
FORMALIZED MATHEMATICS

Volume 8, Number 1, 1999

University of Białystok

The SCMPDS Computer and the Basic

Semantics of its Instructions1

Jing-Chao Chen

Shanghai Jiaotong University

Summary. The article defines the SCMPDS computer and its instructions.
The SCMPDS computer consists of such instructions as conventional arithme-
tic, ”goto”, ”return” and ”save instruction-counter” (”saveIC” for short). The
address used in the ”goto” instruction is an offset value rather than a pointer
in the standard sense. Thus, we don’t define halting instruction directly but de-
fine it by ”goto 0” instruction. The ”saveIC” and ”return” equal almost call and
return statements in the usual high programming language. Theoretically, the
SCMPDS computer can implement all algorithms described by the usual high
programming language including recursive routine. In addition, we describe the
execution semantics and halting properties of each instruction.

MML Identifier: SCMPDS 2.

The papers [15], [21], [14], [5], [6], [10], [20], [18], [1], [16], [4], [2], [13], [22], [7],

[9], [3], [11], [12], [8], [17], and [19] provide the notation and terminology for this

paper.

1. The SCMPDS Computer

In this paper x denotes a set and i, k denote natural numbers.

The strict AMI SCMPDS over {Z} is defined as follows:

(Def. 1) SCMPDS = 〈N, 0, Instr-LocSCM, Z14,SCMPDS− Instr,SCMPDS−OK,

SCMPDS− Exec〉.

Next we state three propositions:

1This work was done while the author visited Shinshu University March–April 1999.

183
c© 1999 University of Białystok

ISSN 1426–2630

184 jing-chao chen

(1) There exists k such that x = 2 · k + 2 iff x ∈ Instr-LocSCM.

(2) SCMPDS is data-oriented.

(3) SCMPDS is definite.

Let us note that SCMPDS is von Neumann data-oriented and definite.

The following two propositions are true:

(4)(i) The instruction locations of SCMPDS 6= Z,

(ii) the instructions of SCMPDS 6= Z, and

(iii) the instruction locations of SCMPDS 6= the instructions of SCMPDS.

(5) N = {0} ∪Data-LocSCM ∪ Instr-LocSCM.

In the sequel s is a state of SCMPDS.

One can prove the following propositions:

(6) ICSCMPDS = 0.

(7) For every SCMPDS-State S such that S = s holds ICs = ICS .

2. The Memory Structure

An object of SCMPDS is called a Int position if:

(Def. 2) It ∈ Data-LocSCM.

In the sequel d1 denotes a Int position.

The following propositions are true:

(8) d1 ∈ Data-LocSCM.

(9) If x ∈ Data-LocSCM, then x is a Int position.

(10) Data-LocSCM misses the instruction locations of SCMPDS.

(11) The instruction locations of SCMPDS are infinite.

(12) Every Int position is a data-location.

(13) For every Int position l holds ObjectKind(l) = Z.

(14) For every set x such that x ∈ Instr-LocSCM holds x is an instruction-

location of SCMPDS.

3. The Instruction Structure

We use the following convention: d2, d3, d4, d5, d6 are elements of

Data-LocSCM and k1, k2, k3, k4, k5, k6 are integers.

Let I be an instruction of SCMPDS. The functor InsCode(I) yields a natural

number and is defined by:

(Def. 3) InsCode(I) = I1.

the scmpds computer and the basic . . . 185

In the sequel I is an instruction of SCMPDS.

Next we state the proposition

(15) For every instruction I of SCMPDS holds InsCode(I) ¬ 13.

Let s be a state of SCMPDS and let d be a Int position. Then s(d) is an

integer.

Let m, n be integers. The functor DataLoc(m,n) yields a Int position and

is defined as follows:

(Def. 4) DataLoc(m,n) = 2 · |m + n|+ 1.

One can prove the following propositions:

(16) 〈〈0, 〈k1〉〉〉 ∈ SCMPDS− Instr .

(17) 〈〈1, 〈d2〉〉〉 ∈ SCMPDS− Instr .

(18) If x ∈ {2, 3}, then 〈〈x, 〈d3, k2〉〉〉 ∈ SCMPDS− Instr .

(19) If x ∈ {4, 5, 6, 7, 8}, then 〈〈x, 〈d4, k3, k4〉〉〉 ∈ SCMPDS− Instr .

(20) If x ∈ {9, 10, 11, 12, 13}, then 〈〈x, < ∗d5, d6, k5, k6∗ > 〉〉 ∈

SCMPDS− Instr .

