D2 ­ D1 as a synonym of D1 ¬ D2.

One can prove the following propositions:

(31) Let A be a closed-interval subset of R, S be a non empty Division of A,

and D1, D2 be elements of S. If lenD1 = 1, then D1 ¬ D2.

(32) Let A be a closed-interval subset of R, f be a partial function from A to

R, S be a non empty Division of A, and D1, D2 be elements of S. If f is

total and upper bounded on A and lenD1 = 1, then upper sum(f, D1) ­

upper sum(f, D2).

(33) Let A be a closed-interval subset of R, f be a partial function from A to

R, S be a non empty Division of A, and D1, D2 be elements of S. If f is

total and lower bounded on A and lenD1 = 1, then lower sum(f, D1) ¬

lower sum(f, D2).

(34) Let A be a closed-interval subset of R, S be a non empty Division of A,

and D be an element of S. If i ∈ domD, then there exist A1, A2 such that

A1 = [inf A,D(i)] and A2 = [D(i), supA] and A = A1 ∪A2.

(35) Let A be a closed-interval subset of R, S be a non empty Division of A,

and D1, D2 be elements of S. If i ∈ domD1, then if D1 ¬ D2, then there

exists j such that j ∈ domD2 and D1(i) = D2(j).
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Let A be a closed-interval subset of R, let S be a non empty Division of A,

let D1, D2 be elements of S, and let i be a natural number. Let us assume that

D1 ¬ D2. The functor indx(D2, D1, i) yields a natural number and is defined as

follows:

(Def. 21)(i) indx(D2, D1, i) ∈ domD2 and D1(i) = D2(indx(D2, D1, i)) if i ∈

domD1,

(ii) indx(D2, D1, i) = 0, otherwise.

Next we state four propositions:

(36) Let p be an increasing finite sequence of elements of R and n be a natural

number. Suppose n ¬ len p. Then p⇂n is an increasing finite sequence of

elements of R.

(37) Let p be an increasing finite sequence of elements of R and i, j be natural

numbers. Suppose j ∈ dom p and i ¬ j. Then mid(p, i, j) is an increasing

finite sequence of elements of R.

(38) Let A be a closed-interval subset of R, S be a non empty Division of A,D

be an element of S, and i, j be natural numbers. Suppose i ∈ domD and

j ∈ domD and i ¬ j. Then there exists a closed-interval subsetB of R such

that inf B = (mid(D, i, j))(1) and supB = (mid(D, i, j))(lenmid(D, i, j))

and lenmid(D, i, j) = (j − i) + 1 and mid(D, i, j) is a DivisionPoint of B.

(39) Let A, B be closed-interval subsets of R, S be a non empty Division

of A, S1 be a non empty Division of B, D be an element of S, and i, j

be natural numbers. Suppose i ∈ domD and j ∈ domD and i ¬ j and

D(i) ­ inf B and D(j) = supB. Then mid(D, i, j) is an element of S1.

Let p be a finite sequence of elements of R. The functor PartSums p yielding

a finite sequence of elements of R is defined by:

(Def. 22) lenPartSums p = len p and for every i such that i ∈ Seg len p holds

(PartSums p)(i) =
∑

(p↾i).

We now state a number of propositions:

(40) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, and D1, D2 be elements of S.

Suppose D1 ¬ D2 and f is total and upper bounded on A. Let i be a non

empty natural number. If i ∈ domD1, then
∑

(upper volume(f,D1)↾i) ­∑
(upper volume(f, D2)↾ indx(D2, D1, i)).

(41) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, and D1, D2 be elements of S.

Suppose D1 ¬ D2 and f is total and lower bounded on A. Let i be a non

empty natural number. If i ∈ domD1, then
∑

(lower volume(f, D1)↾i) ¬∑
(lower volume(f,D2)↾ indx(D2, D1, i)).

(42) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, D1, D2 be elements of S, and i
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be a natural number. Suppose D1 ¬ D2 and i ∈ domD1 and f is to-

tal and upper bounded on A. Then (PartSums upper volume(f, D1))(i) ­

(PartSums upper volume(f, D2))(indx(D2, D1, i)).