In the sequel a, b, c are Int position.

Let us consider k1. The functor goto k1 yielding an instruction of SCMPDS

is defined as follows:

(Def. 5) goto k1 = 〈〈0, 〈k1〉〉〉.

Let us consider a. The functor return a yields an instruction of SCMPDS

and is defined by:

(Def. 6) return a = 〈〈1, 〈a〉〉〉.

Let us consider a, k1. The functor a:=k1 yields an instruction of SCMPDS

and is defined as follows:

(Def. 7) a:=k1 = 〈〈2, 〈a, k1〉〉〉.

The functor saveIC(a, k1) yields an instruction of SCMPDS and is defined as

follows:

(Def. 8) saveIC(a, k1) = 〈〈3, 〈a, k1〉〉〉.

Let us consider a, k1, k2. The functor (a, k1) <> 0 gotok2 yields an instruc-

tion of SCMPDS and is defined as follows:

(Def. 9) (a, k1) <> 0 gotok2 = 〈〈4, 〈a, k1, k2〉〉〉.

The functor (a, k1) <= 0 gotok2 yielding an instruction of SCMPDS is defined

as follows:

(Def. 10) (a, k1) <= 0 gotok2 = 〈〈5, 〈a, k1, k2〉〉〉.

The functor (a, k1) >= 0 gotok2 yielding an instruction of SCMPDS is defined

by:

(Def. 11) (a, k1) >= 0 gotok2 = 〈〈6, 〈a, k1, k2〉〉〉.

The functor ak1
:=k2 yielding an instruction of SCMPDS is defined as follows:

186 jing-chao chen

(Def. 12) ak1
:=k2 = 〈〈7, 〈a, k1, k2〉〉〉.

The functor AddTo(a, k1, k2) yielding an instruction of SCMPDS is defined by:

(Def. 13) AddTo(a, k1, k2) = 〈〈8, 〈a, k1, k2〉〉〉.

Let us consider a, b, k1, k2. The functor AddTo(a, k1, b, k2) yields an instruc-

tion of SCMPDS and is defined by:

(Def. 14) AddTo(a, k1, b, k2) = 〈〈9, < ∗a, b, k1, k2∗ > 〉〉.

The functor SubFrom(a, k1, b, k2) yielding an instruction of SCMPDS is defined

by:

(Def. 15) SubFrom(a, k1, b, k2) = 〈〈10, < ∗a, b, k1, k2∗ > 〉〉.

The functor MultBy(a, k1, b, k2) yielding an instruction of SCMPDS is defined

as follows:

(Def. 16) MultBy(a, k1, b, k2) = 〈〈11, < ∗a, b, k1, k2∗ > 〉〉.

The functor Divide(a, k1, b, k2) yielding an instruction of SCMPDS is defined

by:

(Def. 17) Divide(a, k1, b, k2) = 〈〈12, < ∗a, b, k1, k2∗ > 〉〉.

The functor (a, k1) := (b, k2) yielding an instruction of SCMPDS is defined by:

(Def. 18) (a, k1) := (b, k2) = 〈〈13, < ∗a, b, k1, k2∗ > 〉〉.

One can prove the following propositions:

(21) InsCode(goto k1) = 0.

(22) InsCode(return a) = 1.

(23) InsCode(a:=k1) = 2.

(24) InsCode(saveIC(a, k1)) = 3.

(25) InsCode((a, k1) <> 0 gotok2) = 4.

(26) InsCode((a, k1) <= 0 gotok2) = 5.

(27) InsCode((a, k1) >= 0 gotok2) = 6.

(28) InsCode(ak1
:=k2) = 7.

(29) InsCode(AddTo(a, k1, k2)) = 8.

(30) InsCode(AddTo(a, k1, b, k2)) = 9.

(31) InsCode(SubFrom(a, k1, b, k2)) = 10.

(32) InsCode(MultBy(a, k1, b, k2)) = 11.

(33) InsCode(Divide(a, k1, b, k2)) = 12.

(34) InsCode((a, k1) := (b, k2)) = 13.

(35) For every instruction i1 of SCMPDS such that InsCode(i1) = 0 there

exists k1 such that i1 = goto k1.

(36) For every instruction i1 of SCMPDS such that InsCode(i1) = 1 there

exists a such that i1 = return a.

the scmpds computer and the basic . . . 187

(37) For every instruction i1 of SCMPDS such that InsCode(i1) = 2 there

exist a, k1 such that i1 = a:=k1.

(38) For every instruction i1 of SCMPDS such that InsCode(i1) = 3 there

exist a, k1 such that i1 = saveIC(a, k1).

(39) For every instruction i1 of SCMPDS such that InsCode(i1) = 4 there

exist a, k1, k2 such that i1 = (a, k1) <> 0 gotok2.

(40) For every instruction i1 of SCMPDS such that InsCode(i1) = 5 there

exist a, k1, k2 such that i1 = (a, k1) <= 0 gotok2.

(41) For every instruction i1 of SCMPDS such that InsCode(i1) = 6 there

exist a, k1, k2 such that i1 = (a, k1) >= 0 gotok2.

(42) For every instruction i1 of SCMPDS such that InsCode(i1) = 7 there

exist a, k1, k2 such that i1 = ak1
:=k2.

(43) For every instruction i1 of SCMPDS such that InsCode(i1) = 8 there

exist a, k1, k2 such that i1 = AddTo(a, k1, k2).

(44) For every instruction i1 of SCMPDS such that InsCode(i1) = 9 there

exist a, b, k1, k2 such that i1 = AddTo(a, k1, b, k2).

(45) For every instruction i1 of SCMPDS such that InsCode(i1) = 10 there

exist a, b, k1, k2 such that i1 = SubFrom(a, k1, b, k2).

(46) For every instruction i1 of SCMPDS such that InsCode(i1) = 11 there

exist a, b, k1, k2 such that i1 = MultBy(a, k1, b, k2).

(47) For every instruction i1 of SCMPDS such that InsCode(i1) = 12 there

exist a, b, k1, k2 such that i1 = Divide(a, k1, b, k2).

(48) For every instruction i1 of SCMPDS such that InsCode(i1) = 13 there

exist a, b, k1, k2 such that i1 = (a, k1) := (b, k2).

(49) For every state s of SCMPDS and for every Int position d holds d ∈

dom s.

(50) For every state s of SCMPDS holds Data-LocSCM ⊆ dom s.

(51) For every state s of SCMPDS holds dom(s↾Data-LocSCM) =

Data-LocSCM.

(52) For every Int position d7 holds d7 6= ICSCMPDS.

(53) For every instruction-location i2 of SCMPDS and for every Int position

d7 holds i2 6= d7.

(54) Let s1, s2 be states of SCMPDS. Suppose IC(s1) = IC(s2) and for every

Int position a holds s1(a) = s2(a) and for every instruction-location i of

SCMPDS holds s1(i) = s2(i). Then s1 = s2.

Let l1 be an instruction-location of SCMPDS. The functor Next(l1) yields

an instruction-location of SCMPDS and is defined by:

(Def. 19) There exists an element m1 of Instr-LocSCM such that m1 = l1 and

Next(l1) = Next(m1).

188 jing-chao chen

One can prove the following propositions:

(55) For every instruction-location l1 of SCMPDS and for every element m1

of Instr-LocSCM such that m1 = l1 holds Next(m1) = Next(l1).

(56) For every element i of SCMPDS− Instr such that i = I and for every

SCMPDS-State S such that S = s holds Exec(I, s) = Exec-ResSCM(i, S).

4. Execution Semantics of the SCMPDS instructions

The following propositions are true:

(57) (Exec(a:=k1, s))(ICSCMPDS) = Next(ICs) and (Exec(a:=k1, s))(a) = k1

and for every b such that b 6= a holds (Exec(a:=k1, s))(b) = s(b).

(58) (Exec(ak1
:=k2, s))(ICSCMPDS) = Next(ICs) and (Exec(ak1

:=k2, s))

(DataLoc(s(a), k1)) = k2 and for every b such that b 6= DataLoc(s(a), k1)

holds (Exec(ak1
:=k2, s))(b) = s(b).

(59) (Exec((a, k1) := (b, k2), s))(ICSCMPDS) = Next(ICs) and (Exec((a, k1) :=

(b, k2), s))(DataLoc(s(a), k1)) = s(DataLoc(s(b), k2)) and for every c such

that c 6= DataLoc(s(a), k1) holds (Exec((a, k1) := (b, k2), s))(c) = s(c).

(60) (Exec(AddTo(a, k1, k2), s))(ICSCMPDS) = Next(ICs) and (Exec(AddTo

(a, k1, k2), s))(DataLoc(s(a), k1)) = s(DataLoc(s(a), k1)) + k2 and for

every b such that b 6= DataLoc(s(a), k1) holds (Exec(AddTo(a, k1, k2), s))(b)

= s(b).