(43) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, D1, D2 be elements of S, and

i be a natural number. Suppose D1 ¬ D2 and i ∈ domD1 and f is

total and lower bounded on A. Then (PartSums lower volume(f, D1))(i) ¬

(PartSums lower volume(f,D2))(indx(D2, D1, i)).

(44) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, and D be an element of S. Then

(PartSums upper volume(f, D))(lenD) = upper sum(f,D).

(45) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, and D be an element of S. Then

(PartSums lower volume(f,D))(lenD) = lower sum(f, D).

(46) Let A be a closed-interval subset of R, S be a non empty Division of A,

and D1, D2 be elements of S. If D1 ¬ D2, then indx(D2, D1, lenD1) =

lenD2.

(47) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, and D1, D2 be elements of S. If

D1 ¬ D2 and f is total and upper bounded onA, then upper sum(f, D2) ¬

upper sum(f, D1).

(48) Let A be a closed-interval subset of R, f be a partial function from A

to R, S be a non empty Division of A, and D1, D2 be elements of S. If

D1 ¬ D2 and f is total and lower bounded on A, then lower sum(f, D2) ­

lower sum(f, D1).

(49) Let A be a closed-interval subset of R, S be a non empty Division of A,

and D1, D2 be elements of S. Then there exists an element D of S such

that D1 ¬ D and D2 ¬ D.

(50) Let A be a closed-interval subset of R, f be a partial function from A to

R, S be a non empty Division of A, and D1, D2 be elements of S. If f is

total and bounded on A, then lower sum(f, D1) ¬ upper sum(f, D2).

7. Additivity of Integral

One can prove the following propositions:

(51) Let A be a closed-interval subset of R and f be a partial function from

A to R. Suppose f is upper integrable on A and f is lower integrable on A

and f is total and bounded on A. Then upper integral f ­ lower integral f.

(52) For all subsets X, Y of R holds −X +−Y = −(X + Y ).
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(53) For all subsets X, Y of R such that X is upper bounded and Y 6= ∅ and

Y is upper bounded holds X + Y is upper bounded.

(54) For all non empty subsets X, Y of R such that X is upper bounded and

Y is upper bounded holds sup(X + Y ) = supX + supY.

(55) Let A be a closed-interval subset of R, f , g be partial functions from

A to R, S be a non empty Division of A, and D be an element of S.

Suppose i ∈ Seg lenD and f is upper bounded on A and total and g

is upper bounded on A and total. Then (upper volume(f + g, D))(i) ¬

(upper volume(f, D))(i) + (upper volume(g, D))(i).

(56) Let A be a closed-interval subset of R, f , g be partial functions from A

to R, S be a non empty Division of A, and D be an element of S. Suppose

i ∈ Seg lenD and f is lower bounded on A and total and g is lower bounded

on A and total. Then (lower volume(f, D))(i)+(lower volume(g, D))(i) ¬

(lower volume(f + g, D))(i).

(57) Let A be a closed-interval subset of R, f , g be partial functions from A

to R, S be a non empty Division of A, and D be an element of S. Suppose

f is upper bounded on A and total and g is upper bounded on A and

total. Then upper sum(f + g,D) ¬ upper sum(f, D) + upper sum(g, D).

(58) Let A be a closed-interval subset of R, f , g be partial functions from A

to R, S be a non empty Division of A, and D be an element of S. Suppose

f is lower bounded on A and total and g is lower bounded on A and total.

Then lower sum(f,D) + lower sum(g, D) ¬ lower sum(f + g, D).

(59) Let X be a non empty set and f be a partial function from X to R. If

f is upper bounded on X and total, then rng f is upper bounded.

(60) Let X be a non empty set and f be a partial function from X to R. If

rng f is upper bounded and f is total, then f is upper bounded on X.

(61) Let X be a non empty set and f be a partial function from X to R. If

f is lower bounded on X and total, then rng f is lower bounded.

(62) Let X be a non empty set and f be a partial function from X to R. If

rng f is lower bounded and f is total, then f is lower bounded on X.

(63) Let A be a closed-interval subset of R and f , g be partial functions from

A to R. Suppose that

(i) f is total and bounded on A,

(ii) g is total and bounded on A,

(iii) f is integrable on A, and

(iv) g is integrable on A.

Then f + g is integrable on A and integral f + g = integral f + integral g.
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