(61) (Exec(AddTo(a, k1, b, k2), s))(ICSCMPDS) = Next(ICs) and (Exec(AddTo

(a, k1, b, k2), s))(DataLoc(s(a), k1)) = s(DataLoc(s(a), k1))+s(DataLoc(s(b),

k2)) and for every c such that c 6= DataLoc(s(a), k1) holds

(Exec(AddTo(a, k1, b, k2), s))(c) = s(c).

(62) (Exec(SubFrom(a, k1, b, k2), s))(ICSCMPDS) = Next(ICs) and (Exec

(SubFrom(a, k1, b, k2), s))(DataLoc(s(a), k1)) = s(DataLoc(s(a), k1)) −

s(DataLoc(s(b), k2)) and for every c such that c 6= DataLoc(s(a), k1) holds

(Exec(SubFrom(a, k1, b, k2), s))(c) = s(c).

(63) (Exec(MultBy(a, k1, b, k2), s))(ICSCMPDS) = Next(ICs) and (Exec

(MultBy(a, k1, b, k2), s))(DataLoc(s(a), k1)) = s(DataLoc(s(a), k1)) ·

s(DataLoc(s(b), k2)) and for every c such that c 6= DataLoc(s(a), k1) holds

(Exec(MultBy(a, k1, b, k2), s))(c) = s(c).

(64)(i) (Exec(Divide(a, k1, b, k2), s))(ICSCMPDS) = Next(ICs),

(ii) if DataLoc(s(a), k1) 6= DataLoc(s(b), k2), then (Exec(Divide(a, k1, b, k2),

s))(DataLoc(s(a), k1)) = s(DataLoc(s(a), k1))÷ s(DataLoc(s(b), k2)),

(iii) (Exec(Divide(a, k1, b, k2), s))(DataLoc(s(b), k2)) = s(DataLoc(s(a), k1))

mod s(DataLoc(s(b), k2)), and

the scmpds computer and the basic . . . 189

(iv) for every c such that c 6= DataLoc(s(a), k1) and c 6= DataLoc(s(b), k2)

holds (Exec(Divide(a, k1, b, k2), s))(c) = s(c).

(65) (Exec(Divide(a, k1, a, k1), s))(ICSCMPDS) = Next(ICs) and (Exec(Divide

(a, k1, a, k1), s))(DataLoc(s(a), k1)) = s(DataLoc(s(a), k1))mods(DataLoc

(s(a), k1)) and for every c such that c 6= DataLoc(s(a), k1) holds

(Exec(Divide(a, k1, a, k1), s))(c) = s(c).

Let s be a state of SCMPDS and let c be an integer. The functor

ICplusConst(s, c) yields an instruction-location of SCMPDS and is defined by:

(Def. 20) There exists a natural number m such that m = ICs and

ICplusConst(s, c) = |(m− 2) + 2 · c|+ 2.

The following propositions are true:

(66) (Exec(goto k1, s))(ICSCMPDS) = ICplusConst(s, k1) and for every a

holds (Exec(goto k1, s))(a) = s(a).

(67) If s(DataLoc(s(a), k1)) 6= 0, then (Exec((a, k1) <> 0 gotok2, s))(ICSCMPDS)

= ICplusConst(s, k2) and if s(DataLoc(s(a), k1)) = 0, then

(Exec((a, k1) <> 0 gotok2, s))(ICSCMPDS) = Next(ICs) and (Exec((a, k1) <>

0 gotok2, s))(b) = s(b).

(68) If s(DataLoc(s(a), k1)) ¬ 0, then (Exec((a, k1) <= 0 gotok2, s))(ICSCMPDS)

= ICplusConst(s, k2) and if s(DataLoc(s(a), k1)) > 0, then

(Exec((a, k1) <= 0 gotok2, s))(ICSCMPDS) = Next(ICs) and (Exec((a, k1) <=

0 gotok2, s))(b) = s(b).

(69) If s(DataLoc(s(a), k1)) ­ 0, then (Exec((a, k1) >= 0 gotok2, s))(ICSCMPDS)

= ICplusConst(s, k2) and if s(DataLoc(s(a), k1)) < 0, then

(Exec((a, k1) >= 0 gotok2, s))(ICSCMPDS) = Next(ICs) and (Exec((a, k1) >=

0 gotok2, s))(b) = s(b).

(70) (Exec(return a, s))(ICSCMPDS) = 2 · (|s(DataLoc(s(a),RetIC))| ÷ 2) + 4

and (Exec(return a, s))(a) = s(DataLoc(s(a),RetSP)) and for every b such

that a 6= b holds (Exec(return a, s))(b) = s(b).

(71) (Exec(saveIC(a, k1), s))(ICSCMPDS) = Next(ICs) and (Exec(saveIC(a, k1),

s))(DataLoc(s(a), k1)) = ICs and for every b such that DataLoc(s(a), k1) 6=

b holds (Exec(saveIC(a, k1), s))(b) = s(b).

(72) For every integer k there exists a function f from Data-LocSCM into Z

such that for every element x of Data-LocSCM holds f(x) = k.

(73) For every integer k there exists a state s of SCMPDS such that for every

Int position d holds s(d) = k.

(74) Let k be an integer and l1 be an instruction-location of SCMPDS. Then

there exists a state s of SCMPDS such that s(0) = l1 and for every Int

position d holds s(d) = k.

(75) goto 0 is halting.

190 jing-chao chen

(76) For every instruction I of SCMPDS such that there exists s such that

(Exec(I, s))(ICSCMPDS) = Next(ICs) holds I is non halting.

(77) a:=k1 is non halting.

(78) ak1
:=k2 is non halting.

(79) (a, k1) := (b, k2) is non halting.

(80) AddTo(a, k1, k2) is non halting.

(81) AddTo(a, k1, b, k2) is non halting.

(82) SubFrom(a, k1, b, k2) is non halting.

(83) MultBy(a, k1, b, k2) is non halting.

(84) Divide(a, k1, b, k2) is non halting.

(85) If k1 6= 0, then goto k1 is non halting.

(86) (a, k1) <> 0 gotok2 is non halting.

(87) (a, k1) <= 0 gotok2 is non halting.

(88) (a, k1) >= 0 gotok2 is non halting.

(89) return a is non halting.

(90) saveIC(a, k1) is non halting.

(91) Let I be a set. Then I is an instruction of SCMPDS if and only if one

of the following conditions is satisfied:

there exists k1 such that I = goto k1 or there exists a such that I =

return a or there exist a, k1 such that I = saveIC(a, k1) or there exist a,

k1 such that I = a:=k1 or there exist a, k1, k2 such that I = ak1
:=k2

or there exist a, k1, k2 such that I = (a, k1) <> 0 gotok2 or there exist

a, k1, k2 such that I = (a, k1) <= 0 gotok2 or there exist a, k1, k2 such

that I = (a, k1) >= 0 gotok2 or there exist a, b, k1, k2 such that I =

AddTo(a, k1, k2) or there exist a, b, k1, k2 such that I = AddTo(a, k1, b, k2)

or there exist a, b, k1, k2 such that I = SubFrom(a, k1, b, k2) or there exist

a, b, k1, k2 such that I = MultBy(a, k1, b, k2) or there exist a, b, k1,

k2 such that I = Divide(a, k1, b, k2) or there exist a, b, k1, k2 such that

I = (a, k1) := (b, k2).

Let us observe that SCMPDS is halting.

We now state several propositions:

(92) For every instruction I of SCMPDS such that I is halting holds I =

haltSCMPDS.

(93) haltSCMPDS = goto 0.

(94) Exec(haltSCMPDS, s) = s.

(95) For every state s of SCMPDS and for every instruction-location i of

SCMPDS holds s(i) is an instruction of SCMPDS.

(96) For every state s of SCMPDS and for every instruction i of SCMPDS and

for every instruction-location l of SCMPDS holds (Exec(i, s))(l) = s(l).

the scmpds computer and the basic . . . 191

(97) SCMPDS is realistic.

Let us observe that SCMPDS is steady-programmed and realistic.

One can prove the following propositions:

(98) ICSCMPDS 6= di and ICSCMPDS 6= ii.

(99) For every instruction I of SCMPDS such that I = goto 0 holds I is

halting.

Acknowledgments

We wish to thank Prof. Y. Nakamura for many helpful suggestions.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[4] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676,
1990.

[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[7] Czesław Byliński. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[8] Jing-Chao Chen. A small computer model with push-down stack. Formalized Mathema-
tics, 8(1):175–182, 1999.

[9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35–40, 1990.

[11] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized
Mathematics, 3(2):151–160, 1992.

[12] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. For-
malized Mathematics, 3(2):241–250, 1992.

[13] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathe-
matics, 2(5):623–627, 1991.

[14] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[16] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,
1(1):97–105, 1990.

[17] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model
of computer. Formalized Mathematics, 4(1):51–56, 1993.

[18] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[19] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[21] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Ma-
thematics, 1(1):17–23, 1990.

[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

Received June 15, 1999

